Linear Algebra (Review)

Volker Tresp
Summer 2024

Vectors

- k, M, N are scalars
- A order- 1 array \mathbf{c} is a column vector. Thus with two dimensions,

$$
\mathbf{c}=\binom{c_{1}}{c_{2}}
$$

(more precisely, it is a representation of a vector in a specific coordinate system)

- c_{i} is the i-th component of \mathbf{c}

Transposed

- $\mathbf{c}^{T}=\left(c_{1}, c_{2}\right)$ is a row vector, the transposed of \mathbf{c}

Matrices

- An order-2 array \mathbf{A} is a matrix, e.g.,

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right]
$$

- We also write: $\mathbf{A}=\left(a_{1,1}, a_{1,2}, a_{1,3} ; a_{2,1}, a_{2,2}, a_{2,3}\right)$; thus the semicolon ";" indicates row separations
- The colon ":" is sometimes used to select rows or columns; examples

$$
\mathbf{A}_{:, 1}=\binom{a_{1,1}}{a_{2,1}} \quad \mathbf{A}_{1,:}=\left(a_{1,1}, a_{1,2}, a_{1,3}\right)
$$

Transposed

- If \mathbf{A} is an $N \times M$-dimensional matrix,
- then the transposed \mathbf{A}^{T} is an $M \times N$-dimensional matrix
- the columns (rows) of \mathbf{A} are the rows (columns) of \mathbf{A}^{T} and vice versa

$$
\mathbf{A}^{T}=\left[\begin{array}{ll}
a_{1,1} & a_{2,1} \\
a_{1,2} & a_{2,2} \\
a_{1,3} & a_{2,3}
\end{array}\right]
$$

Addition of Two Vectors

- Let $\mathbf{c}=\mathbf{a}+\mathbf{d}$
- Then $c_{j}=a_{j}+d_{j}$

Multiplication of a Vector with a Scalar

- $\mathbf{c}=k \mathbf{a}$ is a vector with $c_{j}=k a_{j}$
- $\mathbf{C}=k \mathbf{A}$ is a matrix of the dimensionality of \mathbf{A}, with $c_{i, j}=k a_{i, j}$

Scalar Product of Two Vectors

- The scalar product (also called dot product) is defines as

$$
\mathbf{a} \cdot \mathbf{c}=\mathbf{a}^{T} \mathbf{c}=\sum_{j=1}^{M} a_{j} c_{j}
$$

and is a scalar

- Special case:

$$
\mathbf{a}^{T} \mathbf{a}=\sum_{j=1}^{M} a_{j}^{2}=\|\mathbf{a}\|^{2}
$$

Matrix-Vector Product

- A matrix consists of many row vectors. So a product of a matrix with a column vector consists of many scalar products of vectors
- If \mathbf{A} is an $N \times M$-dimensional matrix and \mathbf{c} is an M-dimensional column vector
- Then $\mathbf{d}=\mathbf{A c}$ is an N-dimensional column vector \mathbf{d} with

$$
d_{i}=\sum_{j=1}^{M} a_{i, j} c_{j}
$$

Matrix-Matrix Product

- A matrix also consists of many column vectors. So a product of matrix with a matrix consists of many matrix-vector products
- If \mathbf{A} is an $N \times M$-dimensional matrix and \mathbf{C} an $M \times K$-dimensional matrix
- Then $\mathbf{D}=\mathbf{A C}$ is an $N \times K$-dimensional matrix with

$$
d_{i, k}=\sum_{j=1}^{M} a_{i, j} c_{j, k}
$$

Multiplication of a Row-Vector with a Matrix

- Multiplication of a row vector with a matrix is a row vector. If A is a $N \times M$-dimensional matrix and d a N-dimensional vector and if

$$
\mathbf{c}^{T}=\mathrm{d}^{T} A
$$

Then \mathbf{c} is a M-dimensional vector with $c_{j}=\sum_{i=1}^{N} d_{i} a_{i, j}$

Outer Product

- Special case: Multiplication of a column vector with a row vector is a matrix. Let d be a N-dimensional vector and \mathbf{c} be a M-dimensional vector, then

$$
\mathbf{A}=\mathrm{dc}^{T}
$$

is an $N \times M$ matrix with $a_{i, j}=d_{i} c_{j}$
Example:

$$
\left[\begin{array}{lll}
d_{1} c_{1} & d_{1} c_{2} & d_{1} c_{3} \\
d_{2} c_{1} & d_{2} c_{2} & d_{2} c_{3}
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]
$$

Matrix Transposed

- The transposed \mathbf{A}^{T} changes rows and columns
- We have

$$
\begin{gathered}
\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A} \\
(\mathbf{A C})^{T}=\mathbf{C}^{T} \mathbf{A}^{T}
\end{gathered}
$$

Unit Matrix

$$
\mathbf{I}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
& & \ldots & \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Diagonal Matrix

- $N \times N$ diagonal matrix:

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{1,1} & 0 & \ldots & 0 \\
0 & a_{2,2} & \ldots & 0 \\
& & \ldots & \\
0 & \ldots & 0 & a_{N, N}
\end{array}\right)
$$

Matrix Inverse

- Let \mathbf{A} be an $N \times N$ square matrix
- If there is a unique inverse matrix \mathbf{A}^{-1}, then we have

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \quad \mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

- If the corresponding inverse exist, $(\mathbf{A C})^{-1}=\mathbf{C}^{-1} \mathrm{~A}^{-1}$
- and $A^{-1}=A^{T-1}$

Orthogonal Matrices

- Orthogonal Matrix (more precisely: orthonormal matrix): \mathbf{R} is a (quadratic) orthogonal matrix, if all columns are orthonormal. It follows (non-trivially) that all rows are orthonormal as well and

$$
\begin{equation*}
\mathbf{R}^{T} \mathbf{R}=\mathbf{I} \quad \mathbf{R R}^{T}=\mathbf{I} \quad \mathbf{R}^{-1}=\mathbf{R}^{T} \tag{1}
\end{equation*}
$$

