Addendum: Towards Diffusion
Models and VAE

Volker Tresp
Winter 2023-2024

Towards Diffusion Models

e In the VAE and GAN, we sampled randomly from a low-dimensional latent space
(Mp,4q-dimensional) and then mapped the sample to an image on the manifold (M-

dimensional)

e In the diffusion model, we map from high-dimensional (M -dimensional) noise to a

high-dimensional manifold (M -dimensional)

e How can this work? Where is the M ;4,dimensional space?

e let's assume a training image X;

e The denoising autoencoder (DAE) was trained for X = x; + ek k=1,... with
e ~ N (0, 02) and 02 << 1 small; then we obtalned

%; = DAE(xF)

e Cost function

7Y il — DAERD)|?
) k

For a test image. X, the noise is predicted to be

e ~ X — DAE(x)

Interesting: Whereas DAE(x) predicts a noise free image on the manifold, we also

have obtained a noise predictor!

Let's just take a small step

x' = x — n(x — DAE(x)) = x(1 — n) 4+ nDAE(x)

Where is the M ;qdimensional space? It is within the DAE (resp. U-net)!

This will restore the closest image

If 02 << 1 x is close to a training image X;, and X; is an attractor (for all x in the
neighbourhood of x;, x; is the target for the DAE)

For any o2,

DAE(x) = Z P(x;|x)x;

With P(x|x;) ~ N (x;X;,02) we have
N(X, X9 0-2)
>N (x;x;,02)

P(x;|x) =

If 02 is small, X =~ x;, there is a clear winner, and x will be attracted by x;: Most
images in the neighbourhood of x; will have been generated by x;

For large 02, all x; are equally likely to be source for x and the update moves x
towards the mean training image

Eventually it will be attrackted by the manifold

DAE

* The DNA restores the
image closest to x
* Here: x;

Diffusion”

« “Diffusion” first
generates an image on
the manifold (yellow dot)

SVD
— Diffusion”

* |f the images are on a linear
subspace, DAE(x)= VV' x is on the
manifold and is not identical to a
stored image

* Stored images are not attractors

* To get attractor properties, DAE(x)
needs to be nonlinear

Variational Autoencoder

If | knew for each data point h and X, | could learn a generator g9¢™(-) simply by

supervised training
Unfortunately, h is unknown

How about | assume that h comes from a Gaussian distribution with unit variance
P(h) = N(h;0,) (each dimension is independently Gaussian distributed, with

unit variance)

Goal: any sample h from this Gaussian distribution should generate a valid x (this

was not enforced in the normal autoencoder)

This is the idea behind the Variational Autoencoder (VAE)

e After training, we generate a new X by first generating a sample hs from N (0, I);
then

X = ggen(h«Sa V)
Here, v are parameters of the generator g9¢" ()

e Thus generating a new h is trivial, but how do | learn the g9¢™(-)?

e This is a bit involved and is described in the Appendix

Encoder Decoder

latent space
A conditional variational autoencoder

Decoder

latent space latent space

A variafional aufoencoder generaiing images accardimg to given Inbels

e The convolutional variational autoencoder uses convolutional layers

10

Mean Layer

196 units
e Up-sampling
Layer 64 filters
Dense Layer 28x28 pixel
196 units AP

Flatten()

Original |
28nxg:—.l’ga 'R MaxPooling

i Conv2DTranspose
Conv2D Layer Layer 64 filters :
64 filters ¥ 14x14 pixels Layer 64 filters

Log Var Layer
196 units

Convolutional Variational Autoencoder

Training the VAE

11

Training with a maximum likelihood approach is infeasible; one uses a mean field
approximation, a special case of a variational approximation; details can be found in

the Appendix

For each data point X, one learns the variational parameters, mean uu(x) and co-
variance matrix 2> y(x) as a function of x (e.g., with a deep neural network with
weights 1); this is the encoder; when 3" (x) is diagonal, the encoder has 2 M}, 44

outputs

A sample hg is generated from N (pu(x), > u(x)) (which is an approximation to
P(h|x)); thus instead of transmitting the prediction of the encoder puyu(x) to the

decoder, we transmit a noisy version of py(X)
Based on this sample all parameters (v, u) are adapted with backpropagation

Then one proceeds with the next data point

12

Reconstructed

Input - Ideally they ar:e identical. ~ ~---------oooooooooo oo - [
X~ X
Probabilistic Encoder
qg(2[x)
Mean w Sampled
latent vector
Probabilistic
X — Decoder | | X’
po(x|2z)
o
Std. dev
B An compressed low dimensional

Z=p+toQe representation of the input.
e ~N(0,I)

Fig. 9. Illustration of variational autoencoder model with the multivariate Gaussian assumption.

mean vector

sampled
latent vector

A

Encoder [Decoder

Network Network
N ”

(conv) (deconv)

standard deviation
vector

Encoder Decoder

v

latent space
A eonditional variational autoencoder

e Both the VAE decoder and a GAN generator produce samples from probability distri-

butions
P(x) = / N(x: g(h), 21N (h: 0. T))dh

where latent features are generated from A (h; 0, 1)) and where we added a tiny

noise with variance €2

to the generator
e With €2 — 0, points outside the manifold will get zero probability density

e Obtaining the probability value of P(x) by the last formula is not straight forward

13

We apply mean field theory, which is a special case of a variational method
We consider one data point with measured x

The contribution to the log likelihood of that data point is
I(x) = log P(x) = Iog/P(h)P(x\h)dh
The VAE assumes that P(h) = N'(h;0,1)

With approximating density QQ(h), we write
P(h)P(x[h)
Q(h)

[(x) = Iog/Q(h) dh

Using Jensen’s inequality

I(x) > / Q(h)[log P(h) + log P(x|h) — log Q(h)]dh

14

e The last expression can be written as

Eg[log(P(h)P(x/h))] — Eg[log Q(h)]
Eg[log P(x/h)] — Eg[log Q(h) — log P(h)]

The second term in the last equation is the same as (Kullback-Leibler divergence)
Dy (Q(h)||P(h)), so we maximize

Eqllog P(x|h)] — Dy (Q(h)||P(h))

e With a least squares cost function, the first term becomes, with hg being a sample
from QQ(h),
Ix — g8 (hs)|
2072

/Q(h> log P(x|h)dh ~ const —

15

e The VAE assumes for the approximating distribution, Q(h) = N (h; pu(x), >Zu(x)).
Then, (see Wikipedia page on Kullback-Leibler divergence),

D @Q)IIP(0)) = (tr (Zu()) + () Tu(x) — Myigy — In det Zu())

e When 3>y (x) is diagonal, the encoder has 2 M}, 44 outputs

16

e Reparameterization trick: since we cannot do backpropagation through the sampling,

we sample €5 from N (O, I') and multiply the sample by />y (x) and add uy .

17

e The overall cross entropy cost function with a diagonal 3" (x), and which we use to

minimize w.r.t w and u, is for data point x and random sample €5 ~ N (0, I)

1 en I~ (o
cost(X, 63) = T‘.QHX — gg (,uu(X) + Zu(x) O E8)”2

|

N |~

p(x) G+ [Zuj () —log Sy 5 ()]
J

e The first term in the large bracket encourages uu(x) — O; the second term is

minimum if 2, ;5 =1, Vj

18

e Encoder: pu(x) and 33(x) generate representations also for test inputs (this is a

major advance: in previous variational approximations, this was an iterative step))

e Decoder/Generator for a new x: To generate a new data point we sample hg from

N(0, 1) and calculate g5°"(hs).

e See: Tutorial on Variational Autoencoders, Carl Doersch

19

Sample z from N (p(X), 2(X))

(XX

|
I X —)7 ! X —)
0\ | 0\
fa] f(2)
r 1
Decoder aye f,[_,.x.-"{; (X)), 3 X_]}||__.-\.-"[_u. [)] Decoder
KLIN ((X). (XN |IN(0, 1)] {i] :____ N N (P)

Encoder Encoder | [sample € from N(0,)
(@) ()
X X

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss 1ayers The feedforward

1 1 S :yr e 7T = s @ o= I e D e I oy qFJ= 9

Y - f= X017 f(z, X)
1
L : i\
f(z, X) I Decoder
Ao >
KLIN (Y, X).5(Y, X))[N(0.1)] | Decoder]
|
A () !
I
I X Sample z from (0.)
+ |
p(Y, X2, X) %k
o
Encoder | | sample ¢ from \(().])
()
A<
Y X

Figure 6: Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network, following the same notation as
Figure Right: the same model at test time, when we want to sample from

P(Y|X).

