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Reference

• This material is related to Bishop, Deep Learning, Sections 4.11, 5.4.2
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Nonlinear Mappings and Nonlinear Classifiers

• Regression:

– Linearity is often a good assumption when many inputs influence the output

– Some natural laws are (approximately) linear F = ma

– But in general, it is rather unlikely that a true function is linear

• Classification:

– Linear classifiers also often work well when many inputs influence the output

– But also for classifiers, it is often not reasonable to assume that the classification

boundaries are linear hyperplanes
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Trick

• We simply transform the input into a high-dimensional space where the regression/classification

might again be linear!

• Other view: let’s define appropriate features (feature engineering)

• Other view: let’s define appropriate basis functions

• Challenge: XOR-type problem with patterns

−1 −1 → −1
+1 −1 → +1
−1 +1 → +1
+1 +1 → −1
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Trick: Let’s Add Basis Functions

• Linear Model: input variables: x1, x2

• Let’s consider the product x1x2 as additional input

• The interaction term x1x2 couples two inputs nonlinearly
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With a Third Input x1x2 the XOR Becomes Linearly Separable

h(x) = 0× ϕ1(x) + 0× ϕ2(x) + 0× ϕ3(x)− 1× ϕ4(x)

with ϕ1(x) = 1, ϕ2(x) = x1, ϕ3(x) = x2, ϕ4(x) = x1x2
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A Nonlinear Function
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f(x) = x− 0.3x3

Basis functions ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) = x2, ϕ4(x) = x3 und w =

(0,1,0,−0.3)
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Basic Idea

• The simple idea: in addition to the original inputs, we add inputs that are calculated

as deterministic functions of the existing inputs, and treat them as additional inputs

• Example: Polynomial Basis Functions

{1, x1, x2, x3, x1x2, x1x3, x2x3, x21, x
2
2, x

2
3}

• Basis functions {ϕm(x)}Mϕ
m=1

• In the example:

ϕ1(x) = 1 ϕ2(x) = x1 ϕ6(x) = x1x3 ...

• Independent of the choice of basis functions, the regression parameters are calculated

using the well-known equations for linear regression
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The Constant Basis Function

• Note that we write ϕ1(x) = 1, so the first basis function is the constant (if required)

• Thus, for the rest of the discussion, the number of basis functions Mϕ is identical to

the number of adaptable parameters Mp, i.e.,

Mϕ = Mp

Typically, Mϕ >> M , where M is the number of inputs
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Linear Model Written as Basis Functions

• We can also write a linear model as a sum of basis functions with

ϕ1(x) = 1, ϕ2(x) = x1, . . . ϕMϕ
(x) = xM
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Review: Penalized LS for Linear Regression

• Multiple Linear Regression:

fw(x) = w0 +
M∑
j=1

wjxj = xTw

• Regularized cost function

costpen(w) =
N∑

i=1

(yi − fw(xi))
2 + λ

M∑
j=0

w2
j

• The penalized LS-Solution gives

ŵpen =
(
XTX+ λI

)−1
XTy with X =

 x1,0 . . . x1,M
. . . . . . . . .
xN,0 . . . xN,M
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Regression with Basis Functions

• Model with basis functions:

fw(x) =

Mϕ∑
m=1

wmϕm(x)

• Regularized cost function with weights as free parameters

costpen(w) =
N∑

i=1

yi −
Mϕ∑
m=1

wmϕm(xi)

2

+ λ

MΦ∑
m=1

w2
m

• The penalized least-squares solution

ŵpen =
(
ΦTΦ+ λI

)−1
ΦTy
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with

Φ =

 ϕ1(x1) . . . ϕMϕ
(x1)

. . . . . . . . .
ϕ1(xN) . . . ϕMϕ

(xN)





Nonlinear Models for Regression and Classification

• Regression:

fw(x) =

Mϕ∑
m=1

wmϕm(x)

As discussed, the weights can be calculated via penalized LS

• Classification:

ŷ = sign(fw(x)) = sign

 Mϕ∑
m=1

wmϕm(x)


The Perceptron learning rules can be applied, or some other learning rules for linear

classifiers, if we replace 1, xi,1, xi,2, ... with ϕ1(xi), ϕ2(xi), ...
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Which Basis Functions?

• The challenge is to find problem specific basis functions which are able to effectively

model the true mapping, resp. that make the classes linearly separable; in other

words we assume that the true dependency f(x) can be modelled by at least one

of the functions fw(x) that can be represented by a linear combination of the basis

functions, i.e., by one function in the function class under consideration

• If we include too few basis functions or unsuitable basis functions, we might not be

able to model the true dependency

• If we include too many basis functions, we need many data points to fit all the unknown

parameters (This sound very plausible, although we will see in the lecture on kernels

that it is possible to work with an infinite number of basis functions)
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Radial Basis Function (RBF)

• We already have learned about polynomial basis functions

• Another class are radial basis functions (RBF). Typical representatives are Gaussian

basis functions

ϕj(x) = exp

(
−

1

2s2
∥x− cj∥2

)
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Three RBFs (blue) form f(x) (pink)
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Nonlinear Manifold

• Note that if data points in x-space are uniformly or Gaussian distributed, in basis

function space, data can be on a nonlinear manifold, so neither uniformly nor Gaussian

distributed!
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Optimal Basis Functions

• So far all seems to be too simple

• Here is the catch: in some cases, the number of “sensible” basis functions increases

exponentially with the number of inputs

• If in one dimensions, we need M
(1)
ϕ RBFs (e.g., M

(1)
ϕ = 10), and we want to

maintain the same complexity in higher dimensions, then we need (M(1)
ϕ )M RBFs

in M dimensions (e.g., 10M ) (tensor product of basis functions)

• We get a similar exponential increase for polynomial basis functions; the number of

polynomial basis functions of a given degree increases quickly with the number of

dimensions (x2); (x2, y2, xy); (x2, y2, z2, xy, xz, yz), . . .

• The most important challenge: How can I get a small number of relevant basis func-

tions, i.e., a small number of basis functions that define a function class that contains

the true function (true dependency) f(x)?
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Forward Selection: Stepwise Increase of Model Class
Complexity

• Start with a linear model

• Then we stepwise add basis functions; at each step add the basis function whose

addition decreases the training cost the most (greedy approach)

• Examples: classification with polynomial basis functions (OCR, J. Schuermann, AEG,

later Siemens)

– Pixel-based image features (e.g., of hand written digits)

– Dimensional reduction via PCA (see later lecture)

– Start with a linear classifier and add polynomials that significantly increase per-

formance

– Apply a linear classifier
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Backward Selection: Stepwise Decrease of Model Class
Complexity (Model Pruning)

• Start with a model class which is too complex and then incrementally decrease com-

plexity

• First start with many basis functions

• Then we stepwise remove basis functions; at each step remove the basis function

whose removal increases the training cost the least (greedy approach)

• A stepwise procedure is not optimal. The problem of finding the best subset of K

basis functions is NP-hard
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Example: Ad Placements

• The decision of which ad to place for which user in which context is defined as a

classification or regression problem in a high-dimensional feature space

• Here the features are often handcrafted and new features are continuously added and

removed, optimizing the prediction in the long run

• Speed in training and recall and a small memory trace are important criteria
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Conclusions

• The best way to think about models with fixed basis functions is that they implement

a form of prior knowledge: we make the assumption that the true function can be

modelled by the set of weighted basis function

• The data then favors certain members of the function class

• In the lecture on kernel systems we will see that the set of basis functions can be

translated in assuming certain correlations between (mostly near-by) function values,

implementing a smoothness prior
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