Frequentist Statistics and Bayesian Statistics

Volker Tresp

Winter 2023-2024

Preamble

From Frequencies to Parameters

- From a statistical analysis, we might have derived

$$
\begin{aligned}
& P(\text { Flever }=1 \mid \text { Flue }=1)=\theta_{\text {Flue }=1} \\
& P(\text { Flever }=1 \mid \text { Flue }=1)=\theta_{\text {Flue }=0}
\end{aligned}
$$

- With notation Flue $=$ flue, flue $\in\{0,1\}$, we might form $\theta_{\text {flue }}=w_{0}+w_{1}$ flue
- Then, one writes more concisely $P_{\mathrm{w}}($ Flever $=$ fever \mid Flue $=$ flue $)$

Classical Parameterized Statistics

- With many inputs, the number of θ-parameters grows exponentially $\left(\theta_{x_{1}, \ldots, x_{n}}\right)$, whereas the dimensions of \mathbf{w} might only grow linearly $\theta_{x_{1}, \ldots, x_{n}}=w_{0}+\sum_{i} w_{i} x_{i}$
- Thus estimating \mathbf{w} from data is more data efficient than estimating the θ
- In classical statistics one treats \mathbf{w} as a parameter vector to be estimated ($\hat{\mathbf{w}}$)
- We have $P_{\hat{\mathbf{w}}}$ (Flever $=$ fever \mid Flue $=$ flue $)$
- Samples are often treated as i.i.d.

Bayesian Statistics

- In Bayesian statistics, one conditions, P (Flever $=$ fever \mid Flue $=f l u e, \mathbf{w})$ and one treats \mathbf{w} as a vector of random variables (just like the other random variables)
- In a Bayesian approach we can ask the expert about the dependency
- As a prior, it might be reasonable to ask the expert to specify her/his prior belief as a $\theta_{\text {prior }} \pm \epsilon$ with some tolerance
- It is more difficult to ask the expert to specify her/his prior belief as $w_{\text {prior }} \pm \epsilon$
- As we will see, we will often assume that a priori $\mathbf{w} \sim \mathcal{N}\left(0, \alpha^{2} I\right)$

Bayesian Statistics (cont'd)

- Before we see any data, the apriori prediction then is

$$
P(\text { fever } \mid \text { flue })=\int P(\text { fever } \mid f l u e, \mathbf{w}) P(\mathbf{w}) d \mathbf{w}
$$

$P(\mathrm{w})$ is the prior distribution

- After we have observed the data

$$
P(\text { fever } \mid f l u e, D)=\int P(\text { fever } \mid f l u e, \mathbf{w}) P(\mathbf{w} \mid D) d \mathbf{w}
$$

$P(\mathbf{w} \mid D)$ is the a posterori distribution

- The i.i.d requirement becomes the requirement for "an exchangeable sequence of random variables"

Frequentist Statistics

Approach

- Natural science attempts to find regularities and rules in nature

$$
F=m a
$$

- The laws are valid under idealized conditions. Example: Fall of a point object without air friction, with velocities much smaller than the speed of light
- There might be measurement errors, but there is an underlying true (simple) dependency
- This motivates the frequentist statistics: derivation of probabilistic statements under repeatable experiments under identical conditions

Repeated experiments with an underlying linear dependency

Basic Terms

- Thus a statistical analysis requires a precise description of the experiment. For example, the details on who gets which medication (randomized?)
- A statistical unit is an object, on which measurements are executed (attributes are registered). Could be a person. A statistical unit defines a row in the data matrix, the attributes define the columns
- The population is the conceptual set of all statistical units about which we want to perform statistical inference. Example: diabetics
- For the analysis, only a sample is available (training data). Often it is assumes that the sample is a random subset of the population

Population

- A population can be finite, infinite, or hypothetic
- Example: all people who vote in an election

Typical Assumption

- The sample D is a random subset of the population
- For each statistical unit i in the sample, we determine the attributes (features) \mathbf{x}_{i}
- Assuming a random sample, we can write (in a finite sample, we would assume sampling with replacement) with $P(\cdot)$ known

$$
P(D)=P\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\prod_{i=1}^{N} P\left(\mathbf{x}_{i}\right)
$$

- The probability that I sample N units with attributes $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ is the product of the probabilities of observing individual units with their individual attributes

Modelling

- $P(\mathbf{x})$ is unknown
- Assumption in parametric modelling: The data has been generated by a probability distribution $P_{\mathrm{w}}(\mathrm{x})$, which is parameterized by the parameter vector \mathbf{w}. For example, we might assume a Gaussian distribution with unknown mean and variance.
- Thus we assume that for at least one parameter vector \mathbf{w}

$$
P_{\mathrm{w}}(\mathrm{x}) \approx P(\mathrm{x})
$$

- The goal is to estimate the parameter vector

Example: a Person's Height

- We assume that the height x is Gaussian distributed with unknown mean and variance

$$
P_{\mathbf{w}}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

with $\mathbf{w}=(\mu, \sigma)^{T}$

- Thus we get

$$
\begin{gathered}
P_{\mathrm{w}}\left(x_{1}, \ldots, x_{N}\right)=\prod_{i=1}^{N} P_{\mathrm{w}}\left(x_{i}\right)=\prod_{i=1}^{N} \mathcal{N}\left(x_{i} ; \mu, \sigma^{2}\right) \\
\quad=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right)
\end{gathered}
$$

How can we define and find the best parameters?

Maximum Likelihood

- We consider the probability of the observed data as a function of the parameters. This is the likelihood-function, where we assume that data points where generated independently

$$
L(\mathrm{w})=P_{\mathrm{w}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)=\prod_{i=1}^{N} P_{\mathrm{w}}\left(\mathrm{x}_{i}\right)
$$

- It is often more convenient to work with the log-likelihood,

$$
l(\mathrm{w})=\log L(\mathrm{w})=\sum_{i=1}^{N} \log P_{\mathrm{w}}\left(\mathrm{x}_{i}\right)
$$

- The maximum likelihood (ML) estimator is given by

$$
\widehat{\mathbf{w}}_{m l} \doteq \arg \max (l(\mathbf{w}))
$$

- This means: in the family of distributions under considerations, the ML estimator is the one which explains the data the best

ML-estimator for Person's Height

- The ML estimators are

$$
\widehat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

and

$$
\widehat{\sigma}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
$$

ML-Estimator for a Linear Model

- We are interested in the conditional $P(y \mid \mathbf{x})$; let' assume that the true dependency is linear, but we only have available noisy target measurements

$$
y_{i}=\mathbf{x}_{i}^{T} \mathbf{w}+\epsilon_{i}
$$

- Let's further assume that the noise is Gaussian distributed

$$
P\left(\epsilon_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} \epsilon_{i}^{2}\right)
$$

- It follows that

$$
P_{\mathbf{w}}\left(y_{i} \mid \mathbf{x}_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}\right)^{2}\right)
$$

- It is easier to deal with the log

$$
\log P_{\mathbf{w}}\left(y_{i} \mid \mathbf{x}_{i}\right)=-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}\right)^{2}
$$

ML Estimator

- The log-likelihood function is then

$$
l=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}\right)^{2}
$$

- The first term does not depend on \mathbf{w}. Under the assumption of independent additive noise, the ML estimator is the same as the LS estimator

$$
\widehat{\mathbf{w}}_{m l} \doteq \arg \max (l(\mathbf{w}))=\widehat{\mathbf{w}}_{L S}
$$

Since, $\widehat{\mathbf{w}}_{m l}=\arg \max \left[-\sum_{i}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}\right)^{2}\right]$ and $\widehat{\mathbf{w}}_{l s}=\arg \min \left[\sum_{i}\left(y_{i}-\right.\right.$ $\left.\left.\mathbf{x}_{i}^{T} \mathbf{w}\right)^{2}\right]$

Analysis of Estimators

- Certainly the ML estimator makes sense (best fit). But how certain are we about the estimates. Maybe there are parameter values that would give us almost the same likelihood?
- To analyse the ML estimate we do the following thought experiment (see next slide)
- Let μ be the unknown but fixed parameter
- In addition to the available sample we are able to generate additional samples $D_{1}, D_{2}, \ldots D_{L}$, $L \rightarrow \infty$, each of size N
- For each of these D_{i}, we estimate the parameter and obtain $\widehat{\mu}_{i}$ (for example, using the ML-estimator)

Analysis of Estimators (cont'd)

- We analyse the distribution of the estimated parameter
- In the example, we get for the mean person height (with known σ^{2})

$$
P_{\mu}(\widehat{\mu}-\mu)=\mathcal{N}\left(\widehat{\mu}-\mu ; 0, \frac{\sigma^{2}}{N}\right)
$$

- The interpretation of probability here is: averaged of all $D_{1}, D_{2}, \ldots D_{L}$
- We can calculate this distribution of the difference between estimated and true parameter without knowing any particular data set (although I need σ^{2})
- Assuming, we estimate $\widehat{\mu}$ from the available sample, we can answer the question: how probable is it to measure $\hat{\mu}$ if the true value is $\mu=175 \mathrm{~cm}$?

Bias of an Estimator

- The difference between the true parameter and the expected value of the parameter estimate (averaged over many data sets of size N) is called the bias

$$
\operatorname{Bias}[\widehat{w}]=E_{D}(\widehat{w})-w_{t r u e}
$$

Here,

$$
E_{D}(\widehat{w})=\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{i=1}^{L} \widehat{w}_{D_{i}}
$$

In the example, the bias is zero for the mean

The ML-Estimator can be Biased with finite Data

- The ML-estimator can be biased with finite data

$$
\begin{gathered}
\hat{\sigma}_{m l}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\widehat{\mu}\right)^{2} \\
\hat{\sigma}_{\text {unbiased }}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\widehat{\mu}\right)^{2}
\end{gathered}
$$

Variance of an Estimator

- The variance indicates how much an estimator varies around its mean

$$
\begin{gathered}
\operatorname{Var}[\widehat{w}]=E_{D}\left(\widehat{w}-E_{D}(\widehat{w})\right)^{2} \\
\operatorname{Var}[\widehat{w}]=\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{i=1}^{L}\left(\widehat{w}_{D_{i}}-E_{D}(\widehat{w})\right)^{2}
\end{gathered}
$$

- In the example: $\operatorname{Var}[\hat{w}]=\sigma^{2} / N$

For finite N

The ML estimator can have a finite bias

For $N \rightarrow \infty$

The ML estimator is unbiased

$$
\xrightarrow{\left(\hat{w} \mid w_{\text {true }}\right)} \text { (}
$$

Expected Error

- The expected mean squared error evaluates the deviation of the estimator from the true parameter

$$
\begin{gathered}
\operatorname{MSE}[\widehat{w}]=E_{D}\left(\widehat{w}-w_{\text {true }}\right)^{2} \\
\operatorname{MSE}[\widehat{w}]=\lim _{L \rightarrow \infty} \frac{1}{L} \sum_{i=1}^{L}\left(\widehat{w}_{D_{i}}-w_{\text {true }}\right)^{2}
\end{gathered}
$$

- The expected mean squared error is the sum of the variance and the square of the bias

$$
\operatorname{MSE}[\widehat{w}]=\operatorname{Var}[\widehat{w}]+\operatorname{Bias}^{2}[\widehat{w}]
$$

Expected Error (cont'd)

Proof:

$$
\begin{gathered}
\operatorname{MSE}[\widehat{w}]=E_{D}\left(\widehat{w}-w_{\text {true }}\right)^{2}=E_{D}\left[\left(\widehat{w}-E_{D}(\widehat{w})\right)-\left(w_{\text {true }}-E_{D}(\widehat{w})\right)\right]^{2} \\
=E_{D}\left(\widehat{w}-E_{D}(\widehat{w})\right)^{2}+E_{D}\left(w_{\text {true }}-E_{D}(\widehat{w})\right)^{2} \\
-2 E_{D}\left[\left(\widehat{w}-E_{D}(\widehat{w})\right)\left(w_{\text {true }}-E_{D}(\widehat{w})\right)\right]=\operatorname{Var}[\widehat{w}]+\operatorname{Bias}^{2}[\widehat{w}]+0
\end{gathered}
$$

The cross term is zero since

$$
\begin{aligned}
& E_{D}\left[\left(\widehat{w}-E_{D}(\widehat{w})\right)\left(w_{\text {true }}-E_{D}(\widehat{w})\right)\right]= \\
& \left(w_{\text {true }}-E_{D}(\widehat{w})\right) E_{D}\left(\widehat{w}-E_{D}(\widehat{w})\right)=0
\end{aligned}
$$

Desirable Properties of Estimators

- An estimator is unbiased, if $\operatorname{Bias}[\widehat{w}]=0$
- An estimator is asymptotically unbiased, if $\operatorname{Bias}[\widehat{w}]=0$, for $N \rightarrow \infty$
- An estimator is MSE consistent, if we have

$$
\operatorname{MSE}[\widehat{w}]_{N \rightarrow \infty} \rightarrow 0
$$

- An estimator \hat{w} ist MSE-efficient, if

$$
\operatorname{MSE}[\widehat{w}](\text { Estimator }) \leq \mathrm{MSE}[\widehat{w}]\left(\text { Estimator }^{\prime}\right) \quad \forall \text { Estimator }^{\prime}
$$

Properties of the ML-Estimator

- The ML-estimator has many desirable properties:
- The ML-estimator is asymptotically $N \rightarrow \infty$ unbiased (although with a finite sample size it might be biases)
- Maybe surprisingly, the ML estimator is asymptotically $(N \rightarrow \infty)$ MSE-efficient among all unbiased estimators
- Asymptotically, the estimator is Gaussian distributed, even when the noise is not!
- The analysis generalises to a parameter vector

Estimating the Variance via Bootstrap

- In particular for complex models it might be difficult to derive the sampling distribution, for example the distribution of the ML parameter estimate
- Recall that ideally we would have many training sets of the same size available, fit the model, and observe the distribution of the parameter estimates
- Proxies for the new data sets of the same size N can be generated surprisingly simple: A new data set can be generated by sampling N times from the original data with replacement

Classical Statistical Inference

- For hypothesis testing and the derivation of error bounds, please consult your favorite statistics book.

Discussion: ML

- The likelihood can be calculated even for complex models models (e.g., models with latent variables)
- With the assumption that the data haven been generated independently, the loglikelihood is the sum over the log likelihoods of individual data points

$$
l(\mathbf{w})=\sum_{i=1}^{N} \log P\left(y_{i} \mid \mathbf{w}\right)
$$

- Thus a log-likelihood defines a cost function (cross-entropy cost function)

$$
\operatorname{cost}_{i}(\mathbf{w})=-\log P\left(y_{i} \mid \mathbf{w}\right)
$$

Discussion: ML (cont'd)

- The necessity to emulate the data generating process leads to interesting problem specific models
- A certain problem: One needs to assume that the true model is (approximately) in the class of the models under considerations.
- With finite data, the ML estimator can lead to over fitting: more complex models will have a higher likelihood
- The frequentist statistics has a strong focus in the analysis of the properties of parameter estimates

Violations of IID

- The following decomposition assumes that the data points are independent and identically distributed (IID, or i.i.d.)

$$
L(\mathrm{w})=P_{\mathrm{w}}\left(\mathrm{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\prod_{i=1}^{N} P_{\mathrm{w}}\left(\mathbf{x}_{i}\right)
$$

- Statistical analysis under IID is well studied
- For more complex sampling situations, as in time-series modelling of for graph data, the i.i.d. principle can often not be applied, but one can still define a likelihood for the observed data and one can obtain an ML estimate
- The generalization to new data is often nontrivial and is case specific
- Examples: a social network model where new individuals become known; the generalization of a social network, developed for one university, to another university

Bayesian Statistics

The Bayesian Approach

- In a frequentist setting, the parameters are fixed but unknown and the data are generated by a random process
- In a Bayesian approach, also the parameters have been generated by a random process
- This means we need an a priori distribution

$$
P(\mathbf{w})
$$

- The we obtain a complete probabilistic model

$$
P(\mathbf{w}) P(D \mid \mathbf{w})
$$

- ... and can calculate the posterior parameter distribution using Bayes' formula as

$$
P(\mathrm{w} \mid D)=\frac{P(D \mid \mathrm{w}) P(\mathrm{w})}{P(D)}
$$

The Prior

- Does it make sense to assume a personal $P(\mathrm{w})$?
- Cox (1946): If one is willing to assign numbers to ones personal beliefs, then one arrives, under few consistent conditions, at the Bayesian formalism

The Bayesian Experiment

- In contrast to the frequentist experiment, we only work with the actual data D and do not need to assume that additional hypothetical data sets can be generated
- One assume that the true parameter μ has been generated from the prior distribution $P(\mu)$ in one experiment. In the example: $P(\mu)=\mathcal{N}\left(\mu ; 0, \alpha^{2}\right)$
- The data are generated from $P(D \mid \mu)$, in the example $P(D \mid \mu)=\prod_{i} \mathcal{N}\left(x_{i} ; \mu, \sigma^{2}\right)$
- Applying Bayes' formula I get the a posteriori distribution

$$
P(\mu \mid D)=\frac{P(D \mid \mu) P(\mu)}{P(D)}=\mathcal{N}\left(\mu ; \frac{\text { mean }}{1+\frac{\sigma^{2}}{N \alpha^{2}}}, \frac{\sigma^{2}}{N+\sigma^{2} / \alpha^{2}}\right)
$$

with mean $=1 / N \sum_{i=1}^{N} x_{i}$

The Bayesian experiment

Analysis

- The Bayesian approach gives you the complete a posteriori parameter distribution
- One can derive a maximum a posteriori estimator as,

$$
\widehat{\mathbf{w}}_{\text {map }} \doteq \arg \max (P(\mathbf{w} \mid D))
$$

In the example,

$$
\widehat{\mu}_{M A P}=\frac{\text { mean }}{1+\frac{\sigma^{2}}{N \alpha^{2}}}
$$

- Note, that the MAP estimator converges to the ML estimator, for $N \rightarrow \infty$

Our Favorite Example: Linear Regression

- Assume, that the true dependency is linear but that we only measure noisy target data

$$
y_{i}=\mathbf{x}_{i}^{T} \mathbf{w}+\epsilon_{i}
$$

We get (same as in the frequentist approach)

$$
P\left(y_{i} \mid \mathbf{w}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}\right)^{2}\right)
$$

Linear Regression: a priori Assumption

- A convenient a priori assumption is that

$$
P(\mathrm{w})=\left(2 \pi \alpha^{2}\right)^{-M / 2} \exp \left(-\frac{1}{2 \alpha^{2}} \sum_{i=0}^{M-1} w_{i}^{2}\right)
$$

- We give smaller parameters a higher a priori probability
- Ockhams razor: simple explanations should be preferred
- We will assume that the hyperparameters σ^{2} and α^{2} are known. If they are unknown, one can define prior distributions for those. The analysis becomes more involved

Linear Regression: the a posteriori Distribution

- Using the likelihood-function and the prior parameter distribution, we can apply Bayes' formula and obtain the a posteriori distribution

$$
P(\mathbf{w} \mid D)=\frac{P(\mathbf{w}) P(D \mid \mathbf{w})}{P(D)}
$$

Linear Regression: Calculating the a posteriori Distribution

$$
P(\mathbf{w} \mid D)=\frac{P(\mathbf{w}) P(D \mid \mathbf{w})}{P(D)} \propto \exp \left(-\frac{1}{2 \alpha^{2}} \sum_{j=0}^{M-1} w_{i}^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}\right)^{2}\right)
$$

This can be written as

$$
P(\mathbf{w} \mid D)=\mathcal{N}\left(\mathbf{w} ; \mathbf{w}_{\operatorname{map}}, \operatorname{cov}(\mathbf{w} \mid D)\right)
$$

With

$$
\mathbf{w}_{\text {map }}=\left(\mathbf{X}^{T} \mathbf{X}+\frac{\sigma^{2}}{\alpha^{2}} I\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

and covariance

$$
\operatorname{cov}(\mathbf{w} \mid D)=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}+\frac{\sigma^{2}}{\alpha^{2}} I\right)^{-1}
$$

Linear Regression: the MAP estimate and the PLS-solution

- The most probable parameter value, after observing the data, is (the maximum a posteriori (MAP) estimate)

$$
\widehat{\mathbf{w}}_{m a p} \doteq \arg \max (P(\mathbf{w} \mid D))=\widehat{\mathbf{w}}_{P e n}
$$

with $\lambda=\frac{\sigma^{2}}{\alpha^{2}}$.

- One sees that despite different experimental assumptions the frequentist ML estimate and the Bayesian MAP estimate are very similar. The ML estimate corresponds to the LS-solution and the MAP estimate corresponds to the PLS solution

Bayesian Prediction with Linear Regression

- An important difference between is prediction. In a frequentist solution one substitutes the parameter estimate $\widehat{y}_{i}=\mathbf{x}_{i}^{T} \mathbf{w}_{m l}$, and one can calculate the variance in the prediction. In a Bayesian approach one applies the rules of probability and marginalizes (integrates over) the parameters
- With

$$
P(y, \mathbf{w} \mid \mathbf{x}, D)=P(\mathbf{w} \mid D) P(y \mid \mathbf{w}, \mathbf{x})
$$

it follows that

$$
P(y \mid \mathbf{x}, D)=\int P(y \mid \mathbf{w}, \mathbf{x}) P(\mathbf{w} \mid D) d \mathbf{w}
$$

Predictive Distribution for a Linear Model

- The a posteriori predictive distribution becomes

$$
\begin{aligned}
& P(y \mid \mathbf{x}, D)=\int P(y \mid \mathbf{w}, \mathbf{x}) P(\mathbf{w} \mid D) d \mathbf{w} \\
= & \mathcal{N}\left(y ; \mathbf{x}^{T} \widehat{\mathbf{w}}_{\text {map }}, \mathbf{x}^{T} \operatorname{cov}(\mathbf{w} \mid D) \mathbf{x}+\sigma^{2}\right)
\end{aligned}
$$

and is Gaussian distributed with mean $\mathbf{x}^{T} \widehat{\mathbf{w}}_{\text {map }}$ and variance $\mathbf{x}^{T} \operatorname{cov}(\mathbf{w} \mid D) \mathbf{x}+\sigma^{2}$

- The variance on the prediction considers both the noise on the prediction as well as the uncertainty in the parameters (by integrating over possible values)
- This is an essential advantage of the Bayesian approach: one considers all plausible parameter values and, e.g., one can also consider all local optima in the integral
- This is also the main technical challenge: for the Bayesian solution complex integrals need to be solved or approximated

Discussion: the Bayesian Solution

- Personal belief is formulated as a probability distribution
- Consistent approach for various kinds of modeling uncertainty
- For basic distributions (Gaussian, Poisson, Dirichlet, ...) which belong to the exponential family of distributions, closed form solutions for the complete Bayesian approach are available!
- For more complex models, a predictive analysis leads to integrals which often cannot be solved analytically
- Special approximations: Monte-Carlo integration, evidence framework
- The simplest approximation is

$$
P(y \mid \mathbf{x}, D)=\int P(y \mid \mathbf{w}, \mathbf{x}) P(\mathbf{w} \mid D) d \mathbf{w} \approx P\left(y \mid \mathbf{x}, \mathbf{w}_{\operatorname{map}}\right)
$$

which means that one uses a MAP point estimate

