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Abstract

This paper presents a Local Learning Projec-
tion (LLP) approach for linear dimensional-
ity reduction. We first point out that the well
known Principal Component Analysis (PCA)
essentially seeks the projection that has the
minimal global estimation error. Then we
propose a dimensionality reduction algorithm
that leads to the projection with the mini-
mal local estimation error, and elucidate its
advantages for classification tasks. We also
indicate that LLP keeps the local informa-
tion in the sense that the projection value of
each point can be well estimated based on its
neighbors and their projection values. Exper-
imental results are provided to validate the
effectiveness of the proposed algorithm.

1. Introduction

In the c-class classification problem, we are given a
set of training data {(xi, yi)}n

i=1, where xi ∈ X ⊂
Rd is the input data, X is the input space, and yi ∈
{1, 2, . . . , c} is the class label. The goal is to build a
classifier which can correctly classify the unseen test
data.

Given the classification problem, our goal in this paper
is to find a low dimensional subspace of X , which re-
tains the discriminating information for classification.
In particular, we want to find a linear transformation
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matrix P ∈ Rd×p, p < d, which transforms each xi

to a p-dimensional vector by P>xi. In many pattern
classification problem, such as face recognition, the di-
mensionality d of the input data is very high. Mapping
the input data into a low dimensional subspace of X
can reduce the effect of noise and remove redundant
information in the data that is irrelevant to the classi-
fication task. Therefore dimensionality reduction is a
widely used pre-processing step for classification tasks.

Principal Component Analysis (PCA) is a widely used
method for dimensionality reduction. It looks for di-
rections along which the data variance is the largest.
PCA is an unsupervised algorithm as it ignores the
class labels of the given data, which implies that the
subspace obtained by PCA may not be effective for
classification problems.

Hence, many supervised projection algorithms have
been proposed, which make use of both the input
data and the target labels. A popular method is
the Linear Discriminant Analysis (LDA), which seeks
the subspace where the within-class variance is mini-
mized while the between-class variance is maximized.
LDA has been successfully applied for face recognition,
which is known as the Fisherface method (Belhumeur
et al., 1997). However, the dimensionality of the sub-
space obtained by LDA is upper bounded by c − 1,
where c is the number of classes. And it is known that
LDA assumes a Gaussian distribution for each class of
data, which is not necessarily true in practice.

Recently, several manifold embedding algorithms have
been proposed, such as the Locally Linear Embedding
(LLE) (Roweis & Saul, 2000), Laplacian eigenmap
(Belkin & Niyogi, 2002), and the Locality Preserving
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Projection (LPP) (He & Niyogi, 2004; He et al., 2005).
These methods look for subspaces that optimally pre-
serve local neighborhood information in some sense.

In this paper, we present a Local Learning Projection
(LLP) method. Motivated by a new interpretation of
PCA that its projections minimize the global estima-
tion error, our method seeks projections which mini-
mize the local estimation error. As can be seen later,
compared with PCA, our method can utilize the super-
vised information which is important for classification.
From another point of view, analogous to manifold em-
bedding algorithms, our method also aims to preserve
the local relationship among neighboring points, but
in the sense that the projection value of each point
can be well estimated based on its neighbors and their
projection values.

The rest of this paper is organized as follows. In sec-
tion 2, we briefly review the Kernel Ridge Regression
(KRR) algorithm that will be used in later sections.
In section 3, a new explanation of PCA is proposed,
based on which we introduce the basic idea of our LLP
approach. Then the details of the LLP algorithm are
presented in section 4. Some comparisons with related
methods are given in section 5. Experimental results
are provided in section 6. Finally we conclude the pa-
per in the last section.

2. Kernel Ridge Regression

In this section, we briefly review the Kernel Ridge Re-
gression (KRR) (Shawe-Taylor & Cristianini, 2004) al-
gorithm that will be used later. Given n labeled points
{(xi, ti)}n

i=1, where xi ∈ X is the input data and ti ∈ R
is the real valued label, the KRR algorithm aims to
learn a function that maps from X to R.

Applying KRR to the training data {(xi, ti)}n
i=1 re-

sults in a Kernel Machine (KM) whose output function
can be expressed as

g(x) =
n∑

i=1

βiK(x,xi) (1)

where K : X × X → R is a positive definite kernel
function (Schölkopf & Smola, 2002), and βi are the
expansion coefficients. To compute the coefficients βi,
we need to solve the following KRR training problem:

min
β∈Rn

λβ>Kβ + ‖Kβ − t‖2 (2)

where β = [β1, . . . , βn]> ∈ Rn is the vector of the
expansion coefficients, λ > 0 is the regularization pa-
rameter, t = [t1, . . . , tn]> ∈ Rn denotes the vector of
real valued labels, and K = [K(xi,xj)] ∈ Rn×n is the
kernel matrix over all the training points.

The solution of (2) is

β = (K + λI)−1t (3)

where I is the unit matrix. Substituting (3) into (1)
leads to

g(x) = k>x β = k>x (K + λI)−1t (4)

where kx = [K(x,x1), . . . ,K(x,xn)]> ∈ Rn.

3. Projection via Minimizing the
Estimation Error

For the ease of description, we start from the simple
case where p = 1. Namely, the projection result is a
vector f = [f1, . . . , fn]>, with fi to be the projection
value of xi.

3.1. Minimizing the Global Estimation Error

Before constructing our dimensionality reduction algo-
rithm, we investigate the projections given by the pop-
ular Kernel Principal Component Analysis (KPCA)
(Schölkopf & Smola, 2002).1 It is known that the
KPCA seeks the projection values f1, . . . , fn that have
a large variance. Here we explain KPCA from the
point of view of supervised learning. For clarity, we
first define the global estimation error as follows:

Definition 1. Given the input data {xi}n
i=1, a posi-

tive definite kernel function K, a positive real number
λ, and a vector f = [f1, . . . , fn]> ∈ Rn, the global es-
timation error of f is defined as follows:

Eglobal(f) =
n∑

i=1

(fi − oall(xi))2 (5)

where oall(·) denotes the output function of a Kernel
Machine (KM) trained with all the data {(xi, fi)}n

i=1,
using the KRR algorithm with the kernel function K
and the regularization parameter λ > 0 (cf. (2)).

We can see that the Eglobal is simply the total squared
training error for the KRR algorithm. The following
Proposition indicates that KPCA searches for the pro-
jections with the minimal global estimation error.2

1Although we focus on linear projections in this paper,
the content in this section can be applied for both linear
and nonlinear cases. Therefore, for generality, we describe
our results for KPCA. This can be easily applied for PCA
by using the linear kernel in KPCA.

2Note that the “estimation error” in definition 1 ad-
dresses the relationship among the projection values of dif-
ferent points. This is different from the widely known ob-
jective of KPCA, i.e. the “reconstruction error”, which de-
scribes the relationship between xi and their projections.
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Proposition 1. Let f̄ = [f̄1, . . . , f̄n]> ∈ Rn, where
f̄i denotes the projection value of xi given by KPCA
algorithm. Then among all the unit length vectors,
f̄/

∥∥f̄∥∥ is the one with the minimal global estimation
error. Namely,

f̄/
∥∥f̄∥∥ = arg min

f>f=1
Eglobal(f) (6)

Proof. As stated in Definition 1, oall(·) in (5) is
the output function of a KM trained with the data
{(xi, fi)}n

i=1, using the KRR algorithm. According to
(4), we have

oall(xi) = k>xi
(K + λI)−1f

where kxi = [K(xi,x1), . . . ,K(xi,xn)]> ∈ Rn, and
K = [K(xi,xj)] ∈ Rn×n is the kernel matrix over the
input data. Let oall = [oall(x1), . . . , oall(xn)]> ∈ Rn,
then

oall = K(K + λI)−1f (7)

Substituting (7) into (5) leads to

Eglobal(f) =
n∑

i=1

(fi − oall(xi))2 = ‖f − oall‖2

=
∥∥f −K(K + λI)−1f

∥∥2

= f>(I−B)>(I−B)f (8)

where
B = K(K + λI)−1 (9)

Performing eigen-decomposition for the kernel matrix
K results in

K = VΛV> (10)

where Λ is a diagonal matrix of the eigenvalues of
K, and V is an orthogonal matrix whose columns are
eigenvectors of K, hence

V>V = VV> = I (11)

Substituting (10) into (9) and using (11), we have,

B = K(K + λI)−1

= VΛV>(VΛV> + λVV>)−1

= VΛ1V> (12)

where
Λ1 = Λ(Λ + λI)−1 (13)

is a diagonal matrix. Based on (12) and (11), we have,

I−B = VV> −VΛ1V> = V(I−Λ1)V> (14)

Substituting (14) into (8) and using (11) leads to,

Eglobal(f) = f>V(I−Λ1)2V>f (15)

Let λi and λ̂i denote the i-th eigenvalue of matrix K
and V(I − Λ1)2V> respectively, then λi ≥ 0 since
K(·, ·) is positive definite, and the following equation
follows from (13),

λ̂i =
(

λ

λ + λi

)2

(16)

Let fo = arg minf>f=1 Eglobal(f). From (15) it can be
seen that fo is the eigenvector that corresponds to the
minimal eigenvalue of matrix V(I − Λ1)2V>. Based
on (16) and (10), we can conclude that,

fo = vo (17)

where vo is the eigenvector of K corresponding to the
maximal eigenvalue of K, which is denoted by λo in
the following. Therefore,

Kvo = λovo (18)

According to (Schölkopf & Smola, 2002), for a point
x ∈ Rd, its projection given by KPCA is computed as:

1√
λo

k>x vo, where kx = [K(x,x1), . . . ,K(x,xn)]> ∈
Rn.3 Hence, for the given points x1, . . . ,xn, their pro-
jections given by KPCA can be computed as

f̄ =
1√
λo

Kvo =
√

λovo =
√

λofo (19)

where we have used (18) and (17) in the second and
third equation above respectively.

Therefore, equation f̄/
∥∥f̄∥∥ = fo follows from (19).

And the proposition is proven.

Note that in Proposition 1, we consider the unit
length vectors, because otherwise the trivial solution
0 = [0, . . . , 0]> ∈ Rn is the optimal one that minimizes
the global estimation error (5).

3.2. Minimizing the Local Estimation Error

In the following, Ni denotes the set of neighboring
points of xi, not including xi itself. And ni denotes
|Ni|, i.e. the number of points in Ni. Here, “neigh-
boring points” or “neighbors” of xi simply means the
nearest neighbors of xi according to some distance
metric, such as a the Euclidean distance.

Imagine that given the input data xi and the projec-
tion value fi, 1 ≤ i ≤ n, we want to use the KRR
algorithm to learn a function which maps from xi to

3Here we assume that the input data have been central-
ized in the feature space of the kernel function K. However
for the projection algorithm that will be proposed later, we
do not need to make this assumption.
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fi. Then Proposition 1 tells that the projection ob-
tained from KPCA is the easiest one to learn in the
sense that it has the minimal global estimation error.

Starting from this point of view, we also search for the
projection result that is easy to learn. However, in con-
trast to KPCA, we propose that the quality of learn-
ing is measured by the local estimation error, which is
computed as

Elocal(f) =
n∑

i=1

(fi − oi(xi))2 (20)

where oi(·) denotes the output function of a KM
trained with the KRR algorithm, using the training
data {(xj , fj)}xj∈Ni . For the function oi(·), the sub-
script i means the KM is trained with the neighbors
of xi.

By minimizing the local error rather than the global
one, we can gain more flexibility than KPCA by vary-
ing the number of neighbors of each point. More im-
portantly, a real advantage of this local learning ap-
proach is that in classification problems, where the
class label of each point is available, we can require
that the neighboring points belong to the same class.
This way, we can get a projection result where the
projection value of each point can be well estimated
based on its neighbors in the same class. This implies
that for the neighboring points in the same class, their
projection values are similar to each other, which is
helpful for classification.

4. Local Learning Projections

In this section, we describe our LLP algorithm that
can produce projections with small local estimation
errors.

In LLP algorithm, we want to find a linear projection
matrix P = [p1, . . . ,pp] ∈ Rd×p, where pl ∈ Rd (1 ≤
l ≤ p) is the l-th column of P. And we require the
columns of P to constitute an orthogonal basis of a
p-dimensional subspace of X , namely P>P = I.

In the following, X = [x1, . . . ,xn] ∈ Rd×n denotes the
matrix of the input data, F = P>X ∈ Rp×n denotes
the matrix of the projection result, and f l = X>pl =
[f l

1, . . . , f
l
n]> ∈ Rn is the l-th column of F>, i.e. the

vector containing the l-th projection values of the in-
put data.

4.1. Objective Function

Following the idea of minimizing the local estimation
error, in order to find the projection matrix P, we can

solve the following optimization problem:

min
P∈Rd×p,F∈Rp×n

p∑
l=1

Elocal(f l) (21)

subject to F = P>X (22)∥∥f l
∥∥ = 1, 1 ≤ l ≤ p (23)

p>i pj = 0, 1 ≤ i < j ≤ p (24)

The objective function (21) to be minimized is the sum
over the local estimation errors of all f l, 1 ≤ l ≤ p. In
(21) Elocal(·) is defined as (20), hence (21) can be re-
written as

p∑
l=1

Elocal(f l) =
p∑

l=1

n∑
i=1

(f l
i − ol

i(xi))2 =
p∑

l=1

∥∥f l − ol
∥∥2

(25)
where ol

i(·) denotes the output function of a KM,
trained with KRR algorithm, using the training data
{(xj , f

l
j)}xj∈Ni

. In (25), ol = [ol
1(x1), . . . , ol

n(xn)]> ∈
Rn. For the function ol

i(·), the superscript l indicates
that it is for the l-th projection value f l, and the sub-
script i means the KM is trained with the neighbors
of xi.4

Similarly as in Proposition 1, we put the constraint
(23) to avoid the trivial projection result of f l =
X>pl = 0, i.e. pl is orthogonal to all the data
points, which can happen when the data dimension-
ality d is larger than the number of data n. After
solving the problem (21)–(24), we can normalize each
pl (1 ≤ l ≤ p) to unit length such that P can satisfy
P>P = I.

Unfortunately, the problem (21)–(24) is difficult to
solve. We have to modify it and find that the follow-
ing simple approach can result in both a easy-to-solve
optimization problem and good classification results:
We just replace the constraint (23) with ‖pl‖ = 1
(1 ≤ l ≤ p) and substitute (25) into (21), leading to
the following optimization problem,

min
P∈Rd×p,F∈Rp×n

p∑
l=1

∥∥f l − ol
∥∥2

(26)

subject to F = P>X (27)
P>P = I (28)

In order to prevent the undesirable result where f l =
X>pl = 0, we fist project the input data into the
subspace obtained by PCA, with all the zero principal

4Note that although we are constructing a linear pro-
jection algorithm, we are free to choose the kernel function
K(·, ·) for computing the local estimation error. However,
in order to compare with PCA, we will just use linear kernel
for LLP in the experiments.
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components removed. This way, we keep all the in-
formation and make the data dimensionality d smaller
than the number of data n. After PCA transformation,
the projection matrix P for the transformed data can
be obtained by solving the problem (26)–(28). Then
the final projection matrix is computed as PPCAP,
where PPCA denotes the projection matrix of PCA.
In fact, using PCA as a preprocessing step has already
been adopted by other linear projection methods, such
as LDA (Belhumeur et al., 1997) and LPP (He et al.,
2005).

4.2. Solution

Now we consider how to solve the problem (26)–(28).
Recall that ol

i(·) denotes the output function of a KM,
trained with KRR algorithm, using the training data
{(xj , f

l
j)}xj∈Ni

. Based on equation (4), we have

ol
i(xi) = k>i (Ki + λI)−1f l

i (29)

where ki ∈ Rni denotes the vector [K(xi,xj)]> for
xj ∈ Ni, f l

i ∈ Rni denotes the vector
[
f l

j

]> for xj ∈ Ni,
and Ki ∈ Rni×ni is the kernel matrix over xj ∈ Ni.
Equation (29) can be written as a linear equation:

ol
i(xi) = α>i f l

i (30)

where αi ∈ Rni is computed as

α>i = k>i (Ki + λI)−1 (31)

It can be seen that αi is independent of f l
i and the

projection index l, and it is different for different xi.
Note that f l

i is a sub-vector of f l, so equation (30) can
be written in a compact form as:

ol = Af l (32)

where ol and f l are the same as in (26), while the
matrix A = [aij ] ∈ Rn×n is constructed as follows:
∀xi and xj , 1 ≤ i, j ≤ n, if xj ∈ Ni, then aij equals
the corresponding element of αi in (31), otherwise aij

equals 0. Similar as αi, the matrix A is also indepen-
dent of f l and the projection index l.

Substituting (32) into (26) results in the following op-
timization problem,

min
P∈Rd×p,F∈Rp×n

p∑
l=1

∥∥f l −Af l
∥∥2

(33)

subject to F = P>X (34)
P>P = I (35)

Let T = (I−A)>(I−A), then the objective function
(33) can be re-written as:

p∑
l=1

∥∥f l −Af l
∥∥2

=
p∑

l=1

(f l)>Tf l = trace(FTF>) (36)

Substituting (34) into (36), the problem (33)–(35) is
transformed into the following,

min
P∈Rd×p

trace(P>XTX>P) (37)

subject to P>P = I (38)

Let P0 ∈ Rd×p denote the matrix whose columns con-
sist of p eigenvectors associated with the p smallest
eigenvalues of XTX>, then for any orthogonal matrix
R ∈ Rp×p, R>R = I, the matrix P0R is a global
optimum of the problem (37)–(38). In this paper, we
just take P0 as the solution for problem (37)–(38). In
the experiments, for simplicity we will apply the near-
est neighbor algorithm to classify the projected data
P>0 xi (1 ≤ i ≤ n), whose classification result is not
affected by the orthogonal matrix R.

5. Comparison with Related
Approaches

5.1. Comparison with Local PCA

Although LLP is derived from PCA and the idea of
minimizing the local estimation error, it still seeks a
global linear projection without partitioning the data
into subgroups. This is different from the local PCA
approach (Tipping & Bishop, 1999; Meinicke & Ritter,
1999), which uses the mixture model framework and
the EM algorithm to combine the PCA results com-
puted locally for different subgroups of data. There-
fore in local PCA, we have to choose the number of
mixtures properly and there exists the local optimum
problem since the EM algorithm is used.

5.2. Comparison with LPP

The recently proposed LPP algorithm (He & Niyogi,
2004; He et al., 2005) is a linear projection method that
also preserves the local relationship among neighbor-
ing points. Similarly as Laplacian Eigenmap (Belkin &
Niyogi, 2002), its basic idea is to seek the projection
result f that minimizes the following objective func-
tion,5

ELPP (f) =
1
2

∑
i,j

(fi − fj)2wij (39)

where wij measures the similarity between xi and xj .
According to (39), mapping xi and xj far apart will
cause a heavy penalty if wij is large. This implies that
if xi and xj are similar to each other, then fi and fj

should also be close.

In classification problems, we can construct wij to be
positive if xi and xj are close and belong to the same

5We only describe the case of p = 1 for simplicity.
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class, otherwise wij = 0. Thus in LPP, the projections
of nearby points belonging to the same class tend to be
grouped together, which is beneficial for classification.

By setting the gradient ∂
∂f ELPP (f) to 0, it can be

seen that the optimal f minimizing (39) must satisfy
the following equation:

fi =

∑
xj∈Ni

wijfj∑
xj∈Ni

wij
(40)

where we have used the property that wij is nonzero
only for the neighboring points. Equation (40) indi-
cates that LPP implicitly expects that fi equals the
local weighted average of fj for xj ∈ Ni, and the
weight of fj is proportional to wij , which measures
the similarity between xi and xj .

Therefore we can see the connections between LLP
and LPP from the local learning point of view. LLP
explicitly requires that fi can be well estimated based
on its neighbors, while LPP specifies this implicitly. In
LLP, fi is estimated by oi(xi), which is trained with
a well established regression approach, while in LPP,
fi is estimated with the local average, which is iden-
tical to the regression solution given by the classical
Nadaraya-Watson algorithm (Nadaraya, 1989).

5.3. Comparison with Manifold Embedding

There exist several other dimensionality reduction
methods that aim to preserve the local information.
Such as LLE (Roweis & Saul, 2000) and Laplacian
eigenmap (Belkin & Niyogi, 2002). But these meth-
ods are mainly for data representation and can not
compute the projection values for new test data.

5.4. Local learning for Classification and
Clustering

The idea of local learning, estimating the label of a
point based on its neighbors, is applied for classifica-
tion in (Bottou & Vapnik, 1992). It is also adapted
into a clustering approach in (Wu & Schölkopf, 2007),
which tries to minimize the local estimation error for
the cluster labels of neighboring points. Good clas-
sification and clustering results obtained in (Bottou
& Vapnik, 1992) and (Wu & Schölkopf, 2007) respec-
tively illustrate that the label of a point can be well
estimated based on its neighbors, and minimizing the
local estimation error is effective in keeping the local
relationship. In this paper, we exploit this fact and de-
velop the LLP algorithm. Good classification results
can be expected for LLP since the subspace found by
LLP can well preserve the local information among the
neighboring points in the same class.

5.5. Other Related Methods

In both statistics and machine learning literature,
many projection algorithms have been proposed that
consider simultaneously dimensionality reduction and
the target labels for supervised learning problems. For
instance, the Sliced Inverse Regression (Li, 1991), the
Sliced Average Variance Estimation (Cook & Weis-
berg, 1991) and the Minimum Average Variance Esti-
mation (MAVE) (Xia et al., 2002) are feature extrac-
tion approaches for regression. Furthermore, based on
the MAVE framework, a spectral method for projec-
tion is provided in (Mukherjee et al., 2006). Similarly,
the algorithms presented in (Sugiyama, 2006; Gold-
berger et al., 2005) are supervised dimensionality re-
duction methods for classification. The algorithm pre-
sented in (Globerson & Roweis, 2006) addresses the
metric learning problem for classification, which is also
related to the topic of this paper. Compared with
these algorithms, the distinct features of LLP are: It
is closely related to a new explanation of PCA, and the
regression technique is adopted to investigate whether
the projection of a point can be well estimated based
on its neighbors in the same class.

6. Experimental Results

In this section, we empirically compare the proposed
LLP algorithm with PCA, LDA and LPP.

6.1. Datasets and Experimental Settings

Both LDA and LPP have been successfully applied
for face recognition, which are known as Fisherface
(Belhumeur et al., 1997) and Laplacianface (He et al.,
2005) respectively. PCA, or Eigenface, is also a well
known method for face recognition. Therefore five
face image datasets are considered in the experiments:
Yale, ORL, YaleB, PIE and UMist.6 All the face im-
ages are resized to 32×32 pixels. So each image can
be represented by a 1024 dimensional vector. Further
descriptions of these datasets are provided in Table 1.

On each dataset, m images per class are randomly
selected as training samples, while the remaining are
used for test. The linear projection matrix P is learned
with the training data. Both the training and test data
are transformed by the learned matrix P. Then follow-
ing the scheme in (He & Niyogi, 2004; He et al., 2005),
the transformed data are input to a 1-Nearest neighbor
(1-NN) classifier, and the classification performance on
the test data is used to evaluate the projection algo-

6The first four are obtained from http://ews.uiuc.edu/
∼dengcai2/Data/data.html. While UMist is available at
http://www.cs.toronto.edu/∼roweis/data.html.
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rithms.
Table 1. The number of data n and the number of classes
c for the datasets used in the experiments.

Dataset Yale ORL YaleB PIE UMist
n 165 400 2414 11554 575
c 15 40 38 68 20

On each dataset, three different values of m are tried
to investigate the performance of different algorithms
with different number of training data. For each given
m, 20 training/test splits are randomly generated and
the average test error over these splits is used to
evaluate the classification performance. Furthermore,
the Wilcoxon rank sum test is conducted to examine
whether the performance difference between different
approaches are statistically significant.

6.2. Parameter Selection

Five fold cross validation is performed on the training
data for parameter selection.

As stated before, in LPP and LLP, the neighboring
points belong to the same class. For these two al-
gorithms, the number of neighbors for each point is
searched from: {5, 10, 20, m − 1}, where m is the
number of training samples in each class.7

Proposition 1 tells that PCA gives the projection with
the minimal global estimation error that is computed
based on the linear ridge regression. In order to com-
pare with PCA, we simply use the linear kernel in the
local KRR for LLP. The regularization parameter λ
(cf. (2)) is searched in: {0.1, 1, 10}.

For LPP, as suggested in (He et al., 2005), for two
neighboring points xi and xj , wij (cf. (39)) is com-
puted with a Gaussian kernel: wij = exp(−‖xi−xj‖2

γ ),
where the kernel parameter γ is searched from the
grid: {σ2

0
16 ,

σ2
0
8 ,

σ2
0
4 ,

σ2
0
2 , σ2

0 , 2σ2
0 , 4σ2

0 , 8σ2
0 , 16σ2

0},
where σ0 is the mean norm of the training data.

For all projection algorithms, the number of projec-
tions p varies from 1 to 300, also selected with cross
validation.8

6.3. Numerical Results

Numerical Results are summarized in Table 2. As a
baseline, we also report the classification result of the
1-NN algorithm using the raw input data directly with-

7Only the values that are smaller than m are considered
for the number of neighbors of each point.

8For LDA, p can not be larger than c − 1 in a c-class
problem. For the other projection algorithms, p should be
smaller than the total number of training data.

out data projection.

Consistent with the results in (Belhumeur et al., 1997;
He et al., 2005), PCA performs much worse than LDA.
Its result is identical to the baseline on the datasets
that are used in the experiments.

As can be seen from Table 2, LLP compares favorably
to the other projection algorithms. In particular, it
outperforms PCA in all cases. This illustrates that by
minimizing the local estimation error rather than the
global estimation error, the classification performance
can be significantly improved.

7. Conclusions

A new explanation for the widely used PCA algorithm
has been presented, which tells that PCA seeks pro-
jections with the minimal global estimation error. In-
spired by this discovery and the local learning idea,
we have proposed a local learning projection (LLP) ap-
proach for linear dimensionality reduction. By mini-
mizing the local estimation error for the neighboring
points in the same class, LLP can utilize the class la-
bels that are ignored by PCA, and the solution given
by LLP has the property that the projection value of
each point can be well estimated based on its neigh-
bors. This is effective for preserving the local infor-
mation among neighboring points and hence can lead
to good classification results for the projected data.
Experimental results indicate that our approach often
performs better than the related algorithms to which
we compared.
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