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Introduction

A novel and simple clustering framework is proposed by factorizing pairwise
data relations, which assigns data to clusters probabilistically, and naturally
leads to a hierarchical clustering algorithm that exposes clustering structure in
different “resolutions”.

0.1 Relation-based Clustering vs. Distribution-based Clustering

•Distance-based: relying on a similarity (or distance) measure between data
points, e.g., normalized cut [4]

–No assumptions on density distribution of data

–Useful when only pairwise relations are given, often encoded as a graph

–Data assigned to clusters exclusively

•Distribution-based: density estimation via mixture models, e.g., Gaussian mix-
ture models (GMMs)

–Each component explains a cluster

–Proper probabilistic semantics, i.e. data softly assigned to clusters

– Sometimes restrictive assumptions (e.g. clusters must be Gaussian-like)

0.2 Hierarchical Clustering vs. Flat Clustering

• In contrast to flat clustering, hierarchical clustering organizes data into a tree of
clusters, e.g. single linkage

– Intuitive, information-rich, and indeed useful!

–Lacking of insights beyond intuitions: any theoretical motivation?

–Few principled solutions exist, often based on GMMs [1, 2]

0.3 Contributions of This Paper

•Novel clustering explores data similarities encoded as a graph

–Relation factorization by symmetric nonnegative matrix factorization

–Data are assigned to clusters probabilistically

–Extended to a natural bottom-up hierarchical clustering

•Furthermore, insights are gained from Markov random walks

–Graph weights are interpreted as empirical frequency of transitions

–Optimization to maximize the likelihood of transitions

–Hierarchical clustering employs different “lenses” to expose the clustering struc-
ture

∗Let the 1st level be the bottom one, then the l-th level clustering considers 2l−1

steps of transitions

∗Long-term transitions amount to a smoother and more global similarity measure

∗ Somewhat like the wavelet method!

1 Clustering by Relation Factorization

Assumption: (1) The pairwise relations can be formulated as an undirected graph;
(2) Data relations in one cluster are caused by a common factor.

Let G(V,E) be a weighted undirected graph with vertices V = {vi}n
i=1 and edges

E ⊆ {(vi, vj)}. Let W = {wij} be the adjacency matrix, where wij = wji, wij > 0
if (vi, vj) ∈ E and wij = 0 otherwise. In practice wij indicates the similarities
between data i and j.

1.1 Latent Bipartite Graph

Let K(V,U,F) be a bipartite graph with adjacency B for edges F connecting vertex
sets U = {ui}m

i=1 and V = {vi}n
i=1. Then an equivalent adjacency within V is [5]

wij =
m∑

p=1

bipbjp

λp
=

(
BΛ−1B>

)
ij

, λp =
n∑

i=1

bip, Λ = diag(λ1, . . . , λm) (1)

A random walk explanation underlies this connection, where adjacency weights are
proportional to the probability of transition between vertices. Then W comes from
a two-step transitions V → U → V on the bipartite graph

p(vi, vj) = p(vi)p(vj|vi) = p(vi)
∑
p

p(up|vi)p(vj|up) =
∑
p

p(vi, up)p(up, vj)

λp
,

We assume that the given graph is induced by a “latent bipartite graph” where
n � m, and U are clusters accounting for intra-relations of V. Let di =

∑m
p=1 bip

be the degree of vi, then p(up|vi) = bip/di tells the conditional probability of random
walks from vi to up, giving rise to a soft data-to-cluster assessment.

1.2 Relation Factorization by Bipartite Graph Construction

We explicitly construct an optimal bipartite graph to explain the given graph via

min
H,Λ

`
(
W,HΛH>

)
, s. t.

n∑
i=1

hip = 1,H ∈ Rn×m
+ , Λ ∈ Dm×m

+ , (2)

where the coupling between B and Λ is removed by H = BΛ−1, `(·, ·) is a distance
function, Dm×m

+ denotes the set of m × m diagonal matrices with positive diagonal
entries. The minimization is done by a symmetric variant of nonnegative matrix
factorization (NMF) [3].

Theorem 1.1For divergence distance `(X,Y) =
∑

ij(xij log xij

yij
− xij + yij), the

cost function in (2) is non-increasing under the update rule ( ·̃ denote updated
quantities)

h̃ip ∝ hip

∑
j

wij

(HΛH>)ij
λphjp, normalize s.t.

∑
i

h̃ip = 1; (3)

λ̃p ∝ λp

∑
ij

wij

(HΛH>)ij
hiphjp, normalize s.t.

∑
p

λ̃p =
∑
ij

wij. (4)

2 Hierarchical Clustering by Relation Factorization

Considering transitions in another way U → V → U leads to cluster similarities,

p(up, uq) =
n∑

i=1

bipbiq

di
=

(
B>D−1B

)
pq

, D = diag(d1, . . . , dn) (5)

Note that the similarity between clusters p and q takes into account weighted average
of contributions from all the data.

Figure. Left: the original graph representing data relations; Middle: constructed
bipartite graph representing data-to-cluster relations; Right: induced graph repre-
senting cluster similarities.

We can then factorize this cluster relations to construct a higher level bipartite
graph, achieving clustering of clusters. Iteratively building bipartite graphs in this
way results in a hierarchical clustering algorithm. Starting at the original graph
with vertices V0, the following algorithm builds hierarchical clustering structures
V1,V2, . . . from low to higher levels.

At level l, we can derive the class memberships of data with respect to the clusters Vl,
which are propagated up from the bottom-level clusters. One can interpret this by
deriving an equivalent bipartite graph K̃l(V0,Vl, F̃l), which directly induces links
from V0 to the lth level clusters Vl. Based on the chain rule of Markov random
walks, the soft assignment of vi ∈ V0 to cluster v(l)

p ∈ Vl is given by

p
(
v(l)

p |vi

)
=

∑
v(l−1)∈Vl−1

· · ·
∑

v(1)∈V1

p
(
v(l)

p |v(l−1)
)
· · · p

(
v(1)|vi

)
=

(
D−1

1 B̃l

)
ip

, (6)

where B̃l = B1D
−1
2 B2D

−1
3 B3 . . .D−1

l Bl can be viewed as the equivalent adjacency
matrix between data V0 and clusters Vl.

Figure. Left: an illustration to a two-level clustering; Right: induced data
assignments to clusters V2.



3 Interpretations

3.1 Flat Clustering—Modeling One-step Random Transitions

• Suppose that from a stationary stage of a random walk on G(V,E), one observes
πij one-step transitions between vi and vj in a unitary time frame

•As an intuition of graph view to similarities or relations, if two data points are
similar or related, the transitions between them are likely to happen.

•Thus we connect observed relations with empirical frequency of transitions via
wij ∝ πij

• If observed transitions are i.i.d. sampled from a true distribution p(vi, vj) =
(HΛH>)ij where a bipartite graph is behind, then the log likelihood of observed
relations is

L(H,Λ) = log
∏
ij

p(vi, vj)
πij ∝

∑
ij

wij log(HΛH>)ij. (7)

We can prove that the described one-level relation-factorization clustering maximizes
the log-likelihood of observed relations.

3.2 Hierarchical Clustering—Modeling Multi-step Random Transitions

•Even two faraway vertices on G(V,E) can be connected by multi-step transitions
in a longer time frame.

•Multi-step transitions induces a slower decaying and smoother similarity function
on the graph, which explores more global relations of data.

•For a period t, the equivalent adjacency matrix is

W̃
(t)

= W0(D
−1
0 W0)

(t−1) = W̃
(t−1)

D−1
0 W0.

Figure. The similarities of vertices to a fixed vertex (marked in the left panel),
respectively induced by 2-step (middle panel) and 64-step (right panel) transitions.
The darker color indicates a higher similarity.

•Generally speaking, a slowly decaying similarity function captures the global struc-
ture of clusters, while a rapidly decaying similarity function only tells the local
clustering structure.

•The following proposition states that in the suggested hierarchical clustering,
higher-level clustering actually uses the slowly decaying similarity measures that
correspond to Markov chains in a longer time period.

Proposition 3.1For a given hierarchical clustering structure that starts from
a bottom graph G0(V0,E0) to a higher level Gk(Vk,Ek), the obtained clusters Vl

at level l ≤ k induces an equivalent adjacency matrix W̃l for data points V0,

which corresponds to the adjacency matrix W̃
(t)

for a period t = 2l.

4 Empirical Studies

4.1 Visualization

We visualize hierarchical clustering results on the USPS handwritten digits 1, 2, 3
and 4. We build 10-nearest neighbor graph on the 3874 digits, and fix the sequence
of cluster numbers in the hierarchy to be 100, 20, 10, 4. We can see clear clustering
structure.

4.2 Clustering Comparison

The proposed method is compared against single link, complete link, k-means and
spectral clustering. We used two data sets:

•USPS Handwritten Digits: Digits 1, 2, 3 and 4 with respectively 1269, 929, 824
and 852 images per class. Each image has 256 (16× 16) features.

• 20-Newsgroup: Four groups autos, motorcycles, baseball and hockey with respec-
tively 988, 993, 992 and 997 documents in a 8014-dimensional space.

We show the confusion matrices of these methods at 4-cluster level (upper tables), and
performance comparison with normalized mutual information (lower figures). This is
defined to be the mutual information of the two clustering structures normalized by
the maximal self entropy. Some observations:

•The proposed method obtains very good confusion matrix and achieves the best
performance.

• Simple linkage methods perform badly if we care about small number of clusters.

Single link Complete link Normalized cut Soft HC K-means
C1 1269 0 0 0 1266 0 3 0 635 630 1 3 1254 3 8 4 1265 1 0 3
C2 927 1 0 1 584 344 1 0 2 4 744 179 1 886 33 9 17 720 95 97
C3 823 0 1 0 440 381 3 0 2 1 817 4 1 4 816 3 10 9 796 9
C4 852 0 0 0 440 5 300 107 10 6 1 835 4 8 2 838 58 20 0 774

Single link Complete link Normalized cut Soft HC K-means
C1 987 1 0 0 N/A N/A N/A N/A 858 98 30 2 772 182 13 21 978 9 1 0
C2 992 0 1 0 N/A N/A N/A N/A 79 893 16 5 42 934 5 12 992 0 1 0
C3 991 0 0 1 N/A N/A N/A N/A 44 33 875 40 15 33 843 101 992 0 0 0
C4 997 0 0 0 N/A N/A N/A N/A 11 8 893 85 7 21 11 958 963 0 24 10

4.3 Clustering for Semi-Supervised Learning

Our last experiment evaluates the multi-step induced adjacency matrices for the
underlying data. We use the same data sets and train a semi-supervised learner for
classification. Some observations:
•Multi-step transition matrices always lead to better classification performance.

• Semi-supervised learning using clustering structure is much faster than that using
individual data points.

5 Discussion and Future Work

Implementation issues: The time complexity of the algorithm is O(m2L) with
L the number of non-zero entries in W. This has the advantage to be very efficient
if W is sparse. For instance for k-nearest neighbor graph, the complexity O(m2nk)
scales linearly with sample size n.

Loss functions: We can also consider other loss functions in this framework,
e.g., Frobenius norm for matrices. Similar iterative algorithms exist, but we lose the
nice property that the performance scales linearly w.r.t. n for k-nearest neighbor
graph. One interesting future work is to consider the more general Bregman
divergence within this framework.

Choosing cluster numbers: In current work we fix the number of clusters at
each level. This can be solved by introducing some regularization terms to the loss
function and minimizing

`reg

(
W,HΛH>

)
=

∑
i,j

wij log
wij(

HΛH>
)

ij

+
∑
p

∑
i

(1−αi) log hip+
∑
p

(1−βp) log λp

where αi ≥ 0 and βp ≥ 0 are free parameters to control the sparsity of clustering
results. In our recent experiments, αi = 1, βp = 0.7 works fine for automatically
detecting the number of clusters.
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