
Modelling High-dimensional Data:
Manifolds, Autoencoders, and

Generative Adversarial Networks

Volker Tresp
Winter 2024-2025

1

Part I: Mathematical Introduction

2

From Conditional Distribution to Unconditional Distributions

• In classification and regression we were modelling

P (y|x1, . . . , xM)

• How about modelling

P (x1, . . . , xM)

(you can consider the y-variable as one of the inputs)

• In a way this model is more powerful, since using marginalization and conditioning,
we can derive any

P (xi|{Si})

where {Si} ⊆ {x1, . . . , xM} \ xi

• Examples:

• xi reflects the rating of users for movie i (recommendation engines)

• xi is pixel i in an image

3

Bayes Nets

• Recall the chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)

• Bayes nets use the decomposition

P (x1, . . . , xM) =
M∏
i=1

P (xi|par(xi))

where par(xi) is a subset of the predecessors

• Interpretable (maybe even causally): a acyclic directed graph (DAG)

• Inference is based on marginalization and conditioning

• Works best if dependencies are actually low-dimensional (and can be determined and

quantified by human experts)

• Powerful in modelling medical diagnostics

4

Markov Nets

• Consider a basis-function model

f(x1, . . . , xM) =
∑
i

wiϕi({Si})

where each basis function might only depend on a subset of the variables: {Si} ⊆
{x1, . . . , xM}

• Problem: the output is not non-negative

• The probability for a state of a Markov net is

P (x1, . . . , xM) =
1

Z
exp f(x1, . . . , xM)

Z normalizes the distribution

• More difficult to interpret: an undirected graph; inference is based on marginalization

and conditioning (simpler than in BNs)

5

Markov Nets and Physics (Boltzmann Distribution)

• Parameter learning is nonmodular due to the normalizer

Z =
∑

x1,...,xM

exp f(x1, . . . , xM)

• Z is called the partition function

• E(x1, . . . , xM) = −f(x1, . . . , xM) can be interpreted as an energy

• F = − logZ is called the Helmholtz free energy

• S =
∑

x1,...,xM
logP (x1, . . . , xM)P (x1, . . . , xM) is the entropy; then,

F = ⟨E⟩ − S

with the expected energy

⟨E⟩ =
∑

x1,...,xM

P (x1, . . . , xM)E(x1, . . . , xM)

6

Graphical Models

• Bayes nets and Markov nets are examples of graphical models

• The assumption was that one needs to explore low-dimensional interactions to model

high-dimensional distributions

• This assumption turned out to be wrong

7

Probabilistic Mixture Models

• A probabilistic mixture model is

P (x1, . . . , xM) =
H∑

i=1

P (i)P (x1, . . . , xM |i)

• The component distributions P (x1, . . . , xM |i) are simple: product of eone-dimensional
Gaussians or product of Bernoullis

• One can think of component i to represent a hidden (latent) class, mixture component,

or cluster

• Parameter learning via EM (Expectation Maximization) to learn P (i) and the param-
eters in the mixture components

• In contrast to Graphical Models (Bayes, Markov) mixture, here we do not assume any

form of locality!

• Used in speech modelling and many other applications but limited in expressibility

8

Sampling from a Probabilistic Mixture Models

• Let κi = P (i)

• Sample is ∼ κ⃗

• Sample xs1, . . . , x
s
M ∼ P (x1, . . . , xM |is)

9

Infinite Mixtures

• H →∞: We assume an infinite number of latent classes

• Dirichlet Process Mixture Models (DPMMs)

P (x1, . . . , xM) =
∞∑
i=1

P (i)P (x1, . . . , xM |i)

• An interesting step forward; but has technical problems (slow convergence)

10

Infinite Mixtures with Continuous Latent Variables

• Continuous latent variable model

P (x1, . . . , xM) =

∫
P (h)P (x1, . . . , xM |h)dh

• Again, there are an infinite number of latent classes

• We will always assume P (h) = N (h; 0, I)

• h = (h1, . . . , hMhidd
)⊤ and Mhidd ≤M

• We also use x = (x1, . . . , xM)⊤

11

Sampling from a Probabilistic Mixture Models with Continuous
Variables

• Sample hs ∼ N (h; 0, I)

• Sample xs1, . . . , x
s
M ∼ P (x1, . . . , xM |hs)

12

Continuous Latent Variables: Probabilistic PCA

• x is a continuous M -dimensional variable

• Probabilistic PCA uses

P (x|h) = N (x; ggen(h), σ2I)

Given h, we have a ‘naive Bayes”model

• Here, the linear generator ggen(h) = Vh maps an element h ∈ RMhidd to a

point in ggen(h) ∈ RM ; a generator is also called a decoder

• We can even write explicitly (using our formulas about linear functions of random

variables)

P (x) = N (x; 0,VV⊤+ σ2I)

In PCA, the columns of the M ×Mhidd matrix V are orthogonal

13

Continuous Nonlinear Latent Variables

• We simply model ggen(h) by a deep neural network (DNN) with Mhidd inputs and

M outputs!

• ggen(·) forms an Mhidd-dimensional manifold in RM

• This is the basis for modern DNN-based generative models!

• Problem: there is no convenient expression for

P (x) =

∫
P (x|h)P (h)dh

14

Continuous Nonlinear Latent Variables without the Noise

• With σ2 → 0

P (x|h) = δ(x− ggen(h))

• δ((x) is the Dirac delta function: a delta-peak where the argument is equal to 0

• Only the x1, . . . , xM on the manifold obtain nonzero probability!

• We now have a function

x(h) = ggen(h)

• This is used in the autoencoder (AE) and in GANs

15

Invertible Maps

• If Mhidd = M some generators are invertible ggen(genc(x)) = x

• genc is called the encoder

P (x) =

|detJ(x)| × N (genc(x); 0, I)

• Here, J is the Jacobian matrix with Ji,j(x) = ∂hi
∂xj

=
∂genci (x)

∂xj
.

• This is the basis for normalizing flow (e.g., flow matching, we will not cover)

16

E-step

• With noise σ2 > 0, any x can be generated (some might have tiny probabilities) and

we can calculate the probabilities of the latent classes using Bayes formula

P (h|x) =
P (x|h)P (h)

P (x)

This is required in the E-step; one problem now is that P (h|x) can be highly complex

17

Encoder

• With no noise σ2 = 0, and with Mhidd < M , the generator is not invertible

• For almost all x, P (x) = 0

• An encoder h = genc(x) returns the h such that

hpi = argmin ∥x− ggen(h)∥2

is minimum; it is the pseudo-inverse of the generator

• We can evaluate this distance on a subset of known dimensions of x and then define

x̂ = ggen(hpi)

• x̂ is now a complete vector: useful for recommendation systems and inpainting!

18

Sampling (Generating Images) is Very Simple

• Generating samples is easy

• First, generate a sample as h ∼ N (h; 0, I)

• And then x = ggen(h)

• This is the basis for generative AI

19

Conditional Generators

• We can learn class-specific generators

x = ggen(h,m1, . . . ,mMm)

• In recommendation systems, m1, . . . ,mMm can be user attributes (young, male, ...)

• In generative AI for vision, the can specify the desired generated image (Cat, Black,

...)

20

Part II

21

Manifolds

• In mathematics, a manifold is a topological space that locally resembles Euclidean

space near each point

• A topological space may be defined as a set of points, along with a set of neighbour-

hoods for each point, satisfying a set of axioms relating points and neighbourhoods

22

Data Represented in Feature Space

• Consider Case Ib (manifold): input data only occupies a manifold

• Example: consider that the data consists of face images; all images that look like faces

would be part of a manifold

• What is a good mathematical model? We assume that “nature” produces data in

some low-dimensional space hnat ∈ RH , but nature only makes data available in

some high-dimensional feature space x ∈ RM (x might describe an image, in which

case M might be a million)

• Features map

x = featureMap(hnat)

featureMap is the generator used by nature

23

Manifold in Machine Learning

• In Machine Learning: in the observed M -dimensional input space, the data is dis-

tributed on an Mhidd-dimensional manifold

{x ∈ RM : ∃h ∈ RH s.th. x = ggen(h)}

where ggen(·) is smooth

• Note that for a given x, it is not easy to see if it is on the manifold

24

Feature Engineering

• In a way, features are like basis functions, but supplied by nature or an application

expert (feature engineering)

• In the spirit of the discussion in the lecture on the Perceptron: hnat might be low-

dimensional and explainable, but we can only measure x

25

Learning a Generator / Decoder

• Example: x represents a face; let’s assume nature selects hnat from an Mhidd-

dimensional Gaussian distribution with unit covariance

• Then, if the feature map is known, we can generate new natural looking faces of

people who do not exist: x = featureMap(hnat)

• We try to emulate this process by a model

x = ggen(h)

(here we drop the superscript nat, since this h is part of our model and not the

ground truth hnat)

• In an autoencoder, the generator is also called a decoder

26

Learning an Encoder

• Of course for data point i we only know xi but we do not know hnat
i

• But maybe we can estimate hi ≈ hnat
i based on some encoder neural network

hi = genc(xi)

27

Encoder

• An encoder can be useful by itself: it can serve as a preprocessing step in a classification

problem (Case Ib (manifold))

28

Learning an Autoencoder

30

Learning an Encoder

• If we have,

x = featureMap(hnat)

we might want to learn an approximate inverse of the feature map

h = genc(x)

• genc(x) is called an encoder

Autoencoder

• How can we learn h = genc(x) if we do not measure h ?

• Consider a decoder (which might be close to the feature map)

x = ggen(h)

But again, h is not measured

• We now simply concatenate the two models and get

x̂ = ggen(genc(x))

• This is called an autoencoder

31

Linear Autoencoder

• If the encoder and the decoder are linear functions, we get a linear autoencoder

• A special solution is provided by the principal component analysis (PCA)

Encoder:

h = genc(x) = VT
hx

Decoder:

x̂ = ggen(h) = VHh = VHVT
Hx

• The VH are the first Mhidd columns of V, where V is obtained from the singular

value decomposition SVD

X = UDVT

32

Neural Network Autoencoder

• In the Neural Network Autoencoder, the encoder and the decoder are modelled by

neural networks

• The cost function is

cost(W,V) =
N∑

i=1

M∑
j=1

(xi,j − x̂i,j)
2

where x̂i,1, . . . , x̂i,M are the outputs of the neural network autoencoder

33

Comments and Applications

• Since h cannot directly be measured, it is called a latent vector in a latent space.

The representation of a data point xi in latent space hi is called its representation or

embedding

• Distances in latent space are often more meaningful than in data space, so the latent

representations can be used in information retrieval

• The reconstruction error ∥x− x̂∥2 is often large for patterns which are very different

from the training data; the error thus measures novelty, anomality. This can be a basis

for fraud detection and plant condition monitoring

• The encoder can be used to pretrain the first layer in a neural network; after initializa-

tion, the complete network is then typically trained with backpropagation, including

the pretrained layer

34

Data Represented in a Noisy Feature Space

• The feature map might include some noise,

x = featureMap(hnat) + ϵ⃗

where ϵ⃗ is a noise vectors; then the data might only be exactly on the manifold

• One would want that genc(featureMap(hnat)+ϵ⃗) ≈ genc(featureMap(hnat))

such that the encoder is noise insensitive; this is enforced by the denoising autoen-

coder

35

Denoising Autoencoder (DAE)

• Denoising autoencoder,

xi ← ggen(genc(xi + ϵ⃗i))

where ϵ⃗i is random noise added to the input!

• This also prevents an autoencoder from learning an identity function

• The“noise”does not have to be additive and distortions can assume many forms (e.g.,

masking pixels)

36

Learning a Generator

37

Learning a Decoder (Generator)

• Requirement 1: No manifold in h-space: any random h

x = ggen(h)

generates a high-quality image

• Requirement 2: Smoothness: Two vectors which are close in h space should produce

similar images (otherwise the map to x would be impossible to learn)

• Requirement 3: Disentanglement: h1, . . . , hH can be interpreted

• Requirement 4: Conditional (attribute specific) models

x = ggen(h,m) h = genc(x,m)

The generated image has real featuresm = (m1, . . . ,mMm)
⊤; do I want a smiling

face, do I want a beard, glasses, sunglasses, ...?

• One could argue that the dimension of h should now be H −Mm

38

Variational Autoencoder

39

Learning a Decoder (Generator)

• If I knew for each data point h and x, I could learn a generator ggen(·) simply by

supervised training

• Unfortunately, h is unknown

• Again, we assume that h comes from a Gaussian distribution with unit variance

P (h) = N (h; 0, I) (each dimension is independently Gaussian distributed, with

unit variance)

• Goal: any sample h from this Gaussian distribution should generate a valid x (this

was not enforced in the normal autoencoder)

• This is the idea behind the Variational Autoencoder (VAE)

40

EM and Variational Learning

• Assume a training pattern x is given

• In EM learning, we need to calculate first P (h|x) (E-step) and based on this estimate
we adapt the generator (M-step)

• Essentially, we can sample from P (h|x) and treat these samples as a true latent

states

• The problem is that the E-step is intractable, since P (h|x) is complex and we cannot
easily sample from it

• In the variational autoencoder (VAE), the variational approximation provides an ap-

proximate E-step

• P (h|x) is approximated by a Gaussian distribution; the mean (Mhidd-dimensional)

and the dimension-specific variances of that Gaussian (Mhidd parameters) are pre-

dicted by the encoder

41

Generating Data from the VAE

• After training, we generate a new x by first generating a sample hs from N (0, I);

then

x = ggen(hs)

42

Conditional Variational Autoencoders

• Conditional Variational Autoencoders

• m are inputs to both the generator and the encoder

43

The VAE is not Perfect

• For constrained, well-structured datasets (e.g., faces): 80-95% of images are valid/useful.

• For complex datasets (e.g., diverse natural scenes): 50-80% of images may be valid/useful.

• With improper training or sampling outside the prior: The percentage can drop sig-

nificantly.

44

Convolutional Variational Autoencoders

• The convolutional variational autoencoder uses convolutional layers

45

Generative Adversarial Networks
(GANs)

46

Generative Adversarial Networks (GANs)

• Can we train a decoder (generator) without without an encoder?

• Let’s assume we have a larger number of generators available; let’s assume that

each generator generates a data set; which one is the best generator?

• The best generator might be the one where a discriminator (i.e., a binary neural

network classifier) trained to separate training data and the data from a particular

generator, cannot separate the two classes; if this is the case, one might say that

P (x) ≈ P gen(x)

• In GAN models, there is only one generator and one discriminator and both are trained

jointly

47

Cost Function

• Discriminator: Given a set of training data and a set of generated data: the weights

w in the discriminator are updated to maximize the negative cross entropy cost

function (i.e., the log-likelihood); the targets for the training data are 1 and for

the generated data 0 (this is the same as minimizing the cross entropy, i.e. the

discriminator is trained to be the best classifier possible)

• Generator: With a given discriminator and a set of latent samples: update the

weights v in the generator, such that the generated data get closer to the classification

decision boundary: the generator is trained to minimize the negative cross entropy

cost function, where backpropagation is performed through the discriminator (this is

the same as maximizing the cross entropy)

48

Parameter Learning

• Optimal parameters are

(w,v) = argmax
v

argmin
w

cost(w,v)

where (assuming the numbers of real images and generated images are the same)

cost(w,v) = −
∑

i:xi∈train
log gdis(xi,w)−

∑
i′:xi′∈gen

log[1−gdis(ggen(hi′,v),w)]

• The left sum says: all actual images should be classified by the discriminator with

label 1

• The right sum says: all generated images should be classified by the discriminator with

label 0

• ggen(hi′,v) is a generated image with a random hi′

49

Minimax

• This can be related to game theory: The solution for a zero-sum game is called a

minimax solution, where the goal is to minimize the maximum cost for the player,

here the generator. The generator wants to find the lowest cost, without knowing

the actions of the discriminator (in two-player zero-sum games, the minimax solution

is the same as the Nash equilibrium)

50

Illustration

• Consider the following figure; h is one-dimensional Gaussian distributed: P (h) =

N (h; 0,1), H = 1

• The generator is x = hv, where M = 2; the data points are on a 1-D manifold in

2-D space; here: v1 = 0.2, v2 = 0.98

• The training data are generated similarly, but with x = hw and w1 = 0.98,

w2 = 0.2

• The discriminator is y = sig(|x1|w1+|x2|w2), withw1 = 0.71, w2 = −0.71

• After updating the generator, we might get v1 = 0.39, v2 = 0.92

• After updating the discriminator, we might get w1 = 0.67, w2 = −0.74

51

Modifying the Cost Function

• There have been modifications to the cost function to make learning faster and more

stable

cost(w,v) = −
∑

i:xi∈train
log gdis(xi,w)+

∑
i′:xi′∈gen

log[gdis(ggen(hi′,v),w)]

• Wasserstein GAN

cost(w,v) = −
∑

i:xi∈train

[
log gdis(xi,w)− λ

(
∥∇xig

dis(xi,w)∥2 − 1
)2]

+
∑

i′:xi′∈gen
log[gdis(ggen(hi′,v),w)]

52

Applications

• For discriminant machine learning: Outputs of the convolutional layers of the discrim-

inator can be used as a feature extractor, with simple linear models fitted on top of

these features using a modest quantity of (image-label) pairs

• For discriminant machine learning: When labelled training data is in limited supply,

adversarial training may also be used to synthesize more training samples

53

DCGAN

• If the data consists of images, the discriminator is a binary image classifier and the

generator needs to generate images

• Deep Convolutional GAN (DCGAN): the generator and the discriminator contain con-

volutional layers and transposed convolution layers

• The transposed convolution layer is sometimes (incorrectly) called deconvolution layer

(a deconvolution is really something different)

• The generation of sharp, photo realistic images with sharp edges and smooth regions

is nontrivial!

• Radford et al. (shown below). H = 100; samples drawn from a uniform distribution

(we refer to these as a code, or latent variables) and outputs an image (in this case

64× 64× 3 images (3 RGB channels)

54

Convolution and Transposed Convolution

• With linear neurons, and the first hidden layer is

h = WTx

• If W is orthonormal, then x = (W):,k will only activate hidden unit k

• Similarly, if we only activate hidden unit k, and propagate towards the inputs, we will

get again the same pattern, x = (W):,k

• In a real convolutional NN, W is defined by the kernels and is not orthonormal; prop-

agating back is known as a transposed convolution (which is also a convolution)

• Transposed convolution generates the characteristic input pattern of the hidden neu-

rons, i.e. for hidden unit k, x = (W):,k

• If W is not orthonormal, the transposed convolution is not a deconvolution; the latter

would implement the inverse of the convolution and would require a very different

connection matrix

55

cGAN

• Consider that class/attribute labels are available; in a normal GAN, one would ignore

them; another extreme approach would be to train a different GAN model for each

class

• Conditional GAN (cGAN): An additional input to the generator and the discriminator

is the class/attribute label

56

cGAN Applications

• The attributes can be quite rich, e.g., images, sketches of images

• cGANs: GAN architecture to synthesize images from text descriptions, which

one might describe as reverse captioning. For example, given a text caption of a bird

such as “white with some black on its head and wings and a long orange beak”, the

trained GAN can generate several plausible images that match the description

• cGANs not only allow us to synthesize novel samples with specific attributes, they also

allow us to develop tools for intuitively editing images - for example editing the

hair style of a person in an image, making them wear glasses or making them look

younger

• cGANs are well suited for translating an input image into an output image,

which is a recurring theme in computer graphics, image processing, and computer

vision

57

Unpaired Image-to-Image Translation

• Example task: turn horses in images into zebras

• One could train a generator Generator A2B with horse images as inputs and the

corresponding zebra images as output; this would not work, since we do not have

matching zebra images

• But consider that we train a second generator Generator B2A which has zebra images

as inputs and generates horse images

• Now we can train two autoencoders

x̂horse = gB2A(gA2B(xhorse))

x̂zebra = gA2B(gB2A(xzebra))

• These constraints are enforced using the cycle consistency loss, ∥xhorse− x̂horse∥2

and ∥xzebra − x̂zebra∥2

58

CycleGAN

• CycleGAN does exactly that

• CycleGAN adds two discriminators, trained with the adversarial loss

• discriminatorA tries to discriminate real horses from generated horses

• discriminatorB tries to discriminate real zebras from generated zebras

• If the generated horses and zebras are perfect, both fail to discriminate

• Both the cycle consistency loss and the adversarial loss are used in training

• Note that the random seeds here are the images!

59

Why Not Use Classical Approaches?

• Classically, one would start with a probabilistic model P (x;w) and determine pa-

rameter values that provide a good fit (maximum likelihood)

• Examples for continuous data: Gaussian distribution, mixture of Gaussian distributions

• These models permit the specification of the probability density for a new data point

and one can sample from these distributions (typically by transforming samples for a

normal or uniform distribution; this would be the generator here)

• These approaches typically work well for low dimensional distributions, but not for

image distributions with 256×256 pixels and where data is essentially on a manifold

60

Related Approaches and Applications

• The GAN generator generates data x but we cannot easily evaluate P (x)

• In many applications it is possible to generate data but one cannot generate a likelihood

function (likelihood free methods)

• Moment matching is one approach to evaluate the quality of the simulation

• Optimization: in physics and other fields it is sometimes easy to evaluate the cost

(e.g., energy) of a solution and the problem is to find good proposal solutions x with

a low cost(x) (combinatorical optimization)

61

