
Model Selection and Estimation of
Generalization Cost

Volker Tresp
Winter 2023-2024

1



Generalization Cost and Training
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Cost Functions

• We define a cost function for a data point x, y of function fw(x) as

costx,y[w]

• We will use the terms cost, loss and error exchangeably

• Example (quadratic cost):

cost
q
x,y[w] = (y − fw(x))2
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Cost Functions (cont’d)

• Misclassification cost (y ∈ {−1,1}):

costmx,y[w] =
1

2
|y − sign(fw(x))|

• Absolute deviation (AD) (y ∈ {−1,1}):

costx,y[w] =
1

2
|y − fw(x)|
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Cost Functions (cont’d)

• Perceptron (y ∈ {−1,1}):

costx,y[w] = | − yfw(x)|+

• Vapnik’s optimal hyperplanes (y ∈ {−1,1}):

costx,y[w] = |1− yfw(x)|+

• Cross-entropy cost (negative log-likelihood cost)

costlx,y[w] = − logP (y|fw(x))

For binary classification, identical to the logistic regression cost function
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Model Selection Based on Generalization Cost

• In statistics one is often interested in the estimation of the value and the uncertainty

of particular parameters. Example: is parameter w1 significantly nonzero?

• In machine learning one is often interested in the generalization cost which is the

expected cost over all possible data, for any fixed w,

costP (x,y)[w] =

∫
costx,y[w]P (x, y) dxdy

• A typical assumption is that P (x, y) = P (x)P (y|x) is fixed but unknown, which

implies that (the true) f(x) is fixed but unknown
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Average Test Set Cost Estimates the Generalisation Cost

• An estimator of the generalization cost is the average test set cost

costtest[w] =
1

T

T∑
i=1

costxi,yi[w]

which is the average cost on the T test data points with (xi, yi ∈ test)

• The test data are data points not used in training

• This is an unbiased estimator of the generalization cost, for any fixed w; we can

compare different models based on their average test set performance

• The variance of this estimator approaches zero for T → ∞; typically one does not

want to reserve a large set of available data as test data; a better alternative is a cross

validation approach, described later
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Average Training Set Cost

• To obtain a better understanding of model performance, one is interested in the

relationship between average training set cost and generalization cost

• We define the average training set cost of the best parameter vector, trained and

evaluated on the training data as

costtrain[ŵ(train)] =
1

N

N∑
i=1

costxi,yi[ŵ(train)]

Here, (xi, yi) ∈ train; we use train and D interchangeably
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Analysis of Different Quantities

• So far we were interested in is the generalization cost of a particular modelM with

particular best-fit parameters ŵ(train).

• Another quantity of interest is the generalization cost averaged over all possible

training sets of size N (where the training data set is generated from P (x, y))
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Training Set Cost and Generalization Cost

• It turns out that if we calculate the expected average over all training sets of the same

size, then

Etrain
{
costP (x,y)[ŵ(train)]− costtrain[ŵ(train)]

}
≥ 0

• Thus in expectation, the average training cost underestimates the generalization cost

for the estimated ŵ, optimized on the training data. Thus the performance of a

trained model should not be evaluated on the training set but on the test set, which

is an unbiased estimator of the generalization cost

• This expression is the focus in a frequentist analysis!
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Preview: Theoretical Analysis

• Consider the special case of models with fixed basis functions and quadratic cost and

let’s assume the model is free of bias (no regularization, no structural bias)

• Then the generalization cost of the true model (the best possible model)

cost
q
P (x,y)

[f(·)] = Residual = σ2

If our training procedure would identify the true parameters, this would be the general-

ization cost. This is sometimes referred to as aleatoric uncertainty: it is representative

of unknowns that differ each time we run the same experiment. Aleatoric is derived

from the Latin alea or dice, referring to a game of chance.

• The expected generalization cost of the fitted model is

Etrain
{
cost

q
P (x,y)

[ŵ(train)]
}
= Residual + Var

This term is estimated by the average test set cost; in expectation, it is larger than

the generalization costs of the best model by a term called the variance Var
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Preview: Theoretical Analysis (cont’d)

• The expected average training set cost of the fitted model in some cases is

Etrain
{
costtrain[ŵ(train)]

}
= Residual−Var

This term is estimated by the average training costs; this term is smaller than the

generalization costs of the best model by the variance Var

• Epistemic uncertainty is also known as systematic uncertainty, and is due to things

one could in principle know but does not in practice.

• Then we obtain

Etrain
{
costP (x,y)[ŵ(train)]− costtrain[ŵ(train)]

}
= 2Var

• For certain models, we can estimate Var
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Preview: Main Trick

• Bias and Residual error show up both in the training cost and the generalization cost

• Thus I only need to estimate the Variance and get as an approximation

Etrain
{
costP (x,y)[ŵ(train)]

}
≈ costtrain[ŵ(train)] + 2Var

• Most theoretical approaches use this“trick”

• By analyzing this difference, the true functions is fixed but unknown and does not

need to be realised by any function out of the model class
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Empirical Model Comparison
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Model Selection via Training and Test Data Performance

• This procedure can be applied with huge amounts of available data, N >> Mp,

where Mp is the number of model parameters

• This procedure is typically used in deep learning with large data sets, where a cross

validation approach would be too costly

• Divide the data set randomly into a training data set and a test data set

• Train all models only on the training data: find the best parameters for each model

under consideration

• Evaluate the generalization performance based on the average test set performance and

get costtest[ŵ(train)] for the different models, as an estimate of the generalization

costs costP (x,y)[ŵ(train)]
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Cross Validation

• Cross validation uses all data in turn for testing

• Consider K- fold cross validation; typical: K = 5 oder K = 10

• The data is partitioned into K sets of approximately the same size

• For k = 1, . . . ,K: The k−th fold (testk) is used for testing and the remaining data
(traink) is used for training (finding the best parameters)
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Evaluating Performance with Cross Validation

• For each model one gets K test costs

costtestk[ŵ(traink)], k = 1, . . . ,K

• Now we now consider the generalization costs averaged over the parameter estimates

obtained from different training data sets of size N

• We can estimate this expectation as

EtraincostP (x,y)[ŵ(train)] ≈
1

K

K∑
k=1

costtestk[ŵ(traink)] = mM
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Variance Estimate

• We can estimate the uncertainty of mM as the variance

V̂ arM =
1

K(K − 1)

K∑
k=1

(costtest[ŵ(traink),M]−mM)2

• Mean and mean-variance estimates can be used to decide if two models significantly

differ in generalization performance: typically, one accepts that modelMi has smaller

generalization cost thanMj, if

mMi
+
√

V̂ arMi
< mMj

−
√

V̂ arMj
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Paired Tests

• With few data one can use a paired test

• Basic idea: let’s assume that K = 10; ifMi in all test sets is better thanMj,

then this is a strong indication thatMi performs better, even if the variation in test

set performance masks this behavior (error bars of the estimate are too large)

• Calculate the average difference between both model costs

MeanDiffi,j =
1

K

K∑
k=1

costtestk[ŵ(traink),Mj]− costtestk[ŵ(traink),Mi]

and analyse if this difference is significantly larger than zero
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Paired Tests (cont’d)

• In the case of high correlation, the variance of MeanDiffi,j can be much smaller

than the variances of mMi
and mMi

, due to the rule

var(X − Y ) = var(X) + var(Y )− 2cov(X,Y )

• For a statistical analysis, one employs the test statistics for the paired t-test

• Alternative approach: Wilcoxon signed-rank test
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Empirical Tuning of
Hyperparameters
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Hyperparameter

• In addition to the normal parameters, often one or several hyperparameters need to

be tuned as well. Example: regularization weight λ

• The tuning should be done on the training fold. Part of the training fold becomes

another fold on which the hyperparameters are tuned
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Hyperparameters(cont’d)

• Let’s call the folds parameter training fold, hyperparameter fold, and test fold

• In the outer loop we generate training data and test data (as part of K-fold cross

validation)

• In the inner loop we divide the training data into parameter training fold and hyperpa-

rameter fold. We train the parameters using the parameter training fold with different

values of the hyperparameters. We then select the hyperparameter values which give

best performance on the hyper-parameter fold

• We use these hyperparameter values to optimize the model on all training data, and

evaluate this model on the test set
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How to Search for Best Hyperparameters

• Optimizing one (or two hyperparameters) one can perform some form of grid search

or consider random choices of parameters

• With many hyperparameters, a random selection of hyperparameters works surprisingly

well: one explanation is that some of the hyperparameters might be rather irrelevant

and a random search strongly explores the space of potentially relevant subspace
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Learning Theories
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Overview: Statistical Theories and Learning Theories
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Frequentist Statistics

• Rejection of subjective prior 

probability

• Dominant in applied statistics

• Fisher

• p-values

• Pearson and Neyman

• Confidence intervals, 

hypothesis testing 

(Subjective) Bayesian Statistics

• Subjective knowledge can be formulated as 

probabilities and can be integrated into statistical 

modeling

VC-Theory (Statistical Learning Theory) 

(Vapnik–Chervonenkis)

• True function does not need to be a 

member of the model function class

• Estimates bounds instead of

expectations

MDL – Theorie (minimum 

description length)

• Information-theoretical view

• Rissanen, Wallace, Boulton

PAC Learning (probably approximately 

correct) (Valient)

• Similar to VC-Theory

• Also considers computational complexity

Regularization Theory

• Regularization increases stability of 

solution; ill-poses problems become 

well-posed

• Hadamard, Tikhonov

Robust Statistics

• Non-Gaussian 

likelihoods

• Huber

Probability

• The mathematical theory behind most 

approaches

• Not really statistics itself but might use 

simple quantities (e.g., correlations,

conditional probabilities) that can easily 

be estimated from data 

Least Squares Principle

• Gauss

• Gaussian Likelihood

Stein Estimation

• Biased estimators 

can beat ML

• Stein estimator

Objective Bayesian Statistics

• Non-informative Priors (Jeffrey)

• Maximum Entropy Priors

Empirical Bayes (technicality)

• Type II Likelihood

• Evidence Framework

Algorithmic Statistics

• Focus on predictions (not 

parameter estimation)

• Breiman, Hastie, Friedman

• Green:  Frequent.

• Blue:   Bayes

• Gold: 

Learn. Theory

• Red:    Related

Empirical Risc Minimization

• Vapnik

Function 

Approximation 

Theory



Learning Theories

• A: Classical Frequentist Approaches

– Cp Statistics

– Akaikes Information Criterion (AIC)

• B: Bayesian approaches

– Strict Bayes: model averaging instead of model selection

– Bayesian model selection and Bayesian Information Criterion (BIC)

• C: Modern Frequentist Approaches

– Minimum Description Length (MDL) Principle

– Statistical Learning Theory (Vapnik-Chervonenkis (VC) Theory)
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A:Classical Frequentist Approaches
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Frequentist Approaches

• We are again interested in the generalization cost averaged over the parameter esti-

mates from different training data sets of size N

EtraincostP (x,y)[ŵ(train)]

• Thus we evaluate the quality of a particular modelM and not a particular parameter

vector
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Bias-Variance Decomposition

• Before we discussed the bias-variance decomposition of the parameter estimate; now

we discuss the bias variance decomposition of the model prediction

• We assume a fixed P (x) and that y = f(x) + ϵ, where ϵ is uncorrelated noise

• We use a quadratic cost function. Then one can decompose for the squared cost

Etraincost
q
P (x,y)

[ŵ(train)] = Bias2 +Var +Residual

The expectation is over all training sets of size N and all test data
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Residual

• The residual cost is simply the cost of the true model

Residual =

∫
(f(x)− y)2P (x, y)dxdy = cost

q
P (x,y)

[f(·)]

• In regression, this is simply the noise variance σ2
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Bias

• The bias is the mean square of the difference between the true model and the average

prediction of all models trained with different training sets of size N . A regularized

model with λ > 0 would typically be biased. A linear model is biased if the true

dependency is quadratic. With m(x) = Etrain(f(x, ŵ(train)))

Bias2 =

∫
[m(x)− f(x)]2 P (x)dx
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Variance

• The variance is the mean square of the difference between trained models and the

average prediction of all models trained with different training sets of size N

Var =

∫
Etrain[f(x, ŵ(train))−m(x)]2P (x)dx
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Background: Some Rules for Variances and Traces

• Let y be a random vector with covariance Cov(y) and let A be a fixed matrix

If z = Ay, then: Cov(z) = ACov(y)AT

• The trace is the sum over the diagonal elements of a matrix. One can show that

trace[Φ(ΦTΦ)−1ΦT ] = M

where M is the number of columns of the matrix Φ. Special case: when Φ is a

square matrix and has an inverse, then Φ(ΦTΦ)−1ΦT = I and the trace of I is

obviously M
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Example: Linear Models

• We assume that the data has been generated with

yi = ϕ(xi)w+ ϵi

where: ϵi is independent noise with variance σ2

• We take the ML estimator which is known to be unbiased and is

ŵ = (ΦTΦ)−1ΦTy

Thus we now know that Bias = 0. We need to assume that ΦTΦ has full rank!

• With the rule we just learned we can calculate the parameter covariance

Cov[ŵ] = (ΦTΦ)−1ΦTCov(y)Φ(ΦTΦ)−1

= σ2(ΦTΦ)−1ΦTΦ(ΦTΦ)−1 = σ2(ΦTΦ)−1
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Example: Linear Models (cont’d)

• Note that the expectations were over all data sets of the same size but with fixed

inputs!

• We can calculate now for any test input x,

Varf(x) = (ϕ⃗(x))T Cov[ŵ] ϕ⃗(x)

• We are now interested in the average test error; we assume that future test inputs are

well represented by the training data inputs: test inputs are represented by the design

matrix Φ of the training data
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Example: Linear Models (cont’d)

• The mean predictions of our model at the training data inputs is then f = Φŵ

• Applying the covariance formula again as before, we get

Covf = ΦCov[ŵ]ΦT

• For the MSE we really only need the mean over the diagonal terms

Varf =
1

N
trace(ΦCov[ŵ]ΦT )
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Example: Linear Models (cont’d)

• Substituting, we get

Varf =
1

N
trace(ΦCov[ŵ]ΦT ) =

σ2

N
trace(Φ(ΦTΦ)−1ΦT )

• Now we apply our trace-rule and get

Varf =
Mp

N
σ2

where Mp is the number of parameters

• The solution is surprisingly simple, but makes sense: The predictive variance increases

with more noise on the data and with more free parameters and decreases with more

data!
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Example: Linear Models (cont’d)

• If ΦTΦ does not have full rank use (weak) regularization and use

Varf =
Meff

p

N
σ2

where Meff
p = rank(ΦTΦ) is the effective number of parameters

• With neural networks, some researcher propose

ϕj(x)←
∂f(x)

∂wj
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Generalization Cost of the Best Fit

• Thus the generalization cost for the parameters that minimize the training set costs

is on average

Etraincost
q
P (x,y)

[ŵ(train)] ≈ σ2 +
Mp

N
σ2 = σ2

Mp +N

N

• Thus on average the generalization cost for the parameters optimized on the training

set is larger by
Mp
N σ2, if compared to the generalization cost of the best possible

model
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Estimating the Residual

• We use

σ̂2 =
N

N −Mp
cost

q
train[ŵ(train)]
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CP -statistics

• By substitution we now get

Etraincost
q
P (x,y)

[ŵ(train)] ≈
N +Mp

N −Mp
cost

q
train[ŵ(train)]

• This is called Mallot’s CP -statistics

• Thus in model selection on would chose the model where Mallot’s CP is smallest

• Often one is interested in the difference between generalization error and training error:

Etraincost
q
P (x,y)

[ŵ(train)]− cost
q
train[ŵ(train)]

≈ cost
q
train[ŵ(train)]

2

N −Mp
= 2Var

As mentioned before, the difference between both is twice the variance

• The great thing about using this last equation is that we never have to estimate the
bias term explicitly!
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Test Data

• If I know the inputs of the test data (or simulate inputs for test data),

Covftest = ΦtestCov[ŵ]ΦtestT

• For the MSE we really only need the mean over the diagonal terms

Varftest =
1

N
trace(ΦtestCov[ŵ]ΦT

test)
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Conceptual Plots

• The next figures show the behavior of bias, variance and residual and average training

and average test costs

• The complexity is controlled by the number of parameters Mp, or the number of

epochs (stopped training), of the inverse of the regularization parameter

• Note that the best models have a Bias > 0
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Akaikes Information Criterion (AIC)

• The analysis so far was only valid for models that minimized the squared cost. Consider

the cross entropy cost function which minimizes the negative log-likelihood

costlx,y[w] = − logP (y|x,w)

• The negative log-likelihood of the ML-solution is

− logL = −
N∑

i=1

logP (yi|xi,wML)

• Here, one can apply Akaike’s Information Criterion (AIC ) (as defined in Wikipedia)

AIC = −2 logL+2Mp

• A model with a smaller AIC is preferred
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Comments on AIC

• The expression

AIC

2N
=

(
costltrain[ŵ(train)] +

Mp

N

)
estimates the generalization log-likelihood cost
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AIC for Likelihood Cost Function and for 1/0 Cost Function
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Proof: Bias-Variance Decomposition

• One can reduce the problem to estimating the decomposition for one parameter. µ is

the parameter and x are the data. We add and subtract Etrain(µ̂) and we add and

subtract µ (true parameter). Then,

EtrainEx(µ̂−x)2 = EtrainEx
[
(µ̂− Etrain(µ̂)) + (Etrain(µ̂)− µ) + (µ− x)

]2
• One gets

EtrainEx(µ̂− x)2 = Bias2 +Var +Residual

Residual = Ex(x− µ)2

Bias = Etrain(µ̂)− µ

Var = Etrain[µ̂− Etrain(µ̂)]
2
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Proof: Bias-Variance Decomposition (cont’d)

EtrainEx(µ̂− x)2 = EtrainEx
[
(µ̂− Etrain(µ̂)) + (Etrain(µ̂)− µ) + (µ− x)

]2
• We get 6 terms. Three are: Bias2, Var, Residual. We need to show that the

three cross terms become zero.

EtrainEx[(µ̂−Etrain(µ̂))(Etrain(µ̂)−µ)] = Etrain[(µ̂−Etrain(µ̂))(Etrain(µ̂)−µ)]

= (Etrain(µ̂)− µ)Etrain[µ̂− Etrain(µ̂)] = Bias× 0 = 0

EtrainEx[(µ̂−Etrain(µ̂))(µ−x)] = Etrain[µ̂−Etrain(µ̂)]Ex[µ−x] = 0×0 = 0

EtrainEx[(Etrain(µ̂)−µ)(µ−x)] = Etrain[Etrain(µ̂)−µ]Ex[µ−x] = Bias×0 = 0
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Bayesian Approaches
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The Bayesian Perspective

• The Bayesian approach does not require model selection!

• One formulates all plausible models under consideration and specifies a prior probability

for those models

P (Mi)

• The posterior prediction becomes

P (y|x) =
∑
i

P (Mi|D)

∫
P (y|x,w,Mi)P (w|D,Mi)dw
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Bayesian Model Selection

• The principled Bayesian approach is sometimes impractical and a model selection is

performed

• A posteriori model probability

P (M|D) ∝ P (M)P (D|M)

• If one assumes that all models have the same prior probability, and the important term

is the so-called marginal likelihood, or model evidence

P (D|M) =

∫
P (D|w,M)P (w|M)dw
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Our Favorite Linear Model

• Fortunately we can sometimes calculate the evidence without solving complex inte-

grals. From Bayes formula we get

P (w|D,M) =
P (D|w,M)P (w|M)

P (D|M)

and thus the evidence term can be written as

P (D|M) =
P (D|w,M)P (w|M)

P (w|D,M)

• This equation must be true for any w. Let’s substitute wMAP and take the log

logP (D|M) =

logP (D|wMAP,M) + logP (wMAP|M)− logP (wMAP|D,M)

• The first term is the log-likelihood and the second the prior. Both are readily available.

So we only need to take care of the last term (we do not know the normalization factor)

53



Our Favorite Linear Model (cont’d)

• Recall from a previous lecture that for a Bayesian approach to linear regression, we

get

P (w|D,M) = N
(
w;wMAP, cov(w|D)

)
Here,

cov(w|D,M) = σ2

(
ΦTΦ+

σ2

α2
I

)−1
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Our Favorite Linear Model (cont’d)

• Thus at wMAP the exponent is zero (exp(0) = 1) and we are left with the

normalization term

logP (wMAP|D,M) = log
1√

(2π)Mp det cov(w|D)

= −
Mp

2
log(2π)−

1

2
logdet cov(w|D)
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Our Favorite Linear Model (cont’d)

• Thus,

logP (D|M) = logP (D|wMAP,M) + logP (wMAP|M)

+
Mp

2
log(2π) +

1

2
logdet cov(w|D)

• For large N , one can approximate

log det cov(w|D) ≈ −Mp logN + constants

(for large N , cov(w|D) becomes diagonal and the diagonal entries become propor-

tional to 1/N ; thus det(cov(w|D)) ∝ (1/N)Mp = N−Mp is then the product

over the diagonals)
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Our Favorite Linear Model (cont’d)

• Thus

logP (D|M) ≈ logP (D|wMAP,M) + logP (wMAP|M)

+
Mp

2
log(2π)−

1

2
Mp logN + constants

• If we consider models with different number of parameters Mp, then

logP (D|wMAP,M) + logP (wMAP|M)

might produce a larger value (better fit) for the model with the largerMp. But for the

larger model, we subtract a larger Mp logN , so we obtain a compromise between

both terms at the optimum
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Laplace Approximation of the Marginal Likelihood

• By simplifying the previous equation (we only keep terms that depend onN) and using

the ML (Maximum Likelihood) estimate instead of the MAP estimate one obtains

logP (D|M) ≈ logP (D|ŵML,M)−
Mp

2
logN

• The Bayesian information criterion (BIC) is -2 times this expression (definition in

Wikipedia)

BIC = −2 logP (D|ŵML,M) +Mp logN

(a better model has a smaller BIC)

• This approximation is generally applicable (not just for regression)
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Bayesian Information Criterion (BIC)

• We get

BIC

2N
= costltrain[ŵ(train)] +

1

2
Mp

logN

N

Compare

AIC

2N
= costltrain[ŵ(train)] +

Mp

N

• 1
2
Mp
N logN is an estimate of the difference between the average test likelihood and

the average training log-likelihood

• BIC corection is by a factor 1
2 logN larger than the AIC correction and decreases

more slowly (logN)/N with the number of training examples
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C: Modern Frequentist Approaches
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Minimum Description Length (MDL)

• Based on the concept of algorithmic complexity (Kolmogorov, Solomonoff, Chaitin)

• Based on these ideas: Rissanen (and Wallace, Boulton) introduced the principal of

the minimum description length (MDL)

• Under simplifying assumptions the MDL criterion becomes the BIC criterion
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Statistical Learning Theory

• The Statistical Learning Theory (SLT) is in the tradition of the Russian mathematicians

Andrey Kolmogorov and Valery Ivanovich Glivenko and the Italian mathematician

Francesco Paolo Cantelli

• SLT was founded by Vladimir Vapnik and Alexey Chervonenkis (VC-Theory)

• Part of Computational Learning Theory (COLT); similar to PAC (probably approxi-

mately correct) Learning (Leslie Valiant)
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Function Classes

• As before: data is generated according to some distribution P (x, y). This distribution

is fixed but otherwise arbitrary

• As before: SLT considers functions out of a model function class fw(x) ∈ M.

Example: M is the class of all linear classifiers with Mp = M +1 parameters (for

simplicity, we consider that an element of the function class can be described by a

parameter vector w)

• SLT does not assume that the best possible (true or target) function f(x) is contained

inM

• We now consider binary classification without noise (i.e., classes are in principal sep-

arable)
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SLT Bounds

• As before: train is a random sample of P (x, y)

• SLT considers the difference between costm
P (x,y)[w] and costmtrain[w] (recall that

costm denotes the misclassification cost); we are interested in the difference between

generalization cost and average training cost for any w (not just for ŵ(train))

• As before: probabilities are calculated w.r.t. all training sets of size N
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SLT Bounds (cont’d)

• SLT shows that with (large) probability 1− η that for any w,

costmP (x,y)[w] ≤ costmtrain[w] + ϵ

• Model selection is performed on

costmtrain[ŵ(train)] + ϵ

(note; for model selection, we consider the particular parameter choice ŵ(train) )
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VC-Dimension

• The statement is trivially true for a large enough ϵ; the science (and the art) is now

to find the smallest possible ϵ

• Of great importance is the so-called VC-dimension dimVC of the model class

• Wikipedia: In Vapnik-Chervonenkis theory, the VC dimension (for Vapnik-Chervonenkis

dimension) is a measure of the capacity (complexity, expressive power, richness, or

flexibility) of a space of functions that can be learned by a statistical classification

algorithm. It was originally defined by Vladimir Vapnik and Alexey Chervonenkis

• The VC-dimension can be finite or infinite. For linear classifiers, dimVC = Mp =
M +1, which means that the VC-dimension is simply the number of parameters

• For systems with a finite VC dimension, the bound decreases with N when N >

dimVC.

• In practice, costmtrain[ŵ(train)] + ϵ is much larger than the average test set error,

which limits the application of the theory in practice
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Typical Bound

• A typical estimate is

ϵ =

√√√√ 1

N

[
dimV C

(
log

(
2N

dimVC

)
+1

)
− log

(η
4

)]
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Comparison

• Comparison of the ϵ

CP ∝ MP
N

AIC ∝ MP
N

BIC ∝ MP log(N)
N

VC ∝
√
MP√
N

=
√
MPN
N
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Comparing SLT and a Frequentist Approach

• SLT does not make any assumption about the true function; in a frequentist view,

this can mean that the bias can be large

• SLT makes a statement about the worst case (supremum); often the supremum cor-

responds to the weight vector that minimizes the training cost, i.e. ŵ(train)

• Note: training data is are not worse case (they are not selected by a demon to fool

you): they are assumed to be generated i.i.d. from a fixed P (y|x)P (x)

69



Conclusion

• Machine learning focusses on generalization costs and traditionally not as much on

parameter estimation, although explainable AI is gaining interest

• Empirical model selection is most often used. If possible, cross validation results should

be reported

• Frequentist approaches typically estimate EtraincostP (x,y)[ŵ(train),M]. We have

studied CP and the AIC

• Bayesian approaches do model averaging instead of model selection. The BIC criterion

is useful, if model selection needs to be performed

• An advantage of the SLT is that the true function does not need to be included in the

function class; the derived bounds are typically often rather conservative

• SLT has been developed in the Machine Learning community, whereas frequentist and

Bayesian approaches originated in statistics
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