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ABSTRACT 
The application range of memory-based collaborative filtering 
(CF) is limited due to CF’s high memory consumption and long 
runtime. The approach presented in this paper removes redundant 
and inconsistent instances (users) from the data. Our work shows 
that a satisfactory accuracy can be achieved by using only a small 
portion of the original data set, thereby alleviating the storage and 
runtime cost of the CF algorithm. In our approach, we consider 
instance selection as the problem of selecting informative data that 
increase the a posteriori probability of the optimal model. We 
evaluate the empirical performance of our approach on two real-
world data sets and attain very promising results. Data size and 
prediction time are significantly reduced, while the prediction 
accuracy is on a par with results achieved by using the complete 
database. 

Categories and Subject Descriptors 
H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces – Computer-supported cooperative work. 

General Terms 
Algorithms, Theory 

Keywords 
Collaborative filtering, Data selection, Efficiency, Scalability 

1. Introduction 
The tremendous advance of data storage technology together with 
the sheer growth of electronic business and media has caused an 
explosive growth of information. In recent years, information 
filtering technology has emerged to help people handle the 
problem of information overload. A typical information filtering 
application concern recommender systems, which attempt to assist 

users in finding their favorite products (for example, CDs, books 
or movies) out of thousands or even millions of products offered 
by a vendor. Recommender systems are commonly based on 
collaborative filtering (CF). CF accumulates a database of user 
preferences and uses those to predict a novel user's preferences for 
unseen items, such as a new CD or movie.  

Breese et al. [1998] identify two major classes of CF algorithms, 
memory-based approaches and model-based approaches. 
Memory-based CF approaches simply store all the data and defer 
the generalization (that is, the actual extraction of knowledge from 
the data) to the prediction phase. In CF literature, memory-based 
methods have been widely investigated. On the other hand, 
model-based algorithms first learn a descriptive model from the 
collected data and then use it to predict user preferences. 
Comparing model-based CF and memory-based CF, the following 
points are important to bear in mind: (1) Both approaches have 
comparable prediction accuracy; (2) Memory-based CF has a clear 
interpretation: user prefers those items that like-minded people 
prefer; (3) Memory-based CF can incrementally accommodate the 
information of new coming data, while typical model-based 
methods lack this ability. This is a crucial point, since the amount 
of available data is ever growing; (4) Memory-based CF suffers 
from slow response time, because each single prediction requires 
scanning the whole database. Thus, the computational cost and 
storage space scale linearly with the size of preference data stored 
for memory-based CF. (5) For model-based approaches, the 
learning phase (i.e. the time to train the model) may become 
prohibitively long for large data sets.  Summing up, memory-
based CF has advantages in terms of interpretability and 
adaptability. Both approaches have difficulties with large data sets 
either in terms of training time or in terms of response time and 
storage requirements.   

The goal of the work presented in this paper is to reduce storage 
requirements and improve on response speed for memory based 
CF approaches by reducing the size of the instance base. An 
instance is here defined as a user with associated preference 
profile. The proposed method effectively removes redundant and 
inconsistent preference data by using a measure of instance 
relevance. By using only a small, suitably selected subset of the 
original data, one can speed up the prediction with only little loss 
of accuracy and furthermore reduce the storage cost.  
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This article is organized as follows. After a brief introduction to 
related work, we first investigate the general problem of instance 
selection for learning algorithms in Section 3. We propose a 
likelihood-based relevance measure to carry out instance selection. 
In Section 4, we introduce a probabilistic framework for CF. 
Based on the results of Section 3, we describe an algorithm, 
profile filtering (PF), to select informative instances for memory-
based CF. In Section 5 we evaluate the PF algorithm on two 
datasets, EachMovie and MsWeb. The experimental results 
clearly demonstrate that PF significantly reduces the size of 
training data, while retaining an accuracy that is comparable to 
predictions made using the whole set of preference data. We end 
by giving conclusions and an outlook to future work 

2. Related Work 
Collaborative filtering (CF) has been a lively research area in 
recent years and proved successful in practice. A variety of 
algorithms have been proposed. The first CF algorithms were 
based on the observation that people usually trust the 
recommendations from like-minded friends. The Grouplens 
[Resnick et al, 1994] and Ringo [Shardanand and Maes, 1995] 
systems applied memory-based algorithms to help users to 
automatically find like-minded users and combine their opinions 
to make predictions. Different metrics to measure the preference 
similarity between users have been suggested, including Pearson 
coefficients [Resnick et al, 1994], constraint Pearson coefficients 
[Shardanand and Maes, 1995], vector similarity [Breese et al, 
1998], and personality type [Pennock et al, 2000]. Model-based 
CF, in contrast, uses the user's preference database to learn a 
model, which is then used for predictions. The model is built off-
line over a matter of hours or days. The resulting models are 
typically small, fast, and essentially as accurate as memory-based 
methods. Examples include Bayesian networks [Breese et al, 
1998], clustering techniques [Breese et al., 1998; Ungar & Foster, 
1998], neural networks [Billsus and Pazzani, 1998], induction 
rule learning [Basu et al, 1998], and linear classifiers [Zhang & 
Iyengar, 2001].  Breese et al. [1998] compare several memory-
based methods and model-based methods. Their results indicate 
that the performances of memory-based methods based on the 
Pearson coefficient and Bayesian networks are comparable and 
better than the alternative approaches under study.  

Up to now, work on CF mainly focuses on the issue of prediction 
accuracy. Other important aspects, like scalability, incremental 
processing, and interactive CF have received only little attention.  

Instance selection has been a subject of extensive studies in the 
area of memory-based (instance-based) learning [Liu and Motoda, 
2001]. Similarly to memory-based CF, memory-based learning 
methods simply store all the training instances. They reply to 
classification queries by evaluating the similarity to their stored 
instances. Instance selection algorithms usually seek to select 
representative instances out of the whole training set. Depending 
on the method, “representative” points may be border points, e.g. 
IB2 [Aha et al, 1991] or central points [Zhang, 1992]. The 
intuition behind retaining border points is that “internal” points 
do not affect the decision boundaries as much as border points, 
and thus can be removed. However, noisy points are prone to be 
judged as border points and added to the training set. Selecting 
central points as representative is less sensitive to noise, yet it may 
fail to characterize the decision boundary accurately. Another 
class of algorithms attempts to remove noisy points by 

considering the labels of their neighbors, e.g. DROP3 in [Wilson 
and Martinez, 2000]. The studies of instance selection for 
instance-based learning are closely related to the work we present 
in this article.  

Preliminary work on instance selection techniques for memory-
based CF has been presented in [Yu et al, 2002], where two 
separate methods are proposed to remove redundant and 
inconsistent instances, respectively. They use different instance 
bases when predicting ratings on different items and thus do not 
really reduce the amount of data.  This paper addresses the two 
kinds of removals by using a unified likelihood-based relevance 
measure and proposes a novel method to actually reduce the data. 
In addition, this paper provides a meaningful probabilistic point 
of view to look at the data selection problem in memory-based CF.  

3. Instance Relevance  
In this section we discuss the role of instances and draw some 
general conclusions about instance relevance, which are 
applicable to a range of probabilistic model-based learning 
algorithms. We will make the connection to memory-based CF in 
Section 4, where we show how memory-based CF can also be 
interpreted as a probabilistic model-based learning approach. The 
conclusions drawn in this section provide a theoretic preparation 
for our data selection algorithm, which will be introduced in 
Section 4.  

3.1 MAP hypothesis 
Bayesian methods provide a general perspective for understanding 
many learning algorithms, including those that do not explicitly 
manipulate probabilities. We begin by introducing the learning 
problem as well as necessary notations. The goal is to learn a 
target function f : X →Y, which is a mapping from attribute space 
X to class label space Y. A training data set D is given, which 
consists of m instances {d1…dm}, where each instance is an 
attribute/label pair di = (xi, yi). In many learning scenarios, the 
learning algorithm L considers a candidate hypothesis space H 
and aims at finding the most probable hypothesis h ∈H  given the 
observed data D which is called the maximum a posteriori (MAP) 
hypothesis: 

( )
 

arg max |MAP
h

h P h D
∈

≡
H

                          (1) 

3.2 Likelihood-Based Instance Relevance  
We consider an iterative learning scheme, in which only relevant 
new data are added to the already existing training data set. Let Dt 
be the data set selected until iteration t, let D-t denote the 
remaining data, and let ht

MAP∈H be the MAP hypothesis derived 
from Dt. Then for any hypothesis h∈H, using Bayes’ theorem we 
have 
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Using the Laplace approximation [Heckerman, 1995], we derive 
the following approximate expression: 
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where C is a term independent of h and dt+1. Since the goal of 
learner L is to output hMAP based on the complete data set D (see 
Eq.(1)), we aim at finding dt+1∈D-t such that hMAP becomes more 
likely when learner L observes the subset Dt+1={Dt, dt+1}. Because 
Eq.(2) and (3) are correct for any h in H, we replace h in Eq.(2) 
and (3) by hMAP and obtain an interesting result: 

1
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( | ) ( | )

t
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MAP t MAP
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Eq.(4) shows that the increase of the probability of hMAP after 
observing dt+1 is proportional to the likelihood ratio of dt+1 with 
respect to hMAP and ht

MAP. Therefore the optimal data point is the 
one that can maximize the probability of hMAP. 
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where          

           

( ) log ( | ) log ( | )

         log ( , | ) log ( , | )

         log ( | , ) log ( | , )

             log ( | ) log ( | )

         log ( | , ) log ( | , )

t t
MAP M AP

t
M AP MAP

t
M AP M AP

t
MAP M AP

t
M AP M AP

R d P d h P d h

P x y h P x y h

P y h x P y h x

P x h P x h

P y h x P y h x

= −

= −

= −

+ −

= −

            (6) 

In Eq.(6) we adopt a common assumption that input data x of 
instance d is independent of any hypothesis in H. It is clear from 
Eq.(5) that the probability of hMAP increases after observing an 
instance d∈D-t with positive Rt(d), whereas an instance d with 
zero or negative Rt(d) will not influence or decrease the 
probability of hMAP. Based on these observations, we look upon 
Rt(d) defined in Eq.(6) as a measure of instance relevance with 
respect to the target hypothesis hMAP on the base of the previously 
selected data Dt. Since Rt(d) is instance d’s logarithmic likelihood 
ratio with respect to the two hypotheses hMAP and ht

MAP, we call 
Rt(d) the likelihood-based instance relevance (LIR) measure. A 
large LIR measure indicates that the corresponding instance has a 
high contribution to the likelihood of the target hypothesis hMAP.  

Some intuitive interpretations may be helpful to better understand 
the proposed LIR measure. 

! Redundant instance: logP(d|ht
MAP) encodes the log-

likelihood of instance d with respect to the current 
hypothesis ht

MAP. From Eq.(6), we can see that instances with 
lower P(d|ht

MAP) are more relevant to increase the probability 
of hMAP. For example, a student in real life would prefer to 
learn facts that are novel or unknown to his/her current 
knowledge. Similarly, a learning algorithm can gain more 
information from instances that are unlikely given the current 
hypothesis. Patterns with currently high probability are 

considered redundant since the learner already knows about 
these patterns.  

! Inconsistent instances: logP(d|hMAP) encodes the log-
likelihood of instance d with respect to the target hypothesis 
hMAP. From Eq.(6), we see that instances with higher 
P(d|hMAP), are more likely to increase the probability of hMAP. 
−logP(d|hMAP) actually measures the degree of mismatch 
between the instance d  and the target hypothesis hMAP. 
Instances with low log-likelihood with respect to the target 
hypothesis hMAP are considered to be noise because they are 
inconsistent with the target model.  

! Rt(d) = logP(d|hMAP) − logP(d|ht
MAP) combines the two above 

perspectives and encodes the overall relevance of instance d 
with respect to hMAP and ht

MAP. It indicates an instance’s 
contribution to increasing the probability of hMAP. An 
intuitive interpretation to this integral relevance measure is 
that the instances with high Rt(d) are those that are 
considered as novel and consistent by the learner. Mind that 
the two terms making up Rt(d) can not be treated separately, 
since noisy or inconsistent instances are always judged as 
novel.  

Based on the above discussions, we give the definition of instance 
relevance.  

Definition 1. (Relevant instance and irrelevant instance) Let hMAP 

∈H be the MAP hypothesis in H given the whole data D, and Dt 
the selected data until iteration t. Then instance d is relevant with 
respect to hMAP given selected data Dt, if its instance relevance 
measured by Eq.(6) is positive, otherwise it is irrelevant. 

In the next section, we will introduce a data selection algorithm 
for memory-based CF.    

4. Instance Selection for Memory-Based CF 
We now turn our attention to collaborative filtering (CF) for 
recommender systems. A general probabilistic model for the 
widely applied memory-based CF algorithms will be introduced. 
In Section 4.2, we describe an algorithm named profile filtering 
(PF) to identify informative instances in large user preference 
database and form a reduced instance base for CF. 

4.1 A Probabilistic Model  
Memory-based CF maintains a database of user ratings on items, 
denoted by V, and predicts the active (query) user’s ratings on not 
yet rated items based on the ratings of other like-minded users in 
V. Let V be an n × m user rating matrix with entries Vi, j being the 
rating of user i on item j, where n is the number of users, T the set 
of all items, and m = |T| the total number of items. If we denote 
the set of possible rating values as R, then each entry Vi, j ∈ R U {Ø} 
is either an actual score or Ø, indicating a ‘missing value’. Since 
each user typically only rated a small number of items, matrix V 
normally has a large number of missing-valued entries. More 
specifically, the item set rated by user i is denoted as Ti ⊆  T and 
the set of items not rated by user i is denoted as Ni ⊆  T. In the 
following text, Vi is used to represent the row vector {Vi,1, Vi,2, …, 

Vi,m} containing all ratings of user i.   

Then given the active user a’s ratings Va, a probabilistic CF 
method computes the a posteriori probability distribution of the 
active user’s rating on the items j∈ Na: 



P( Va, j = x | Va, V )          where x∈ R ,  j∈ Na               (7) 

The prediction of the active user’s rating on item j is computed as 
the expected value of x with respect to the posterior distribution: 
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CF algorithms differ in the way of estimating the probability given 
by Eq.(7). A typical model-based CF that explicitly calculates 
Eq.(7) is described by [Breese et al, 1998] and is based on  
Bayesian Belief Networks [Breese et al, 1998]. In this paper we 
will focus on the class of memory-based CF methods. 

Pennock et al [2000] introduce a vector of “true” ratings of all 
seen items to describe the user i’s personality type. We follow the 
line of Pennock et al. and generalize it to a wide probabilistic 
framework of memory-based CF methods.   

Treating each user’s ratings Vi∈ V as a prototype preference 
pattern i, we can rewrite the probability distribution Eq.(7) as the 
following: 
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where P(i|Va, V) is the probability that the active user a has  
preference pattern i. Pennock et al. apply a naïve Bayesian 
approach to explicitly estimate the likelihood P(i|Va, V). Most 
other memory-based approaches use some similarity measure 
between users to implicitly derive the likelihood in the following 
way: 
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For the similarity function we only have to assume that it is non-
negative, symmetrical about Vi and that the integral over Va is 
equal for all Vi. Then Eq.(9) can be written as: 
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            (11)  

The Pearson correlation coefficient (see [Resnick et,al. 1994]) is 
considered to be the most successful similarity measure for CF. In 
our work all the negative Pearson coefficients are changed to be 
zero to guarantee that the similarity measure is non-negative. 
Once the posterior probabilities Eq.(11) have been estimated, the 
final prediction is given by Eq.(8). Obviously, the computational 
complexity of evaluating Eq.(11) is O(nm). In the probabilistic 
framework of memory-based CF, the n × m matrix V can be 
viewed as a model or hypothesis containing n prototype of 
preference patterns.  

4.2 Profile Filtering: Removing Redundant 
and Inconsistent Preference Patterns 

We now make the connection back to the discussion of Section 
3.2, where we have discussed the relevance of a given training 

example with respect to initial and current model. CF can be 
viewed as a typical learning problem, which is to find the target 
function f: V seen→Vunseen, a mapping from the observed ratings to 
the unobserved ratings of users. Thus the training instance or user 
i’s ratings Vi can be formalized into the standard input-output 
instance form (V*

i,j , Vi,j), j∈ Ti, where V*
i,j denotes the attribute 

vector derived by hiding the entry Vi,j of Vi , and Vi,j is the 
corresponding instance label. Let Vt denote the selected data at the 
t-th iteration and also the MAP hypothesis derived from it. Thus 
according to Eq.(6) the likelihood-based instance relevance(LIR) 
measure of instance Vi (V

*
i,j , Vi,j) with respect to the hypotheses V 

and Vt is: 

, , , , , ,( , ) log ( | ) log ( | )t
i j i j i j i j i j i jR V P V P V∗ ∗ ∗= − tV V ,V V ,V    (12) 

To avoid negative infinite log-likelihood in computing Eq.(12), 
we set a small constant to replace the zero likelihood. Consider all 
the seen ratings in Vi can serve as instance labels, we further 
calculate the averaged LIR measure of instance Vi over all seen 
ratings of Vi: 
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      (13) 

Combining Eq.(11) and Eq.(13), the LIR measure of instance Vi 
in the context of  V and Vt can be explicitly calculated. The profile 
filtering (PF) algorithm, as shown in Table1, starts out with the 
first instance V1 of user preference database V as the initial 
hypothesis. For each following instance, PF computes the instance 
relevance, as given by Definition 1 and Eq.(13) and adds them to 
the instance base if the instance is considered relevant, that is, if 
its Rt

avrg is positive. The behavior of PF can be intuitively 
interpreted as seeking instances with novel profile, thereby 
eliminating redundant instances whose profile has already been 
learned. On the other hand, it also avoids instances that are 
inconsistent with other instances in V. Finally the resulting 
instance base Vout will be much smaller than the original one, 
while the accuracy of CF prediction based on Vout should be not 
significantly degraded.  

  

Table 1: The algorithm of Profile Filtering for memory-based CF 

Input:    V is the n × m matrix of n user ratings on m items  

Output:      Vout is the resulted instance base     

Function: Profile Filtering (V )  

Initialize the selected instance base Vt ←V1, t ← 1 

i ←2 

For each instance Vi in V 

Compute: , ,

, ,

( | , )1
( ) log

| | ( | , )
i

i j i jt
avrg t

j Ti i j i j

P
R

T P

∗

∗
∈

= ∑i

V V V
V

V V V
      

If Ri > 0, then Vi
   is added into Vt, and t ← t + 1   

i ← i +1 

End for 

Vout ←Vt 



5. Empirical Study 
In this section we evaluate the profile filtering (PF) algorithm on 
two benchmark datasets: the EachMovie database, available from 
the Digital Equipment Research Center1, and the MsWeb dataset, 
available from the UCI KDD data depositary [Hettich and Bay, 
1999]. 

Table 2: Summary of the data sets 

 Eachmovie Msweb 

Training instances 30000 32711 

Test instances 5000 5000 

Items 1628 297 

Mean votes per training instance  35.5 3.02 

Mean votes per test instance  38.2 3.01 

 
5.1 Data Sets and Experiment Setup 
Eachmovie contains ratings from 72,916 users on 1,628 movies. 
User ratings were recorded on a numeric six-point scale from zero 
to five. We select the first 35000 users in EachMovie data set and 
divide them into training set and test set. The second benchmark 
data set, MsWeb, was introduced by [Breese et al., 1998] and 
added to the UCI repository under the name anonymous-msweb. It 
contains for each user the web page groups (called vroots) that 
were visited in a fixed time period. We use 0 to represent ‘not 
visited’ and 1 to represent ‘visited’. Eachmovie and MsWeb 
represent two kinds of typical datasets in recommender systems. 
EachMovie contains preference data explicitly indicated by 
numeric ratings, whereas MsWeb contains implicit user 
preferences indicated by usage (e.g. ‘visited’, ‘purchased’ et al.). 
A summary of the two data sets is given in Table 2.  

In our experiments, we use the PF algorithm described in Section 
4 to reduce the size of the instance base. We then evaluate the 
prediction quality of a memory-based CF algorithm using the 
reduced instance base. We compare the results of PF with three 
other methods of instance selection:  

•  No Sampling (NoSamp):  Predicting user preferences using 
the whole data 

•  Random Sampling (RandSamp): Predicting user preferences 
using a reduced instance base that is a random subset of the 
original (full) data. For RandSamp, we present results that are 
averaged by 5 random samplings.  

•  Rating-based Sampling (RateSamp): Predicting user 
preferences using a reduced instance base obtained by 
selecting those users that have rated most items (largest set Ti, 
see Section 4.1). This sampling strategy follows the intuition 
that instances with the most ratings are the most informative. 

In all the experiments we use the Pearson correlation coefficient 
[Resnick et,al. 1994] as the similarity measure in Eq.(10). 
Negative coefficients are set to small positve values (see section 
4.1).  We will consider different application scenarios for the two 
types of data sets. For the EachMovie data set, the task is to 
explicitly predict the user’s ratings on particular movies. For the 

                                                                 
1 http://www.research.digital.com/SRC/EachMovie/. 

MsWeb data, the goal is to rank user preferences on all vroots and 
then recommend the top ones to the user. 

5.2 EachMovie: Predicting User Ratings 
In this set of experiments, we evaluate the accuracy of predicting 
user ratings on particular movies, when only a reduced set of 
training data is available. We compare the results obtained by 
reducing the training data through random sampling, rating-based 
sampling, our proposed PF algorithm and a setting where the full 
training data is used (see previous section). In order to evaluate 
the quality of prediction, we follow the experimental setup in 
[Shardanand and Maes, 1995], in which a certain percentage of 
each user’s ratings in the test set were hidden. We randomly select 
70% of a test user’s ratings “seen” ratings and use them to predict 
the rest of 30% hidden ratings. We use mean absolute error 
(MAE) and e-accuracy to evaluate the accuracy of prediction. 
MAE is the average difference between the actual ratings and the 
predicted ratings. This metric has been widely used in previous 
work [Breese et al., 1998; Herlocker et al., 1999; Pennock et al. 
2000 Resnick et al., 1994; Shardanand and Maes, 1995]. e-
accuracy is the percentage of tests whose absolute error is less 
than e. We believe it provides more information about the 
distribution of errors. In particular, when e is set to be 0.5, the 
rounded value of a successful prediction exactly equals the actual 
rating. It has been argued that CF accuracy is most crucial when 
predicting extreme ratings (very high or very low) for products 
[Pennock et al. 2000; Shardanand and Maes, 1995]. Intuitively, 
since the goal is to provide recommendations, high accuracy on 
the high rated and low rated products is most preferred. Therefore 
we also investigate the accuracy in predicting extreme ratings 
(Extremes), where the actual rating is 0,1,2, or 5. (This choice 
results from the observation that more than 50% of ratings in 
EachMovie are 3 or 4.)  

Table 3. Prediction accuracy (EachMovie) 

All Extremes  

Method 

 
MAE 

0.5-
Accu. 

1.0-
Accu. 

MAE 
0.5-

Accu. 
1.0-

Accu. 

NoSamp 0.915 0.350 0.636 1.27 0.148 0.404 

RandSamp 0.962 0.326 0.613 1.33 0.127 0.369 

RateSamp 0.945 0.331 0.621 1.31 0.132 0.382 

PF 0.916 0.351 0.634 1.27 0.149 0.403 



 
Figure 1. Selected users vs. original users (EachMovie) 

We use the PF algorithm to filter the preference data and then 
evaluate the accuracy of memory-based CF using the reduced data. 
The PF algorithm selects a total of 7433 users from the preference 
data of 30000 users, giving a selection rate of 24.8%. For 
comparison, we also select 7433 users by random sampling 
(RandSamp) and rating-based sampling (RateSamp) to construct 
instance bases for comparison.  

Table 3 shows the prediction accuracy of NoSamp, RandSamp, 
RateSamp and PF. It can be clearly seen that the prediction 
quality of memory-based CF using an instance base that is 
selected by our proposed PF algorithm is almost the same as the 
accuracy achieved by using the whole database. This holds for all 
measures of accuracy we have evaluated (MSE, e-accuracy, both 
on the full set of values and on the extreme values). Among the 
different selection schemes, random sampling (RandSamp) shows 
the worst prediction quality. The results of rating-based sampling 
(RateSamp) are slightly better than RandSamp, but still much 
worse than the benchmark results without sampling (NoSamp). 
The observation indicates that instances with more ratings are not 
necessarily more informative.  

After having examined all the training data, the PF algorithm had 
selected a subset of 7433 (24.8%) relevant instances. Since the 
time complexity of prediction is O(nm), a selection rate of 24.8% 
leads to a speed-up of 4 in the prediction phase. Figure 1 shows 
for the PF algorithm how the number of selected users grows with 
the training data.  

Summing up, our profile-filtering algorithm has proven to be the 
best sampling strategy among all compared methods. The PF 
algorithm achieves an accuracy that is the same as the accuracy 
achieved without sampling, yet provides a reduction by a factor of 
4 in terms of prediction speed and memory consumption on the 
EachMovie data. 

5.3 MsWeb: Ranking User Preferences 
For the MsWeb data, we use essentially the same experimental 
setup as for the EachMovie data (see Section 5.2). For evaluating 
the performance, we randomly hide 30% of the visited vroots for 
each test user and predict the ratings for hidden vroots as well as 
unvisited vroots. We rank the predicted vroots according to the 

predicted ratings and recommend the top 5 to the active user. A 
successful recommendation is required to hit those 30% hidden 
vroots that are actually visited by the active user. Three metrics, 
Recall, Precision and Success Rate are applied for evaluations. 
Recall is the percentage of items liked by a user that are 
recommended to him/her; Precision is the percentage of items 
recommended to a user that the user likes; Success Rate is the 
percentage of cases that at least one liked items is recommended 
to the user. In the MsWeb data set, liked items are visited web 
pages.  

Table 4 shows the prediction accuracy of CF using the whole 
preference data (NoSamp) and that of the sampling strategies 
RandSamp, RateSamp and PF. The PF algorithm selects a total of 
3648 users, we thus also selected 3648 users by random sampling 
and rating-based sampling for comparison. Again, the prediction 
accuracy of PF is almost the same as that of the CF algorithm 
using the original data, while the results of RandSamp and 
RateSamp are much worse. Since the prediction algorithm has 
time and space complexity O(nm), the PF algorithm with selection 
rate of 12.2% will speed up recommendations by a factor of 8.2.  

Figure 2 shows the growth of instances selected by PF as more 
and more training data is examined. 

 

Table 4: Ranking accuracy (MsWeb) 

Method Recall Precision Success 

NoSamp 0.564 0.202 0.742 

RandSamp 0.501 0.180 0.669 

RateSamp 0.530 0.191 0.697 

PF  0.561 0.201 0.736 

 

Figure 2. Selected users vs. original users (MsWeb) 

5.4  Complexity and Scalability 
The reduction rate of PF for MsWeb is more significant than the 
EachMovie dataset. This may be explained by the fact that the 
complexity of MsWeb is much lower than that of Eachmovie. 
EachMovie has 1628 dimensions (items) and 6 possible values 
along each dimension, while MsWeb has only 297 dimensions 
and 2 possible values.  



In general it is required that time and space complexity of scalable 
algorithms increase at most linearly with the size of processed 
data. If we carefully compare the graphs in Figures 1 and 2, we 
observe that in Figure 1 the number of selected instances of 
EachMovie data scales almost linearly with the size of the original 
data, while the number of selected instances for MsWeb grows 
“sub-linearly”. Since both time and space complexity of the 
prediction scale linearly with the size of the selected instance base, 
prediction scales linearly with the size of EachMovie data and 
sub-linearly with the size of MsWeb data.  

This may be explained as follows. As pointed out in Section 4.2, 
the PF algorithm removes redundant instances with profiles that 
have already been learned. Data sets with rather low complexity, 
such as MsWeb, may be described sufficiently by the data at hand. 
For “learnable” problems, the probability of observing newly 
arriving redundant instances is getting higher, while learned 
instances are getting more and more sufficient to describe the 
distribution of the full data.2 This results in the sub-linear growth 
observed in Figure 2. On the other hand, for the highly complex 
EachMovie data, the probability of encountering redundant 
instances remains almost constant during the instance selection 
process. The given data set of 30.000 EachMovie examples is still 
far from being sufficient for describing the high complexity of the 
data. We can expect a similar behavior of encountering more 
redundant instances only if more EachMovie data are considered.  

Summing up, we attribute the attractive scaling behavior of the 
proposed PF algorithm to its ability of removing redundant 
instances. By removing redundant instances, the description of the 
overall data is based on only a subset of data, the size of which is 
in turn related to the inherent complexity of the problem 
considered. PF helps to extract this sufficient subset of the data 
and may lead to a sub-linear growth of prediction complexity.  

5.5 Sensitivity to the Order of Instances 
Now we discuss a weakness of our proposed method. PF is a 
rather fast algorithm since each instance is only evaluated one, i.e. 
the data set is simply filtered. The disadvantage is that since PF is 
a sequential algorithm, it naturally depends on the order in which 
instances are presented. We perform PF in the reverse order of 
EachMovie and MsWeb data sets. The results together with the 
results obtained in origin order are compared in Table 5 and Table 
6. It turns out that instance ordering is not a severe problem for 
the PF algorithm in terms of accuracy. However, the size of 
selected data is sensitive to the order of presenting instances. If PF 
is run in the reverse order, 33.2% of the EachMovie data and 
18.6% of the MsWeb data are retained, whereas 24.8% of the 
EachMovie data and 12.2% of the MsWeb data are retained in the 
original order. This may be partially explained by the following 
examples. If many highly informative instances happen to be 
observed by PF at the start phase, then fewer consistent instances 
are needed by PF in the following phase. In contrast, if many 
slightly relevant instances are encountered in the start phase, then 
more instances are needed later. Thus PF’s result of selected data 
size may heavily dependent on the order of presenting instances. 
We need to alleviate this dependence in our future work. 

                                                                 
2 More rigorous details about sampling complexity can be found 

in [Mitchell, 1997]. 

Fortunately, the experiments demonstrate that the prediction 
accuracy using PF-selected instance base is not sensitive to the 
order. The accuracy of reverse order is also almost the same with 
the results of memory-based CF using the full data. This is 
because that each selected instance consistently increases the a 
posteriori probability of the optimal user preference model. 

 

Table 5. PF in different orders (EachMovie) 

All Extremes  

Method 

 
MAE 

0.5-
Accu. 

1.0-
Accu. 

MAE 
0.5-

Accu. 
1.0-

Accu. 

Selection 
Rate 

PF 0.916 0.351 0.634 1.27 0.149 0.403 24.8% 

PF * 0.918 0.347 0.630 1.28 0.149 0.405 33.2% 

*PF performed in the reverse order of instances 

Table 6. PF in different orders (MsWeb) 

Method Recall Precision Success Selection Rate 

PF  0.561 0.201 0.736 12.2% 

PF * 0.562 0.202 0.740 18.6% 

*PF performed in the reverse order of instances 

 

6. Conclusions and Future Work 
Memory-based collaborative filtering (CF) methods have proven 
to be effective in predicting user preferences. Memory based CF 
typically suffers from high response time and high storage cost 
due to its large instance base. In this paper we have investigated 
the problem of instance selection for memory-based CF. We have 
proposed the profile filtering (PF) algorithm to reduce the size of 
the instance base that is used in a CF method. A likelihood-based 
formalism is proposed to measure the instance relevance, which 
then allows the profile filtering algorithm to remove both 
redundant and inconsistent instances from the instance base. Our 
experiments have shown that 24.8% of the EachMovie data and 
12.2% of the MsWeb data are retained by the profile filtering 
algorithm, leading to reduction of prediction time by a factor of 4 
and 8, respectively. Despite the large reduction of the instance 
base, predictions using the pruned data can be made with an 
accuracy that is almost as high as that of predictions using the 
complete data. These results demonstrate that the proposed profile 
filtering algorithm can effectively improve the scalability of 
memory-based CF. In addition, the probabilistic model of 
memory-based CF provides a deeper insight into the method and 
opens many opportunities to improve the traditional memory-
based CF. One particularly interesting topic is to equip CF 
systems with an active learning component that can query users 
for information. The goal is to quickly gain the most important 
knowledge about the users preferences. We plan to extend our 
current work to this topic. As pointed out in Section 5.5, we also 
need to improve the profile filtering algorithm by alleviating its 
dependence on the order of observing instances. 
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