An Introduction to Function Approximation for Machine Learning

Volker Tresp
Winter 2023-2024
Problem Setting

- In an actual application, the data scientist needs to decide which model to use (linear Perceptron, fixed basis functions, neural networks, kernels, ...?)

- How well is one doing in solving the actual problem with the data actually available; in the lecture on model selection, we learn about some empirical methods for analysing some of these issues

- But what can theory tell us about these issues? Why are, e.g., deep neural networks so successful?

- In this lecture we will be a bit informal since formal treatments require advanced mathematical frameworks and are beyond the scope of this lecture
Target Function Class

- Let \mathcal{F} be the set of target functions.
- What characterizes the functions that mother nature generates for a particular problem, e.g., image classification, and how can I characterize them?
- In a theoretical analysis one characterizes this class in some way, hopefully limiting the class to the one actually occurring in practice (neither larger nor smaller).
- Often one defines the target class by some degree of smoothness of the functions; another target class of functions are composable functions (see lecture on deep learning).
Target Function Class (cont’d)

• The modern view is that the target function class assumes a tiny space in the space of all functions and e.g., deep learning models, work so well because they match this class reasonably well.

• Some claim that machine learning is impossible if the target function class is not restricted (no-free-lunch theorem).
Model Function Class

- What characterizes the model function class \mathcal{M}

- To simplify matter (mostly for notational simplicity), we assume a model function class can be described as

$$\mathcal{M} = \{f_w(\cdot)\}_w$$

i.e. functions which only vary in their parameters (but this is not essential)
Distance between Functions

• Consider the true function $f(\cdot)$ and an model $f_w(\cdot)$. We define

$$\|f - f_w(\cdot)\|_B^2 = \frac{1}{V_B} \int_B (f(x) - f_w(x))^2 \, dx$$

Here V_B is the volume of the unit ball B in M dimensions.

• This is simply the average squared Euclidean distance, applied to two functions.
Weighted Distance

- The average squared Euclidean distance between the two functions is (weighted by $P(x)$)

$$\|f - f_w(\cdot)\|_{P(x)}^2 = \int (f(x) - f_w(x))^2 P(x) dx$$

- $P(x)$ is the probability distribution of the input data

- In some cases the input data only occupy a small subspace (manifold) of the unit ball; some learning approaches are able to explore this
Distance between Functions

- We define ϵ_B to be the minimum Euclidean distance for the “most difficult” function out of the function class

$$\epsilon_B = \min_w \max_f \|f - f_w\|_B$$

$$\epsilon_{P(x)} = \min_w \max_f \|f - f_w\|_{P(x)}$$

$f \in \mathcal{F}$, $f_w \in \mathcal{M}$
Statistical Machine Learning

- Statistical machine learning analyses the distance between the expected distance between a model function, where the parameters were estimated based on some training data, and a given f

- This is not the issue in approximation theory, and will be discussed in a later lecture
Analysis of Dimensionality

- Consider input space dimension M

- If in one dimensions, we need $M_{\phi}^{(one-dim)}$ RBFs (e.g., $M_{\phi}^{(one-dim)} = 10$), and we want to maintain the same complexity in higher dimensions, then we need

$$M_{\phi} = \left(M_{\phi}^{(one-dim)} \right)^M$$

RBFs in M dimensions
10 RBFs in one dimension

100 RBFs in two dimensions

d, s

L
Analysis of Dimensionality (cont’d)

• We get

\[M^{(\text{one-dim})}_\phi = O \left(\frac{1}{\epsilon B} \right) \]

• Here, \(m \) is a characterization of the smoothness of the target class: \(m \) can be the set of all functions with continuous partial derivatives of orders up to \(m \) (derivatives of higher order can be discontinuous).

• This result can, e.g., be found in: “Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review” Tomaso Poggio et al., International Journal of Automation and Computing, 2017, Equation 5.
• We can write this as

\[M_{\phi}^{(one-dim)} = \mathcal{O}(\text{accuracy}^{\text{roughness}}) \]

where we have defined \(\text{accuracy} = 1/\epsilon_B \) and \(\text{roughness} = 1/m \)
Analysis of Dimensionality: Main Result

- Overall, the total number of basis function is then
 \[M_\phi = \mathcal{O}_{}(\text{accuracy}^M \times \text{roughness}) \]

- Note, that, for a fixed desired accuracy (e.g., \(\text{accuracy} = 10 \)), the number of basis functions increases exponentially with \(M \times \text{roughness} \)

- Sometimes it is more instructive to look at the logarithm
 \[\log M_\phi = \mathcal{O}_{}(M \times \text{roughness} \times \log(\text{accuracy})) \]
Case I: Curse of Dimensionality

- \mathcal{F}: dimensionality M is large, and roughness is large
- \mathcal{M}: Considering that $(M \times \text{roughness})$ is in the exponent, M_ϕ is unrealistically large
- This is the famous Bellman’s “Curse of Dimensionality”
20-Dimensional Checker Board Function: “Curse of Dimensionality”

\[d \leftrightarrow \text{x-space} \]

\[M \text{ is high (} M = 20) \text{, roughness is large} \]

The required number of basis function is huge

2-D slice through a 20-Dimensional input space
Case II: Blessing of Dimensionality

- \mathcal{F}: dimensionality M is small but roughness is large

- In this case $(M \times \text{roughness})$ might be acceptable

- \mathcal{M}: This is what I would call the “Blessing of Dimensionality”: a complex nonlinear classification problem (large roughness) can be solved by a transformation of the low-dimensional input space (M) into a high-dimensional space (M_ϕ) where the problem might even become linearly separable
2-D Checker Board Function

Here $M=2$ *(roughness is large)* and with less than 100 RBF basis functions we might get a good fit.
Case III: Smooth Target Function in High Dimensions

• \mathcal{F}: dimensionality M is large and roughness is small (the target function is smooth)

• A special case would be when the target functions are linear functions; then where $M_\phi = M + 1$; The target function exhibits a voting behavior: each input itself has a (small) contribution to the output

• \mathcal{F}: if the target functions can well be approximated by linear functions, the input dimension can be quite high ($M > 10000$)
Case IV (Simple): Smooth Target Function in Low Dimensions

- \mathcal{F}: dimensionality M is small and roughness is small (the target function is smooth)
- \mathcal{M}: Only a small number M_ϕ of smooth basis functions are required
x-space

M is large ($M=20$) and roughness is small

Here $M=20$ is medium size and with less than 100 RBF basis functions we might get a good fit

2-D slice through a 20-D input space
Revisiting Case I

- Fortunately, even Case I is not as hopeless as it first appears, since, in reality, classes are more restricted.

- Ia: \(\mathcal{F} \): The target functions have high-frequency components, but only locally, and a sparse solution is feasible.

- Ib: The input data points are restricted to a low-dimensional manifold (reflected in \(P(x) \)).

- Ic: \(\mathcal{F} \): The target functions are composable (discussed in the lecture on deep learning).
Case Ia: Sparse Basis: No Curse of Dimensionality with a Neural Network

- \mathcal{F}: both M and roughness are large, so the required M_ϕ is large, but only $H \ll M_\phi$ basis functions have nonzero weights; e.g., high complexity might only be present in a restricted region in input space.

- \mathcal{M}: With a neural network model, the number of hidden units with nonzero weights (i.e., H) might even be independent of M!

- As a model class, classical neural networks with H hidden units can adaptively find the “perfect” sparse basis during training (with backpropagation).
x-space

$H=16$ hidden units in a neural network might be sufficient

Although the input space might be high dimensional, complexity is limited
Case Ib: Manifold

- So far we did not assume any particular input data distribution: $P(x)$ might be a uniform distribution within the unit ball.

- But sometimes $P(x)$ is restricted to a subspace of small dimension $M_h < M$; in the nonlinear case, the subspace is called a manifold (data is often on a manifold, when model accuracy is very high (like in OCR).

- \mathcal{M}: we might only need on the order of $\text{accuracy}^{M_h \times \text{roughness}}$ (instead of $\text{accuracy}^{M \times \text{roughness}}$) basis functions to cover the relevant region in input space.

- Some model classes, like neural networks / deep neural networks, model data on a low-dimensional manifold quite effectively.

- Other approaches perform a preprocessing step (clustering, PCA, ICA, …) to find the manifold (dimensionality reduction), and then apply any model class suitable for low-dimensional data.
• Although the input space might be high dimensional, the data lives in a subspace.
• The dimension of the subspace is M_h, here 1.

In case that the columns of V are orthonormal, there is a simple geometric interpretation.
More general, the data lives in a manifold.
Why Nature Generates Data on Manifolds

- We encountered this in the lecture on basis functions
- Assume that nature generates data in some low-dimensional space; nature then transforms this data to a high dimensional space by some nonlinear transformation
- This data then become the input data; then the input data might be on a manifold, as discussed in the lecture on basis functions!
- See lecture on manifold learning
In the 1-D input space, a linear classifier would not be able to separate the two classes.

From a linear 1-D input space (top) to a nonlinear 1-D manifold in 2-D basis function space (bottom).

In basis function space, classes can linearly be separated!

The image of the 1-D input data space is a 1-D nonlinear manifold.
Data provided by nature is on a 2D manifold

ML
e.g., a neural network

Visible features accessible to machine learning: data is on a 2D manifold

Low dimensional (noisy) features in some hidden space of nature
Adversarial problem

- Training data provided by nature is on a 2D manifold
- Test data is on a 3D manifold

Output

ML
e.g., a neural network

Visible features accessible to machine learning: data is on a 2D manifold

Some test data are on a 3D manifold

Low dimensional (noisy) features in some hidden space of nature
An MLP with a Bottleneck Layer

Output

Data at each layer is on a 2D manifold

"bottleneck"

Visible features accessible to machine learning (might not be on a manifold)
Manifold: Adversarial Examples

- But there is a danger: if we consider test data outside of the manifold, then performance might degrade quickly
- So although, $\epsilon_{P(x)}$ might be small, ϵ_B could be large!
- A common issue is: even on a test set (generated from the available data) the performance is excellent, but if I apply my model to new data collected independently, performance is much worse (even if $f(x)$ did not change)
- This might explain the bad performance of DNNs on adversarial examples
- Sometimes this problem is also called covariate shift (covariates are the inputs)
Conclusions

- Basis functions perform a nonlinear transformation from input space to basis function space
- To avoid the Curse of Dimensionality and if one uses fixed basis functions, \((M \times \text{roughness})\) should not be very large
- Neural networks are effective when the basis is sparse (Ia (sparse basis)) or when data is on a manifold (Ib (data on a low-dimensional manifold))
- The next table evaluates linear models, distance-based methods (like nearest neighbor methods), models with fixed basis functions, neural networks, deep neural networks, and kernel approaches
<table>
<thead>
<tr>
<th>Target \ Model</th>
<th>Lin</th>
<th>Neighb.</th>
<th>fixed BF</th>
<th>Neural Nets</th>
<th>Deep NNs</th>
<th>Kernels</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (curse)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II (blessing)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>III (smooth)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IV (simple)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ia (sparse basis)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Ib (manifold)</td>
<td>-</td>
<td>- (+dr)</td>
<td>- (+dr)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ic (compos.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

- (+dr) stands for possibly good results with suitable dimensionality reduction by a preprocessing step;

- Case Ic are compositional functions, introduced in the lecture on deep neural networks

- Kernels are introduced in a later lecture
Appendix: Entropies

- Assume n discretization steps for each of the M input dimensions, e.g., $x_j \in 0, 1, 2, ..., n - 1$

- With K discretization steps for the function, e.g., $f \in 0, 1, 2, ..., K - 1$, we can realize $K^{(n^M)}$ functions, with entropy (number of required bits) (each function has the same probability for being generated)

$$\text{Entropy}_F = \log_2 K^{(n^M)} = n^M \log_2 K$$

- For each possible input, we simply need $\log_2 K$ bits and there are n^M possible inputs

- Interesting: It is not the accuracy of the representation (i.e., K) that “kills” us, it is the dimensionality M reflected in the number of possible inputs (i.e., n^M)

- For a model class of fixed basis functions,

$$\text{Entropy}_M = \log_2 K^{(M_\phi)} = M_\phi \log_2 K$$

if we represent each weight with $\log_2 K$ bits
• For systems with fixed basis functions and binary classification, $\text{dim}_{VC} = M_P = M_\phi$ is the VC-dimension (proportional to our entropy) of the model class

• Note that the VC-dimension is a property of the model class \mathcal{M} and not of the function class \mathcal{F}

• If we have $N = M_\phi = \text{dim}_{VC}$ data points, the design matrix $\Phi^T\Phi$ is a square matrix and might be invertible; in that case, no matter what the assignment of training labels y, we perfectly fit the classification labels (e.g., with regression)

• VC-theory states that one needs at least dim_{VC} data points for a valid generalization; this makes sense, since, without regularization, there are an infinite number of solutions when $M_\phi < N$

• Formally, dim_{VC} is defined as the cardinality of the largest set of points that the model class can shatter (i.e., perfectly model for any assignments of targets)