
Time Series and Sequential Data

Volker Tresp

Winter 2023-2024

1



Time Series Modelling

• I have to predict the total energy consumption of a city for tomorrow, based on certain

inputs (weather forecast: temperature, precipitation, wind; then: working day/holiday,

...)

• It would help to also consider the energy consumption of today and maybe of yesterday

as inputs

• Added complexity: If my goal is to predict the energy consumption two days in the

future, my own prediction for tomorrow becomes an input for the prediction for two

days in the future

• In time series modelling, outputs, and often also the inputs, are real numbers

2





Sequence Modelling

• Sequence classification: The input is a sentence, i.e., a sequence of words; the output

classifies the sentiment of the sentence

• Encoder-decoder modelling: The input is a sentence, i.e., a sequence of words, in

English; the output is the sentence translated into German

• In sequence modelling, inputs and outputs are typically discrete

3



I. Time Series Modelling: NARX
Models

4



Neural Networks for Time-Series Modelling

• Let yt, t = 1,2, . . . be the time-discrete time-series of interest (example: DAX)

• Let xt, t = 1,2, . . . denote a second time-series, that contains information on yt
(Example: Dow Jones)

• For simplicity, we assume that both yt and xt are scalars. The goal is the prediction

of the next value of the time-series

• We assume a system of the form

yt = f(yt−1, . . . , yt−T , xt−1, . . . , xt−T ) + ϵt

with i.i.d. random numbers ϵt, t = 1,2, . . . which model unknown disturbances

5



Neural Networks for Time-Series Modelling (cont’d)

• We approximate the function, using a neural network,

f(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

≈ fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

• A reasonable cost function is

cost(w,V) =
N∑

t=1

(yt − fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T ))
2

6



Neural Networks for Time-Series Modelling (cont’d)

• It is important to note, that the neural network can be trained as before with simple

back propagation if in training all yt and all xt are known!

• This model is called a NARX model: Nonlinear Auto Regressive Model with external

inputs. Another name: TDNN (time-delay neural network)

• Note the ”convolutional“ idea in TDNNs: the same neural network is applied in all

time instances

7



Prediction

• For single step prediction, we use

ŷt = fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

8



Self-supervised Learning

• The time-series provides its own labels

• No human labelling is necessary: self-supervised learning

9



Multiple-Step Prediction based on Multiple Step Prediction

• We can also train a model to predict τ time steps into the future; the prediction then

becomes

ŷt+τ = fτw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

• This is done in system simulation: the prediction based on detailed system models

might be computationally very expensive and cannot be done online; the idea is to

train a neural network predictive model off-line and then use that one online instead

of an expensive simulation

10



Mutiple-Step Prediction based on Single-Step Prediction

• Why not just iterate the single-step prediction? One issue is that my prediction is

uncertain, so I should consider that uncertainty; second: I do not have future inputs!

• One way is simulation; for yt we have the model as before, (t
′ = t, . . . , t+ τ )

yt′ = fw,V(yt′−1, . . . , yt′−T , xt′−1, . . . , xt′−T ) + ϵt′

• Using both we can generate samples for the future; for the noise I might assume a

Gaussian distribution ϵt ∼ N (0, σ2)

• Future inputs xt′, we either set to zero, or we develop a separate prediction model for

those as well

• For multiple-step prediction, we can simulate (i.e., sample) for the desired number of

time steps in the future (Monte-Carlo simulation) repeatedly and can derive estimated

means, variances, and covariances

11



Residual Modeling

• We have

ŷt = yt−1 + fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

• Realize the similarity to ResNet

12



Considering the Complete History?

• Consider a prediction model that uses the complete history,

ŷt = fw,V(yt−1, . . . , y1, xt−1, . . . , x1)

This means that the time window grows with t: T := t− 1

• Technical solutions:

• 1: Models with an internal memory: RNNs, LSTMs

• 2: Models with the ability to grow: Transformers

13



GPT-type Architecture

• GPT always considers the complete history

ŷt = fw,V(yt−1, . . . , y1)

• A generated sequence (text) is a simulation of the future

• The first K steps y1, . . . , yK are the input (prompt) from the user

• y is a discrete variable with as many states as there are tokens (words)

14



II. Sequence Modelling

15



Encoding Inputs and Outputs

• So far we considered that xt is either binary xt ∈ {0,1} or continuous, xt ∈ R

• How do we encode that xt ∈ {0,1, . . . , Nwords}, where Nwords is the number of

words in the vocabulary?

• We could consider that xt ∈ R and encode it as a scalar (amplitude encoding): this

is not commonly done

• Alternatively, we introduce Nwords binary variables with xt,j = I(word(t) ≡ j)

(one-hot encoding) (I() is the indicator function which is equal to 1, when the

argument is true, otherwise zero)

16



(A): One-hot Encoding

• This type of encoding is called one-hot encoding

• We train the input to hidden matrix V, which is an H ×Nwords dimensional matrix

17



(B): Embedding Encoding

• Maybe we should represent a word by its attributes? But what attributes?

• An embedding vector ai for word i is a vector of abstract attributes that represent

the word and which might have been derived from a large vocabulary and is shared

between applications

• This embedding vector might have been generated by some other research group and

is simply a vector of real numbers of length r (rank)

• Now the input to hidden connection matrix is Ṽ which is anH×r dimensional matrix

18



(C): Embedding Encoding in Combination with One-hot
Encoding

• Sometimes it is more intuitive to consider a matrix A connecting the one-hot encoded

input with the first hidden layer

• The i-th column in matrix A contains ai

19



Relationship Between Encodings

• (C) is identical to (B)

• (A) is identical to (C) and (B), if we set V = ṼA

20





IIa. Representation Models and
Language Models

21



Language Model

• The ideas is to predict the next word (out off a vocabulary of Nwords words) in a

text, based on the last T words

• Consider we want to predict yt: yt has as N
words components, one for each word

(one-hot encoding)

• The inputs to the models are past words; the model assumption is that a word i is

associated with an embedding vector ai of dimension r (embedding representation)

• Thus in a first step, a one-hot encoding word i is mapped to the embedding vector of

word ai which is then the input to a neural network (embedding with one-hot)

22



Language Model (cont’d)

• We get

P (yt = k|yt−1, . . . , yt−T ) = softmaxk

(
fw(ai(t−1), . . . , ai(t−T ))

)
where i(t − m) is the index of the word at position t − m and where fw(·) is a

neural network with one hidden layer and Nwords output neurons

23



Embeddings

• Training of the word embeddings and the neural network parameters can be done

self-supervised on a huge corpus (without human labelling)

• After training, one obtains latent word representations (word embeddings) which are

published and can be used in other applications

• State of the art are embeddings derived from language models like: ELMo, BERT,

Word2vec, and GloVe

• The embedding idea is extremely powerful and one of the corner stones of modern

machine learning

• In the next figure, the word embedding matrix A is denoted as C

24





IIb. Recurrent Neural Networks

25



Recurrent Neural Network

• Recurrent neural networks (RNNs) are powerful methods for sequence modelling

• In their simplest form they are used to improve an output prediction by providing a

memory for previous inputs

• We do not have to specify a time window T : an RNN can consider the whole history

26



A Feedforward Neural Network with a Time Index

• We start with a normal feedforward neural network where the pattern is a sequential

index t

27





A Recurrent Neural Network Architecture Unfolded in Time

• The hidden layer now also receives input from the hidden layer of the previous time

step

• The hidden layer now has a memory function reflecting hidden inputs

• Thus a Recurrent Neural Network (RNN) is a nonlinear state-space model

28





A Recurrent Neural Network Architecture Unfolded in Time
(cont’d)

• In a compact notation, we write,

zt = sig(Bzt−1 +Vxt)

yt = sig(Wzt)

where we permit several outputs; also, in the last layer we might replace the sig with

the softmax

29



Temporal Representation

• zt is the representation of the hidden state of the system (e.g., patient, plant, ...) at

time t

• xt can be the embedding of a thing which is present or active at time t (e.g., word,

medication, ...)

• Word embedding: xt = ai(t), where i(t) is the word at t and with M = r

• This is a link to representation learning

30



Recurrent Representation

• The next slide shows an RNN as a recurrent structure

31





Backpropagation through time (BPTT)

• Training can be performed using backpropagation through time (BPTT), which is an

application of backpropagation (SGD) to the unfolded network structure

• As an additional complexity, the error which occurs to the outputs at time t is not

only backpropagated to the previous layers at time t, but also backward in time to all

previous neural networks

• In principle, one would propagate back to t = 1; in practice, one typically truncates

the gradient calculation

32







Echo-State Network

• Recurrent Neural Networks are sometimes difficult to train

• A simple alternative is to initialize B and V randomly (according to some recipe) and

only train W

• W can be trained with the simple learning rules for linear regression or classification

• This works surprisingly well and is done in the Echo-State Network (ESN) (Herbert

Jaeger, 2007)

• ESN (and also liquid-state machines) are examples of so called reservoir computing

33





Issues in Prediction

• An RNN is typically used as predictive model in an iterative setting

• Due to the deterministic nature of the model: if the output yt is predicted and then

becomes available, it will not affect future predictions, since there is no information

flowing back from yt to zt

• This is in contrast to some probabilistic models such as hidden Markov models (HMMs),

Kalman filters, stochastic state space models

• One reason that we can simply apply backpropagation is that RNNs are deterministic!

To train HMMs and Kalman filters one can apply a form of EM learning (expectation

maximization)

34



Bidirectional RNNs

• The predictions in bidirectional RNNs depend on past and future inputs

• Useful for sequence labelling problems: handwriting recognition, speech recognition,

bioinformatics, ...

• Bidirectional recurrent

zt = [zft ; z
b
t] =

[
sig
(
Vfxt +Bfzft−1

)
; sig

(
Vbxt +Bbzbt+1

)]

35





IIc. LSTMS

36



Issues in Prediction

• Although the RNN has a memory, it has difficulties remembering important informa-

tion far in the past

• This can be attributed to the vanishing gradient problem

• Solutions are the long short-term memory (LSTM), and the gated recurrent units

(GRUs)

• We now discuss the LSTM

37



We Start with a Feedforward Neural Network

• Consider a feedforward neural network

st = sig(Vxt) zt = tanh(st)

ŷt = sig(Wzt)

• The transfer function of the hidden neuron is a bit strange, tanh(sig(Vxt))

• st is called the cell state vector, zt is the output vector (of the units, not the

neural network)

• In the following steps, each latent unit will become an LSTM unit; thus we will have

H LSTM units in the network

38



We Enter Input and Output Gates

• We now use input and output gates which can turn on and off individual LSTM units

• With input gate vector gt and output gate vector qt

st = gt ◦ sig(Vxt) zt = qt ◦ tanh(st)

Here, ◦ is the elementwise (Hadamard) product. As before,

ŷt = sig(Wzt)

• Input gates and output gates are also functions of the inputs

gt = sig(Vgxt) qt = sig(Vqxt)

• Gates are commonly used in mixture of expert neural networks, if the function switches

between modes of operations

39



With Feedback

• We add recurrent connections to the cell state vector and the gates

st = gt ◦ sig(Vxt +Bzt−1) zt = qt ◦ tanh(st)

• Input Gate

gt = sig(Vgxt +Bgzt−1)

• Output Gate

qt = sig(Vqxt +Bqzt−1)

40



Cell State Vector with Self-recurrency and Forget Gate

• We add self-recurrency to the cell state vector, including a forget gate

st = ft ◦ st−1 + gt ◦ sig(Vxt +Bzt−1)

• Forget gate

ft = sig(Vfxt +Bfzt−1)

41



Long Short Term Memory (LSTM)

• As a recurrent structure the Long Short Term Memory (LSTM) approach has been

very successful

• Basic idea: at time t a newspaper announces that the Siemens stock is labelled as

“buy”. This information will influence the development of the stock in the next days.

A standard RNN will not remember this information for very long. One solution is to

define an extra input to represent that fact and that is on as along as“buy” is valid.

But this is handcrafted and does not exploit the flexibility of the RNN. A flexible

construct which can hold the information is a long short term memory (LSTM) block.

• The LSTM was used very successful for reading handwritten text and is the basis for

many applications involving sequential data (NLP, machine translation, ...)

• For the rest of the network, an LSTM node looks like a regular hidden node

42







LSTM Applications

• Wiki: LSTM achieved the best known results in unsegmented connected handwriting

recognition, and in 2009 won the ICDAR handwriting competition. LSTM networks

have also been used for automatic speech recognition, and were a major component

of a network that in 2013 achieved a record 17.7% phoneme error rate on the classic

TIMIT natural speech dataset

• Applications: Robot control, Time series prediction, Speech recognition, Rhythm

learning, Music composition, Grammar learning, Handwriting recognition, Human ac-

tion recognition, Protein Homology Detection

43



Comments on LSTM

• You cannot do transfer learning with LSTMs (does not work): thus you need a large

data set for any new problem

44



IId. Encoder-Decoder Networks for
Machine Translation

45



Encoder Decoder Architecture

• Most machine translation systems rely on the encoder-decoder approach

• Neural Machine Translation (NMT)

• Typical numbers: embedding rank: r = 1000, and 1000 hidden units per layer

46





Encoder

• An encoder is an RNN (often an LSTM) with no output layer (no yt), but maybe

several layers of recurrent units; as in the language model, the inputs are latent em-

beddings of the words

• The encoder vectors are the (two) embedding vectors (hidden states) of (−), i.e.,

the end-of-sentence symbol

47



Decoder

• The initial latent states of the decoder are the encoder vectors (the first two red

rectangles in the figure)

• In its simplest form, the latent state of the decoder evolves as

zt = sig(Bzt−1 +Vayt−1)

yt = sig(Wzt)

• In training, the input to the decoder is the embedding of the previous word ; the output

is the one-hot encoding of the current word

• Training is based on bilingual, parallel corpora; each hidden layer might consist of

1000 hidden units

• In testing, one finds the most likely decoded sequence of words (e.g., using beam

search); teacher forcing: the detected word appears at the input of the next instance

• Often one uses two or more hidden layers of LSTM units

48



Encoder-Decoder Approach in NMT

• Neural Machine Translation (NMT) achieved state-of-the-art performances in large-

scale translation tasks such as from English to French

• NMT has the ability to generalize well to very long word sequences.

• The model does not have to explicitly store gigantic phrase tables and language models

as in the case of standard MT; hence, NMT has a small memory footprint

• Implementing NMT decoders is easy unlike the highly intricate decoders in standard

MT

49



IIe. Attention

50



Introduction

• The concept of“attention”has gained popularity recently in training neural networks,

allowing models to learn alignments between different modalities, e.g., between image

objects and agent actions in the dynamic control problem, between speech frames and

text in the speech recognition task, or between visual features of a picture and its text

description in the image caption generation task

• Attention has successfully been applied to jointly translate and align words

• Attention-based NMT models are superior to non attentional ones in many cases, for

example in translating names and handling long sentences

• We follow: Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2016.

“Effective Approaches to Attention-based Neural Machine Translation”

• First work: D. Bahdanau, K. Cho, and Y. Bengio. 2015. “Neural machine translation

by jointly learning to align and translate.” In ICLR

51



Bottleneck in the Encoder-Decoder Architecture

• In the encoder-decoder architecture, all information about the input sequence needs

to be transported through the two encoding embedding vectors

• Information earlier in the sequence tends to get forgotten

• One needs short cuts: maybe earlier embedding vectors are important as well!

• In attention one provides information about the top embeddings (upper layers) to the

decoder; attention does it in a way that avoids overfitting

52



Overall Architecture

• The next figure shows the overall architecture

• The attention layer sits on top of the normal encoder-decoder network

• Based on the neural activations in the encoder-decoder, it calculates new activations

(grey boxes) in the fourth layer

53





Attention

• Let zt (red) be a hidden state vector of interest in the decoder (so called target at

t; also called the query)

• Let ct be the source-side context vector (derived further down)

• The attentional hidden state (grey) is

z̃t = sig (Vzt +Dct)

• The sig is typically the tanh; note that this is a normal layer in a neural network

where the layer zt is the lower layer and z̃t is the upper layer and where the lower

layer is appended with ct

• z̃t is then the top hidden layer: the decoded word probability at the target is calculated

as softmax(Wsz̃t)

54



Global Attention: What is the Context ct?

• Let z̄s be any activation vector in the encoder (source hidden state) (often restricted

to the top layer) (the key)

• The alignment of s for t is a scalar,

align(zt, z̄s) =
exp(score(zt, z̄s))∑
s′ exp(score(zt, z̄s′))

• The alignment score function calculates a similarity measure: A typical score is the

dot product, score(zt, z̄s) = zTt z̄s; here, zt is the query, and z̄s is the key

• The already introduced context vector is then calculated as (here, z̄s on the right

assumes the role of the value)

ct =
∑
s

align(zt, z̄s) z̄s

55



Interpretation and Reformulation

• We can think of the context vector ct as an approximation to the query vector zt,

based on a combination of the value vectors {z̄s}s

• We can write compactly

z̃t = sig
(
Vzt +DZ̄softmax

(
Z̄Tzt

))
• The columns in Z̄ are the source embedding vectors

• zt might align (pay attention to) certain components of Z̄

• Except for the entries in matrix D, no new adaptable parameters are introduced; if

attention is useless, all entries in D can converge to 0.

56



Notation used in Attention

• In the literature on the transformer, one writes

Attention(Q,K,V) = Vsoftmax(
1
√
r
KTQ)

• Here, Q ≡ Z (query matrix), K ≡ Z̄ (key matrix), and V ≡ Z̄ (value matrix)

• Thus (with the same scaling factor 1/
√
r),

(ct)l = (Attention(Q,K,V))t,l

• Note: In the transformer literature, an embedding vector is a row vector and, in the

matrices, rows and columns are interchanged

57





Local Attention Model (Position Encoding)

• The global attention has a drawback that it has to attend to all words on the source

side for each target word, which is expensive and can potentially render it impractical

to translate longer sequences, e.g., paragraphs or documents

• To address this deficiency, a local attentional mechanism has been proposed that

chooses to focus only on a small subset of the source positions per target word

• The new alignment becomes

align(zt, z̄s) exp

(
(s− pt)2

2σ2

)

• pt is the expected position in the input sequence predicted from zt using a neural

network

pt = Ssig(vTp tanh(Wpzt))

S is the source sentence length (a scalar), and vp,Wp are trained

58





From Attention to Self-Attention

• So far we calculated the attention of an element in the output sequence w.r.t all

elements in the input sequence

• Let’s consider another task, e.g., entity labeling

• We have a sequence of words/entities (t = 1,2, ...) as inputs; the goal is to provide

a label for each word/entity, or to provide a label for the whole sequence

• We now change notation: zt,l is the activation vector at layer l

• Self-attention can be applied to any deep neural network

• Self-attention can replace convolutional and recurrent approaches (“attention is all you

need”)

• Whereas RNNs work left to right, self-attention (as convolutional NNs) work bottom

up, in parallel

59



Self-Attention (cont’d)

• In self-attention, the activation of a hidden layer zt,l is calculated based on other

layer’s zt,l−1 of all entities/data points as

zt,l = sig
(
Vlzt,l−1 +Dlct,l−1

)
• Here, the context vector is

ct,l−1 =
∑
t′

align
(
zt,l−1, zt′,l−1

)
zt′,l−1

The sum is over all elements in the sequence

• (Often the tanh is used instead of the sig)

• Self-attention can be applied to any layer (not just the top layer)

60



Comparison

• Feed forward neural network

zt,l = sig
(
Vlzt,l−1

)
so here each word label at position t is predicted separately; embeddings are all inde-

pendent; this is the i.i.d situation

• Fully connected (not used in practice)

zt,l = sig

Vlzt,l−1 +
∑
t′

Ct,t′,lzt′,l−1


The embeddings of all words are considered; here one would need to use a standard

length sentence (short sentences are dealt with by zero-passing); a problem with this

approach is the huge number of parameters in the neural network

61



Comparison (cont’d)

• Convolutional layer

zt,l = sig

Vlzt,l−1 +
∑
k

∑
t′

Ck
t−t′,lzt′,l−1


Very powerful approach and very successful in NLP; needs zero padding at sentence

boundaries; k is the index over different filter kernels

• In some approaches (e.g., graph convolution) simply the averages of the neighbor

embeddings are calculated

62



Comparison (cont’d)

• Recurrent neural networks

zt,l = sig
(
Vlzt,l−1 +Blzt−1,l

)
Very powerful approach and very successful in NLP; often LSTM units are used

• Bidirectional recurrent neural networks

zt,l = [zft,l; z
b
t,l]

=
[
sig
(
Vf

l zt,l−1 +Bf
l z

f
t−1,l

)
; sig

(
Vb

lzt,l−1 +Bb
lz

b
t+1,l

)]

63



Comparison (cont’d)

• Self-Attention

zt,l = sig
(
Vlzt,l−1 +Dlct,l−1

)
ct,l−1 =

∑
t′

align
(
zt,l−1, zt′,l−1

)
zt′,l−1

(the sig is often the tanh) self-attention can replace convolutional or recurrent layers

64





Conclusions

• Sequential models find many applications in natural language processing (NLP) ap-

plications, including machine translation

• Attention mechanisms are the basis for state of the art machine translation (Trans-

former) and context sensitive embedding models; BERT (Bidirectional Encoder Rep-

resentations from Transformers)

65



Transformer, BERT, GPT

66



Transformer

67



Transformer

• Bottleneck of previous approaches in NMT: sequential processing at the encoding step

• The Transformer dispensed the recurrence and convolutions involved in the

encoding step entirely and based models only on attention mechanisms to capture the

global relations between input and output

• Each layer has two sub-layers comprising multi-head attention layer followed by a

position-wise feed forward network

68



Context with Learned Projection Matrices

• Consider self-attention with (we do not explicitly indicate the layer to simplify notation)

ct = WO
∑
t′

align
(
WQzt,W

Kzt′
)
WV zt′

• The WQ ∈ Rrhead×r, WK ∈ Rrhead×r, WV ∈ Rrhead×r, WO ∈ Rr×rhead , are

projection matrices for the query zt, the key zt′ and the value zt′

• Thus the calculation of the context vector (still a vector!) involves tunable matrices

• In the transformer paper: r = 512, rhead = 64 (here, r is the number of neurons

in a hidden layer)

69



Multi-head Attention

• Now we define L (k = 1, . . . , L) context vectors, also called heads

headk,t = ck,t =
∑
t′

align
(
WQ

k zt,W
K
k zt′

)
WV

k zt′

• With L heads (in the original transformer paper: L = 8),

ct = WO[head1,t; · · · ; headL,t]

Thus there are L different attention mechanisms which are appended and multiplied

by the r × (L× rhead) matrix WO, where r is the embedding dimension

• Note that ct is again a single vector of dimension r; the softmax function in align is

again scaled by 1/
√
rhead

70



Encoder

• The encoder uses self-attention

• We see a Resnet like structure; layer normalization is used (normalizes the activations,

like batch normalization)

• In addition, a simple feed forward neural network is used

71





Decoder: Encoder-decoder Attention Layer

• The decoder uses both self-attention and cross-attention (encode-decoder at-

tention)

• The decoder also has a multi-head encoder-decoder attention layer

• Encode-decoder attention w.r.t. the embedding vector in the upper layers in the

encoder

• Self-attention at t w.r.t. the embedding vectors previous to t

72





Masked Self-attention in the Decoder

• Whereas the encoder only uses self-attention, the decoder uses attention w.r.t all

tokens in the encoder and all tokens in the decoder, that were already decoded

• The purpose of the masking is to make sure that the states do not attend to tokens

that are“in the future”but only to those“in the past”

• Attention is directional: the past is never updated

73







Notation Closer to Transformer Paper

• The notation is

headk = Attention(WQ
k Q,WK

k K,WV
k V)

MultiHead(Q,K,V) = WO
k Concat(head1, . . . ,headL)

• The feed forward neural network with ReLU activation is described as

FFN(x) = W2max(0,W1x+ b1) + b2

(note again that rows and columns are interchanged)

• All matrices are layer-specific, but identical for different positions

74



Decoding

• The decoder is auto-regressive

• It uses a one-step iterative greedy approach: a decoded token is the input for the

following time-step

• At a higher“temperature”also less likely tokens are selected

75



BERT

76



BERT

• BERT (Bidirectional Encoder Representations from Transformers) from Google lever-

ages attention mechanism and transformer to learn word contextual relations using a

masked language model (MLM)

• It is based on the encoder of the transformer

77





BERT

• BERT is almost an auto encoder: but some tokens of the input sentence are removed

(masked) and the network is trained to predict those tokens at the output layer

• Masked language modelling (MLM)

• The context-sensitive word embeddings can be used for all sorts of tasks, like world

labelling, NER, ...

78





BERT

• BERT performs next sentence prediction (NSP) but is not considered generative AI; In

the BERT training process, the model receives pairs of sentences as input and learns

to predict if the second sentence in the pair is the subsequent sentence in the original

document.

• The actual embedding is a sum of the token embedding, the posidtion embedding and

an embedding for first sentence or second sentence

• A sentence embedding indicating Sentence A or Sentence B is added to each token.

Sentence embeddings are similar in concept to token embeddings with a vocabulary

of 2

79



Local Position Encoding for Transformer, Bert, GPT

• Without positional encoding, the transformer (and BERT) would be a bag-of-words

approach and could not distinguish between“Live to Work”and“Work to Live”, which

an LSTM could!

• To address this, the transformer adds a vector to each input embedding. These vectors

follow a specific pattern, which helps to determine the position of each word, or the

distance between different words in the sequence

• A position encoding vector is defined which encodes the position of a token

• This vector is added (summed) to the word encoding embedding

• So the input embedding vector does not just encode the token (world) but also the

position in the sequence

80



Position Encoding

• Consider that t is the position in the sequence; PosEnc(t, :) is the position encoding

vector, and PosEnc(t, l) with l = 1, . . . , r is its l-th component

• We have, for i = 0, . . . , r/2

PosEnc(t,2i) = sin((t− 1)/n2i/r)

PosEnc(t,2i+1) = cos((t− 1)/n2i/r)

• Increasing t (left to right), we sample a sine/cosine wave pattern

• Increasing i (or i), the frequency decreases, from 1 to 1/n

• n is a user specified parameter (often n = 10000)

81





GPT

82



GPT

• Generative Pre-trained Transformer (GPT)

• Typically it only uses the Decoder part of the Transformer

• It is initialized with the prompt; a prompt can be a question, a task, ...; it is the

initialization (prompt engineering)

• GPT-1 to GPT-3: main difference are: different forms of training schedules!

• GPT-4 can handle sequences of 32k tokens (under development: sequences of 100k

or more tokens)

• Attention is calculated w.r.t. all prompt tokens (all input tokens) and all previously

generated tokens

83



GPT (cont’d)

• Tokenization (byte pair encoding): Typically, most words will be encoded as a single

token, while rare words will be encoded as a sequence of a few tokens, where these

tokens represent meaningful word parts. This translation of text into tokens can be

found by variants of byte pair encoding, such as subword units

• Vocabulary size (Llama): 32k, context length: 2k (now: 100k), 65B parameters, 4.4B

tokens, 2k GPUs, 3 weeks of training

84



GPT and Self-Attention

• The slide shows the attention mechanism and the feedforward layer

• Note the ResNet structure: Each layer is connected to the last layer via later layers

but also directly (no vanishing gradient!)

85





ChatGPT Training

• Training phases:

• 1: Pretraining (99% of effort); LLM training; leads to base model

• Data: internet crawls (CommonCrawl, C4), Github, Wikipedia, Books, ArXiv, Stack-

Exchange

• 2: Supervised fine-tuning; with ideal prompt-response pairs (the responses can be

quite long); LLM model; leads to SFT model

• 3: Reward modeling; human annotators who rank different responses (completions);

predicts (subjective) quality; leads to RM model

• 4: Reinforcement Learning; used RM; leads to RL model (RLHF: Reinforcement Learn-

ing with Human Feedback); improves the LLM further but difficult to get to work

86



GPT Research

• Research issues: fine-tuning, prompt engineering, providing access to external data

like databases (vector databases, database queries)

• At this stage: increasing the number of parameters is not the most important factor;

training set size/quality is currently more in focus

• Hallucination: An inherent feature of generative models?

87





GPT 175B

• 96 layers, r = 12288, rhead = 128, number of heads L = 96

• WO, WQ,WK,WV : Each of them has 12288 × 128 parameters, and we have

96× 96 of them: 58B

• W1 and W2 in the FFN: 12288 × 12288 × 4 × 2 (12288 × 4 is the size of

the hidden layer) and we have 96 of them: 116B

• Token embedding: 50257× 12299 = 0.6B

• This is together: 173.6B; we need to add the biases, other parameters to get to

175B

88





Foundation Models: A New Age?

• Different phases in machine learning:

• Before 2012: Small scale, feature-based learning

• From 2012 on: Deep Learning: large models with large sets of labelled data, supervised

• From 2020/2023 on: Foundation Models: large models pretrained with large sets of

unlabelled data, using self-supervised learning

89


