Addendum: Towards Diffusion Models and VAE

Volker Tresp Winter 2023-2024

Towards Diffusion Models

Where is the Low-dimensional Space?

- In the VAE and GAN, we sampled randomly from a low-dimensional latent space $(M_{hidd}$ -dimensional) and then mapped the sample to an image on the manifold (M-dimensional)
- In the diffusion model, we map from high-dimensional (M-dimensional) noise to a high-dimensional manifold (M-dimensional)
- How can this work? Where is the M_{hidd} -dimensional space?

Denoising Autoencoder

- Let's assume a training image \mathbf{x}_i
- The denoising autoencoder (DAE) was trained for $\mathbf{x}_i^k = \mathbf{x}_i + \epsilon_i^k$; $k = 1, \ldots$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and $\sigma^2 \ll 1$ small; then we obtained

$$\hat{\mathbf{x}}_i = \mathsf{DAE}(\mathbf{x}_i^k)$$

• Cost function

$$\sum_i \sum_k \|\mathbf{x}_i - \mathsf{DAE}(\mathbf{x}_i^k)\|^2$$

Update

• For a test image. x, the noise is predicted to be

$$\epsilon \approx \mathbf{x} - \mathsf{DAE}(\mathbf{x})$$

- Interesting: Whereas DAE(x) predicts a noise free image on the manifold, we also have obtained a noise predictor!
- Let's just take a small step

$$\mathbf{x}' = \mathbf{x} - \eta(\mathbf{x} - \mathsf{DAE}(\mathbf{x})) = \mathbf{x}(1 - \eta) + \eta \mathsf{DAE}(\mathbf{x})$$

- Where is the M_{hidd} -dimensional space? It is within the DAE (resp. U-net)!
- This will restore the closest image

Attractor on the Manifold?

- If $\sigma^2 \ll 1 \mathbf{x}$ is close to a training image \mathbf{x}_i , and \mathbf{x}_i is an attractor (for all \mathbf{x} in the neighbourhood of x_i , x_i is the target for the DAE)
- For any σ^2 ,

$$\mathsf{DAE}(\mathbf{x}) = \sum_{i} P(\mathbf{x}_i | \mathbf{x}) \mathbf{x}_i$$

With $P(\mathbf{x}|\mathbf{x}_i) \sim \mathcal{N}(\mathbf{x};\mathbf{x}_i,\sigma^2)$ we have

$$P(\mathbf{x}_i | \mathbf{x}) = \frac{\mathcal{N}(\mathbf{x}; \mathbf{x}_i, \sigma^2)}{\sum_i \mathcal{N}(\mathbf{x}; \mathbf{x}_i, \sigma^2)}$$

- If σ^2 is small, $\mathbf{x} \approx \mathbf{x}_i$, there is a clear winner, and \mathbf{x} will be attracted by \mathbf{x}_i : Most images in the neighbourhood of \mathbf{x}_i will have been generated by \mathbf{x}_i
- For large σ^2 , all \mathbf{x}_i are equally likely to be source for \mathbf{x} and the update moves \mathbf{x} towards the mean training image
- Eventually it will be attrackted by the manifold

DAE

- The DNA restores the image closest to x
- Here: **x**1

"Diffusion"

 "Diffusion" first generates an image on the manifold (yellow dot)

"SVD — Diffusion"

- If the images are on a linear subspace, DAE(x) = VV^T x is on the manifold and is not identical to a stored image
- Stored images are not attractors
- To get attractor properties, DAE(x) needs to be nonlinear

Variational Autoencoder

Learning a Generator

- If I knew for each data point h and x, I could learn a generator $g^{gen}(\cdot)$ simply by supervised training
- Unfortunately, ${f h}$ is unknown
- How about I assume that h comes from a Gaussian distribution with unit variance $P(\mathbf{h}) = \mathcal{N}(\mathbf{h}; 0, I)$ (each dimension is independently Gaussian distributed, with unit variance)
- Goal: **any** sample **h** from this Gaussian distribution should generate a valid **x** (this was not enforced in the normal autoencoder)
- This is the idea behind the Variational Autoencoder (VAE)

Generating Data from the VAE

 After training, we generate a new x by first generating a sample h_s from N(0, I); then

$$\mathbf{x} = g^{gen}(\mathbf{h}_s, \mathbf{v})$$

Here, **v** are parameters of the generator $g^{gen}(\cdot)$

- Thus generating a new ${f h}$ is trivial, but how do I learn the $g^{gen}(\cdot)$?
- This is a bit involved and is described in the Appendix

A variational autoencoder generating images according to given labels

Convolutional Variational Autoencoders

• The convolutional variational autoencoder uses convolutional layers

Training the VAE

Training the VAE

- Training with a maximum likelihood approach is infeasible; one uses a mean field approximation, a special case of a variational approximation; details can be found in the Appendix
- For each data point x, one learns the variational parameters, mean $\mu_u(x)$ and covariance matrix $\Sigma_u(x)$ as a function of x (e.g., with a deep neural network with weights u); this is the **encoder**; when $\Sigma_u(x)$ is diagonal, the encoder has $2M_{hidd}$ outputs
- A sample h_s is generated from N(μ_u(x), Σ_u(x)) (which is an approximation to P(h|x)); thus instead of transmitting the prediction of the encoder μ_u(x) to the decoder, we transmit a noisy version of μ_u(x)
- $\bullet\,$ Based on this sample all parameters $(v,\,u)$ are adapted with backpropagation
- Then one proceeds with the next data point

Fig. 9. Illustration of variational autoencoder model with the multivariate Gaussian assumption.

Distribution*

 Both the VAE decoder and a GAN generator produce samples from probability distributions

$$P(\mathbf{x}) = \int \mathcal{N}(\mathbf{x}; g(\mathbf{h}), \epsilon^2 I) \mathcal{N}(\mathbf{h}; \mathbf{0}, I)) d\mathbf{h}$$

where latent features are generated from $\mathcal{N}(\mathbf{h}; 0, I)$) and where we added a tiny noise with variance ϵ^2 to the generator

- With $\epsilon^2 \rightarrow 0$, points outside the manifold will get zero probability density
- Obtaining the probability value of $P(\mathbf{x})$ by the last formula is not straight forward

Variational Autoencoder*

- We apply mean field theory, which is a special case of a variational method
- $\bullet\,$ We consider one data point with measured x
- The contribution to the log likelihood of that data point is

$$l(\mathbf{x}) = \log P(\mathbf{x}) = \log \int P(\mathbf{h})P(\mathbf{x}|\mathbf{h})d\mathbf{h}$$

The VAE assumes that $P(\mathbf{h}) = \mathcal{N}(\mathbf{h}; \mathbf{0}, I)$

• With approximating density $Q(\mathbf{h})$, we write

$$l(\mathbf{x}) = \log \int Q(\mathbf{h}) \frac{P(\mathbf{h})P(\mathbf{x}|\mathbf{h})}{Q(\mathbf{h})} d\mathbf{h}$$

Using Jensen's inequality

$$l(\mathbf{x}) \ge \int Q(\mathbf{h}) [\log P(\mathbf{h}) + \log P(\mathbf{x}|\mathbf{h}) - \log Q(\mathbf{h})] d\mathbf{h}$$

Variational Autoencoder (cont'd)

• The last expression can be written as

$$\mathbb{E}_Q[\log(P(\mathbf{h})P(\mathbf{x}|\mathbf{h}))] - \mathbb{E}_Q[\log Q(\mathbf{h})]$$

or as

$$\mathbb{E}_{Q}[\log P(\mathbf{x}|\mathbf{h})] - \mathbb{E}_{Q}[\log Q(\mathbf{h}) - \log P(\mathbf{h})]$$

The second term in the last equation is the same as (Kullback-Leibler divergence) $D_{KL}(Q(\mathbf{h}) || P(\mathbf{h}))$, so we maximize

$$\mathbb{E}_Q[\log P(\mathbf{x}|\mathbf{h})] - D_{\mathit{KL}}(Q(\mathbf{h}) || P(\mathbf{h}))$$

• With a least squares cost function, the first term becomes, with h_s being a sample from Q(h),

$$\int Q(\mathbf{h}) \log P(\mathbf{x}|\mathbf{h}) d\mathbf{h} \approx const - \frac{\|\mathbf{x} - g_{\mathbf{v}}^{gen}(\mathbf{h}_s)\|^2}{2\sigma_{\epsilon}^2}$$

Variational Autoencoder (cont'd)

• The VAE assumes for the approximating distribution, $Q(\mathbf{h}) = \mathcal{N}(\mathbf{h}; \mu_{\mathbf{u}}(\mathbf{x}), \Sigma_{\mathbf{u}}(\mathbf{x}))$. Then, (see Wikipedia page on Kullback-Leibler divergence),

$$D_{\mathcal{KL}}(Q(\mathbf{h}) \| P(\mathbf{h})) = \frac{1}{2} \left(\mathsf{tr} \left(\Sigma_{\mathbf{u}}(\mathbf{x}) \right) + \mu_{\mathbf{u}}(\mathbf{x})^{\mathsf{T}} \mu_{\mathbf{u}}(\mathbf{x}) - M_{hidd} - \mathsf{In} \det \Sigma_{\mathbf{u}}(\mathbf{x}) \right)$$

• When $\Sigma_{\mathbf{u}}(\mathbf{x})$ is diagonal, the encoder has $2M_{\mathit{hidd}}$ outputs

Variational Autoencoder: Reparameterization trick

• Reparameterization trick: since we cannot do backpropagation through the sampling, we sample ϵ_s from $\mathcal{N}(0, I)$ and multiply the sample by $\sqrt{\Sigma_u(\mathbf{x})}$ and add μ_u .

Variational Autoencoder (cont'd)

• The overall cross entropy cost function with a diagonal $\Sigma_u(\mathbf{x})$, and which we use to minimize w.r.t \mathbf{w} and \mathbf{u} , is for data point \mathbf{x} and random sample $\epsilon_s \sim \mathcal{N}(0, I)$

$$cost(\mathbf{x}, \epsilon_s) = \frac{1}{2\sigma_{\epsilon}^2} \|\mathbf{x} - g_{\mathbf{v}}^{gen}(\mu_{\mathbf{u}}(\mathbf{x}) + \sqrt{\Sigma_{\mathbf{u}}(\mathbf{x})} \circ \epsilon_s)\|^2$$
$$+ \frac{1}{2} \left(\mu(\mathbf{x})^{\mathsf{T}} \mu(\mathbf{x}) + \sum_{j} \left[\Sigma_{\mathbf{u},j,j}(\mathbf{x}) - \log \Sigma_{\mathbf{u},j,j}(\mathbf{x}) \right] \right)$$

• The first term in the large bracket encourages $\mu_{\mathbf{u}}(\mathbf{x}) \rightarrow 0$; the second term is minimum if $\Sigma_{\mathbf{u},j,j} = 1$, $\forall j$

Variational Autoencoder (cont'd)

- Encoder: $\mu_{\mathbf{u}}(\mathbf{x})$ and $\Sigma_{\mathbf{u}}(\mathbf{x})$ generate representations also for test inputs (this is a major advance: in previous variational approximations, this was an iterative step))
- Decoder/Generator for a new x: To generate a new data point we sample \mathbf{h}_s from $\mathcal{N}(0, I)$ and calculate $g_{\mathbf{v}}^{gen}(\mathbf{h}_s)$.
- See: Tutorial on Variational Autoencoders, Carl Doersch

Figure 4: A training-time variational autoencoder implemented as a feedforward neural network, where P(X|z) is Gaussian. Left is without the "reparameterization trick", and right is with it. Red shows sampling operations that are non-differentiable. Blue shows loss layers. The feedforward

Figure 6: Left: a training-time conditional variational autoencoder implemented as a feedforward neural network, following the same notation as Figure 4. Right: the same model at test time, when we want to sample from P(Y|X).