Linear Algebra (Review)

Volker Tresp
Winter 2023-2024
Vectors

- k, M, N are scalars
- A order-1 array c is a column vector. Thus with two dimensions,
 \[c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \]
 (more precisely, it is a representation of a vector in a specific coordinate system)
- c_i is the i-th component of c
• $c^T = (c_1, c_2)$ is a row vector, the transposed of c
Matrices

• An order-2 array A is a matrix, e.g.,

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$$

• We also write: $A = (a_{1,1}, a_{1,2}, a_{1,3}; a_{2,1}, a_{2,2}, a_{2,3})$; thus the semicolon “;” indicates row separations

• The colon “;” is sometimes used to select rows or columns; examples

$$A_{:,1} = \begin{pmatrix} a_{1,1} \\ a_{2,1} \end{pmatrix} \quad A_{1,:} = (a_{1,1}, a_{1,2}, a_{1,3})$$
• If A is an $N \times M$-dimensional matrix,

 – then the transposed A^T is an $M \times N$-dimensional matrix

 – the columns (rows) of A are the rows (columns) of A^T and vice versa

\[
A^T = \begin{bmatrix}
 a_{1,1} & a_{2,1} \\
 a_{1,2} & a_{2,2} \\
 a_{1,3} & a_{2,3}
\end{bmatrix}
\]
Addition of Two Vectors

- Let $c = a + d$
- Then $c_j = a_j + d_j$
Multiplication of a Vector with a Scalar

- $c = ka$ is a vector with $c_j = ka_j$
- $C = kA$ is a matrix of the dimensionality of A, with $c_{i,j} = ka_{i,j}$
Scalar Product of Two Vectors

- The **scalar product** (also called dot product) is defined as

\[a \cdot c = a^T c = \sum_{j=1}^{M} a_j c_j \]

and is a scalar.

- Special case:

\[a^T a = \sum_{j=1}^{M} a_j^2 = ||a||^2 \]
Matrix-Vector Product

- A matrix consists of many row vectors. So a product of a matrix with a column vector consists of many scalar products of vectors

- If A is an $N \times M$-dimensional matrix and c is an M-dimensional column vector

- Then $d = Ac$ is an N-dimensional column vector d with

$$d_i = \sum_{j=1}^{M} a_{i,j} c_j$$
Matrix-Matrix Product

• A matrix also consists of many column vectors. So a product of matrix with a matrix consists of many matrix-vector products

• If A is an $N \times M$-dimensional matrix and C an $M \times K$-dimensional matrix

• Then $D = AC$ is an $N \times K$-dimensional matrix with

$$d_{i,k} = \sum_{j=1}^{M} a_{i,j}c_{j,k}$$
Multiplication of a Row-Vector with a Matrix

- **Multiplication of a row vector with a matrix is a row vector.** If A is a $N \times M$-dimensional matrix and d a N-dimensional vector and if

$$c^T = d^T A$$

Then c is a M-dimensional vector with $c_j = \sum_{i=1}^{N} d_i a_{i,j}$
Outer Product

- Special case: **Multiplication of a column vector with a row vector is a matrix.**
 Let \mathbf{d} be a N-dimensional vector and \mathbf{c} be a M-dimensional vector, then

 $$
 \mathbf{A} = \mathbf{d}\mathbf{c}^T
 $$

 is an $N \times M$ matrix with $a_{i,j} = d_i c_j$

Example:

$$
\begin{bmatrix}
 d_1 c_1 & d_1 c_2 & d_1 c_3 \\
 d_2 c_1 & d_2 c_2 & d_2 c_3
\end{bmatrix} =
\begin{bmatrix}
 d_1 \\
 d_2
\end{bmatrix}
\begin{bmatrix}
 c_1 & c_2 & c_3
\end{bmatrix}
$$
Matrix Transposed

- The transposed A^T changes rows and columns
- We have

$$\left(A^T \right)^T = A$$

$$(AC)^T = C^T A^T$$
Unit Matrix

\[
I = \begin{pmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \ldots & 0 & 1 \end{pmatrix}
\]
Diagonal Matrix

- $N \times N$ diagonal matrix:

\[
A = \begin{pmatrix}
a_{1,1} & 0 & \cdots & 0 \\
0 & a_{2,2} & \cdots & 0 \\
& & \ddots & \vdots \\
0 & \cdots & 0 & a_{N,N}
\end{pmatrix}
\]
Matrix Inverse

• Let A be an $N \times N$ square matrix

• If there is a unique inverse matrix A^{-1}, then we have

$$A^{-1}A = I \quad AA^{-1} = I$$

• If the corresponding inverse exist, $(AC)^{-1} = C^{-1}A^{-1}$

• and $A^{-1T} = A^{T^{-1}}$
Orthogonal Matrices

- **Orthogonal Matrix** (more precisely: orthonormal matrix): R is a (quadratic) orthogonal matrix, if all columns are orthonormal. It follows (non-trivially) that all rows are orthonormal as well and

\[R^T R = I \quad RR^T = I \quad R^{-1} = R^T \] (1)