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While Machine Learning was flourishing, there was a Neural Network winter (late
1990's until late 2000's)

Around 2010 there was a revival which made neural networks again extremely popular;
it was restarted by Geoffrey Hinton, Yann LeCun, and Yoshua Bengio (many people
now name the 2012 as the year of the breakthrough in deep learning)

Yann LeCun (New York University and Research) and Yoshua Bengio (Universite de
Montreal) are two world-class researchers who never stopped working with neural
networks. Geoffrey Hinton (co-inventor of the MLP, Boltzmann machines and others)
(Google and University of Toronto ) says it all got re-started with the 2006 paper “A
fast learning algorithm for deep belief nets” by Hinton, Osindero, and Teh

In Europe: Juergen Schmidhuber at IDSIA

Deep networks achieved best results on many tasks/datasets



Geoffrey Hinton Yann LeCun Yoshua Bengio
(Toronto, Google) (NewYork, Facebook) (Montreal)




Juergen Schmidhuber




Y¥u Kai, head of Baidu's Institute of Deep Leaming (IDL), demonstrates the smart bike
project, DuBike, at the company’s headquarters in Beijing. Photo: Simon Song



. In general: Multi Layer Perceptrons (Neural Networks) with many large hidden layers

. Any Recurrent Neural Network (RNN), in particular LSTMs and GRUs; Transformers

(separate slides)
. Convolutional Neural Networks (CNNs)
. Deep Reinforcement Learning (separate slides)

. Representation Learning, including representations for words, entities, predicates, sam-

ples
. Deep Generative Models: VAEs, GANs (separate slides)

. Foundation models like BERT, DALLE , and GPT which use self-supervised learning



Translation

Artificial Intelligence

= Creating machines that
perform functions that
require intelligence
when performed by
people (Kurzweil, 1990)

N

Auton. Driving
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Deep Learning Face Bt—::@ition

= Deep Learning is the
reason for the emerging
huge interest in Al

Translation

= Convolutional DL

» Recurrent DL

» Reinforcement DL
= Generative

Adversarial Networks
(GANSs) CycleGan
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Student Magic: Visual Q&A

"I spy with my little eye ..."

The Oracle Model

LSTMLSTME=ILSTM-=LST!
Ifs it !I pe rlon t

Image Policy Gradient Tempered Policy Gradient

Is it in beft? No  Isita person? No
Is it in from? Moo Isita vehicle? Yes
Is it in right? Yes st atruck? Yes
Is it in middle” Yes s itin front of photo? No
Is it person? No  In the left half? No
Is it ball? No  In the middle of photo? Yes
Is it bat? No  Isit to the nght photo? Yes
Is it car? Yes s itin the middle of photo? Yes
Status: Failure

Is it in beft? No  Isita giraffe? Yes
Is it in from? Yes  In front of photo? Yes
Is it in right? Noo Inthe left half? Yes
Is it in middle? Yes s it in the middle of photo? Yes
Is it person? Noo s it to the left of photo? Yes
Is it giraffe? Yes  Isit to the right photo? No
15 in middle? Yes  In the left in photo? No
Is in middle? Yes  In the middle of photo? Yes
Stafus: Failure  Status:

Convolutional DL
+ Recurrent DL
+ Reinforcement DL

Talents, Talents Talents!
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Rui Zhao, 2018
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s it a person? Yes
< this person in the left? N—2A2

Is he on the right side? Yes QA3 —T‘
..... QA4 TI‘ Weighted Sum
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Deep X Technologies behind Artificial Intelligence

= Deep Learning; Machine Learning; S
Data Mining; Statistics
= More (Labeled) Data
= Deeper Models
= New Algorithms
= End-to-End Training; Differentiable-
Computing (no Feature Engineering)
= Computational Power
= Community

Subsampling Convolutions Subsampling  Fully connected

= Deep Knowledge: Facts and Models
» Huge Document Repositories with Rapid
IE / QA (IBM Watson)

= Maps with GPS for Autonomous Driving
= Ubiquitous loT and Big Data in Industry
» Detailed (Patient) Profiles

= Web Content, Wikipedia for Humans

= Knowledge Graphs for Machines
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. Take a large data set

. Take a Neuronal Network with many (e.g., 7) large (z.B. 1000 nodes/layer) layers
. Optional: Use GPUs

. Train with Stochastic Gradient Decent (SGD)

. Except for the output layer use rectified linear units: max(0, h)

. Regularize with drop-out

. Optional: Initialize weights with unsupervised learning

. If the input is spatial (e.g., a picture), use convolutional networks (weight sharing)

with max-pooling



A deep network learns complex application-specific features trained on many data
points (large N)

Data are given in some feature space (can be raw pixel images); no additional
feature engineering or basis function design is necessary. Work with the
data as they are, also with large M

A deep architecture can achieve an efficient representation with fewer resources in a

hierarchical layered structure

Composition: In a classifier, an image is analysed by composing low level representa-
tions formed in the first processing layers, to generate high level features in the higher

layers; a deep generative models composes an image from hierarchical representations



e When decision boundaries are complex, a large data set describes the details of those

boundaries
e Details can be captured with a complex (multi-layer) neural network

e “As of 2016, a rough rule of thumb is that a supervised deep learning algorithm will
generally achieve acceptable performance with around 5,000 labeled examples per
category, and will match or exceed human performance when trained with a dataset

containing at least 10 million labeled examples.” (Deep Learning, Goodfellow et al.)



e It has been possible to train small to medium size problems since the early 1990s

e In deep learning, people work with really large Neural Networks. Example: 10 layers,

1000 neurons/layer

e ResNet from 2015 had 152 layers
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e GPUs are highly suited for the kind of number crunching, matrix/vector math involved
in deep Neural Networks. GPUs have been shown to speed up training algorithms by

orders of magnitude

e Their highly parallel structure makes them more effective than general-purpose CPUs

for algorithms where processing of large blocks of data is done in parallel
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Often regular SGD is used where the gradient is calculated on a single training pattern

“Minibatch SGD" works identically to SGD, except that more than one training example

(a “batch” of examples) is used to estimate of the gradient

Gradient clipping (to avoid huge update steps):
if ||g|| > v then g < gv/||g||. v > O is the norm threshold (g is the gradient
vector)

Local optima do not appear to be a major problem: current thinking is that there are

many local optima, but that they are all very good
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e (1) AdaGrad (adaptive gradient algorithm) is often used for learning rates to be adap-
tively altered; let g; be the gradient for weight w; accumulated over a minibatch at
“time" t

Ui

Gjij

wj = wj = 9j

Here, G ; = Zi:l gg’j is the accumulated squared gradient from the start of
the epoch

e (2) Momentum term
gj = pg; + (1 = p)g;
wj 1= wj — 1N9;

e (3) Adam (Adaptive Moment Estimation) (very popular)
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Stochastic Gradient Stochastic Gradient
Descent withhout Descent with
Momentum Momentum



The transfer function of a Rectified Linear Unit (ReLU) is max (0, h)

Reduces the effects of the vanishing gradient problem which can occur with sigmoid

neurons! They learn much faster!

Seems odd since some neurons become insensitive to the error, but a sufficient number

stays active
Leads to sparse gradients and to a sparse solution

Leaky ReLU “fixes" problems with “dead” neurons; GELU (Gaussian Error Linear Unit)

“fixes” problems with the discontinuity at the origin

For training classification tasks, the output layer has sigmoidal activation functions

and the cross-entropy cost function is used
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linear Perceptron
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For each training instance: first remove 50% of all hidden units, randomly chosen.
Only calculate error and do adaptation on the remaining network

For testing (prediction): use all hidden units but multiply all outgoing weights by 1/2

This is like a committee machine, where each architecture is a committee member,
but committee member share weights

Works better than stopped training! No stopping rule required!

Can even do drop-out in the input layer, thus different committee members see dif-
ferent inputs!

Hinton: use a large enough neural network so that it overfits on your data and then
regularize using drop out

Goodfellow (DL): Dropout provides an inexpensive approximation to training and eval-
uating a bagged ensemble of exponentially many neural networks

Variant: DropConnect (dropout of single connections)
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e Weight decay works

e But even better: for each neuron, normalize the incoming weight vector to have the

same maximum length. Thus if ||w|| > «
1

W — & \%%
Il

e Backpropagation is performed through the normalization
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Batch-Normalization is an algorithmic method which makes the training of Deep Neu-
ral Networks (DNN) faster and more stable

Batch normalization: Let z; be the output (activation) of a neuron after applying the
nonlinear transfer function. Then each neuron z; is normalized as

N

z; =
,/0]2—|—e

Mean p; and variance 032 of that neuron are calculated over a small batch. Back-

propagation is performed through these operations. ¢ > 0O is a small number, to

ensure stability

Batch normalization can be applied after the ReLU (as discussed here) or before the
RelLU

It is provided by all major frameworks; the details of the implementation are involved
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The first layer is initialized with the encoder part of an autoencoder (see lecture on
manifolds)

Alternatively: Several layers are initialized by a stacked autoencoder

Not as popular anymore: Restricted Boltzmann Machine (RBM) for Deep Boltzmann
Machines (DBMs) and Deep Belief Networks (DBNs)

New in 2021: Pretraining is coming back with strong force in the form of “contrastive

learning’!
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The idea is to learn several tasks by sharing common representations (same learned

“basis functions” with different output weights)

One task might be trained on a huge data set: this is then called the “pretrained

model”

For a new task (data set), only the last layer is adapted and the remaining network is

inherited from the pretrained network (there are many variants on this basic idea)

Current research: few-shot learning, one-shot learning, zero-shot learning
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task 1 task 2 task 3

OUTEUT OUTEu’r output

shared
intermediate
representation

raw input



Build a deep learning NN to classify many face images from 4000 persons. Thus there

are 4000 outputs, one for each person

The next to last layer is used as a representation for any face image (also for faces

and persons not in the training set)
Note that here, the representation is close to the output layer
Much effort is spent in the input layers to normalize the facial images

C': convolutional layer. M: max-pooling layer. The subsequent layers (L4, L5 and
L6) are locally connected, like a convolutional layer they apply a filter bank, but every

location in the feature map learns a different set of filters.
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Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.



Part of speech recognition with Hidden Markov Models (HMMs): predict a state in
the HMM (State) using a frequency representation of the acoustic signal in a time

window (Frame)

The Neural Network is trained to learn P(State|Frame)
4-10 layers, 1000-3000 nodes / layer, no pre-training
Rectified linear activations: y=max(0,x)

Full connectivity between layers,

Softmax output (cross-entropy cost function) (see lecture on linear classifiers)
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Features:

— 25ms window of audio, extracted every 10ms.
— log-energy of 40 Mel-scale filterbanks, stacked for 10-30 frames.
Training time: 2-3 weeks using GPUs!

Online: Android uses the server solution. Offline: Small Neural Network on the Smart

Phone

Advantage: Speaker independent! Now used by Google, Microsoft, IBM, replacing

Gaussian mixture models (30% reduction in error)

Even more improvement on the task of object recognition in images (from 26% error

to 16% error)) using 1.2 million training images. With convolutional neural networks.
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Hours of

Deep net+tHMM | GMM+HMM

GMM+HMM
more data

Switchboard
English
Broadcast news

Bing voice
search

Google voice
input

Youtube

training data

309

50

24

5870

1400

same data
16.1 23.6
17.5 18.8
30.4 36.2
12.3
47.6 52.3

17.1 (2k hours)

16.0 (lots more)
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e Example: 16 X 16 grey-valued pictures; 320 training images, 160 test images
e Net-1: No hidden layer: corresponds to 10 Perceptrons, one for each digit

e Net-2: One hidden layer with 12 nodes; fully connected (“normal MLP")
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Net-1
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Net-2



e In the following variants, the complexity was reduced

e Net-3: Two hidden layers with local connectivity (but no weight sharing yet): moti-

vated by the local receptive fields in the brain

— Each of the 8 X 8 neurons in the first hidden layer is only connected to 3 x 3

input neurons from a receptive field

— In the second hidden layer, each of the 4 X 4 neurons is connected to 5 X 5

neurons in the first hidden layer

— Net-3 has less than 50% of the weights of Net-2, but more neurons
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e Net-4: Two hidden layers with local connectivity and weight-sharing

e All receptive fields in the left 8 X 8 block have the same weights; the same is true

for all neurons in the right 8 X 8 block

e The 4 X 4 block in the second hidden layer, as before

27



ﬂ?‘?\ 4x4

VA




e Net-5: Two hidden layers with local connectivity and two layers of weight-sharing
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One training epoch is one pass through all data
The following figure shows the performance on the test set
Net-1: One sees overfitting with increasing epochs

Net-5: Shows best results without overfitting
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% Correct on Test Data
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e Net—5;.
Net-4
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Net-1
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e Net-5 has best performance. The number of free parameters (1060) is much smaller
than the total number of parameters (5194)

TABLE 11.1. Test set performance of five different neural networks on a hand-
written digit classification example (Le Cun, 1989).

Network Architecture | Links | Weights | % Correct
Net-1:  Single layer network 2570 2570 80.0%
Net-2: Two layer network 3214 3214 87.0%
Net-3: Locally connected 1226 1226 88.5%
Net-4: Constrained network 1 | 22606 1132 94.0%
Net-5: Constrained network 2 | 5194 1060 98.4%
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The current layer I might consist of R'™ sub-layers of size H* x H™
The next layer [ + 1 might consist of R°% sub-layers of size HOUt x HOUt
This implies that one has R filter kernels (one for each output sub-layer)

Each filter consists of R'™ filter kernels, each of size h x h, where typically the kernel
support h is h << H™

The each filter is then a tensor of dimension (size) h X h X R

The stride is H*™/ HO%; often the stride is 1; by using a larger stride, HO%t < H'™
| can down-sample the image

Note that | might need to pad the image with zeros
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Layer: |+1
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pi
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Hin=8

filter (tensor: 3x3x3)
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The input volume is 32 x 32 x 3. If we imagine two borders of zeros
around the volume, this gives us a 36 x 36 x 3 volume. Then, when we
apply our conv layer with our three 5 x 5 x 3 filters and a stride of 1, then
we will also get a 32 x 32 x3 output volume.



e One says that the different nets, i.e., Net-1, ..., Net-5 have different “inductive bias”

e They make different implicit assumptions about the function class
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e Representation Learning and Convolutional Neural Networks in Sentence Classification
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Nonlinear Mappings:
Tensor Modelling as Representation Learning in NLP

In many applications, only
the last layer of parameters is

Sentence class, e.g., sentiment adapted (few-shot learning)!

Mapping indices to value!

Deep CNN, ..., often pretrained

e

friend likes much

™,

“+ Pretrained embeddings from dictionaries and then adapted for task

= No feature engineering: NLP for everyone!
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For example, one could compute the mean (or max) value of a particular feature
over a region of the image. These summary statistics are much lower in dimension
(compared to using all of the extracted features) and can also improve results (less
over-fitting). We aggregation operation is called this operation pooling, or sometimes

mean pooling or max pooling (depending on the pooling operation applied).

Max-pooling is useful in vision for two reasons: (1) it reduces the computational

complexity for upper layers and (2) it provides a form of translation invariance

Since it provides additional robustness to position, max-pooling is thus a “smart” way

of reducing the dimensionality of intermediate representations.

Mean pooling is related to a convolutional layer with a rectangular (uniform) kernel

and a large stride
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® [ he next slide shows AlexNet

e Alternatives: Inception (Google), Visual Geometry Group (VGG) (Oxford)
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AlexNet

S

imilar framework to LeCun’98 but:

 More data (10° vs. 10% images)
* GPUimplementation (50x% speedup over CPU)

*  Trained on two GPUs for a week

i

i

L) 192

13

13

m

Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

19

Max 178 Max
pooling pooling

A. Krizhevsky, |. Sutskever, and G. Hinton,

58 Jogp \dense
Ense s e
128 Max | L
pooling *%*® d048

ageMet Classification with Deep Convolutional Neural Networks, NIPS 2012




e The next figure shows a Deep Residual Network (ResNet) (2015)
e A ResNet of 152 layers became world champion in the ImageNet data base

e Other special architectures used in image classification: AlexNet (5 convolutional
layers) (2012), VGG network (19 convolutional layers) (2014), GoogleNet (Inception)
(22 convolutional layers) (2015), and many variants
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e Task: Finding bounding boxes in images (object detection, object segmentation )

e R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN
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Object detection algorithms such as R-CNN take in an image and identify the locations and classifications of
the main objects in the image. Source: https://arxiv.org/abs/1311.2524.




® Deep high-performing DNNs can be fooled by examples intentionally constructed by
using an optimization procedure to search for an input that is very close to a real data

point and produces a very different label

e A good explanation might be that training data lies on a manifold and for new data
on the same manifold, performance is very good: the adversarial examples are away

from the manifold and, there, the model behaves rather unpredictable (see lecture on

manifolds)

e Adversarial training are attempts to make DNNSs less prone to adversarial examples

(active research area)
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Original image Perturbations Adversarial example
Temple (97%) Ostrich (98%)



e There will never be enough labelled data to learn it all
e The Google cat recognizer sees more cat images than any child and is not as good

e If one assumes that cat features are not encoded genetically, then unsupervised
learning, i.e., understanding the world’s statistics might do the job! First attempts:
RBM, all sorts of Clustering, autoencoders, ...

e Foundation models like BERT and DALLE might be the next big thing: they are
trained in a self-supervised manner without any labelled datal
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e Getting insights in the working of a DNN is important for many reasons, e.g., for
debugging

e “Clever Hans" effect: the classifier pays attention to features in the image, irrelevant
for the task

e Many approaches have been proposed

e A simple approach would evaluate for a particular image ¢

and interpret this quantity (or the square of it) as the relevance of input j for predicting
y in the context of image ¢; if displayed as an image, this is called a heatmap

e Note that in a linear model, y = ija:j, this is simply w;

e Popular approaches: Layer-wise Relevance Propagation (LRP), Deep Taylor, Grad-
CAM
40



Source tag
present

'

Classified
as horse

No source
tag present

l

Not classified
as horse




Brahimi, Mohammed, Said
Mahmoudi, Kamel Boukhalfa,
and Abdelouhab Moussaoui.
"Deep interpretable architecture
for plant diseases classification.”
In 2019 Signal Processing:
Algorithms, Architectures,
Arrangements, and Applications
(SPA), IEEE, 2019.

Origral imnags Mrapoked Kethed aradiee Duzigs Taglar

Figure 5: Comparison with visualization algorithms.
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Torch7 is used at facebook, Deep Mind and several groups at Google (based on
LuaJIT which is similar to Python)

PyTorch is an open-source machine learning library for Python, based on Torch (ini-
tial release 2016) [Comment: Currently the most important/popular frame-
work]

GP-GPU-CUDA: Facebook, NYU, and Google/Deep Mind all have custom CUDA
back-ends for fast/parallel convolutional network training (CUDA (Compute Unified
Device Architecture) is a parallel computing platform and programming model im-
plemented by the graphics processing units (GPUs) that they produce. CUDA gives
program developers direct access to the virtual instruction set and memory of the
parallel computational elements in CUDA GPUs)

Theano: Python library. Popular in the deep learning community. Theano family:

— Blocks + Fuel: Blocks and Fuel are machine learning frameworks for Python
developed by the Montreal Institute of Learning Algorithms (MILA) at the Univer-
sity of Montreal. Blocks is built upon Theano (also by MILA) and allows for rapid
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prototyping of neural network models. Fuel serves as a data processing pipeline
and data interface for Blocks.

— Keras: Keras is a minimalist, highly modular neural networks library, written in
Python and capable of running on top of either TensorFlow or Theano.

— Lasagne: Lasagne is a lightweight library to build and train neural networks in
Theano.

— PylLearn2: Pylearn2 is a machine learning library.

e TensorFlow: TensorFlow is an open source software library for machine learning in
various kinds of perceptual and language understanding tasks. Under development:
Tensor Processing Unit (TPU) custom chip

e Deeplearningdj is an open source deep learning library for Java and the Java Virtual
Machine

e Caffe is a deep learning framework made with expression, speed, and modularity in
mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by
community contributors. Yangqing Jia created the project during his PhD at UC
Berkeley.



e Object recognition (2012): AlexNet is the name of a convolutional neural network,
originally written with CUDA to run with GPU support, which competed in the Ima-
geNet Large Scale Visual Recognition Challenge in 2012. The network achieved a top-5
error of 15.3%, more than 10.8 percentage points ahead of the runner up. AlexNet was
designed by the SuperVision group, consisting of Alex Krizhevsky, Geoffrey Hinton,
and llya Sutskever

e Speech Recognition (2012): Microsoft Chief Research Officer Rick Rashid demon-
strates a speech recognition breakthrough via machine translation that converts his

spoken English words into computer-generated Chinese language.

e Face recognition (2014): Facebooks Deep Face. Asked whether two unfamiliar photos
of faces show the same person, a human being will get it right 97.53 percent of the
time. New software developed by researchers at Facebook can score 97.25 percent on
the same challenge, regardless of variations in lighting or whether the person in the

picture is directly facing the camera.
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Generative Al (Images) (2014): GANs have been used to produce samples of photo-
realistic images for the purposes of visualising new interior/industrial design, shoes,
bags and clothing items or items for computer games’ scenes

ResNet (2015)

Machine translation (2016): Google Translate began using neural machine translation

(NMT)

Computer and Board Games (2014++): Playing Atari with Deep Reinforcement

Learning (2014); spectacular successes of AlphaGo (2015) and AlphaZero (2017) in
Go, Chess, and other board games using reinforcement learning

Protein structure prediction (2020): AlphaFold is an artificial intelligence (Al) program
developed by DeepMind, which performs predictions of protein structure

Chatbots (2022): ChatGPT (Chat Generative Pre-trained Transformer) is a large
language model-based chatbot developed by OpenAl; see also ing Bard (Google, based
on LaMDA and PaLM), LLaMA (Meta)

Autonomous driving / Advanced driver-assistance system (e.g., Horizon Robotics)



e Following our analysis of a neural network, also a deep neural network learns basis

functions

e The difference is that, due to the many hidden layers, these basis functions now can

be highly complex
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A number of different theories are being developed

We follow Tomaso Poggio, who addresses approximation theory, optimization, and

learning theory
Youtube: DALI 2018 - Tomaso Poggio: Deep Networks: Three Theory Questions

Mhaskar, Hrushikesh, Qianli Liao, and Tomaso Poggio. “When and why are deep
networks better than shallow ones?” Thirty-First AAAI Conference on Artificial Intel-
ligence. 2017.

Heuristic scaling laws: errors decrease proportionately to (1) computational power and

(2) data set size and (3) number of parameters
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e Given any function out of a target function class: what is the best fit a DNN (with

some architectural constraints) can obtain

e Both shallow and deep networks can approximate a function equally well/badly, in
case we cannot make any particular assumptions on the target function class, except

for smoothness. This is our Case | (curse)

e Both suffer from the curse of dimensionality; the number of required parameters

grows as O (accuracnyrO”gh”ess> (see previous lecture on approximation theory)
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e If we go from generic functions f(-) to a compositional function (functions of func-
tions of functions, ...) and each of those functions only depends on a small number

of arguments, then the number of required parameters for a DNN is

@, (M X accuracy2 X roughness2>

(roughness = K is the Lipschitz constant for the target function class; the smaller
K, the smoother the function)

e Thisresult can, e.g., be found in: “Why and When Can Deep-but Not Shallow-networks
Avoid the Curse of Dimensionality: A Review" Tomaso Poggio et al., International

Journal of Automation and Computing, 2017. Theorem 4.
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e Example of a compositional formula
f($17"'7$8) —

h3(h21(h11(z1,22), h12(23,24)), hoo(h13(z5, 26), h14(x7,28)))

e So we can consider compositional function as a new Case lc (compositional) of target

functions
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X1 X2 X3 X4 X5 Xg X7 X3 X1 X X3 Xy X5 Xg X7 Xg

Figure 1: On the left a shallow universal network in 8 variables and N units which can approximate a generic function
f(xq,--- ,x5). On the right, a binary tree hierarchical network in n = 8 variables, which approximates well functions of
the form f(x1,--- ,28) = ha(ha1(hi1(x1, 22), hia(x3,24)), hoo(h13(x5, x6), h1a(x7, x5))). Each of the n — 1 nodes consists

of @ smoothed ReLU units with Q(n — 1) = N and computes the ridge function (Pinkus 1999) Z?Zl a;((vi,x) + ti)4, with

Vi, X € R, a;,t; € R. Each term, that is each unit in the node, corresponds to a “channel”. In a binary tree with n inputs, there
are logon levels and a total of n — 1 nodes. Similar to the shallow network, a hierarchical network can approximate any con-
tinuous function; the text proves how it approximates a compositional functions better than a shallow network. No invariance
1s assumed here.



Target F. Model F. Parameters e=0.1 Reference
Smooth Fixed BFs O (accuracyMXfO“gh”E"SS) O (10Mxroughness) e.g., Poggio
oF NN O <M X accuracy X C?) O <1OM X C?) Barron
Composit. DNN O (M X accuracy’ X roughness2) @, (1OOM X roughnessQ) Poggio
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With over-parametrization (Mp >> N ), the global optima of the cost functions are

degenerate and thus take on more volume in parameter space and are easier to find

by SGD

So, as confirmed empirically, over-parameterized DNNs do not have major problems

with local optima
Another “blessing of dimensionality”

Poggio: “Over-parametrized deep networks have many global minimizers that are

generically degenerate; other critical points of the gradient are generically isolated.”

Poggio: “SGDL (a variant of SGD) finds with very high probability large volume, zero

minimizers; empirically SGD behaves in a similar way.”
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How many training data points /N are required to obtain a good model?

When the optimum is degenerate, the number of parameters well defined by the data,
i.e., the effective number of parameters M ¢ is much smaller than the number of
parameters in the DNN, M)y,

Terms estimating the difference between generalization error and training error (i.e.,
the overfitting) contain expressions like My /N: we get overfitting with many param-

eters Mp and few data points NV
Thus, if we can substitute My — M ¢ overfitting is largely reduced!

Thus, also for a good generalization performance, over-parameterizations (M, >>

N') does not hurt, as long as M ¢ is small
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e One estimates for the required number of data points (sample size),

Nshallow ~ G—M
Ndeep

With e = 0.1,

~ M
Nshallow = 107 X Ndeep

e Thus a shallow network with one hidden layer requires 10M more data points for

training than a deep neural network, to achieve comparable performance
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e Poggio: “Theorem: Much used variants of SGD - Batch Normalization and Weight
Normalization - perform minimization with unit norm constraint, which is equivalent

to maximize margin under norm constraint” (thus the DNN is regularized)

e Poggio: “Theorem: Standard gradient descent implicitly performs minimization with

unit norm constraint”

e Poggio: “Together the theorems explain why the training of over-parametrized deep

networks satisfy the classification bounds leading to generalization despite over-parametrization”
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e Why is this a lecture on Machine Learning and not Deep Learning?

e "“If you only know deep learning, you're pretty shallow” (VT)
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