An Introduction to
 Function Approximation for Machine Learning
 Volker Tresp
 Winter 2023-2024

Problem Setting

- In an actual application, the data scientist needs to decide which model to use (linear Perceptron, fixed basis functions, neural networks, kernels, . . . ?)
- How well is one doing in solving the actual problem with the data actually available; in the lecture on model selection, we learn about some empirical methods for analysing some of these issues
- But what can theory tell us about these issues? Why are, e.g., deep neural networks so successful?
- In this lecture we will be a bit informal since formal treatments require advanced mathematical frameworks and are beyond the scope of this lecture

Target Function Class

- Let \mathcal{F} be the set of target functions
- What characterizes the functions that mother nature generates for a particular problem, e.g., image classification, and how can I characterize them?
- In a theoretical analysis one characterizes this class in some way, hopefully limiting the class to the one actually occurring in practice (neither larger nor smaller)
- Often one defines the target class by some degree of smoothness of the functions; another target class of functions are composable functions (see lecture on deep learning)

Target Function Class (cont'd)

- The modern view is that the target function class assumes a tiny space in the space of all functions and e.g., deep learning models, work so well because they match this class reasonably well
- Some claim that machine learning is impossible if the target function class is not restricted (no-free-lunch theorem)

Model Function Class

- What characterizes the model function class \mathcal{M}
- To simplify matter (mostly for notational simplicity), we assume a model function class can be described as

$$
\mathcal{M}=\left\{f_{\mathrm{w}}(\cdot)\right\}_{\mathrm{w}}
$$

i.e. functions which only vary in their parameters (but this is not essential)

Distance between Functions

- Consider the true function $f(\cdot)$ and an model $f_{\mathrm{W}}(\cdot)$. We define

$$
\left\|\mathbf{f}-f_{\mathrm{w}}(\cdot)\right\|_{B}^{2}=\frac{1}{V_{B}} \int_{B}\left(f(\mathrm{x})-f_{\mathrm{w}}(\mathrm{x})\right)^{2} d \mathbf{x}
$$

Here V_{B} is the volume of the unit ball B in M dimensions

- This is simply the average squared Euclidean distance, applied to two functions

Weighted Distance

- The average squared Euclidean distance between the two function is (weighted by $P(x))$

$$
\| \mathbf{f}-\left.f_{\mathbf{w}}(\cdot)\right|_{P(\mathrm{x})} ^{2}=\int\left(f(\mathbf{x})-f_{\mathrm{w}}(\mathbf{x})^{2} P(\mathrm{x}) d \mathbf{x}\right.
$$

- $P(\mathrm{x})$ is the probability distribution of the input data
- In some cases the input data only occupy a small subspace (manifold) of the unit ball; some learning approaches are able to explore this

Distance between Functions

- We define ϵ_{B} to be the minimum Euclidean distance for the "most difficult" function out off the function class

$$
\begin{aligned}
\epsilon_{B} & =\min _{\mathbf{w}} \max _{\mathbf{f}}\left\|\mathbf{f}-\mathbf{f}_{\mathbf{w}}\right\|_{B} \\
\epsilon_{P(x)} & =\min _{\mathbf{w}} \max _{\mathbf{f}}\left\|\mathbf{f}-\mathbf{f}_{\mathbf{w}}\right\|_{P(x)}
\end{aligned}
$$

$\mathbf{f} \in \mathcal{F}, \mathbf{f}_{\mathbf{w}} \in \mathcal{M}$

Statistical Machine Learning

- Statistical machine learning analyses the distance between the expected distance between a model function, where the parameters were estimated based on some training data, and a given \mathbf{f}
- This is not the issue in approximation theory, and will be discussed in a later lecture

Analysis of Dimensionality

- Consider input space dimension M
- If in one dimensions, we need $M_{\phi}^{(\text {one-dim })}$ RBFs (e.g., $M_{\phi}^{(\text {one-dim) }}=10$), and we want to maintain the same complexity in higher dimensions, then we need

$$
M_{\phi}=\left(M_{\phi}^{(o n e-d i m)}\right)^{M}
$$

RBFs in M dimensions

10 RBFs in one dimension

Analysis of Dimensionality (cont'd)

- We get

$$
M_{\phi}^{(\text {one-dim })}=\mathcal{O}\left(\frac{1}{\epsilon_{B}^{1 / m}}\right)
$$

- Here, m is a characterization of the smoothness of the target class: m can be the set of all functions with continuous partial derivatives of orders up to m (derivatives of higher order can be discontinuous)
- This result can, e.g., be found in: "Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review" Tomaso Poggio et al., International Journal of Automation and Computing, 2017, Equation 5.

Analysis of Dimensionality (cont'd)

- We can write this as

$$
M_{\phi}^{(\text {one-dim) }}=\mathcal{O}\left(\text { accuracy }^{\text {roughness }}\right)
$$

where we have defined accuracy $=1 / \epsilon_{B}$ and roughness $=1 / \mathrm{m}$

Analysis of Dimensionality: Main Result

- Overall, the total number of basis function is then

$$
M_{\phi}=\mathcal{O}\left(\text { accuracy }^{M \times \text { roughness }}\right)
$$

- Note, that, for a fixed desired accuracy (e.g., accuracy $=10$), the number of basis functions increases exponentially with $M \times$ roughness
- Sometimes it is more instructive to look at the logarithm

$$
\log M_{\phi}=\mathcal{O}(M \times \text { roughness } \times \log (\text { accuracy }))
$$

Case I: Curse of Dimensionality

- \mathcal{F} : dimensionality M is large, and roughness is large
- \mathcal{M} : Considering that ($M \times$ roughness) is in the exponent, M_{ϕ} is unrealistically large
- This is the famous Bellman's "Curse of Dimensionality"

20-Dimensional Checker Board Function:
"Curse of Dimensionality"

M is high ($M=20$),
roughness is large

The required number of basis function is huge

2-D slice through a $20-$
Dimensional input space

Case II: Blessing of Dimensionality

- \mathcal{F} : dimensionality M is small but roughness is large
- In this case ($M \times$ roughness) might be acceptable
- \mathcal{M} : This is what I would call the "Blessing of Dimensionality": a complex nonlinear classification problem (large roughness) can be solved by a transformation of the lowdimensional input space (M) into a high-dimensional space $\left(M_{\phi}\right)$ where the problem might even become linearly separable

2-D Checker Board Function

Here $M=2$ (roughness is large) and with less than 100 RBF basis functions we might get a good fit

Case III: Smooth Target Function in High Dimensions

- \mathcal{F} : dimensionality M is large and roughness is small (the target function is smooth)
- A special case would be when the target functions are linear functions; then where $M_{\phi}=M+1$; The target function exhibits a voting behavior: each input itself has a (small) contribution to the output
- \mathcal{F} : if the target functions can well be approximated by linear functions, the input dimension can be quite high ($M>10000$)

Case IV (Simple): Smooth Target Function in Low Dimensions

- \mathcal{F} : dimensionality M is small and roughness is small (the target function is smooth)
- \mathcal{M} : Only a small number M_{ϕ} of smooth basis functions are required

M is large $(M=20)$ and roughness is small

Here $M=20$ is medium size and with less than 100 RBF basis
functions we might get a good fit

2-D slice through a 20-
D input space

Revisiting Case I

- Fortunately, even Case I is not as hopeless as it first appears, since, in reality, classes are more restricted
- la: \mathcal{F} : The target functions have high-frequency components, but only locally, and a sparse solution is feasible
- lb: The input data points are restricted to a low-dimensional manifold (reflected in $P(\mathrm{x})$)
- Ic: \mathcal{F} : The target functions are composable (discussed in the lecture on deep learning)

Case la: Sparse Basis: No Curse of Dimensionality with a Neural Network

- \mathcal{F} : both M and roughness are large, so the required M_{ϕ} is large, but only $H \ll$ M_{ϕ} basis functions have nonzero weights; e.g., high complexity might only be present in a restricted region in input space
- \mathcal{M} : With a neural network model, the number of hidden units with nonzero weights (i.e., H) might even be independent of M !
- As a model class, classical neural networks with H hidden units can adaptively find the "perfect" sparse basis during training (with backpropagation)
$H=16$ hidden units in a neural network might be sufficient

Although the input space might be high dimensional, complexity is limited

Case Ib: Manifold

- So far we did not assume any particular input data distribution: $P(\mathrm{x})$ might be a uniform distribution within the unit ball
- But sometimes $P(\mathrm{x})$ is restricted to a subspace of small dimension $M_{h} \ll M$; in the nonlinear case, the subspace is called a manifold (data is often on a manifold, when model accuracy is very high (like in OCR)
- \mathcal{M} : we might only need on the order of accuracy ${ }^{M_{h} \times \text { roughness }}$ (instead of accuracy ${ }^{M \times \text { roughness }}$ basis functions to cover the relevant region in input space
- Some model classes, like neural networks / deep neural networks, model data on a low-dimensional manifold quite effectively
- Other approaches perform a preprocessing step (clustering, PCA, ICA, ...) to find the manifold (dimensionality reduction), and then apply any model class suitable for low-dimensional data

- Although the input space might be high dimensional, the data lives in a subspace
- The dimension of the subspace is M_{h}, here 1

In case that the columns of V are orthonormal, there is a simple geometric interpretation
x-space

Input data
distribution lives in a
manifold

More general, the data lives in a manifold

Why Nature Generates Data on Manifolds

- We encountered this in the lecture on basis functions
- Assume that nature generates data in some low-dimensional space; nature then transforms this data to a high dimensional space by some nonlinear transformation
- This data then become the input data; then the input data might be on a manifold, as discussed in the lecture on basis functions!
- See lecture on manifold learning

Adversarial problem

- Training data provided by nature is on a 2D manifold
- Test data is on a 3D manifold

An MLP with a Bottleneck Layer

Manifold: Adversarial Examples

- But there is a danger: if we consider test data outside of the manifold, then performance might degrade quickly
- So although, $\epsilon_{P(\mathrm{x})}$ might be small, ϵ_{B} could be large!
- A common issue is: even on a test set (generated from the available data) the performance is excellent, but if I apply my model to new data collected independently, performance is much worse (even if $f(\mathbf{x})$ did not change)
- This might explain the bad performance of DNNs on adversarial examples
- Sometimes this problem is also called covariate shift (covariates are the inputs)

Conclusions

- Basis functions perform a nonlinear transformation from input space to basis function space
- To avoid the Curse of Dimensionality and if one uses fixed basis functions, ($M \times$ roughness) should not be very large
- Neural networks are effective when the basis is sparse (la (sparse basis)) or when data is on a manifold (lb (data on a low-dimensional manifold))
- The next table evaluates linear models, distance-based methods (like nearest neighbor methods), models with fixed basis functions, neural networks, deep neural networks, and kernel approaches

Target \Model	Lin	Neighb.	fixed BF	Neural Nets	Deep NNs	Kernels
I (curse)	-	-	-	-	-	-
II (blessing)	-	+	+	+	+	+
III (smooth)	+	-	+	+	+	+
IV (simple)	+	+	+	+	+	+
la (sparse basis)	-	-	-	+	+	-
Ib (manifold)	-	$-(+$ dr)	$-(+d r)$	+	+	+
Ic (compos.)	-	-	-	-	+	-

- (+dr) stands for possibly good results with suitable dimensionality reduction by a preprocessing step;
- Case Ic are compositional functions, introduced in the lecture on deep neural networks
- Kernels are introduced in a later lecture

Appendix: Entropies

- Assume n discretization steps for each of the M input dimensions, e.g., $x_{j} \in$ $0,1,2, \ldots, n-1$
- With K discretization steps for the function, e.g., $f \in 0,1,2, \ldots, K-1$, we can realize $K^{\left(n^{M}\right)}$ functions, with entropy (number of required bits) (each function has the same probability for being generated)

$$
\text { Entropy }_{\mathcal{F}}=\log _{2} K^{\left(n^{M}\right)}=n^{M} \log _{2} K
$$

- For each possible input, we simply need $\log _{2} K$ bits and there are n^{M} possible inputs
- Interesting: It is not the accuracy of the representation (i.e., K) that "kills" us, it is the dimensionality M reflected in the number of possible inputs (i.e., n^{M})
- For a model class of fixed basis functions,

$$
\text { Entropy }_{\mathcal{M}}=\log _{2} K^{\left(M_{\phi}\right)}=M_{\phi} \log _{2} K
$$

if we represent each weight with $\log _{2} K$ bits

Appendix: VC-dimension

- For systems with fixed basis functions and binary classification, $\operatorname{dim}_{V C}=M_{P}=$ M_{ϕ} is the VC-dimension (proportional to our entropy) of the model class
- Note that the VC-dimension is a property of the model class \mathcal{M} and not of the function class \mathcal{F}
- If we have $N=M_{\phi}=\operatorname{dim}_{V C}$ data points, the design matrix $\Phi^{T} \Phi$ is a square matrix and might be invertible; in that case, no matter what the assignment of training labels \mathbf{y}, we perfectly fit the classification labels (e.g., with regression)
- VC-theory states that one needs at least $\operatorname{dim}_{V C}$ data points for a valid generalization; this makes sense, since, without regularization, there are an infinite number of solutions when $M_{\phi}<N$
- Formally, $\operatorname{dim}_{V C}$ is defined as the cardinality of the largest set of points that the model class can shatter (i.e., perfectly model for any assignments of targets)

