
Deep Learning

Volker Tresp
Winter 2023-2024

1



Neural Network Winter and Revival

• While Machine Learning was flourishing, there was a Neural Network winter (late

1990’s until late 2000’s)

• Around 2010 there was a revival which made neural networks again extremely popular;

it was restarted by Geoffrey Hinton, Yann LeCun, and Yoshua Bengio (many people

now name the 2012 as the year of the breakthrough in deep learning)

• Yann LeCun (New York University and Research) and Yoshua Bengio (Universite de

Montreal) are two world-class researchers who never stopped working with neural

networks. Geoffrey Hinton (co-inventor of the MLP, Boltzmann machines and others)

(Google and University of Toronto ) says it all got re-started with the 2006 paper“A

fast learning algorithm for deep belief nets”by Hinton, Osindero, and Teh

• In Europe: Juergen Schmidhuber at IDSIA

• Deep networks achieved best results on many tasks/datasets

2



Turing Award Winners (2018)

3



Juergen Schmidhuber

4



Kai Yu

5



What Belongs to Deep Learning

1. In general: Multi Layer Perceptrons (Neural Networks) with many large hidden layers

2. Any Recurrent Neural Network (RNN), in particular LSTMs and GRUs; Transformers

(separate slides)

3. Convolutional Neural Networks (CNNs)

4. Deep Reinforcement Learning (separate slides)

5. Representation Learning, including representations for words, entities, predicates, sam-

ples

6. Deep Generative Models: VAEs, GANs (separate slides)

7. Foundation models like BERT, DALLE , and GPT which use self-supervised learning

6











Deep Learning Recipe: What Are the Reasons? (Hinton 2013)

1. Take a large data set

2. Take a Neuronal Network with many (e.g., 7) large (z.B. 1000 nodes/layer) layers

3. Optional: Use GPUs

4. Train with Stochastic Gradient Decent (SGD)

5. Except for the output layer use rectified linear units: max(0, h)

6. Regularize with drop-out

7. Optional: Initialize weights with unsupervised learning

8. If the input is spatial (e.g., a picture), use convolutional networks (weight sharing)

with max-pooling

7



Important Benefits

• A deep network learns complex application-specific features trained on many data

points (large N)

• Data are given in some feature space (can be raw pixel images); no additional

feature engineering or basis function design is necessary. Work with the

data as they are, also with large M

• A deep architecture can achieve an efficient representation with fewer resources in a

hierarchical layered structure

• Composition: In a classifier, an image is analysed by composing low level representa-

tions formed in the first processing layers, to generate high level features in the higher

layers; a deep generative models composes an image from hierarchical representations

8



1: Large Data Set

• When decision boundaries are complex, a large data set describes the details of those

boundaries

• Details can be captured with a complex (multi-layer) neural network

• “As of 2016, a rough rule of thumb is that a supervised deep learning algorithm will

generally achieve acceptable performance with around 5,000 labeled examples per

category, and will match or exceed human performance when trained with a dataset

containing at least 10 million labeled examples.” (Deep Learning, Goodfellow et al.)

9



2: Large Networks

• It has been possible to train small to medium size problems since the early 1990s

• In deep learning, people work with really large Neural Networks. Example: 10 layers,

1000 neurons/layer

• ResNet from 2015 had 152 layers

10



3: Graphical Processing Units (GPUs)

• GPUs are highly suited for the kind of number crunching, matrix/vector math involved

in deep Neural Networks. GPUs have been shown to speed up training algorithms by

orders of magnitude

• Their highly parallel structure makes them more effective than general-purpose CPUs

for algorithms where processing of large blocks of data is done in parallel

11



4: Stochastic Gradient Descent SGD

• Often regular SGD is used where the gradient is calculated on a single training pattern

• “Minibatch SGD”works identically to SGD, except that more than one training example

(a“batch”of examples) is used to estimate of the gradient

• Gradient clipping (to avoid huge update steps):

if ∥g∥ > v then g ← gv/∥g∥. v > 0 is the norm threshold (g is the gradient

vector)

• Local optima do not appear to be a major problem: current thinking is that there are

many local optima, but that they are all very good

12



Adaptive Learning Rates

• (1) AdaGrad (adaptive gradient algorithm) is often used for learning rates to be adap-

tively altered; let gj be the gradient for weight wj accumulated over a minibatch at

“time”t

wj := wj −
η√
Gj,j

gj

Here, Gj,j =
∑t

τ=1 g
2
τ,j is the accumulated squared gradient from the start of

the epoch

• (2) Momentum term

g̃j := βg̃j + (1− β)gj

wj := wj − ηg̃j

• (3) Adam (Adaptive Moment Estimation) (very popular)

13





5: Rectified Linear Function

• The transfer function of a Rectified Linear Unit (ReLU) is max(0, h)

• Reduces the effects of the vanishing gradient problem which can occur with sigmoid

neurons! They learn much faster!

• Seems odd since some neurons become insensitive to the error, but a sufficient number

stays active

• Leads to sparse gradients and to a sparse solution

• Leaky ReLU“fixes”problems with“dead”neurons; GELU (Gaussian Error Linear Unit)

“fixes”problems with the discontinuity at the origin

• For training classification tasks, the output layer has sigmoidal activation functions

and the cross-entropy cost function is used

14









6A: Drop-Out Regularization

• For each training instance: first remove 50% of all hidden units, randomly chosen.
Only calculate error and do adaptation on the remaining network

• For testing (prediction): use all hidden units but multiply all outgoing weights by 1/2

• This is like a committee machine, where each architecture is a committee member,
but committee member share weights

• Works better than stopped training! No stopping rule required!

• Can even do drop-out in the input layer, thus different committee members see dif-
ferent inputs!

• Hinton: use a large enough neural network so that it overfits on your data and then
regularize using drop out

• Goodfellow (DL): Dropout provides an inexpensive approximation to training and eval-
uating a bagged ensemble of exponentially many neural networks

• Variant: DropConnect (dropout of single connections)

15



6B: Weight Regularization

• Weight decay works

• But even better: for each neuron, normalize the incoming weight vector to have the

same maximum length. Thus if ∥w∥ > α

w→ α
1

∥w∥
w

• Backpropagation is performed through the normalization

16



6C: Batch Normalization

• Batch-Normalization is an algorithmic method which makes the training of Deep Neu-

ral Networks (DNN) faster and more stable

• Batch normalization: Let zj be the output (activation) of a neuron after applying the

nonlinear transfer function. Then each neuron zj is normalized as

z̃j =
zj − µj√
σ2j + ϵ

• Mean µj and variance σ2j of that neuron are calculated over a small batch. Back-

propagation is performed through these operations. ϵ > 0 is a small number, to

ensure stability

• Batch normalization can be applied after the ReLU (as discussed here) or before the

ReLU

• It is provided by all major frameworks; the details of the implementation are involved

17







7: Initialize Weights with Unsupervised Learning

• The first layer is initialized with the encoder part of an autoencoder (see lecture on

manifolds)

• Alternatively: Several layers are initialized by a stacked autoencoder

• Not as popular anymore: Restricted Boltzmann Machine (RBM) for Deep Boltzmann

Machines (DBMs) and Deep Belief Networks (DBNs)

• New in 2021: Pretraining is coming back with strong force in the form of“contrastive

learning”!

18



Multitask Learning and Pretrained Models

• The idea is to learn several tasks by sharing common representations (same learned

“basis functions”with different output weights)

• One task might be trained on a huge data set: this is then called the “pretrained

model”

• For a new task (data set), only the last layer is adapted and the remaining network is

inherited from the pretrained network (there are many variants on this basic idea)

• Current research: few-shot learning, one-shot learning, zero-shot learning

19





Facebook’s Deep Face: Face Recognition as Multi-Task
Learning

• Build a deep learning NN to classify many face images from 4000 persons. Thus there

are 4000 outputs, one for each person

• The next to last layer is used as a representation for any face image (also for faces

and persons not in the training set)

• Note that here, the representation is close to the output layer

• Much effort is spent in the input layers to normalize the facial images

• C: convolutional layer. M : max-pooling layer. The subsequent layers (L4, L5 and

L6) are locally connected, like a convolutional layer they apply a filter bank, but every

location in the feature map learns a different set of filters.

20





Android Server Architecture for Speech Recognition (2013)

• Part of speech recognition with Hidden Markov Models (HMMs): predict a state in

the HMM (State) using a frequency representation of the acoustic signal in a time

window (Frame)

• The Neural Network is trained to learn P (State|Frame)

• 4-10 layers, 1000-3000 nodes / layer, no pre-training

• Rectified linear activations: y=max(0,x)

• Full connectivity between layers,

• Softmax output (cross-entropy cost function) (see lecture on linear classifiers)

21



cont’d

• Features:

– 25ms window of audio, extracted every 10ms.

– log-energy of 40 Mel-scale filterbanks, stacked for 10-30 frames.

• Training time: 2-3 weeks using GPUs!

• Online: Android uses the server solution. Offline: Small Neural Network on the Smart

Phone

• Advantage: Speaker independent! Now used by Google, Microsoft, IBM, replacing

Gaussian mixture models (30% reduction in error)

• Even more improvement on the task of object recognition in images (from 26% error

to 16% error)) using 1.2 million training images. With convolutional neural networks.

22







8: Convolutional Neural Networks
(CNNs)

24



Recognition of Handwritten Digits



Recognition of Handwritten Digits using Neuronal Networks

• Example: 16× 16 grey-valued pictures; 320 training images, 160 test images

• Net-1: No hidden layer: corresponds to 10 Perceptrons, one for each digit

• Net-2: One hidden layer with 12 nodes; fully connected (“normal MLP”)

25





Neuronal Network with Local Connectivity: Net-3

• In the following variants, the complexity was reduced

• Net-3: Two hidden layers with local connectivity (but no weight sharing yet): moti-

vated by the local receptive fields in the brain

– Each of the 8 × 8 neurons in the first hidden layer is only connected to 3 × 3

input neurons from a receptive field

– In the second hidden layer, each of the 4 × 4 neurons is connected to 5 × 5

neurons in the first hidden layer

– Net-3 has less than 50% of the weights of Net-2, but more neurons

26





Neuronal Networks with Weight-Sharing (Net-4)

• Net-4: Two hidden layers with local connectivity and weight-sharing

• All receptive fields in the left 8 × 8 block have the same weights; the same is true

for all neurons in the right 8× 8 block

• The 4× 4 block in the second hidden layer, as before

27





Neural Networks with Weight Sharing (Net-5)

• Net-5: Two hidden layers with local connectivity and two layers of weight-sharing

28





Learning Curves

• One training epoch is one pass through all data

• The following figure shows the performance on the test set

• Net-1: One sees overfitting with increasing epochs

• Net-5: Shows best results without overfitting

29





Statistics

• Net-5 has best performance. The number of free parameters (1060) is much smaller

than the total number of parameters (5194)

30





Details of Convolutional Layers

• The current layer l might consist of Rin sub-layers of size Hin ×Hin

• The next layer l+1 might consist of Rout sub-layers of size Hout ×Hout

• This implies that one has Rout filter kernels (one for each output sub-layer)

• Each filter consists of Rin filter kernels, each of size h×h, where typically the kernel

support h is h << Hin

• The each filter is then a tensor of dimension (size) h× h×Rin

• The stride is Hin/Hout; often the stride is 1; by using a larger stride, Hout < Hin

I can down-sample the image

• Note that I might need to pad the image with zeros

31







Inductive Bias

• One says that the different nets, i.e., Net-1, ..., Net-5 have different“inductive bias”

• They make different implicit assumptions about the function class

32



Representation Learning and Convolutional Neural Networks in
Sentence Classification

• Representation Learning and Convolutional Neural Networks in Sentence Classification

33





Pooling

• For example, one could compute the mean (or max) value of a particular feature

over a region of the image. These summary statistics are much lower in dimension

(compared to using all of the extracted features) and can also improve results (less

over-fitting). We aggregation operation is called this operation pooling, or sometimes

mean pooling or max pooling (depending on the pooling operation applied).

• Max-pooling is useful in vision for two reasons: (1) it reduces the computational

complexity for upper layers and (2) it provides a form of translation invariance

• Since it provides additional robustness to position, max-pooling is thus a“smart”way

of reducing the dimensionality of intermediate representations.

• Mean pooling is related to a convolutional layer with a rectangular (uniform) kernel

and a large stride

34





Architectures

• The next slide shows AlexNet

• Alternatives: Inception (Google), Visual Geometry Group (VGG) (Oxford)

35





Deep Residual Network

• The next figure shows a Deep Residual Network (ResNet) (2015)

• A ResNet of 152 layers became world champion in the ImageNet data base

• Other special architectures used in image classification: AlexNet (5 convolutional

layers) (2012), VGG network (19 convolutional layers) (2014), GoogleNet (Inception)

(22 convolutional layers) (2015), and many variants

36





Regional CNN

• Task: Finding bounding boxes in images (object detection, object segmentation )

• R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN

37





Adversarial Examples

• Deep high-performing DNNs can be fooled by examples intentionally constructed by

using an optimization procedure to search for an input that is very close to a real data

point and produces a very different label

• A good explanation might be that training data lies on a manifold and for new data

on the same manifold, performance is very good: the adversarial examples are away

from the manifold and, there, the model behaves rather unpredictable (see lecture on

manifolds)

• Adversarial training are attempts to make DNNs less prone to adversarial examples

(active research area)

38





Where from here?

• There will never be enough labelled data to learn it all

• The Google cat recognizer sees more cat images than any child and is not as good

• If one assumes that cat features are not encoded genetically, then unsupervised

learning, i.e., understanding the world’s statistics might do the job! First attempts:

RBM, all sorts of Clustering, autoencoders, ...

• Foundation models like BERT and DALLE might be the next big thing: they are

trained in a self-supervised manner without any labelled data!

39



Explainability using Heat Maps

• Getting insights in the working of a DNN is important for many reasons, e.g., for

debugging

• “Clever Hans” effect: the classifier pays attention to features in the image, irrelevant

for the task

• Many approaches have been proposed

• A simple approach would evaluate for a particular image i

∂ŷi(xi)

∂xi,j

and interpret this quantity (or the square of it) as the relevance of input j for predicting

y in the context of image i; if displayed as an image, this is called a heatmap

• Note that in a linear model, ŷ =
∑

wjxj, this is simply wj

• Popular approaches: Layer-wise Relevance Propagation (LRP), Deep Taylor, Grad-

CAM
40







Tools

• Torch7 is used at facebook, Deep Mind and several groups at Google (based on
LuaJIT which is similar to Python)

• PyTorch is an open-source machine learning library for Python, based on Torch (ini-
tial release 2016) [Comment: Currently the most important/popular frame-
work]

• GP-GPU-CUDA: Facebook, NYU, and Google/Deep Mind all have custom CUDA
back-ends for fast/parallel convolutional network training (CUDA (Compute Unified
Device Architecture) is a parallel computing platform and programming model im-
plemented by the graphics processing units (GPUs) that they produce. CUDA gives
program developers direct access to the virtual instruction set and memory of the
parallel computational elements in CUDA GPUs)

• Theano: Python library. Popular in the deep learning community. Theano family:

– Blocks + Fuel: Blocks and Fuel are machine learning frameworks for Python
developed by the Montreal Institute of Learning Algorithms (MILA) at the Univer-
sity of Montreal. Blocks is built upon Theano (also by MILA) and allows for rapid

41



prototyping of neural network models. Fuel serves as a data processing pipeline

and data interface for Blocks.

– Keras: Keras is a minimalist, highly modular neural networks library, written in

Python and capable of running on top of either TensorFlow or Theano.

– Lasagne: Lasagne is a lightweight library to build and train neural networks in

Theano.

– PyLearn2: Pylearn2 is a machine learning library.

• TensorFlow: TensorFlow is an open source software library for machine learning in

various kinds of perceptual and language understanding tasks. Under development:

Tensor Processing Unit (TPU) custom chip

• Deeplearning4j is an open source deep learning library for Java and the Java Virtual

Machine

• Caffe is a deep learning framework made with expression, speed, and modularity in

mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by

community contributors. Yangqing Jia created the project during his PhD at UC

Berkeley.



Time-line of some Breakthroughs

• Object recognition (2012): AlexNet is the name of a convolutional neural network,

originally written with CUDA to run with GPU support, which competed in the Ima-

geNet Large Scale Visual Recognition Challenge in 2012. The network achieved a top-5

error of 15.3%, more than 10.8 percentage points ahead of the runner up. AlexNet was

designed by the SuperVision group, consisting of Alex Krizhevsky, Geoffrey Hinton,

and Ilya Sutskever

• Speech Recognition (2012): Microsoft Chief Research Officer Rick Rashid demon-

strates a speech recognition breakthrough via machine translation that converts his

spoken English words into computer-generated Chinese language.

• Face recognition (2014): Facebooks Deep Face. Asked whether two unfamiliar photos

of faces show the same person, a human being will get it right 97.53 percent of the

time. New software developed by researchers at Facebook can score 97.25 percent on

the same challenge, regardless of variations in lighting or whether the person in the

picture is directly facing the camera.

42



• Generative AI (Images) (2014): GANs have been used to produce samples of photo-

realistic images for the purposes of visualising new interior/industrial design, shoes,

bags and clothing items or items for computer games’ scenes

• ResNet (2015)

• Machine translation (2016): Google Translate began using neural machine translation

(NMT)

• Computer and Board Games (2014++): Playing Atari with Deep Reinforcement

Learning (2014); spectacular successes of AlphaGo (2015) and AlphaZero (2017) in

Go, Chess, and other board games using reinforcement learning

• Protein structure prediction (2020): AlphaFold is an artificial intelligence (AI) program

developed by DeepMind, which performs predictions of protein structure

• Chatbots (2022): ChatGPT (Chat Generative Pre-trained Transformer) is a large

language model-based chatbot developed by OpenAI; see also ing Bard (Google, based

on LaMDA and PaLM), LLaMA (Meta)

• Autonomous driving / Advanced driver-assistance system (e.g., Horizon Robotics)



Deep Learning also Learns Fancy Basis Functions / Features

• Following our analysis of a neural network, also a deep neural network learns basis

functions

• The difference is that, due to the many hidden layers, these basis functions now can

be highly complex

43







Why does Deep Learning Work so Well?

• A number of different theories are being developed

• We follow Tomaso Poggio, who addresses approximation theory, optimization, and

learning theory

• Youtube: DALI 2018 - Tomaso Poggio: Deep Networks: Three Theory Questions

• Mhaskar, Hrushikesh, Qianli Liao, and Tomaso Poggio. “When and why are deep

networks better than shallow ones?” Thirty-First AAAI Conference on Artificial Intel-

ligence. 2017.

• Heuristic scaling laws: errors decrease proportionately to (1) computational power and

(2) data set size and (3) number of parameters

44



Approximation theory and Case Ic (compositional functions).
(When and why are deep networks better than shallow

networks?)

• Given any function out of a target function class: what is the best fit a DNN (with

some architectural constraints) can obtain

• Both shallow and deep networks can approximate a function equally well/badly, in

case we cannot make any particular assumptions on the target function class, except

for smoothness. This is our Case I (curse)

• Both suffer from the curse of dimensionality; the number of required parameters

grows as O
(
accuracyM×roughness

)
(see previous lecture on approximation theory)

45



Compositional Functions

• If we go from generic functions f(·) to a compositional function (functions of func-

tions of functions, ...) and each of those functions only depends on a small number

of arguments, then the number of required parameters for a DNN is

O
(
M × accuracy2 × roughness2

)
(roughness = K is the Lipschitz constant for the target function class; the smaller

K, the smoother the function)

• This result can, e.g., be found in: “Why and When Can Deep-but Not Shallow-networks

Avoid the Curse of Dimensionality: A Review” Tomaso Poggio et al., International

Journal of Automation and Computing, 2017. Theorem 4.

46



Compositional Functions (cont’d)

• Example of a compositional formula

f(x1, · · · , x8) =

h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8)))

• So we can consider compositional function as a new Case Ic (compositional) of target

functions

47





Comparison

Target F. Model F. Parameters ϵ = 0.1 Reference

Smooth Fixed BFs O
(
accuracyM×roughness

)
O

(
10M×roughness

)
e.g., Poggio

Cf NN O
(
M × accuracy× C2

f

)
O

(
10M × C2

f

)
Barron

Composit. DNN O
(
M × accuracy2 × roughness2

)
O

(
100M × roughness2

)
Poggio

48



Optimization: What is the landscape of the empirical risk?

• With over-parametrization (Mp >> N), the global optima of the cost functions are

degenerate and thus take on more volume in parameter space and are easier to find

by SGD

• So, as confirmed empirically, over-parameterized DNNs do not have major problems

with local optima

• Another“blessing of dimensionality”

• Poggio: “Over-parametrized deep networks have many global minimizers that are

generically degenerate; other critical points of the gradient are generically isolated.”

• Poggio: “SGDL (a variant of SGD) finds with very high probability large volume, zero

minimizers; empirically SGD behaves in a similar way.”

49





Learning Theory and Overfitting (Learning Theory: How can
deep learning generalize so well and not overfit? )

• How many training data points N are required to obtain a good model?

• When the optimum is degenerate, the number of parameters well defined by the data,

i.e., the effective number of parameters Meff, is much smaller than the number of

parameters in the DNN, Mp

• Terms estimating the difference between generalization error and training error (i.e.,

the overfitting) contain expressions like Mp/N : we get overfitting with many param-

eters Mp and few data points N

• Thus, if we can substitute Mp →Meff, overfitting is largely reduced!

• Thus, also for a good generalization performance, over-parameterizations (Mp >>

N) does not hurt, as long as Meff is small

50



How Many Data Points?

• One estimates for the required number of data points (sample size),

Nshallow

Ndeep
≈ ϵ−M

With ϵ = 0.1,

Nshallow ≈ 10M ×Ndeep

• Thus a shallow network with one hidden layer requires 10M more data points for

training than a deep neural network, to achieve comparable performance

51



Summary

• Poggio: “Theorem: Much used variants of SGD - Batch Normalization and Weight

Normalization - perform minimization with unit norm constraint, which is equivalent

to maximize margin under norm constraint” (thus the DNN is regularized)

• Poggio: “Theorem: Standard gradient descent implicitly performs minimization with

unit norm constraint”

• Poggio: “Together the theorems explain why the training of over-parametrized deep

networks satisfy the classification bounds leading to generalization despite over-parametrization”

52



Conclusions

• Why is this a lecture on Machine Learning and not Deep Learning?

• “If you only know deep learning, you’re pretty shallow” (VT)

53


