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Abstract. This paper studies a Bayesian framework for density model-
ing with mixture of exponential family distributions. Variational Bayesian
Dirichlet-Multinomial allocation (VBDMA) is introduced, which per-
forms inference and learning efficiently using variational Bayesian meth-
ods and performs automatic model selection. The model is closely related
to Dirichlet process mixture models and demonstrates similar automatic
model selection in the variational Bayesian context.

1 Introduction

In statistical analysis and artificial intelligence, there has been a strong interest
in finite mixture distributions for density estimation. The model offers a natural
framework to handle the heterogeneity in clustering analysis, which is often
of central importance in many applications. Among all the choices, exponential
family mixtures are extremely useful in practice, since they cover a broader scope
of characteristics of random variables, and the existence of conjugate priors often
makes inference easier [1, 7].

Previously much work has been done with a fixed number of components.
The efforts include estimating parameters of each component by EM algorithms
or via MCMC in a Bayesian way. Model selection, i.e., choosing the number of
components, remains a fundamental challenge for mixture modeling. A frequen-
tist treatment typically tests the hypotheses about this number. On the other
side, a Bayesian way computes the a posteriori over the model space. Recently,
there are increasing interests in Bayesian nonparametric statistics, which apply
Dirichlet process to handle infinite number of components (e.g., [5, 2]).

This paper focuses on a fully Bayesian mixture model with finite K exponen-
tial family components. The interesting point is that variational learning in the
model tends to end up with a sparsity of mixing weights when K is sufficiently
large. This is because the model approaches a Dirichlet process mixture model
in the limiting case. A few authors explored this point in Bayesian statistics [8,
9], but it is not sufficiently noticed. In this paper we propose the variational
Bayesian Dirichlet-Multinomial allocation (VBDMA) for model selection in fi-
nite mixture models. This on one hand offers tractability because of the finite
dimensionality and variational methods, and on the other hand provides gen-
eral solutions to mixture of exponential-family distributions which covers a wide
range of real-world problems.



2 Mixture of Exponential Family Distributions

Exponential Family: A probability distribution of x ∈ X given parameters θ
is in the exponential family if it takes the form

P (x|θ) = h(x) exp
{

θ>φ(x)−A(θ)
}

, (1)

where φ(x) is the sufficient statistics of x, and θ is called the natural param-
eter. The quantity A(θ), known as the log partition function, is defined as a
normalization factor independent of x: A(θ) = log

∫
X h(x) exp

{
θ>φ(x)

}
dx. It

is well-known that A(θ) plays an important role for exponential family distri-
butions. In particular, it can be identified as the moment generating function of
φ(x). One important example of this is given as:

∂A(θ)
∂θ

= Eθ[φ(x)] :=
∫
X

φ(x)P (x|θ) dx, (2)

which gives the mean of the sufficient statistics.

Conjugate Family: The conjugate family defines a prior family for exponential
family distributions as

P (θ|γ, η) = g(θ) exp
{

θ>γ − ηA(θ)−B(γ, η)
}

, (3)

where (γ, η) are the parameters for the prior, i.e., hyperparameters, with γ hav-
ing dimensionality dim(θ), and η a scalar. It is conjugate in that the posterior
distribution takes the same form as the prior, calculated by Bayes’ rule:

P (θ|x,γ, η) ∝ P (x|θ)P (θ|γ, η) ∝ g(θ) exp
{

θ>(γ + φ(x))− (η + 1)A(θ)−B(γ, η)
}

.

It is easy to check that conjugate family (3) also belongs to exponential family,
with sufficient statistics

(
θ

−A(θ)

)
and natural parameter

(
γ
η

)
. Then we have

∂B(γ, η)
∂γ

= Eγ,η[θ],
∂B(γ, η)

∂η
= Eγ,η[−A(θ)] (4)

by applying (2). These results turn out to be useful for subsequent sections.

Exponential Family Mixtures: In mixture modeling, each data point is sam-
pled from a fixed but unknown component distribution, which belongs to expo-
nential family here. At the moment we fix the number of components in the
mixture to be K, a finite positive integer. We will focus on the case that all the
component distributions take the same form, e.g., Gaussian. Then the likelihood
given N i.i.d. sampled data points D := {x1, . . . ,xN} is formally written as

P (D|π,Θ) =
∏N

i=1

∑K
k=1 P (ci = k|π)P (xi|θk),



where P (ci = k|π) = πk is a Multinomial with parameters π, and P (xi|θk)
takes the general form (1). The K-dimensional vector π := {πk}K

k=1 gives the
weights for the component distributions and sums to 1. Θ := {θk}K

k=1 contain
the natural parameters of all component distributions. ci is seen as a random
variable of indicator for data xi, saying which component xi is sampled from.

We need to assign priors to all the parameters. For Θ we assign conjugate
prior (3) to each θk independently, with the same hyperparameters (γ0, η0):
P (θk|γ0, η0) = g(θk) exp

{
θ>k γ0 − η0A(θk)−B(γ0, η0)

}
. For the Multinomial

parameters π we assign a Dirichlet distribution π ∼ Dir( α
K , . . . , α

K ). Here we
make the constraint that all the parameters in this Dirichlet are the same and
sum to a scalar that is independent of K, the number of components.

With these priors, the final data likelihood can be obtained by integrating
out latent variables π and Θ (see plate model in Fig. 1 left):

P (D) =
∫

π
P (π|α)

∫
Θ

∏K
k=1 P (θk|γ0, η0)

{∏N
i=1

∑K
k=1 πkP (xi|θk)

}
dΘdπ.

The model has two parameters: α is a positive scalar; (γ0, η0) has dimensionality
dim(φ(x)) + 1. [1, 4] studied the special case of Gaussian mixtures.

3 Model Inference and Learning

Inference in the proposed model is intractable and needs Markov chain Monte
Carlo (MCMC) sampling. In this paper we instead focus on variational Bayesian
methods, which are motivated by approximating the a posteriori distribution of
latent variables with a tractable family, and then maximizing a lower-bound of
data likelihood with respect to some variational parameters [10, 7]. One common
way of achieving this is to assume a factorized distribution for the latent vari-
ables, which indicates that for exponential family mixtures we use distribution

Q(π,θ, c|λ,γ,η,ϕ) := Q(π|λ)
∏K

k=1 Q(θk|γk, ηk)
∏N

i=1 Q(ci|ϕi)

to approximate the true posterior P (π,θ, c|D, α,γ0, η0). Here Q(π|λ) is K-dim.
Dirichlet, Q(θk|γk, ηk) the conjugate family (3), and Q(ci|ϕi) K-dim. Multino-
mial. Applying Jensen’s inequality yields a lower bound of the log-likelihood:
L(D) = EQ[log P (π|α)] +

∑K
k=1 EQ[log P (θk|γ0, η0)] +

∑N
i=1 EQ[log P (ci|π)] +∑N

i=1 EQ[log P (xi|θ, ci)] − EQ[log Q(π,θ, c)]. Variational Bayesian methods in
the literature maximize this lower bound only with respect to variational pa-
rameters λ,γ,η,ϕ, and thus fix the model parameters α, γ0, η0 (see [1, 7]). This
paper will however treat it as the E-step of the algorithm, and estimate the
model parameters in the M-step.

In the E-step, it is straightforward to obtain the following updates by setting
the partial derivatives with respect to each variational parameter to be zero:

ϕi,k ∝ exp
{

Eγk,ηk
[θ>k φ(xi)−A(θk)] + Eλ[log πk]

}
, (5)

γk =
N∑

i=1

ϕi,kφ(xi) + γ0, ηk =
N∑

i=1

ϕi,k + η0, λk =
N∑

i=1

ϕi,k +
α

K
, (6)



Fig. 1. Plate models for exponential family finite mixtures (left and middle), and the
DP mixture model (right). GK denotes the finite discrete prior for θk’s.

where the first expectation in (5) can be calculated using (4), and Eλ[log πk] ={
Ψ(λk)− Ψ

(∑K
j=1 λj

)}
, with Ψ(·) the digamma function. This expectation is

obtained by applying (2) to Dirichlet distribution Q(π|λ). Since these equations
are coupled, they should be updated iteratively until convergence. In variational
Bayes, (5) is called variational E-step, and (6) is called variational M-step. This
yields the algorithm given in [1] for mixture of Gaussians.

These equations recover the theorem in [7] for exponential family mixture
models, and turn out to be very intuitive and explainable. For instance, ϕi,k

measures the a posteriori probability that data xi comes from component k, and
can be written from (5) as ϕi,k ∝ exp

{
Eγk,ηk

[log P (xi|θk)]
}

exp {Eλ[log πk]}
which can be seen as a likelihood term (left term) multiplied by a prior (right
term), with other parameters fixed. This is analogous to a direct application of
Bayes’ rule. Other updates (6) also combine the empirical observations (the sum
terms) with the prior (the model parameters).

In the M-step, we maximize the lower-bound with respect to the model pa-
rameters. For α we obtain

∑K
k=1 Eα[log πk] =

∑K
k=1 Eλ[log πk], which turns out

to match the sufficient statistics of Dirichlet distributions. Similar results hold
for γ0 and η0:

∑K
k=1 Eγ0,η0 [θk] =

∑K
k=1 Eγk,ηk

[θk],
∑K

k=1 Eγ0,η0 [−A(θk)] =∑K
k=1 Eγk,ηk

[−A(θk)]. These expectations can be calculated using (4). Ana-
lytical solutions for these equations are in general not obtainable, so we need
computational methods such as Newton-Raphson method to solve the problem.

4 Variational Bayesian Dirichlet-Multinomial Allocation

Model selection for mixture modeling, i.e., choosing the number K, is an impor-
tant problem. This can be done via cross-validation; a Bayesian way selects the
model with the largest a posteriori likelihood. However in both cases we have to
retrain the model with different K’s, which is normally very expensive.

In this section we investigate the functionality of α and show that the learn-
ing algorithm in Sec. 3 can lead to sparse mixtures. The algorithm has strong
connections to Dirichlet process (DP) [6], and can be viewed as a variational
algorithm for inference in DP mixture models. Therefore we call it variational
Bayesian Dirichlet-Multinomial allocation (VBDMA), and it turns out that K
can be automatically obtained after training, with the sparsity controlled by α.



Connections to Dirichlet Process: Denote θ the natural parameter that
generates data x. In the mixture model we see that θ is sampled from distri-
bution GK(θ) := P (θ|π,Θ) =

∑K
k=1 πkδθk

(θ), where δθk
(θ) is the point mass

distribution and takes value 1 for θ = θk and 0 otherwise. GK(·) defines a dis-
crete prior for θ, and model parameters α and (γ0, η0) now take the role of
tuning the discrete but unknown distribution GK(·).

When we let K →∞, it is known in statistics that the unknown distribution
GK tends to be a sample from a Dirichlet process, constrained by the concentra-
tion parameter (a positive scalar) and a base distribution [11]. In our model, the
concentration parameter is just α, and the base distribution G0 is given by (3).
This model is illustrated in Fig. 1 middle. Following the convention for Dirichlet
process, all the parameters θi for data xi are sampled as:

θi
iid∼ G, for i = 1, . . . , N ; G ∼ DP(α, G0).

Dirichlet process is well-known for the property of obtaining a nonparamet-
ric and discrete prior, and thus is widely applied for mixture modeling (see,
e.g., [9]). When K is finite, however, the model is not equivalent to defining
a Dirichlet process prior for θi’s, but is shown to be a good approximation
if K is sufficiently large. This finite approximation is sometimes referred to as
Dirichlet-Multinomial allocation (DMA), and is used for approximated sampling
for Dirichlet processes [8]. In both DP and DMA, model selection can be done au-
tomatically via sampling methods, and the concentration parameter α is known
to control the flexibility of generating new mixture components.

Sparsity of Infinite Mixture: Let us first fix α and focus on the E-step
(5)∼(6). With an uninformative initialization of variational parameters (e.g., we
choose γk = γ0, ηk = η0 and λk = α/K, for all k), we first fit the mixture
membership ϕi,k from (5), and then update the Dirichlet parameters using (6).
Since all the components have the same prior terms Eλ[log πk] initially, in (5)
the assignment probabilities ϕi,k will solely depend on the empirical explanation
of xi given component parameter θk. This will make the updated ϕi,k unevenly
distributed, and the constraints

∑
k ϕi,k = 1,∀i will lead to some “unlikely”

components with very small assignment probabilities, i.e.,
∑N

i=1 ϕi,k. When these
values are fed into (6), these components will get smaller values for λk, and thus
the prior term Eλ[log πk] in (5) will also get smaller, which makes ϕi,k more
sharply distributed. Eventually, these components will get ϕi,k = 0, for all data
points xi. This in turn leads to γk = γ0, ηk = η0 and λk = α/K, all equal
to the hyperparameters. When K is very large, α/K is very small, and these
components almost have no chance to get bigger ϕi,k in the future for some data
xi, as seen from (5). Finally when the algorithm converges, we obtain only a
small number of effective components.

This phenomenon is illustrated in Fig. 2 (upper row) for Gaussian mixtures,
where we sampled 250 data points from 5 Gaussians. When we fix α = 1, sparsity
is obtained for all K’s, even if K is only 10. When K becomes larger, the fitted



α = 1, K = 10 α = 1, K = 20 α = 1, K = 100 α = 1, K = 250

α = 1, K = 250 α = 10, K = 250 α = 100, K = 250 α = 1000, K = 250

Fig. 2. Fitting VBDMA on a toy Gaussian mixture data with different α and K values.

number does not vary, but tends to be stable. As will be seen next, the strength
of sparsity is not random, but depends strongly on parameter α.

Functionality of α: Now we investigate the situation that K is fixed, and α
is allowed to change. When α is small, updates for λk will mostly depend on
the empirical assignments

∑N
i=1 ϕi,k in (6), and thus quickly get unbalanced.

Then similar to the previous discussion, ϕi,k will get an even sharp distribution
in the next update, and the algorithm quickly converges to a small number
of components that fit the data best. In the limiting case that α = 0, λk’s
are purely determined by empirical updates, and we are making a maximum
likelihood estimate for the mixing weights π.

On the other hand when α is relatively large, the prior term α/K will dom-
inate the update equation (6), and thus λk will not be very unbalanced in one
step. This will in turn make the update equation (5) smooth for ϕi,k, and more
components will survive than that with small α. As the iteration continues, cer-
tainly some components will be “dead” because of their poor fit to the data, but
the death rate is much slower and we could expect more components left after
convergence. A limiting case for this is to let α → ∞, which corresponds to fix
the π a priori to be { 1

K , . . . , 1
K }, and does not change it in the whole learning

process. This normally leads to non-sparsity of the learned model.
Fig. 2 (bottom row) shows how α controls the sparsity of mixture modeling.

With K fixed as 250, smaller α (e.g., 1) leads to higher sparsity, and larger α
(e.g., 1000) results in more components. Therefore choosing a suitable α means
choosing a desired number of mixture components.

Discussions: Previous discussions suggest that the algorithm in Sec. 3 can be
viewed as a variational algorithm for DP mixture model, which we call the VB-
DMA. A nice property of VBDMA is that decrease of K is a natural consequence
of model fitting with the data, and can be controlled by α. This is in contrast to



Table 1. The number of learned mixture components (means and standard deviations)
in VBDMA (top) and VBTDP (bottom) for the toy Gaussian data with different initial
K and α values. The experiments are repeated 20 times independently.

K = 5 K = 10 K = 20 K = 50 K = 100 K = 250

α = 1 4.45± 0.60 6.00± 1.03 6.70± 0.86 7.15± 1.27 6.85± 1.42 6.25± 1.16
α = 10 4.95± 0.22 7.80± 1.01 8.65± 1.14 7.35± 1.04 7.10± 1.37 6.45± 1.10
α = 100 5.00± 0.00 10.00± 0.00 19.90± 0.31 21.20± 1.58 11.40± 1.76 7.80± 1.40
α = 1000 5.00± 0.00 10.00± 0.00 20.00± 0.00 49.65± 0.49 69.05± 2.19 45.05± 2.06
α = 10000 5.00± 0.00 10.00± 0.00 20.00± 0.00 49.90± 0.31 85.10± 2.47 87.75± 2.07

K = 5 K = 10 K = 20 K = 50 K = 100 K = 250

α = 1 4.50± 0.61 6.30± 1.03 7.35± 1.46 8.15± 1.39 8.55± 1.23 9.00± 1.62
α = 10 4.65± 0.49 6.75± 0.91 7.85± 1.14 8.50± 1.24 8.80± 1.32 9.15± 1.09
α = 100 4.60± 0.60 7.55± 1.15 8.95± 1.79 9.60± 1.70 9.90± 1.21 10.10± 1.33
α = 1000 4.65± 0.49 7.80± 1.01 10.45± 1.47 10.80± 2.07 11.15± 2.06 11.10± 2.31
α = 10000 4.60± 0.50 7.75± 1.02 10.20± 1.32 11.05± 2.01 11.50± 1.82 11.40± 2.19

post-processing methods (e.g., [12]) where heuristics must be used. VBDMA also
provides explanations to [4], and can be extended to more complicated mixture
models like mixture of factor analyzers [7].

Another variational algorithm for DP is proposed in [2] which is based on
truncated DP (we denote it VBTDP). The idea is similar to VBDMA, but they
put variational distributions directly on the stick-breaking parameters (see the
definition in [9]). It is known that the variational form in VBTDP induces a
generalized Dirichlet distribution to weights π, and uses twice as many param-
eters as a Dirichlet distribution [3]. Some properties of generalized Dirichlet
distribution include that each dimension of π is not always negatively correlated
to other dimensions (i.e,. observing a sample from one dimension will surely
increase the expected value of the parameter for this dimension, but decrease
those for the other dimensions) as in Dirichlet distribution, and that the order of
these dimensions is important for sampling and learning [13]. Both properties are
however unnecessary for mixture modeling, and the latter is even contradictory
to Bayesian exchangeability in this context.

In Tab. 1 we show the numbers of learned components for VBDMA and
VBTDP on the toy data with different α and K values. For both methods,
increasing α leads to more components, and sparsity is achieved for all K’s
when α is small. However, while varying α yields quite different sparsity for
VBDMA, in VBTDP α seems to be insensitive to the results. Please refer to [14]
for more detailed discussion about these two methods.

Empirical Study: Due to space limit we only consider the VBDMA with
Gaussian mixtures on the “Old Faithful” data set. For more results on real data
sets please refer to [14]. “Old Faithful” contains 272 2D observations from the
Old Faithful Geyser in the Yellowstone National Park. Each observation consists
of the duration of the eruption and the waiting time to the next eruption. We
set K to 272 initially, and setting α to 100, 500 and 1000 results in 3, 6 and 15
Gaussians, respectively (see Fig. 3). All of them fit the data well, but in different
granularities. The final log likelihoods of the three model fitting are -1174.55,



α = 100, K = 272 α = 500, K = 272 α = 1000, K = 272 α = 100

Fig. 3. Fitting a mixture of Gaussians on the “Old Faithful” data set.

-1187.75 and -1253.17, respectively. One can do a model selection using this
likelihood and prefer the first one, but now there is no need to choose K a priori
because this number is automatically determined by the VBDMA algorithm
with a learned α which is approximately 100. We also see that each time the
effective mixture number decreases, the likelihood has a noticeable increase (we
mark three of them using dashed lines).
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