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Abstract

Dimensionality reduction via feature projection has been
widely used in pattern recognition and machine learning. It
is often beneficial to derive the projections not only based
on the inputs but also on the target values in the training
data set. This is of particular importance in predicting mul-
tivariate or structured outputs which is an area of grow-
ing interest. In this paper we introduce a novel projection
framework which is sensitive to both input features and out-
puts. Based on the derived features prediction accuracy can
be greatly improved. We validate our approach in two ap-
plications. The first is to model users’ preferences on a set
of paintings. The second application is concerned with im-
age categorization where each image may belong to multi-
ple categories. The proposed algorithm produces very en-
couraging results in both settings.

1 Introduction

Consider the pattern recognition task of predicting an
output quantityy given an input feature vectorx. If the
input space is high-dimensional and contains irrelevant fea-
tures, the design of an appropriate pattern recognition sys-
tem becomes a non-trivial problem. Thus it is desirable to
employ a preprocessing step in which input features are
first projected into a new feature space that is compact,
noise-free, and highly indicative. As an outcome, learn-
ing algorithms based on the new features are often efficient
and effective. Projection methods such as principal com-
ponent analysis (PCA), linear discriminant analysis (LDA)
(see [2]), canonical correlation analysis (CCA) (e.g., [3, 1])
and partial least squares (PLS) [9, 4] have been applied suc-
cessively in various applications.

Among all the algorithms, PCA is probably the most
common choice, which aims to find the principle compo-
nents preserving the covariance structure of input features.
However, theunsupervisedmanner indicates the uncovered
components not necessary helpful for predictions.

In this paper we are interested insupervisedprojection
methods, since it is often beneficial to ensure feature projec-
tions sensitive to the predicted quantities. In particular we
consider a very general setting where the outputs aremul-
tivariate, i.e., for an examplex the corresponding output is
a vectory = [y1, . . . , yL]ᵀ. Note that the usual univariate
output is a special case of the framework.

Multi-output problem is very common in real-world
applications, typically involving multiple predictive tasks
based on the same input space. One example is to model
people’s preferences on a set of products. This is a typical
multi-output problem since for each product many persons’
preferences have to be estimated. Since people’s tastes
are usually correlated, it is desired to the interdependency
between individuals. Another example is the problem of
multi-label image categorization, where each image is al-
lowed to be associated with multiple categories, which of-
ten have semantic correlations. There are many other multi-
output problems where the dependency of outputs should
be explored. For instance, tracking the positions of differ-
ent parts of a person’s hands or arms has multi-dimensional
outputs which are dependent of each other, since the free-
doms of different parts are mutually restricted.

In all these applications it is desired to exploit the depen-
dency between the multiple outputs for prediction and mul-
tivariate data analysis. This paper introduces a novel frame-
work, multi-output regularized projection(MORP), which
maps the input features into a new feature space that not
only retains the information of inputs, but also captures the
dependency of outputs as well. The algorithm exposes the
inherent structureof input features which are highly infor-
mative for predictions.

The paper is organized as follows. In Section 2 we for-
mulate the data projection as an optimization problem in the
linear case and then propose an regularized version to pre-
vent overfitting, which is generalized to nonlinear mapping
by using kernels. Then we discuss it connections to related
work in Section 3. Finally we report the experiments in
Section 4 and conclude the paper in Section 5.



2 Multi-Output Regularized Projection

We consider a set ofN examples. Fori = 1, . . . , N ,
each examplei is described by anM -dimensional feature
vectorxi ∈ X , and is associated with anL-dimensional
output vectoryi ∈ Y. We denote the input data as a ma-
trix X = [x1, . . . ,xN ]ᵀ ∈ RN×M , and the output data
asY = [y1, . . . ,yN ]ᵀ ∈ RN×L, where[·]ᵀ denotes ma-
trix transpose. We aim to derive a mappingΨ : X 7→ V
that projects the input features into aK-dimensional latent
space.

2.1 A Common Latent-Variable Model

We propose to project input features into a new feature
spaceV that preserves the statistical structure ofX as much
as possible, and meanwhile explainsY very well. Thus we
solve the following optimization problem:

min
A,B,V

(1− β)‖X−VA‖2 + β‖Y −VB‖2 (1)

subject to: VᵀV = I,

whereV ∈ RN×K gives theK-dimensionalprojectionsof
examples.A ∈ RK×M , B ∈ RK×L are thefactor loadings
for X andY, respectively.0 ≤ β ≤ 1 is a tuning parameter
determining how much the indexing should be biased by
the outputs.VᵀV = I restricts theK latent variables to be
linearly independent and have identical variances. Clearly,
the cost function is a trade-off between thereconstruction
error of both X andY. The following proposition states
the interdependency betweenA, B andV at the optimum.

Proposition 2.1. If V,A andB are the optimal solutions
to the problem(1), then (i)A = VᵀX, B = VᵀY; (ii)
At the optimum, the objective function in(1) equals to(1−
β)‖X‖2

F + β‖Y‖2
F −Tr

[
VᵀKV

]
, whereTr[·] is the trace

of a matrix, andK = (1− β)XXᵀ + βYYᵀ.

To improve readability, we put all proofs into the ap-
pendix. Since‖X‖2

F and‖Y‖2
F are both fixed, and the ob-

jective function is convex, Proposition 2.1 suggests that the
problem (1) can be considered to be an optimization prob-
lem only with respect toV:

max
V

Tr
[
VᵀKV

]
(2)

subject to: VᵀV = I

Note an ambiguity arises in (1) and (2). IfV is the solution,
thenV′ = VR is also a solution, given an arbitrary rotation
matrixR. The following theorem summarizes the situation.

Theorem 2.2. If [ṽ1, . . . , ṽN ] are the eigenvectors of ma-
trix K, andλ1 ≥ . . . ≥ λN are the corresponding eigen-
values , then (i) the maximum of the objective function(2)

is
∑K

i=1 λi; (ii) V has the form[ṽ1, . . . , ṽK ]R, whereR is
an arbitraryK ×K orthogonal rotation matrix.

To remove the ambiguity, we are focusing on the solu-
tions given by the eigenvectors without any rotation, i.e.
vj = ṽj , j = 1, . . . , N . Thus the original optimization
problem (1) has anequivalentform: 1

max
v∈RN

vᵀKv (3)

subject to: vᵀv = 1,

By setting the Lagrange’s derivative to be zero, we obtain
the standard form of an eigenvalue problemKv = λv. Let
v1, . . . ,vN be the eigenvectors ofK with the eigenvalues
sorted in anon-increasingorder, thenan optimal solution
to (1) is given asV = [v1, . . . ,vK ], A = XV, andB =
YV.

2.2 Multi-Output Regularized Projection

Instead of uncovering the latent projections of observed
examples, this paper focuses on learning themapping func-
tionsΨ : X 7→ V that are able to mapnew input features
into a meaningful space, thus we restrict the latent variables
aslinear mappingsof X, and solve the following problem

min
A,B,V

(1− β)‖X−VA‖2 + β‖Y −VB‖2 (4)

subject to: VᵀV = I, V = XW

whereW = [w1, . . . ,wK ] ∈ RM×K . Pluggingv = Xw
into (3), we have an optimization problem with respect to
w

max
w∈RM

wᵀXᵀKXw (5)

subject to: wᵀXᵀXw = 1

Setting the derivative of its Lagrange with respect tow to
be zero, we reach a generalized eigenvector problem2:

XᵀKXw = λXᵀXw (6)

which producesM generalized eigenvectorsw1, . . . ,wM ,
as well as the eigenvaluesλ1 ≥ . . . ≥ λM . The firstK
eigenvectors are used to form the mapping functions

ψj(x) =
√
λjw

ᵀ
j x, j = 1, . . . ,K (7)

where the scaling with
√
λj reflects the relative im-

portance of projection dimensions. FinallyΨ(x) =
[ψ1(x), . . . , ψK(x)]ᵀ mapsx into aK-dimensional space.

1Solving the problem (3) itself only gives the first eigenvectorv1

of K. The full optimization problem should be recursively comput-
ing vj by maximizingvᵀKv with the constraintvᵀv = 1 andv ⊥
span{v1, . . . ,vj−1}. Here we state the problem as (3) for simplicity and
also because its Lagrange directly leads to the eigenvalue problem.

2In this paper we abuse the notationλ in all the eigenvalue problems.
However their meanings are clear in the respective contexts.



2.3 Overfitting and Regularization

However, similar to other linear systems, the learned
mapping functions can be ill-posed whenX has the rank
lower thanM , which typically happens when the dimen-
sionality of input features is very high, namelyN � M .
Under a mild assumption3 rank(K) = N , the maximiza-
tion in (3) is equivalent to minimizingvᵀK−1v. Then we
regularize the problem (5) as the following

min
w∈RM

wᵀXᵀK−1Xw + γ‖w‖2

subject to: wᵀXᵀXw = 1 (8)

where‖w‖2 = wᵀw is the Tickhonov regularizer [7] typi-
cally applied in ill-posed problems, andγ is a nonnegative
scalar which is usually very small. The corresponding gen-
eralized eigenvalue problem is[

XᵀK−1X + γI
]
w = λXᵀXw (9)

which gives generalized eigenvectorsw1, . . . ,wM with
eigenvaluesλ1 ≤ . . . ≤ λM . Note since the objective is the
inverse of some maximization problem, we sort eigenvalues
in anon-decreasingorder, and take the firstK eigenvectors
to form the mapping.

2.4 Nonlinear Projections

The following theorem implies that we can also derive a
nonlinear mappingΨ using thekernel trick.

Theorem 2.3. If w is an eigenvector of the generalized
eigenvalue problem(8), then there existsα ∈ RN such that
w = Xᵀα =

∑N
i=1(α)ixi. If {x1, . . . ,xN} are linearly

independent, such anα is unique.

Let X be a reproducing kernel Hilbert space (RKHS)
with thekernelfunctionκx(xi,xj) = 〈xi,xj〉, then based
on Theorem 2.3 we havev = Xw = XXᵀα = Kxα
whereKx is theN × N kernel matrix with(Kx)i,j =
κx(xi,xj). Then an equivalent form of (8) is

min
α∈RN

αᵀKxK−1Kxα + γαᵀKxα

subject to: αᵀK2
xα = 1 (10)

whereK = (1− β)Kx + βYYᵀ. The corresponding gen-
eralized eigenvalue problem is[

KxK−1Kx + γKx

]
α = λK2

xα (11)

With the eigenvalues sorted asλ1 ≤ . . . ≤ λN , the first
K eigenvectors[α1, . . . ,αK ] give the mappings, where the

3The assumption is particular true whenx are in a reproducing kernel
Hilbert space (RKHS) such that the inner product〈·, ·〉 defines a positive
definite kernel.

j-th function isψj(x) = wᵀ
j x =

∑N
i=1(αj)iκx(xi,x).

Now the algorithm is readily able to deal withnonlin-
ear mappings. We consider a nonlinear functionΦ :
X 7→ F , which mapsx into a high-dimensional or
even infinite-dimensional feature spaceF , and letX =
[φ(x1), . . . , φ(xN )], then the kernel is accordingly defined
asκx(xi,xj) = 〈φ(xi), φ(xj)〉. Finally, we can directly
work with kernels (e.g. Gaussian kernel), without knowing
φ(·) explicitly.

2.5 Structured Outputs

Sometimes the outputs are not just vector-valued, but
also have some complex structure like sequences or graphs.
Similar to the case ofX, one can consider an proper kernel
κy(yi,yj) = 〈ϕ(yi), ϕ(yj)〉 to characterize the structure
of outputs, whereϕ(·) maps output vectorsy into a RKHS
space. LetY = [ϕ(y1), . . . , ϕ(yN )], then

K = (1− β)Kx + βYYᵀ = (1− β)Kx + βKy (12)

In various problems, we can design theκy(·, ·) tailored to
the nature of data. This is a very general setting wherenon-
linear dependency of outputs can be explored. The methods
discussed in the previous sections are special cases which
use the linear kernelκy(yi,yj) = 〈yi,yj〉.

2.6 The Algorithm

It is usually convenient to seek for the eigenvectors with
the largest eigenvalues, which is numerically stabler and
more efficient. Thus we transform the optimization prob-
lem (10) to obtain another equivalent form. Letv = Kxα,
then problem (10) becomes

minv vᵀ(K−1 + γK−1
x )v (13)

subject to: vᵀv = 1

After some matrix derivation, we can get(K−1 +
γK−1

x )−1 = K(γK + Kx)−1Kx. Then the objective in
(13) becomes maximizingvT K(γK + Kx)−1Kxv, which
leads to the following standard eigenvalue problem:

K(γK + Kx)−1Kxv = λv (14)

In practice, sinceγ is usually very small, the eigenvalue
problem (14) can be approximated asKv = λv. Com-
pared to (14), the simplified version is much more efficient,
since the multiplication of matrices and matrix inverse are
both removed. After obtaining the leading eigenvectorsvj ,
j = 1, . . . , k with the largest eigenvaluesλj (due to the
maximization), we can recover the coefficient vectors as

αj = K−1
x vj , j = 1, . . . ,K (15)



Figure 1. Comparison of feature projection methods in predicting user preferences: Top-N accuracy (right) and ROC curve(left).

Finally, incorporating the eigenvalues that reflect the rel-
ative importance of latent dimensions, we obtain the final
feature mapping functions

ψj(x) =
√
λj

N∑
i=1

(αj)iκx(xi,x), j = 1, . . . ,K. (16)

3 Discussions and Related Work

The proposed framework MORP becomes identical to
PCA if β = 0. This connection is also clear from (11),
which becomes identical to kernel PCA [5] whenβ = 0. In
the other extreme caseβ = 1, the feature mapping is en-
forced to entirely explain the dependency of outputs. Then
the MORP algorithm is in spirit similar to kernel depen-
dency estimation (KDE) [8], which first performs PCA on
Ky, and then uses input features to regress the eigenvectors.
Due to the regularization in the post-regression phase, the
uncovered projections are usually not orthogonal. In con-
trast to KDE’s two-step strategy, our algorithm is derived in
a single optimization framework. The proposed MORP is a
very general framework. Compared with PCA, it makes the
projections sensitive to output quantities, which is desired in
supervised learning tasks. Compared with KDE, MORP re-
tains the structure of the input features and thus prevents to
be overfitted by the outputs, which makes the derived map-
ping functions more stable and potentially generalizable to
new output dimensions.

In the literature there are some other supervised projec-
tion methods, like linear discriminant analysis (LDA) (e.g.,
[6]), canonical correlation analysis (CCA) (e.g., [3, 1]) and
partial least squares (PLS) [9, 4]. MORP substantially dif-
fers from them. LDA is focusing on single classification
problem where the output is one-dimensional. CCA finds
the correlations between two representatives of the same ex-
amples (e.g., inputsX and outputsY in our setting) by min-
imizing ‖vx−vy‖2 subject to bothvx andvy being unitary
and linear mappings ofxi andyi (see a recent discussion in

[1]). However, it does not require the projectionsvx and
vy to promise low-reconstruction error ofx andy and thus
ignores theintra correlation of either. Instead, MORP takes
into account all the inter and intra dependencies, since the
projections minimize the reconstruction error of inputs and
outputs simultaneously. PLS can be seen as penalized CCA
(see [6]), which purely focuses on the regression of known
output quantities, while does not consider the generalization
for new dimension of outputs.

4 Empirical Study

We evaluate the proposed MORP on preference predic-
tion and image categorization. In both settings each exam-
ple is an image, from whichcolor histogram(216-dim.),
correlagram(256-dim.),first and second color moments(9-
dim.) andPyramid wavelet texture(10-dim.) are extracted
to form a 491-dimensional feature vectorx. In both settings
Kx is based on RBF kernel whileKy is based on linear ker-
nel, and both matrices are re-scaled to ensure equal traces.
For MORPβ = 0.5 andγ = 0.001. Note thatγ is found
uncritical as long as it is very small.

4.1 Preference Prediction

We collected 190 users’ ratings on 642 paintings in a
survey, where each user expresses “like” and “dislike” for
some randomly presented paintings. On average each user
had rated 89 paintings, thus there are missing entries inY.
This is a typical multi-output classification problem, since
for each paining many users’ opinions need to be predicted.
We examine the performance of various feature projection
algorithms that map the original features into a 20-dim.
space, where the new features are fed into SVMs. In the ex-
periment, a set of users are selected astest users. For each
test user, we withdraw some ratings so that 20 ratings are
left, then a SVM trained on the 20 examples is employed to
predict the rest of ratings. We compare MORP with ker-
nel CCA and kernel PCA. The two supervised methods,



Figure 2. Image categorization accuracy under various dimensionality of feature projections. The upper panels correspond to the setting (I)
where feature projection and categorization are based on the same set of categories; The lower panels present the setting (II) where feature
projection and categorization are respectively based on two different sets of categories.

i.e., MORP and CCA, make use of the 190-dimensional out-
puts, with the missing and withdrawn entries filled with ze-
ros. The derived new features are fed into SVMs with linear
kernels. We also perform SVMs employing the same RBF
kernel with the original 491-dim. features.

The first metric for evaluation isTop-N accuracy, i.e. the
proportion of truly liked paintings among theN top-ranked
paintings. Due to the missing entries iny, we actually count
the fraction ofknownliked paintings in the top rankedN
paintings. The quantity is smaller than the true accuracy
becauseunknownliked paintings are missing in the mea-
surement. However, in our survey, the presenting of paint-
ings to users is completely random, thus the distributions of
rated/unrated paintings in both unranked and ranked lists
are also random. This randomness dose not change the
relative performances of the studied methods and thus the
comparison still makes sense. The other metric is theROC
curve, which reflects the ranking quality of predictions and
insensitiveto the missing entries.

The experiment employs 10-fold cross validation, in
which each fold is set as active users. For each active user
the accuracy is averaged over 10 tests—in each time the 20
seen ratings are randomized. Finally the mean and variance
over the 10 folds are presented in Figure 1. MORP signif-
icantly outperforms others in terms of both accuracy and
ROC, because it explores the dependency between users.
We also found that supervised projections, i.e., MORP and
CCA, are generally better than unsupervised PCA. Note that
in the left panel the ROC curves of PCA and original fea-

tures are almost overlapped.

4.2 Image Categorization

The experiment is based on a subset of Corel image
database, containing 1021 images that have been manually
assigned into 35 categories based on their contents. In av-
erage, each image belongs to 3.6 categories and each cate-
gory contains 98 positive examples. We treat each category
as a binary classification problem. We employ AUC score
and macro/micro F1 value to measure the accuracy. AUC is
the size of area under the ROC curve, ranging from 0 to 1.
F1 measures have been widely used in text categorization
which combines precision and recall and is suitable when
positive examples are much less than negative ones. Macro
F1 is the simple average over all the categories while micro
F1 is average weighted by the size of positive examples in
each category. In all the cases larger values indicating better
performances.

In each run of the experiment, we randomly pick up 25
categories and have 500 examples labeled. Projection meth-
ods with RBF kernels are trained on the 500 examples to
learn the mapping functions, which are then employed to
compute new features for all the 1021 images. In setting (I)
we train linear SVM classifiers to predict the rest 521 im-
ages’ labels, while in setting (II) we perform classification
with 5-fold cross validation on the unlabeled 521 images
with respect to the remaining 10 categories (one fold train-
ing and 4 folds test). Note that the second setting examines



the generalization of supervised projection methods on new
output dimensions. The whole experiments are repeated by
10 runs with randomization, and the classification accuracy
under different dimensionality of projections are shown in
Figure 2. We can see that MORP outperforms CCA and
PCA in all the cases. In particular, the results in the lower
panels indicate that the features derived by MORP are gen-
eralized well to new predictive problems.

5 Summary and Conclusions

In this paper we propose a novel feature projection algo-
rithm for predicting multivariate outputs. The projections
retain the statistical structure of not only input features but
also the outputs. We present the kernel version of the map-
pings such that nonlinear dependency can be captured. The
algorithm achieves very good results in user preference pre-
diction and image categorization. Currently we mainly ex-
ploit the linear dependency of outputs in the empirical study.
As suggested in Section 2.5, the algorithm is generally ap-
plicable for outputs with richer structures, like sequences or
graphs. In the future its applications to modeling structured
outputs should be further studied.

Appendix

Proof. (Proposition 2.1) Applying the rule‖C‖2 = Tr [CCᵀ]
for an arbitrary matrixC, we obtain

J(A,B,V) = (1− β)‖X−VA‖2 + β‖Y −VB‖2

= (1− β)Tr [XXᵀ − 2VAXᵀ + VAAᵀVᵀ]

+ βTr [YYᵀ − 2VBYᵀ + VBBᵀVᵀ] .

Setting the partial derivative ofJ with respect toA andB be zero
respectively, we haveA = VᵀX andB = VᵀY, which proves
(i). Then we use the results (i) to replaceA andB in J and obtain
Jopt = Tr [K]− Tr [VᵀKV], which concludes (ii).

Proof. (Theorem 2.2) The Lagrange of problem (2) is

L(V, Λ̃) =

K∑
i=1

vᵀ
i Kvi − 2

∑
i6=j

λ̃i,jv
ᵀ
i vj −

K∑
j=1

λ̃j,j(v
ᵀ
i vi − 1)

where(Λ̃)i,j = λ̃i,j andV = [v1, . . . ,vK ]. Setting its derivative
with respect tovj to be zero, we obtain

∂L

∂vj
= 2Kvj − 2

K∑
i=1

λ̃i,jvj = 0, j = 1, . . . , K,

which can be rewritten asKV = VΛ̃. SinceΛ̃ is a symmetric
matrix, we haveΛ̃ = RᵀΛR whereΛ is a diagonal matrix and
R is an orthogonal rotation matrix satisfyingRRᵀ = RᵀR = I.
ThenKV = VRᵀΛR yieldsKVR = VRΛ. SinceΛ is di-
agonal, it is easy to see that the columns ofṼ = VRᵀ are the
eigenvectors ofK. Thus the optimalV is formed by an arbitrary

rotation ofK’s eigenvectors, i.e.V = ṼR. InsertingV back
to the objective function, then the value of objective function are
Tr(Λ), i.e., sum of theK corresponding eigenvalues ofK. It is
easy to see the maximal Tr(Λ) is the sum of theK largest eigen-
values, which proofs (i). In this case,V is an arbitrary rotation of
theK largest eigenvectors, thus conclusion (ii) holds.

Proof. ( Theorem 2.3) Let J(w) denote the cost function in (8).
Obviously J(w) achieves the minimum at the first eigenvector
w = w1 of the generalized eigenvalue problem (9). Consider
w‖ as the projection ofw1 on the subspace span{x1, . . . ,xN}.
Then we can writew1 = w‖ + w⊥, wherew⊥ is orthogo-
nal to the subspace spanned byxi. Then we havewᵀ

1xi =
wᵀ
‖xi + wᵀ

⊥xi. Since‖w1‖2 = ‖w‖‖2 + ‖w⊥‖2 ≥ ‖w‖‖2,
then J(w1) ≥ J(w‖). However, J(w1) achieves the mini-
mum, meaningJ(w1) ≤ J(w‖). ThereforeJ(w1) = J(w‖),
and w⊥ = 0. So far we have proofed that the first eigen-
vector (with the smallest eigenvalue) is a linear combination of
xi. Given eigenvectorswj , j = 1, . . . , n − 1, it is known
that then-th eigenvector is obtained by first deflating the ma-
trix K† = K−1 −

∑n−1
j=1 λjX

ᵀwjw
ᵀ
j X and then solving

the problemminw∈RM wᵀXK†Xᵀw + γ‖w‖2, subject to:
wᵀXᵀXw = 1. Following the same procedure as before we
proof that the eigenvectorwn also lies in the span ofxi.
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