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Preamble

• “Thermodynamik ist ein komisches Fach. Das erste Mal, wenn man sich damit befasst,

versteht man nichts davon. Beim zweiten Durcharbeiten denkt man, man hÃ¤tte nun

alles verstanden, mit Ausnahme von ein oder zwei kleinen Details. Das dritte Mal,

wenn man den Stoff durcharbeitet, bemerkt man, dass man fast gar nichts davon

versteht, aber man hat sich inzwischen so daran gewoehnt, dass es einen nicht mehr

stoert.” Arnold Sommerfeld
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Measurements and Statements

• Modern science started with the idea of an objective measurement: “This ball has a

weight of 1 kg”.

• It proceeded by describing regularities: F = ma

• Darwin observed and measured beak shapes among finch species on different islands

of the Galapagos. He postulated that the beak of an ancestral species had adapted

over time to equip the finches to acquire different food sources

• Researchers tried to generalize this idea to psychology (behavorism), statistics (fre-

quentist statistics), and other fields like econometrics ‘If you can’t measure it, you

can’t manage it” (Peter Drucker)”

• Steven Pinker: “It May Not Seem Like It, But The World Is Getting Better”(according

to many measurable quantities like percentage of people dying in war, child mortality,

...)
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Beyond Objective Measurements

• Bayesian statistics (“personal belief”); Cognition (“Here is my theory of how the brain

works”); Psychoanalytics; case studies

• Criticism of Positivism is philosophy

• We do not speak like Spock: Captain: “Spock: Today is such a wonderful day”; Spock:

“I assume what you want to say is ...”

• “Iboprophin lowers fever” (imprecise summary)

• Language is imprecise and often expresses emotions or relates statements to the body

(embodiment)

• Write an essay on: “Love is stronger than hate” (we need many words to explain the

meaning of this simple sentence!)
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Beyond Objective Measurements (cont’d)

• “For the love of money is a root of all kinds of evils.” (from 1 Tim 6:10)

• “Greed is good” (Gordon Gekko)

• The scientific fact is not that“The love of money is a root of all kinds of evils”or that

“Greed is good”

• The fact is that that the first statement is written in the Bible and the second from

Gordon Gekko in the 1987 film“Wall Street”

• It is absolutely fascinating that we (and GPT) can deal with these ambiguities quite

well (most of the time)

• Based on facts (what kind of facts are those) and human understanding of how the

world works (what is that) the butler is committed of murder and will spend 20 years

in prison
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Outline

• We start with the scientific view, introduce the concept of a random variable and

study the laws of probability

• Then we take a look at the Google Knowledge Graph which is supposed to be a fact

graph: what kind of facts are there actually?
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Measurements in the Real World

• Our data matrix D (with entries xi,j, i = 1, . . . N , j = 1, . . .M) has typically

been generated from measurements in the real world

• It is full of numbers but these numbers mean something

• x234,5 = 36 might mean that Jack (with ID = 234) has age (with ID = 5) 36

• As a ground fact: age(Jack, 36)

• “age” is the name of the column, in logics the predicate, in relational databases the

attribute, in physics the measurement process

• “Jack” is the name of the row, in logics a constant (entity), in relational databases the

key, in physics the object or time instance of measurement

• “36”is the table entry, in logics a constant, in physics the outcome of the measurement
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Measurements in the Real World (cont’d)

• In relational databases, a row is also called a tuple or a record:

(Jack(ID = 234), x234,1, . . . , x234,M)

• The data matrix, plus the column 0 for the IDs for the keys and plus names of the

attributes (as row 0)), in relational databases, is called a table or a relation

• For the data matrix we typically do not care about the names of the rows or columns

(we do not include row 0 and column 0)

• In statistics: “Age”is the random variable, and we are interested to find the probability

that a randomly selected person has age 36, written as P (Age = 36)
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Probabilities and Data Matrix

• To do a valid statistical analysis, we need to understand how the data in the data

matrix was generated
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Example: Students in Munich

• Let’s assume that there are Ñ = 50000 students in Munich. This set is called the

population

• Ñ is the size of the population, often assumed to be infinite

• Formally, I put all 50000 students in an urn (bag)

• I randomly select a student: this is called an (atomic) event or an experiment and

defines a random process

• ω: The selected student is an outcome of the experiment and defines a row in the

data matrix; if Jack was selected, then ω = Jack

10



Sample

• A particular student will be picked with elementary probability 1/Ñ

• Performing the experiment N times produces a sample (training data set) D of size

N

• An analysis of the sample can give us insight about the population (statistical infer-

ence)

• Sampling with replacement: I return the student to the urn after the experiment; then

P (ω = Jack) = 1/Ñ

• Sampling without replacement: I do not return the student to the urn after the

experiment; this is how a normal data matrix is formed
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Random Variable

• On each selected student, we perform a measurement, i.e., height H, and the result
of the measurement is a value, e.g., (tiny, small, medium, tall, huge); H is called a
random variable

• A random variable (e.g., Height) is a function (measurement) of the outcome of the
random experiment); its value depends on the outcome (e.g., “Jack”) of the random
process

• Height(ω=Jack) = tall means the height measurement on the outcome ω = Jack

resulted in the measurement“tall”

• P (X = x) = P ({ω ∈ Ω | X(ω) = x})

• Ω: the set of all students in Munich; ω ∈ Ω: one particular student (Jack) who was
picked as a result of the random experiment; x = tall: result of the measurement
Height

• Since I know the probability of an elementary event, by design, I can estimate this
number by simply looking at the training data
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Probability

• If I know the population and know each individual’s height, I know, P (H = tall); but

often the population concerns entities on which I cannot perform measurements, like

the student population in two years

• In statistics, one estimates the probability from the sample (the training data)

• Then the probability that a randomly picked student has height H = h is defined as

P (H = h) = lim
N→∞

Nh

N

with 0 ≤ P (H = h) ≤ 1

• Nh is the number of times that a selected student is observed to have height H = h
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Sample / Training Data

• I can estimate

P̂ (H = h) =
Nh

N
≈ P (H = h)

• This is the number of times that we observe the value of h in column H in the data

matrix, divided by the number of observations N

• In statistics one is interested in how well P̂ (H = h) (the probability estimate derived

from the sample) approximates P (H = h) (the probability in the population)

• Note the importance of the definition of a population: P (H = h) might be different,

when I consider individuals in Munich or Germany

• Thus the population plays an important role in a statistical analysis

• Note that the randomness enters through the sampling process: Jack’s height is not

random

14



Law of Large Numbers

• Law of Large Numbers (Bernoulli)

P{|Nh/N − P (H = h)| < ϵ} → 1 as N → ∞

• Even if there is one 110 m high giant in the population: if the giant shows up in the

sample or not: with n → ∞ the giant becomes irrelevant

• If I predict the height of the next sampled person by the mean (e.g., 175cm), the error

will be small, but there is a small probability that I pick the giant and I am wrong by

more than 100m
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Statistics and Probability

• Probability is a mathematical discipline developed as an abstract model and its con-

clusions are deductions based on axioms (Kolmogorov axioms)

• Statistics deals with the application of the theory to real problems and its conclusions

are inferences or inductions, based on observations (Papoulis: Probability, Random

variables, and Stochastic Processes)

• Frequentist or classical statistics and Bayesian statistics apply probability in slightly

different ways
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Joint Probabilities

• Now assume that we also measure weight (size) S with weight attributes very light,

light, normal, heavy, very heavy. Thus S is a second random variable

• Similarly

P (S = s) = lim
N→∞

Ns

N

• We can also count co-occurrences

P (H = h, S = s) = lim
N→∞

Nh,s

N

This is called the joint probability distribution of H and S
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Marginal Probabilities

• It is obvious that we can calculate the marginal probability P (H = h) from the

joint probabilities

P (H = h) = lim
N→∞

∑
sNh,s

N

=
∑
s

P (H = h, S = s)

• This is called marginalization

• I can calculate the marginal probability from the joint probability (without going back

to the counts)
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Conditional Probabilities

• One is often interested in the conditional probability. Let’s assume that I am interested

in the probability distribution of S for a given height H = h. Since I need a different

normalization I get

P (S = s|H = h) = lim
N→∞

Nh,s

Nh

So I count the co-occurrences, but I normalize by Nh
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Conditional Probabilities (cont’d)

• Then,

P (S = s|H = h) =
P (H = h, S = s)

P (H = h)

• Relationship to machine learning: H = h is the input and S = s is the output

• Conditioning is closely related to the definition of a population: P (S = s|H = h)

is the same as P (S = s) in a population which is restricted to students withH = h
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Product Rule and Chain Rule

• It follows: product rule

P (S = s,H = h) = P (S = s|H = h)P (H = h)

= P (H = h|S = s)P (S = s)

• and chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)
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Bayes Formula

• If I know P (S = s|H = h), does it tell me anything about P (H = h|S = s)?

Is it the same thing?

• No, but the relationship is given by Bayes formula
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Bayes Formula (con’t)

• We use the definition of a conditional probability,

P (H = h|S = s) =
P (H = h, S = s)

P (S = s)

P (S = s|H = h) =
P (H = h, S = s)

P (H = h)

• Thus we get Bayes’ formula

P (H = h|S = s) =
P (S = s|H = h)P (H = h)

P (S = s)
or

P (H = h|S = s) = P (S = s|H = h)
P (H = h)

P (S = s)
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Independent Random Variables

• Independence: two random variables are independent, if,

P (S = s,H = h) = P (S = s)P (H = h|S = s)

= P (S = s) P (H = h)
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Simplified Notation

• The expression P (X = x) is often simplified as P (x)

• Thus instead of writing P (H = 185), we write P (185)

• Joint: P (X = x, Y = y) ≡ P (x, y)

• Marginalization: P (Y = y) =
∑

x P (X = x, Y = y) becomes

P (x) =
∑
x

P (x, y)

• Sometimes X stands for the event X = x with some unspecified x; thus one sees

also P (X), P (X,Y ), and

P (X) =
∑
X

P (X,Y )
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Summary

• Conditional probability

P (y|x) =
P (x, y)

P (x)
with P (x) > 0

• Product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• Chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)

• Bayes’ theorem

P (y|x) =
P (x, y)

P (x)
=

P (x|y)P (y)

P (x)
P (x) > 0

• Marginal distribution

P (x) =
∑
y

P (x, y)
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• Independent random variables

P (x, y) = P (x)P (y|x) = P (x)P (y)



Simplifications for Supervised Learning

• Consider that we are interested in P (Y |X1, . . . XM), e.g., to predict the last com-

ponent based on all previous ones (supervised learning)

• Then, from a statistical point of view, we do not need to randomly sample the

X1, . . . XM , we can design the inputs; thus the term“design matrix”

• The requirement is that the targets Y are randomly sampled from P (Y |X1, . . . XM)

• Each input defines an urn and from that urn, we need to sample randomly

• E.g., if the input is height and the output is weight, I can select systematically people

based on height, but I cannot select them based on weight

• E.g., if the input is the cause and the output is effect, I can set the cause (give

medication or not) and record the outcome; but and I cannot not only select patients,

where the medication has worked worked

• Of course, for many other reasons, the selected inputs should correspond to the pop-

ulation I am interested in
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Marginalization and Conditioning: Basis for Probabilistic
Inference

• P (I, F, S) where I = 1 stands for influenza, F = 1 stands for fever, S = 1

stands for sneezing

• What is the probability for influenza, when the patient is sneezing, but temperature is

unknown, P (I|S)?

• Thus I need (conditioning) P (I = 1|S = 1) = P (I = 1, S = 1)/P (S = 1)

• I calculate via marginalization

P (I = 1, S = 1) =
∑
f

P (I = 1, F = f, S = 1)

P (S = 1) =
∑
i

P (I = i, S = 1)
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Expected Values

• Expected value

E(X) = EP (x)(X) =
∑
i

xiP (X = xi)

≈
1

N

N∑
k=1

xk = meanx

(with random observations)
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Variance

• The Variance of a random variable is:

var(X) =
∑
i

(xi − E(X))2P (X = xi) ≈
1

N − 1

∑
i

(xi − meanx)
2

• The Standard Deviation is its square root:

stdev(X) =
√

var(X)
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Covariance

• Covariance:

cov(X,Y ) =
∑
i

∑
j

(xi − E(X))(yj − E(Y ))P (X = xi, Y = yj)

≈
1

N − 1

∑
i

(xi − meanx)(yi − meany)

• Covariance matrix:

Σ[XY ],[XY ] =

(
var(X) cov(X,Y )

cov(Y,X) var(Y )

)
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Covariance, Correlation, and Correlation Coefficient

• Useful identity:

cov(X,Y ) = E(XY )− E(X)E(Y )

where E(XY ) is the correlation.

• The (Pearson) correlation coefficient (confusing naming!) is

r =
cov(X,Y )√

var(X)
√

var(Y )

• It follows that var(X) = E(X2)− (E(X))2 and

var(f(X)) = E(f(X)2)− (E(f(X)))2
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More Useful Rules

• We have, independent of the correlation between X and Y ,

E(X + Y ) = E(X) + E(Y )

and thus also

E(X2 + Y 2) = E(X2) + E(Y 2)

• For the variance of the sum of random variables,

var(X + Y ) = E[(X + Y − (E(X) + E(Y )))2]

= E[((X − E(X)) + (Y − E(Y )))2]

= E[(X −E(X))2] +E[(Y −E(Y ))2] + 2E[(X +E(X))(Y −E(Y )]

= var(X) + var(Y ) + 2cov(X,Y )

• Similarly,

var(X − Y ) = var(X) + var(Y )− 2cov(X,Y )
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Covariance Matrix of Linear Transformation

• Let w be a random vector with mean µ⃗w and covariance matrix Σw

• Let

y = Aw+ ϵ⃗

where A is a fixed matrix.

• Then y is a random vector with mean µ⃗y = Aµ⃗w and covariance

Σy = AΣwA
T + σ2I

• Special case (Gaussain distributions): P (w) = N (w; µ⃗w,Σw), P (y|w) =

N (y|Aw, σ2I) then P (y) = N (y;Aµ⃗w,AΣwAT + σ2I)

• Special case (σ2 = 0): Σy = AΣwAT
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Continuous Random Variables

• Probability density

f(x) = lim
∆x→0

P (x ≤ X ≤ x+∆x)

∆x

• Thus

P (a < x < b) =

∫ b

a
f(x)dx

• The distribution function is

F (x) =

∫ x

−∞
f(x)dx = P (X ≤ x)
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Expectations for Continuous Variables

• Expected value

E(X) = EP (x)(X) =

∫
xP (x)dx

• Variance

var(X) =

∫
(x− E(x))2P (x)dx

• Covariance:

cov(X,Y ) =

∫ ∫
(x− E(X))(y − E(Y ))P (x, y)dxdy
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Joint Gaussian Distributions

• Let z = (x;y), µ⃗ = (µ⃗x; µ⃗y)

• With

Σ =

(
Σx,x Σx,y

Σy,x Σy,y

)
we get

P (z) = N (z; µ⃗,Σ) =
1

(2π)M/2
√

|Σ|
exp

(
−
1

2
(z− µ⃗)T Σ−1 (z− µ⃗)

)
Here |Σ| is the determinant of Σ.
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Marginals

• For x,

P (x) = N (x; µ⃗x,Σx,x)

• For y,

P (y) = N (y; µ⃗y,Σy,y)
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Conditional Densities

• For the conditionals, we get

P (x|y) = N
(
x; µ⃗x +Σx,yΣ

−1
y,y(y − µ⃗y),Σx,x −Σx,yΣ

−1
y,yΣy,x

)
• and

P (y|x) = N
(
y; µ⃗y +Σy,xΣ

−1
x,x(x− µ⃗x),Σy,y −Σy,xΣ

−1
x,xΣx,y

)
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Knowledge Graphs
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Unary and Binary Relations

• A knowledge graph does not just record the attributes of entities Height(Jack, Tall)

but also relationships to other entities

• In the statement marriedTo(Jack, Mary), married is a binary predicate (relation) since

the arguments are two entities: Jack, Mary ; as a triple: (Jack, marriedTo, Mary)

• In the Knowledge Graph ground facts of binary relations are represented as directed

links from subject to object

• It contains statements which we, as humans, would interpret as facts but which often

are not measurements in the scientific sense

• Can I enter facts in the KG, such that I can be sure with certainty that the butler is

the murder

• Can I formulate my background knowledge within the KG or is it outside?
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Semiotic Triangle

• By introducing a measurement device and a result of the measurement, we imply a

form of objectivity; in addition there is the thought in our brain and what is spoken

or written (see: semiotic triangle)

• The three views are not identical: I can think and say things which cannot be mea-

sured: “Love is stronger than Hate”; reality can produce things, which people cannot

understand

• Working definition of the truth value of a statement: For a statement like “Love is

stronger than Hate”’, find N (random) individuals who claim to be competent to

evaluate that statement. The truth value (probability) is the percentage of those

individuals who would confirm that the statement is true
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Concluding Comments

• Modern science started with the concept of an objective measurement

• Statistics permits valid scientific statements of the context of the experiment is clearly

defined; you cannot escape your own statistics

• Science and statistics permit predictions about the future (prediction, forecasting)

• What is written and said is related to the scientific facts in the world but also goes

beyond

• Written and verbal statements can assume the role of data and permit predictions:

Jack likes GWTW, then, I predict, he also likes ... We as humans and science finds

patterns everywhere

• Amazingly, we as humans and also GPT can deal with all this complexity
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