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Motivation

We are dealing withhigh-dimensional data in pattern recognition.

What are the problems?

– Noisy dimensions: Only a small number of dimensions suffice

– Learnability: “curse of dimensionality”

– Inefficiency: Computational cost is too high

How to solve these problems?Dimensionality Reduction

– Feature selection: Select part of the dimensions

– Feature transformation/projection: Learn a mapping that maps from the
high-dimensional input space into a low-dimensionallatent space

Some notations: We haveN documents

– Documenti is denoted asxi ∈ X ⊂ RM , with outputyi ∈ Y ⊂ RL

– X ∈ RN×M = [x1, . . . ,xN ]T , Y ∈ RN×L = [y1, . . . ,yN ]T

– We aim to derive a mappingΨ : X 7→ V such thatV ⊂ RK,K < M



Principal Component Analysis

A well-known unsupervised feature transformation method.

Some formulations

– Mapping directions with largest data covariance

– Best rankK approximation to the data matrixX

An optimization problem tominimize the reconstruction error:

min
A,V

‖X−VA‖2
F

s.t. V>V = I,

with V ∈ RN×K the latent semantics, andA ∈ RK×M the factor loadings.

Drawbacks of PCA:

– PCA isunsupervised and may not be beneficial to supervised learning

– No inter-correlation betweenX andY is considered in the mapping

– No intra-correlation between dimensions ofY (if multiple outputs) is
considered in the mapping



MORP

The optimization problem solved by MORP (with0 ≤ β ≤ 1):

min
A,B,V

(1− β)‖X−VA‖2
F + β‖Y −VB‖2

F

s.t. V>V = I,V = XW.

We are minimizing the reconstruction errors of bothX andY

We are constraining the mappings to be linear inX

DenoteK = (1 − β)XX> + βYY>. Let [v1, . . . ,vN ] be its eigenvectors
with eigenvaluesλ1 ≥ . . . ≥ λN . We obtain at the optimum,

A = V>X, B = V>Y;

V = [v1, . . . ,vK]R whereR is an arbitraryK ×K orthogonal matrix;

The optimum of the cost function is
∑N

i=K+1 λi;

DenoteW = [w1, . . . ,wK], eachw solves the optimization problem:

max
w∈RM

w>X>KXw s.t. w>X>Xw = 1.



MORP: Primal Form

The optimization problem forw is ill-posed whenrank(X) < M .

One way to deal with this problem is to introduce Tickhonov regularizer:

min
w∈RM

w>X>K−1Xw + γ‖w‖2

s.t. w>X>Xw = 1.

We summarize theprimal form of the MORP solution:

CalculateK = (1− β)XX> + βYY>;

Solve a generalized eigenvalue problem

[X>K−1X + γI]w = λX>Xw,

obtain generalized eigenvectorsw1, . . . ,wK with smallestK eigenvalues
λ1 ≤ . . . ≤ λK;

Form mapping functionsψj(x) =
√
λjw

>
j x, j = 1, . . . , K, and finally

Ψ(x) = [ψ1(x), . . . , ψK(x)]> defines the mappingΨ.



MORP: Dual Form

Non-linear mappings are obtained by applyingrepresenter theorem and defin-
ing dual variable α as

w = X>α.

We summarize thedual form of the MORP solution:

CalculateKx, Ky using kernel functionsκx,κy, andK = (1−β)Kx+βKy;

Solve a generalized eigenvalue problem

[KxK
−1Kx + γKx]α = λK2

xα,

obtain generalized eigenvectorsα1, . . . ,αK with smallestK eigenvalues
λ1 ≤ . . . ≤ λK;

Form mapping functionsψj(x) =
√
λj

∑N
i=1(αj)iκx(xi,x), and finally

Ψ(x) = [ψ1(x), . . . , ψK(x)]> defines the mappingΨ.



Discussion

Which form to choose in real world applications?

Primal MORP solves anM ×M generalized eigenvalue problem

– is more efficient whenM < N and only learns alinear mapping forX

Dual MORP solves anN ×N generalized eigenvalue problem

– is more efficient whenN < M for linear mappings

– can learn non-linear mappings with carefully chosen kernel functionκx

Two extreme cases of MORP:

Whenβ = 0, MORP is identical to PCA (primal) and kernel PCA (dual)

Whenβ = 1, MORP shows similar spirit with kernel dependency estimation
(KDE), but is better since MORP has one unified optimization framework

Other supervised projection methods

FDA: only focuses on single output with binary classification

CCA: minimizes inter-correlation butignores self-correlations

PLS: is a penalized CCA and focuses on the regression of known outputs



Experiment 1: User Preference Prediction

The Goal: Evaluate projection methods with prediction performance.

We extract 642 paintings from 47 artists and collect 190 user preference data
from an online survey. We select some training users and make predictions
for test users based on low-level image features and ratings of other users. For
projection methods, a linear SVM classifier is trained on the 50-dimensional
latent space.

MORP is consistently better than other methods



Experiment 2: Multi-label Classification

The Goal: Evaluate projection methods in terms of classification.

Data set: 1021 images from Corel, with 491 features and 37 categories.

We manually labeled the data and it has amulti-label setting, i.e., each docu-
ment can belong to multiple categories.

We test the following two settings:

Setting (A): We pick up70% categories for classification and employ 5-fold
cross-validation with one fold training and 4 folds testing

Setting (B): Evaluate the classification performance on the rest30% cate-
gories for previously unseen data with newly derived features

For projection methods, linear SVMs are trained on the (non-linearly) pro-
jected feature space. For “Original Features” an SVM with RBF kernel is
trained.



Results: (setting A: top; setting B: bottom)

MORP achieves the best performance

CCA can only obtain effective dimensions less than the number of categories

Only MORP can obtain significantly better performance than Original Features



Conclusion

MORP has the following advantages:

It is supervised and takes PCA as a special case (whenβ = 0)

It considers both the inter-correlation betweenX and Y, and the intra-
correlation ofY

Both linear and non-linear mappings are easy to derive

It handles multiple outputs simultaneously

Experimental results are very encouraging.


