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Introduction

We study a Bayesian framework for density modeling with mizture of exponen-
tial famaly distributions. Our contributions:
o A variational Bayesian solution for finite mixture models

e Show that finite mizture models (with a Bayesian setting) can determine the
mixture number automatically

o Justify this result with connections to Dirichlet Process mixture models

o A fast variational Bayesian solution for Dirichlet Process mixture models

Exponential Family

The probability distribution of x € A" given parameters @ takes the form

P(x[0) = h(x)exp {07 6(x) — A(0)}.

where
e $(x) is the sufficient statistics;
e A(0) is the log-partition function: A(@) = log [ h(x) exp {HTgb(X)} dx.

e Example distributions: Gaussian, Multinomial, Poisson, Beta, Dirichlet, ...

0 is the natural parameter.

Conjugate Family

A prior family for exponential tamily distributions:

P(By,n) = g(6) exp {07y — nA(6) — B(v.n)}. (2)

This family also belongs to exponential family with sufficient statistics (_fw)) and

natural parameter (Z) .

Exponential Family Mixtures

Suppose we have (a fixed number of) K component distributions, and each of them
takes the same exponential family distribution.
Generative process:

77TK} (Z?:l Tk = 1)7

e Generate one data point from the cluster-specific probability distribution.

e Pick one of the K components with weights 7w = {7, ...

Likelihood (for N data points IID, with @ := {0y,...,0x}):
N K
P(D|m,0) HZP = k|lm)P(x;10;) = | > 7P (x:|0y). (3)
1=1 k=1 1=1 k=1
Priors (see plate model in Figure 1 left):
e The mixing weights 7 follow a Dirichlet distribution: 7 ~ Dir(%, ..., %);

e Each 0 follows (2): P(Ok|vy,m0) = g(0)exp {Hk Yo — noA(Or) — B(7y, 770)}.
This distribution is denoted as G in Figure 1.
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Figure 1. Plate models. Left: exponential family finite mixtures; Middle: equiva-
lent model with G the finite discrete measure; Right: DP mixture model (K — o0).

Connections to Dirichlet Process Mixture Model

For finite mixture models, (3) indicates that @ is sampled from distribution

G(0) = P(6|m,©) = 3;_ mdg,(6)
for each data point x, which defines a discrete prior for 8 (Figure 1 middle). When
K — oo it is know in statistics that the finite mixture model approaches a DP mixture

model, with a the concentration parameter, and Gy the base distribution (see Figure
1 right). This approximation is also called Dirichlet-Multinomial Allocation (DMA).

Variational Bayesian DMA for DP Mixture Model

The VBDMA first approximates DP mixtures with finite mixtures using a large
enough K, and then approximates the true posterior P(m, 8, c|D, a, v, 1) with

Q(m,0,cIX, v, m, @) = Qm|A) T Q(Ok|vi, mi) TV, Qlcilepy).

The variational Bayesian solution then maximizes a lower bound of data likelihood
with respect to these variational parameters and model parameters iteratively.

e E-step: Update variational parameters A, vy, n, ¢ analytically as

(4)

N
8%
)\k — g Li k -+ —. (5)
P K

oui 0% e { By, 0 0(,) — A >]+wogm},

Nk = Z i kT Mo,
i=1

Vi = Z wi k®(Xi) + Yo,
i—1

e M-step: Update model parameters a, -y, 19 by matching expected sufficient
statistics, e.g., S0 Eo[logm] = 328 Ex[log 7).

Key Observations:

e Sparsity occurs in VBDMA with a large K; some components will get zero weights.
e o 1S the single parameter to control sparsity; small a leads to less components.

e Both of these two observations are due to the approximation to DP mixture models.

e VBDMA coincides with variational Bayesian solution for finite mixture models,
which explains why Bayesian finite mixture models can also have sparse solutions.
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SIEMENS

VBDMA for mixture of Gaussians on a 2D toy data (5 clusters, 50 points per
cluster), with different initial values for a and K-
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The number of learned mixture components (mean -
and VBTDP (bottom) for the same toy data.
VBTDP is the variational method for DP mixture models from Blei

20 times.

- std) in VBDMA (top)

The experiments are repeated

and Jordan, 2004. In VBDMA « better controls the sparsity of the mixture modeling.

K =5 K =10 K =20 K =50 K =100 K = 250

a=1 [445=+0.60) 6.00£1.03 | 6.70x0.86 | 7.15 &£ 1.27  6.85 £1.42 | 6.25 £ 1.16
a=10 [4.95+£0.22] 7.80=x=1.01 &865x1.14 7.35x1.04 | 7.10 = 1.37 | 6.45 = 1.10
a = 100 |5.00 4 0.0010.00 £ 0.00/19.90 £ 0.31|21.20 & 1.58 11.40 = 1.76| 7.80 £ 1.40
a = 1000 | 5.00 = 0.0010.00 = 0.00]20.00 = 0.0049.65 = 0.49 69.05 = 2.19 45.05 &= 2.06
a = 10000 5.00 £ 0.00|10.00 £ 0.00|20.00 4 0.00149.90 £ 0.31 |85.10 £ 2.47 | 87.75 4+ 2.07

K =5 K =10 K =20 K =50 K =100 K =250

a=1 4.504+0.6116.30£1.03 7.35£1.46 | 8.15£1.39 | 855 £1.23 | 9.00 £ 1.62
a=10 [4.604+0.496.75+£091 7.8 £1.14 | 850+ 1.24 8804+ 1.32  9.15 £ 1.09
a =100 |4.60£0.60 7.55 £1.15| 895+ 1.79 | 9.60 = 1.70 | 9.90 & 1.21 |10.10 = 1.33
a = 1000 |4.65 £0.49|7.80 £1.01|10.45 £+ 1.4710.80 & 2.07|11.15 £2.06 11.10 £ 2.31
a = 10000|4.60 £0.50|7.75 & 1.02110.20 £ 1.32 11.05 £ 2.01 | 11.50 & 1.8211.40 £ 2.19

VBDMA on the “Old Faithful” 2D data set (N = 272). We always initialize K = N.
Different o values result in different mixture modeling. The right figure shows that

each time the component number decreases, the log-likelihood increases.

results on real world data sets see Shipeng Yu’s Ph.D. thesis, 20006.
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