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Abstract

We introduce a Gaussian process (GP) framework,stochastic relational models
(SRM), for learning social, physical, and other relational phenomena where in-
teractions between entities are observed. The key idea is to model the stochastic
structure of entity relationships (i.e., links) via a tensor interaction of multiple
GPs, each defined on one type of entities. These models in fact define a set of
nonparametric priors on infinite dimensional tensor matrices, where each element
represents a relationship between a tuple of entities. By maximizing the marginal-
ized likelihood, information is exchanged between the participating GPs through
the entire relational network, so that the dependency structure of links is messaged
to the dependency of entities, reflected by the adapted GP kernels. The framework
offers a discriminative approach to link prediction, namely, predicting the exis-
tences, strengths, or types of relationships based on the partially observed linkage
network as well as the attributes of entities (if given). We discuss properties and
variants of SRM and derive an efficient learning algorithm. Very encouraging ex-
perimental results are achieved on a toy problem and a user-movie preference link
prediction task. In the end we discuss extensions of SRM to general relational
learning tasks.

1 Introduction

Relational learning concerns the modeling of physical, social, or other phenomena, where rich types
of entities interact via complex relational structures. If compared to the traditional machine learning
settings, the entity relationships provide additional structural information.

A simple example of a relational setting is the user-movie rating database, which contains user enti-
ties with user attributes (e.g., age, gender, education), movie entities with movie attributes (e.g., year,
genre, director), and ratings (i.e., relations between users and movies). A typical relational learning
problem isentity classification, for example, segmenting users into groups. One may apply usual
clustering or classification methods based on aflat structureof data, where each user is associated
with a vector of user attributes. However a sound model should additionally explore the user-movie
relations as well as even the movie attributes, since like-minded users tend to give similar ratings on
the same movie, and may like (or dislike) movies with similar genres. Relational learning addresses
this and similar situation where it is not natural to transform the data into a flat structure.

Entity classification in a relational setting has gained considerable attentions, like webpage clas-
sification using both textual contents and hyperlinks. However, in other occasions relationships
themselves are often of central interest. For example, one may want to predict protein-protein in-



teractions, or in another application, user ratings for products. The family of these problems has
been calledlink prediction1, which is the primary topic of this paper. In general, link prediction
includes link existence prediction (i.e., does a link exist?), link classification (i.e., what type of the
relationship?), and link regression (i.e., how does the user rate the item?).

In this paper we propose a family ofstochastic relational models(SRM) for link prediction and
other relational learning tasks. The key idea of SRM is a stochastic link-wise process induced by
a tensor interplay of multiple entity-wise Gaussian processes (GP). These models in fact define a
set of nonparametric priors on an infinite dimensional tensor matrix, where each element represents
a relationship between a tuple of entities. By maximizing the marginalized likelihood, informa-
tion is exchanged between the participating GPs through the entire relational network, so that the
dependency structure of links is messaged to the dependency of entities, reflected by the learned
entity-wise GP kernels (i.e., GP covariance functions). SRM isdiscriminativebecause training is
on a conditional model of links. We present various models of SRM and address the computational
issue, which is crucial in link prediction because the number of potential links grows exponentially
with the entity size. SRM has shown encouraging results in our experiments.

This paper is organized as follows. We introduce the stochastic relational models in Sec. 2, and
describe the algorithms for inference and parameter estimation in Sec. 3 and Sec. 4, followed by Sec.
5 on implementation details. Then we discuss the related work in Sec. 6 and report experimental
results in Sec. 7, followed by conclusions and extensions in Sec. 8.

2 Stochastic Relational Models

We first consider pairwise asymmetric linksr between entitiesu ∈ U andv ∈ V. The two sets
U andV can be identical or different. We useu or v to represent the attribute vectors of entities
or their identity when entity attributes are unavailable. Note thatri,n ≡ r(ui, vn) does not have
to be identical torn,i whenU = V, i.e. relationships can be asymmetrical. Extensions to involve
more than two entity sets, multi-way relations (i.e., links connecting more than two entities), and
symmetric links are straightforward and will be briefly discussed in Sec. 8.

We assume that the observable linksr are derived as local measurements of a real-valuedlatent
relational functiont : U × V → R, and each linkri,n is solely dependent on its latent valueti,n,
modeled by the likelihoodp(ri,n|ti,n). The focus of this paper is a family ofstochastic relational
processesacting onU × V, the space of entity pairs, to generate the latent relational functiont, via
a tensor interaction of two independent entity-specific GPs, one acting onU and the other onV.
We call themprocessesbecauseU andV can both encompass an infinite number of entities. Let
the relational processes be characterized byhyperparametersθ = {θΣ, θΩ}, θΣ for the GP kernel
function onU andθΩ for the GP kernel function onV, a SRM thus defines a Bayesian priorp(t|θ)
for the latent variablest. Let I be the index set of entity pairs having observed links, the marginal
likelihood (also called evidence) under such a prior is

p(RI|θ) =
∫ ∏

(i,n)∈I
p(ri,n|ti,n)p(t|θ)dt, θ = {θΣ, θΩ} (1)

whereRI = {ri,n}(i,n)∈I. We estimate the hyperparametersθ by maximizing the evidence, which is
an empirical Bayesian approach to learning therelational structureof data. Onceθ are determined,
we can predict the link for a new pair of entities via marginalization over thea posteriorip(t|RI, θ).

2.1 Choices for the Pirorp(t|θ)
In order to represent a rich class of link structures,p(t|θ) should be sufficiently expressive. In the
following subsections, we will present three cases ofp(t|θ), from specific to general, by gradually
extending conventional GP models.

2.1.1 A Brief Introduction to Gaussian Processes

A GP defines a nonparametric prior distribution over functions in Bayesian inference. A random
real-valued functionf : X → R follows a GP prior, denoted byGP(µ, Σ), if for everyfinite set

1We will use “link” and “relationship” interchangeably throughout this paper.



{xi}N
i=1, f = {f(xi}N

i=1 follows a multivariate Gaussian distribution with meanµ = {µ(xi)}N
i=1

and covariance (or kernel)Σ = {Σ(xi, xj ; θΣ)}N
i,j=1 with parameterθΣ. GivenD = {xi, yi}N

i=1,
whereyi is a measurement off(xi) corrupted by Gaussian noise, one can make predictions via
the marginal likelihoodp(y|x,D, θΣ) =

∫
p(y|f, x)p(f |D, θΣ)df . For non-Gaussian measurement

processes, as in classification models, the integral cannot be solved analytically, and approximation
for inference is required. A comprehensive coverage of GP models can be found in [9].

2.1.2 Hierarchical Gaussian Processes

By observing the relational data collectively, one may notice that two entitiesui anduj in U demon-
strate correlated relationships to entities inV. For example, two users often show opposite or close
opinions on movies, or two hub web pages are co-linked by a set of other authority web pages. In
this case, the dependency structure of links can be reduced to a dependency structure of entities
in U . A hierarchical GP (HGP) model [13], originally proposed formulti-task learning, can be
conveniently applied in such a situation. The model assumes that, for everyv ∈ V, its relational
functiont(·, v) : U → R is an i.i.d. sample drawn from a common entity-wise GP with covariance
Σ : U × U → R. This provides a case ofp(t|θ) in a SRM, whereθ = θΣ determines the GP kernel
functionΣ. Optimizing the GP kernelΣ via evidence maximization means to learn the dependency
of entities inU , summarized over all the entitiesv ∈ V.

There is a drawback if applying HGP to link prediction. The model only learns a one-side structure,
while ignoring the dependency inV. In particular, the attributes of entitiesv cannot be incorporated
even if their entity attributes are available. However, for the mentioned applications, it also makes
sense to explore the dependency between movies, or the dependency between authority web pages.

2.1.3 Tensor Gaussian Processes

To overcome the shortcoming of HGP, we consider a more complex SRM, which employs two
GP kernel functionsΣ : U × U → R andΩ : V × V → R. The model explains the relational
dependency through the entity dependencies of bothV andU . Let θ = {θΣ, θΩ}, we describe a
stochastic relational processp(t|θ) as the following:

Definition 2.1 (Tensor Gaussian Processes). Given two setsU andV, a collection of random vari-
ables{t(u, v)|t : U × V → R} follow a tensor Gaussian processes (TGP), if for every finite sets
{u1, . . . , uN} and {v1, . . . , vM}, random variablesT = {t(ui, vn)}, organized into anN × M
matrix, have a matrix-variate normal distribution

NN×M (T|B,Σ,Ω) = (2π)−
MN

2 |Σ|−M
2 |Ω|−N

2 etr

{
−1

2
Σ−1(T−B)Ω−1(T−B)>

}

characterized by meanB = {b(ui, vn)} and positive definite covariance matricesΣ =
{Σ(ui, uj ; θΣ)} andΩ = {Ω(vn, vm; θΩ)}. This random process is denoted asT GP(b,Σ, Ω).2

In the above theoremetr[·] is a shortcut forexp[trace(·)]. It is easy to see that the model reduces
to the HGP model ifΩ = I. As a key difference, the new model treats the relational function
t as awholesample from a TGP, instead of being formed by i.i.d. functions in the HGP model.
Let vec(T>) = [t1,1, t1,2, . . . , t1,M , t2,1, . . . , t2,M , . . . , tN,M ]>. If T ∼ NN×M (T|B,Σ,Ω), then
vec(T>) ∼ N (0,Υ), where the covarianceΥ = Σ ⊗ Ω is the Kronecker product of two co-
variance matrices [6]. In other words, TGP is in fact a GP for the relational functiont, where the
kernel functionΥ : (U × V) × (U × V) → R is defined via a tensor product of two GP kernels
Cov(ti,n, tj,m) = Υ[(ui, vn), (uj , vm)] = Σ(ui, uj)Ω(vn, vm). The model explains the dependence
structure of links by the dependence structure of participating entities.

It is well known that a linear predictive model has a GP interpretation if its linear weights follow a
Gaussian prior. A similar connection exists for TGP.

Theorem 2.2. Let U ⊆ RP , V ⊆ RQ, andW ∼ NP×Q(0, IP , IQ), whereIP denotes aP × P
identity matrix and〈·, ·〉 denotes the inner product, then the bilinear functiont(u, v) = u>Wv
followsT GP(0, Σ, Ω) with Σ(ui, uj) = 〈ui, uj〉 andΩ(vn, vm) = 〈vn, vm〉.

2Hereafter we always assumeb(u, v) = 0 in TGP for simplicity.



The proof is straightforward through Cov[t(ui, vn), t(uj , vm)] = 〈ui, uj〉〈vn, vm〉 and
E[t(ui, vn)] = 0, where E[·] means expectation. In practice, the linear model will help to provide an
efficient discriminative approach to link prediction.

It appears that link prediction using TGP is almost the same as a normal GP regression or classifi-
cation, except that the hyperparametersθ now have two parts,θΣ for Σ andθΩ for Ω. Unfortunately
TGP inference suffers from a serious computational problem – it does not scale well for even a small
size of entities. For example, if there is a fixed portion of missing data for pairwise relationships be-
tweenN u-entities andM v-entities, the size of observations scales inO(NM). Since GP inference
has the complexity cubic to the size of data, the complexityO(N3M3) of TGP is computationally
prohibitive.

2.1.4 A Family of Stochastic Processes for Entity Relationships

To improve the scalability of SRM, and also describe the relational dependency in a way similar to
TGP, we propose a family of stochastic processesp(t|θ) for entity relationships.

Definition 2.3 (Stochastic Relational Processes). A relational functiont : U × V → R is said to

follow a stochastic relational process (SRP), ift(u, v) = 1√
d

∑d
k=1 fk(u)gk(v), fk(u) iid∼ GP(0,Σ),

gk(v) iid∼ GP(0,Ω). We denotet ∼ SRPd(0, Σ, Ω), whered is the degrees of freedom.

Interestingly, there exists an intimate connection between SRP and TGP:

Theorem 2.4. SRPd(0,Σ,Ω) converges toT GP(0, Σ, Ω) in the limitd →∞.

Proof. Based on the central limit theory, for every(ui, vn), ti,n ≡ t(ui, vn) converges to a
Gaussian random variable. In the next steps, we prove E[ti,n] = 0 and Cov(ti,n, tj,m) =
E[ti,ntj,m] = 1

d{
∑d

k=1 E[fk(ui)fk(uj)gk(vn)gk(vm)] +
∑d

k 6=κ E[fk(ui)fκ(uj)gk(vn)gκ(vm)]} =
1
d

∑d
k=1 E[fk(ui)fk(uj)gk(vn)gk(vm)] = Σ(ui, uj)Ω(vn, vm).

The theorem suggests that there is a constructive definition of TGP, where relationships are formed
via interactions between infinite samples from two GPs. Moreover, given a sufficiently larged, SRP
will provide a close approximation to TGP.

SRP is a general family of priors for modeling the relationships between entities, in which HGP and
TGP are special cases. The generalization offers several advantages: (1) SRP can model symmetric
links between the same set of entities. If we build a generative process whereU = V, Σ = Ω and
fk = gk, then on every finite sets{ui}N

i=1, T = {t(ui, uj)} is always a symmetric matrix; (2) Given
a fixedd, the inference with SRP obtains a much reduced complexity. In Sec. 3 we will introduce
an inference algorithm that scales inO[d(N3 + M3)], which is much less thanO(N3M3).

2.2 Choices for the Likelihoodp(ri,n|ti,n)

The likelihood term describes the dependency of observable relationships on the latent variables. It
should be tailored to the types of observations to be modeled. Here we list three possible situations:

• Binary Classification: Relationships may take categorical states, e.g., “cue” or ”no cue” in
disease-treatment relationship prediction. It is popular to consider binary classification and em-
ploy the probit function to model the Bernoulli distribution over class labels, i.e.p(ri,n|ti,n) =
Φ (ri,nti,n), whereΦ(·) is a cumulative normal function, andri,n ∈ {−1,+1}.
• Regression: In this case we considerri,n taking continuous values. For example, one may want to
predict the rating of useru for moviev. The corresponding likelihood function is essentially defined
by a noise model, e.g. a univariate Gaussian noise with varianceρ2 and zero mean.

•One-class Problem: Sometimes one observed the presence of links between entities, for example,
the hyperlinks between web pages. Based on theopen-world assumption, if a web page does not
link to another, it does not mean that they are unrelated. Therefore, we employ the likelihood
p(ri,n|ti,n) = Φ(ri,nti,n − b) for those observed linksri,n = 1, whereb is an offset.



3 Inference with Laplacian Approximation

We have described the relational model under a prior of SRP, in which HGP and TGP are subcases.
Now we develop the inference algorithm to compute the sufficient statistics of thea posterioridis-
tribution of latent variables.

Let F = {fi,k}, G = {gn,k}, fk = [f1,k, . . . , fN,k]> andgk = [g1,k, . . . , gM,k]>, wherefi,k =
fk(ui), gn,k = gk(vn). Then the posterior distributionp(F,G|RI, θ) is proportional to the joint
distribution of thecomplete data:

p
(
RI,F,G|θ

)
∝

∏

(i,n)∈I
p

(
ri,n

∣∣∣
∑d

k=1 fi,kgn,k√
d

)
exp

{
−1

2

d∑

k=1

[
f>k Σ−1fk + g>k Ω−1gk

]}

An exact inference is intractable due to the coupling betweenfi,k andgn,k in the likelihood term. In
this paper we apply Laplacian approximation, which approximatesp(F,G|RI, θ) by a multivariate
normal distributionq(F,G|β) with sufficient statisticsβ. At the first step, we compute the means
by finding the mode in the posterior,

{F∗,G∗} = arg min
{F,G}

{
J(F,G) = − log p(RI,F,G|θ)

}
(2)

We solve the minimization by the conjugate gradient method. The gradients are calculated by

∂J(F,G)
∂F

=
1√
d
SG + Σ−1F,

∂J(F,G)
∂G

=
1√
d
S>F + Ω−1G,

whereS ∈ RN×M have elementssi,n = ∂[− log p(ri,n|ti,n)]/∂ti,n, ti,n =
∑d

k=1 fi,kgn,k/
√

d,
if (i, n) ∈ I, otherwisesi,n = 0. At the second step we calculate the covariance byC = H−1,
whereH is the Hessian, i.e., the second-order derivatives ofJ(F,G) with respect to{F,G}.
However the inverse is prohibitive becauseH is a huge matrix. To reduce the complexity, we
assume that there exist disjoint groups of latent variables, each group is second-order independent
to any other at their equilibriums. We factorize the approximating distribution asq(F,G|β) =∏d

k=1 q(fk|f∗k,Σk)q(gk|g∗k,Ωk), wheref∗k andg∗k are the solution from Eq. (2), andΣk,Ωk are
the covariances matrices. This follows the facts: (1) Eachfk (or gk) indirectly interacts with other
fκ (or gκ), κ 6= k, through the sum

∑
κ6=k fκg>κ , indicating thatfk (or gk) across differentk are

only loosely dependent to each other, especially for a larged; (2) The dependency betweenfi,k and
gn,k is witnessed via at most only one observation inRI. Therefore we can compute the Hessian for
each group separately and obtain the covariances:

Σk = (Φ(k) + Σ−1)−1, with φ
(k)
i,i =

∑

n:(i,n)∈I

ζi,ng2
n,k

d
, φ

(k)
i,j = 0 (3)

Ωk = (Ψ(k) + Ω−1)−1, with ψ(k)
n,n =

∑

i:(i,n)∈I

ζi,nf2
i,k

d
, ψ(k)

n,m = 0 (4)

whereζi,n = ∂2[− log p(ri,n|ti,n)]/∂t2i,n. Then we obtain the sufficient statisticsF∗, G∗, {Σk}
and{Ωk}. Finally we note that, the posterior distribution of{F,G} has many modes (Simply,
shuffling the order of latent dimensions or changing the signs of bothfk andgk does not change the
probability.). However each mode is equally well in constructing the relational functiont.

4 Structural Learning by Hyperparameter Estimation

We assign a hyper priorp(θ|α) and estimateθ by maximizing a penalized marginal likelihood

θ∗ = arg max
θ={θΣ,θΩ}

{
log

∫

G

∫

F

p(RI,F,G|θ)dFdG + log p(θ|α)
}

(5)

So far the optimization (5) is quite general. In principal, it allows to learn some parametric forms
of kernel functionsΣ(ui, uj ; θΣ) andΩ(vn, vm; θΩ) that are generalizable to new entities. In this



paper we particularly consider an situation where entity attributes are not fully informative or even
absent. Therefore we introduce a direct parameterizationθΣ = Σ, θΩ = Ω, and assign conjugate
inverse-Wishart priorsΣ ∼ IWN (λd,Σ0) andΩ ∼ IWM (λd,Ω0), namely

p(Σ|λd,Σ0) ∝ det(Σ)−
λd
2 etr

(− λd
2

Σ−1Σ0

)
,

p(Ω|λd,Ω0) ∝ det(Ω)−
λd
2 etr

(− λd
2

Ω−1Ω0

)
,

whereλ > 0 so thatλd denotes the degrees of freedom,Σ0 andΩ0 are the base kernels. Then
we apply an iterative expectation-maximization (EM) algorithm to solve the problem (5). In the
E-step, we follow Sec. 3 to computeq(F,G|β). In the M-step, we update the hyperparameters by
maximizing the expected log-likelihood of thecomplete data

max
{Σ,Ω}

Eq [log p(RI,F,G|Σ,Ω)] + log p(Σ|λd,Σ0) + log p(Ω|λd,Ω0)

where Eq[·] is the expectation overq(F,G|β). Due to the conjugacy of the hyper prior, the maxi-
mization have an analytical solution,

Σ =
λΣ0 + 1

d

∑d
k=1(f

∗
kf
∗
k
> + Σk)

λ + 1
, Ω =

λΩ0 + 1
d

∑d
k=1(g

∗
kg
∗
k
> + Ωk)

λ + 1
. (6)

5 Implementation Details

The parametersΣ0,Ω0, d andλ have to be pre-specified. We let the base kernels have the form
Σ0(ui, uj) = (1 − a)γ(ui, uj) + aδi,j andΩ0(vn, vm) = (1 − η)ξ(vn, vm) + ηδn,m, where1 ≥
a, η ≥ 0, δ is a Dirac delta kernel (δi,j = 1 if i = j, otherwiseδi,j = 0), γ(·, ·) and ξ(·, ·)
are some kernel functions defined on entity attributes, which reflect our prior notion of similarities
between entities. We usea andη to penalize the effects ofγ(·, ·) andξ(·, ·), respectively, when entity
attributes are deficient. If the attributes are unavailable, we seta = η = 1. The dimensionalityd
should be properly chosen, otherwise a too smalld may deteriorate the modeling flexibility. We
determined andλ based on the prediction performance on a validation set of links. The learning
algorithm iterates the E-step with Eq. (2), (3), (4), and the M-step with Eq. (6) until convergence.
In the experiments of this paper we usep(ri,n|t∗i,n) to make predictions, wheret∗ is computed from
F∗ andG∗. In a longer version the predictive uncertainty ofti,n will be considered.

6 Related Work

There is a history of probabilistic relational models (PRM) [8] in machine learning. Getoor et al.
[5] introduced link uncertainty and defined a generative model for both entity attributes and links.
Recently, [12] and [7] independently introduced an infinite (hidden) relational model to avoid the
difficulty of structural learning in PRM by explaining links via a potentially infinite number of
hidden states of entities. Since discriminatively trained models generally outperform generative
models in prediction tasks, Taskar et al. proposed relational Markov networks (RMNs) for link
prediction [11], by describing a conditional distribution of links given entity attributes and other
links. RMN has to define a class of potential functions on cliques of random variables based on
the observed relational structure. Compared to RMN, SRM is nonparametric because structural
information (e.g., cliques as well as the classes of potential functions) is not pre-defined but learned
from data. Very recently a GP model was developed to learn from undirected graphs [4], which
turns out to be a special rank-one case of SRM withd = 1, Σ = Ω, andfk = hk. In another work
[1] a SVM using a tensor kernel based on user and item attributes was used to predict user ratings
on items, which is similar to our TGP case and suffers a salability problem. When attributes are
deficient or unavailable, the model does not work well, while SRM can learn informative kernels
purely from only links (see Sec. 7). SRM is interestingly related to the recent fast maximum-margin
matrix factorization (MMMF) in [10]. If we fixΣ andΩ as uninformative Dirac kernels, the mode
of our Laplacian approximation is equivalent to the solution of Eq.(5) in [10] with the loss function
l(ri,n, ti,n) = − log p(ri,n|ti,n). However SRM significantly differs from MMMF in two important
aspects: (1) SRM is a supervised predictive model because entity attributes enter the model by
forming informative priors (Σ, Ω) and hyper priors (Σ0, Ω0); (2) More importantly, SRM deals with
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Figure 1:Link prediction on synthetic data: (a) training data, where black entry means positive links, white
means negative links, and gray means missing; (b) prediction of MMMF (classification rate0.906); (c) predic-
tion of SRM with noninformative prior (classification rate0.942); (d) prediction of SRM with informative prior
(classification rate0.965); (e-f) informativeΣ0 andΩ0; (g-h) learnedΣ andΩ with noninformative prior; (i-j)
learnedΣ andΩ with informative prior.

structural learning by adapting the kernels and marginalizing out the latent relational function, while
MMMF only estimates the mode of the latent relational function with fixed Dirac kernels.

7 Experiments

Synthetic Data: We generated two sets of entitiesU = {ui}20i=1 andV = {vn}30n=1 on a real line
such thatui = 0.1i andvn = 0.1n. The positions of entities were used to compute two RBF kernels
that serve as informativeΣ0 andΩ0. Then we further made a deformation on the real line to form
2 clusters inU and 3 clusters inV. RBF function computed on the deformed scale gives two kernel
matricesΣ andΩ whose diagonal block structure reflects the clusters. Binary links betweenU
andV are obtained by taking the sign of a function, which is a sample fromT GP(0,Σ,Ω). We
randomly withdrew50% of links for training, and left the remaining for test (see Fig. 1-(a)). We
performed two variants of SRM, one with informativeΣ0 andΩ0 (see Fig. 1-(e,f)) and the other
with noninformative Dirac kernelsΣ0 = Ω0 = I, and compared with MMMF [10]. In all the cases
we setd = 20. The classification accuracy rates of two SRMs,0.942 and0.965, are both better than
0.906 of MMMF. As shown in Fig. 1, the block structures of learned kernels indicate that both SRMs
can learn the cluster structure of entities from links. The structural kernel optimization enables SRM
to outperform MMMF, even with a completely noninformative prior. Note that the informative prior
really helps SRM to achieve the best accuracy.

Eachmovie Data: We tested our algorithms on a data set from [3], which is a subset of EachMovie
data, containing5000 users’ ratings, i.e.,1, 2, 3, 4, 5, or6, on1623 movies. We selected the first1000
users and organized the data into a1000× 1623 table with63, 592 observed ratings. We compared
SRM with MMMF in a regression task to predict the ‘rating link’ between users and movies. In
SRM we setΣ0 = Ω0 = I. For both methods the dimensionality was chosen asd = 20. In MMMF
we used the square error loss. We repeated the experiments for 10 times, where at each time we
randomly withdrew70% ratings for training and left the remaining for test. Root-mean-square error
(RMSE) and mean-absolute error (MAE) were used to evaluate the accuracy. The results of all the
repeats, as well as the means and standard deviations, are shown in Table 1 and Table 2. Compared
to MMMF, SRM significantly reduces the prediction error by over12% in terms of both RMSE and
MAE.

8 Conclusions and Future Extensions

In this paper we proposed a stochastic relational model (SRM) for learning relational data. Entity re-
lationships are modeled by a tensor interaction of multiple Gaussian processes (GPs). We proposed
a family of relational processes and showed its convergence to a tensor Gaussian process if the de-
grees of freedom goes to infinity. The process imposes an effective prior on the entity relationships,



Table 1: User-movie rating prediction error measured by RMSE
Repeats 1 2 3 4 5 6 7 8 9 10 mean± std.
MMMF 1.366 1.367 1.372 1.377 1.363 1.368 1.356 1.380 1.358 1.373 1.368± 0.008
SRM 1.195 1.199 1.192 1.200 1.198 1.209 1.204 1.208 1.189 1.209 1.200±0.007

Table 2: User-movie rating prediction error measured by MAE
Repeats 1 2 3 4 5 6 7 8 9 10 mean± std.
MMMF 1.067 1.066 1.074 1.076 1.066 1.073 1.060 1.074 1.062 1.072 1.060±0.006
SRM 0.924 0.928 0.924 0.923 0.924 0.934 0.931 0.932 0.918 0.933 0.927± 0.005

and leads to a discriminative link prediction model. We demonstrated the excellent results of SRM
on a synthetic data set and a user-movie rating prediction problem.

Though the current work focused on the application of link prediction, the model can be used for
general relational learning purposes. There are several directions to extend the current model: (1)
SRM can describe a joint distribution of entity links and entity classes conditioned on entity-wise
GP kernels. Therefore entity classification can be solved in a relational context; (2) One can extend
SRM to model multi-way relations where more than two entities participate in a single relationship;
(3) SRM can also be applied to model pairwise relations between multiple entity sets, where kernel
updates amount to propagation of information through the entire relational network; (4) As discussed
in Sec. 2.1.2, SRM is a natural extension of hierarchical Bayesian multi-task models, by explicitly
modeling the dependency over tasks. In a recent work [2] a tensor GP for multi-task learning was
independently suggested; (5) Finally, it is extremely important to make the algorithm scalable to very
large relational data, like the Netflix problem, containing about 480,000 users and 17,000 movies.
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