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ABSTRACT
Latent semantic indexing (LSI) is a well-known unsuper-
vised approach for dimensionality reduction in information
retrieval. However if the output information (i.e. category
labels) is available, it is often beneficial to derive the in-
dexing not only based on the inputs but also on the target
values in the training data set. This is of particular im-
portance in applications with multiple labels, in which each
document can belong to several categories simultaneously.
In this paper we introduce the multi-label informed latent
semantic indexing (MLSI) algorithm which preserves the in-
formation of inputs and meanwhile captures the correlations
between the multiple outputs. The recovered “latent seman-
tics” thus incorporate the human-annotated category infor-
mation and can be used to greatly improve the prediction
accuracy. Empirical study based on two data sets, Reuters-
21578 and RCV1, demonstrates very encouraging results.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing—Indexing methods

General Terms
Algorithms, Theory, Measurement, Performance

Keywords
Latent Semantic Indexing, Dimensionality Reduction, Su-
pervised Projection, Multi-label Classification

1. INTRODUCTION
Information retrieval and pattern recognition often suffer

from the problem of high dimensionality of the data, for the
reason of learnability or computational efficiency. Therefore
dimensionality reduction in terms of semantic indexing or
feature projection is of great importance and is commonly
applied to solve real world problems [2, 1, 5].
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Among various methods, latent semantic indexing (LSI)
turns out to be a successful approach and is widely applied
to document analysis and information retrieval [2]. To apply
LSI, documents are represented in a vector space model, and
singular value decomposition (SVD) is performed to find the
sub-eigenspace with large eigenvalues. It is shown that LSI
can find the best subspace in terms of Frobenius norm of ma-
trix. Thus the technology behind LSI is also called principal
component analysis (PCA) in the sense that each “latent se-
mantic” can be viewed as a “component” to represent the
data (see, e.g. [4]).

LSI is purely unsupervised and is not capable to incorpo-
rate some additional knowledge. There are at least two rea-
sons for further improvements on this issue. First, consider-
able information about the content of documents is reflected
by document’s labels, which is often annotated by human
experts. This is particularly the case in the multi-label set-
ting where each document is assigned to multiple categories.
The semantic correlations of assignments for variant cate-
gories and the hierarchical structure of categories expresses
the semantic relationships between documents. Therefore,
it is desired to have a LSI technique that can be informed
by this additional knowledge and produce semantically more
meaningful latent factors.

Second, the unsupervision of LSI leads to results that may
be or may not be useful in discriminative analysis like au-
tomatic text categorization. However in one specific clas-
sification or regression problem, output information is in
general very important and should be incorporated into the
feature mapping or selection process. In particular we con-
sider problems with multiple labels: For an input x the
corresponding output is no longer a scalar but a vector
y = [y1, . . . , yL]T . Thus the text categorization system
solves many related tasks at the same time. In this setting
the dependencies between multiple labels are worth consid-
ering for multivariate data analysis, and can be used to im-
prove the indexing for these specific tasks. Furthermore,
training a system with multiple labels might lead to smaller
parameter variance and the prediction for a particular label
is improved if the labels are correlated.

This setting is very common in real-world applications.
One example is the problem of multi-label document cate-
gorization, where each document is allowed to be associated
with more than one category and where categories often
have semantic correlations [8]. The well-known text data
set Reuters-21578 contains such documents, and the new
text data corpus RCV1 has additionally a topic hierarchy
[7]. These two data sets will be used in the experiments.



In this paper we introduce a supervised LSI called multi-
label informed latent semantic indexing (MLSI). MLSI maps
the input features into a new feature space that retains the
information of original inputs and meanwhile captures the
dependency of output dimensions. The mapping is derived
by solving an optimization problem for linear projections,
and can be easily extended for nonlinear mappings with
kernels. We use this method as a preprocessing step and
achieve encouraging results on the multi-label text classifi-
cation problems.

1.1 Notations
We consider a set of N documents. For i = 1, . . . , N ,

each document i is described by an M -dimensional feature
vector xi ∈ X , and is associated with an L-dimensional
output vector yi ∈ Y. We denote the input data as a matrix
X = [x1, . . . ,xN ]T ∈ RN×M , and the output data as Y =
[y1, . . . ,yN ]T ∈ RN×L, where [·]T denotes matrix transpose.
We aim to derive a mapping Ψ : X 7→ V that projects the
input features into a K-dimensional latent space.

In the following, lower-case bold Roman letters denote
column vectors, and upper-case ones denote matrices. In
particular, I is reserved for identity matrix. Eigenvalues
are usually denoted as λ and it should be clear from the
context which matrix they are corresponding to. ‖·‖ denotes
Frobenius norm for matrices and 2-norm for vectors, and
Tr [·] denotes trace for square matrices.

1.2 Paper Organization
The paper is organized as follows. In Section 2 we formu-

late the data projection as an optimization problem in the
linear case and then propose a regularized version to pre-
vent overfitting, which is generalized to nonlinear mapping
by using kernels. Then we point out its connections to re-
lated work in Section 3 and report the experimental results
in Section 4. In Section 5 we conclude the paper.

2. THE MLSI ALGORITHM
We begin by introducing an optimization explanation for

LSI, and then take into account the output information.

2.1 Optimization Problem for LSI
In LSI, we aim at finding a linear mapping from the input

space X to some low-dimensional latent space V, while most
of the structure in the data can be explained and recovered.
We can achieve this by taking a latent variable model and
solving the following optimization problem which minimizes
the reconstruction error (see, e.g., [4]):

min
A,V

‖X−VA‖2 (1)

subject to: VT V = I,

where V ∈ RN×K and A ∈ RK×M , given K ≤ M . Each
column of V corresponds to one latent variable or latent
semantic, and by VT V = I we constrain that they are un-
correlated and each has unit variance1. For each document

1An equivalent version of (1) has the same objective func-
tion but instead constraining AAT = I. The difference be-
tween the obtained projections and the computed V in (1)
is just a linear scaling caused by the top K singular values
of X. Here we consider the form (1) for the convenience of
deriving the extensions in next section.

in X (represented as one row in X), the corresponding row in
V explicitly gives its projection in V. A is sometimes called
factor loadings and gives the mapping from latent space V
to input space X . At the optimum, VA leads to the best
K-rank approximation of the observations X.

The derived indexing explains the covariance of input data,
which is however not necessarily relevant to the output quan-
tities. Thus LSI may or may not be beneficial to supervised
learning problems. Generally speaking, it is more desirable
to consider the correlation between input X and output
Y, and the intra-correlation within Y (if multiple labels).
Therefore, we turn to supervised indexing in the next sub-
section, incorporating both input X and output Y.

2.2 A Supervised LSI
The unsupervised indexing problem (1) explicitly repre-

sents the projections of input data X in matrix V. To con-
sider the label information, we can enforce the projections
V in problem (1) sensitive to Y as well. Thus in supervised
LSI we solve the following optimization problem:

min
A,B,V

(1− β)‖X−VA‖2 + β‖Y −VB‖2 (2)

subject to: VT V = I,

where V ∈ RN×K gives the K-dimensional projections of
documents, for features of both X and Y; A ∈ RK×M ,
B ∈ RK×L are the factor loadings for X and Y, respec-
tively. 0 ≤ β ≤ 1 is a tuning parameter determining how
much the indexing should be biased by the outputs. As be-
fore, VT V = I restricts the K latent variables to be uncor-
related and have unit variance. Clearly, the cost function
is a trade-off between the reconstruction error of both X
and Y. We wish to find the optimal indexing that gives the
minimum reconstruction error. The second part in the ob-
jective function of problem (2) enforces the latent semantics
to explain the dependency structure of multiple labels. The
following theorem states the interdependency between A, B
and V at the optimum.

Theorem 1. Denote C = (1−β)XXT +βYYT , and let
λ1 ≥ . . . ≥ λN be eigenvalues of C with corresponding eigen-
vectors v1, . . . ,vN . If V,A and B are the optimal solutions
to problem (2), then:

(a) A = VT X, B = VT Y;

(b) V = [v1, . . . ,vK ]R, where R is an arbitrary K × K
orthogonal rotation matrix;

(c) At the optimum, the objective function in (2) equals to

Tr [C]− Tr
[
VT CV

]
, or equivalently,

∑N
i=K+1 λi.

To improve readability, we put all proofs into Appendix.
Theorem 1 states that the leading eigenvectors of C form a
solution for matrix V, and any arbitrary rotation for V does
not change the optimum. Therefore to remove the ambigu-
ity, we focus on the solution given by the leading eigenvec-
tors of C, i.e., V = [v1, . . . ,vK ]. Problem (2) can thus be
achieved by solving the eigenvalue problem Cv = λv for the



first K leading eigenvectors, which is equivalent to solving2:

max
v∈RN

vT Cv (3)

subject to : vT v = 1.

Then V = [v1, . . . ,vK ], A = VT X, and B = VT Y gives
the optimal solution for problem (2).

2.3 MLSI - Primal Form
To complete the MLSI algorithm, we still need to consider

two things. Firstly, the indexing should not rely on the la-
bels, since for new documents we have no target information
yet. Secondly, the stability of indexing should be taken into
account, because otherwise overfitting is likely to occur.

2.3.1 Linear Constraint
It is not hard to see that solving problem (3) only gives

the projections for training data with both features in X
and Y. We wish to construct a mapping Ψ : X 7→ V that
is able to handle the input features of any new documents,
thus we add a linear constraint to problem (2) and restrict
the latent variables as linear mappings of X, i.e.,

V = XW.

Therefore we have vi = Xwi, for i = 1, . . . , K, if we denote
W = [w1, . . . ,wK ] ∈ RM×K . Plugging v = Xw into (3),
we have an optimization problem with respect to w:

max
w∈RM

wT XT CXw (4)

subject to : wT XT Xw = 1.

2.3.2 Overfitting and Regularization
Similar to other linear systems, the learned mappings can

be unstable when the span{x1, . . . ,xN} has a lower rank
than M , due to the small size of training set or dependence
between input features3. As a result, a disturbance of w
with an arbitrary w∗ ⊥ span{x1, . . . ,xN} does not change
the objective function of optimization since (w + w∗)T xi =
wT xi, but may dramatically change the projections of un-
seen test documents which are not in the spanned space. To
improve the stability, we have to constrain w in some way.

Suppose rank(C) = N , then maximizing (3) is equiva-
lent to minimizing vT C−1v.4 We introduce the Tikhonov

2Solving problem (3) itself only gives the first eigenvector
v1 of C. The full optimization problem should be recur-
sively computing vj by maximizing vT Cv with the con-
straint vT v = 1 and v ⊥ span{v1, . . . ,vj−1}. Here we state
the problem as (3) for simplicity and also because its La-
grange formulism directly leads to the eigenvalue problem.
3This will be a crucial problem when we consider nonlinear
mapping in the dual form (cf. Section 2.4), since the dimen-
sionality of data point x in the reproducing kernel Hilbert
space (RKHS) could be very high, or even infinite (e.g., in
case of RBF kernel). See, e.g., [12].
4This equivalence holds whenever C is positive definite and
thus invertible. It is easy to show that matrix C is at
least positive semi-definite, since we have uT Cu = (1 −
β)uT XXT u + βuT YYT u = (1− β)‖XT u‖2 + β‖YT u‖2 ≥
0,∀u ∈ RN . In case that C is not positive definite, it suf-
fices to use pseudo-inverse instead, or makes it so by adding
a tiny positive scalar to diagonal entries.

regularization [14] into problem (4) as the following

min
w∈RM

wT XT C−1Xw + γ‖w‖2 (5)

subject to : wT XT Xw = 1,

where ‖w‖2 = wT w is a penalty term and γ is a tuning
parameter. The following theorem shows that the regular-
ization term ‖w‖2 removes the ambiguity of mapping func-
tions by restricting w in the span of xi, i = 1, . . . , N , and
thus improves the stability of mapping functions.

Theorem 2. If w is an eigenvector of the generalized
eigenvalue problem (5), then w must be a linear combination
of xi, i = 1, . . . , N , namely

w = XT α =

N∑
i=1

(α)ixi

where α ∈ RN .

Problem (5) is easily solvable by setting the derivative of
its Lagrange formulism with respect to w to be zero. Then
we obtain a generalized eigenvalue problem

[
XT C−1X + γI

]
w = λ̃XT Xw, (6)

which gives generalized eigenvectors w1, . . . ,wM with eigen-
values λ̃1 ≤ . . . ≤ λ̃M . Note we sort eigenvalues in a non-
decreasing order, since we take the K eigenvectors with the
smallest eigenvalues to form the mapping. The first K eigen-
vectors are used to form the mapping functions as the fol-
lowing

ψj(x) = wT
j x, j = 1, . . . , K, (7)

where in this paper we focus on the projection directions
and ignore possible scaling factors. As the main results we
obtain Ψ(x) = [ψ1(x), . . . , ψK(x)]T which maps x into a
K-dimensional space.

In problem (6) we are interested in the eigenvectors with
the smallest eigenvalues, whose computation is however the
most unstable part in solving an eigenvalue problem. Thus
we let λ = 1/λ̃ and turn the problem into an equivalent one:

XT Xw = λ
[
XT C−1X + γI

]
w, (8)

where we are seeking the K eigenvectors with the largest
eigenvalues. This gives the MLSI algorithm in primal form,
as summarized in Table 1.

Table 1: MLSI in primal form
Input X ∈ RN×M ,Y ∈ RN×L, 0 ≤ β ≤ 1, γ ≥ 0, K > 0

Steps (i) Calculate C = (1− β)XXT + βYYT ;
(ii) Solve the generalized eigenvalue problem:
XT Xw = λ

[
XT C−1X + γI

]
w,

obtain eigenvectors w1, . . . ,wK with
largest K eigenvalues λ1 ≥ . . . ≥ λK .

Output indexing function ψj(x) = wT
j x, j = 1, . . . , K

2.4 MLSI - Dual Form
So far we have considered linear mappings that project

inputs x into a meaningful space V. However, Theorem 2
implies that we can also derive a nonlinear mapping Ψ.



Let a kernel function kx(·, ·) be the inner product in X ,
i.e., kx(xi,xj) = 〈xi,xj〉 = xT

i xj , then from Theorem 2,

v = Xw = XXT α = Kxα,

where Kx is the N × N kernel matrix satisfying (Kx)i,j =
kx(xi,xj). ‖w‖2 can also be calculated with kernel Kx:

‖w‖2 = wT w = αT XXT α = αT Kxα.

Similarly, we can define a kernel function ky(·, ·) for inner
product in Y and obtain a kernel matrix Ky = YYT . Then
we can calculate the matrix C using kernels:

C = (1− β)Kx + βKy, (9)

and express the dualformalism of problem (5) with respect
to coefficients α as

min
α∈RN

αT KxC
−1Kxα + γαT Kxα (10)

subject to : αT K2
xα = 1,

which gives rise to again a generalized eigenvalue problem
[
KxC

−1Kx + γKx

]
α = λ̃K2

xα. (11)

We obtain the generalized eigenvectors α1, . . . , αN , with
λ̃1 ≤ . . . ≤ λ̃N . The first K eigenvectors are applied to form
the mappings. The j-th mapping function, j = 1, . . . , K, is
given by

ψj(x) = wT
j x =

N∑
i=1

(αj)ikx(xi,x).

As before we define λ = 1/λ̃ and change (11) to the fol-
lowing equivalent form:

K2
xα = λ

[
KxC

−1Kx + γKx

]
α, (12)

and hence we can choose the K eigenvectors with the largest
eigenvalues. The MLSI algorithm in dual form is summa-
rized in Table 2.

Table 2: MLSI in dual form
Input X ∈ RN×M ,Y ∈ RN×L, 0 ≤ β ≤ 1, γ ≥ 0, K > 0
Steps (i) (Kx)i,j = kx(xi,xj), (Ky)i,j = ky(yi,yj),

C = (1− β)Kx + βKy;
(ii) Solve the generalized eigenvalue problem:

K2
xα = λ

[
KxC

−1Kx + γKx

]
α,

obtain eigenvectors α1, . . . , αK with
largest eigenvalues λ1 ≥ . . . ≥ λK .

Output indexing function ψj(x) =
∑N

i=1(αj)ikx(xi,x),
j = 1, . . . , K

Several advantages of dual MLSI can be seen from Table 2.
First of all, in contrast of solving a generalized eigenvalue
problem for M ×M matrices in primal MLSI, in dual MLSI
we only need to solve a similar problem for N × N matri-
ces. In a general indexing problem, the input dimension
M (i.e., number of words) is much larger than the num-
ber of documents N , and therefore working in dual form is
more efficient. In the experiments we will use the dual form
for indexing. Second, MLSI in dual form is ready to deal
with nonlinear mappings. For this we consider a nonlinear
mapping φ : x ∈ X 7→ φ(x) ∈ F , which maps x into a
high-dimensional or even infinite-dimensional feature space

F , and change X to be [φ(x1), . . . , φ(xN )]T . Then the kernel
function is accordingly defined as

kx(xi,xj) = 〈φ(xi), φ(xj)〉F ,

where we still have Kx = XXT . Therefore, we can directly
work with kernels (e.g., RBF kernel kx(xi,xj) = exp(−‖xi−
xj‖2/2σ2)), without knowing φ(·) explicitly. Similarly, we
can define a nonlinear mapping for Y and directly work on
the corresponding kernel matrix Ky. Although this paper
mainly considers the linear kernel to explore the linear cor-
relation of inputs and multivariate labels, the formulism im-
plies that the method can generally handle more complex
inputs and outputs (e.g., images) by using some other suit-
able kernels.

3. CONNECTIONS TO RELATED WORK
The proposed algorithm MLSI is seen to solve the same

optimization problem as LSI when β = 0, as seen in (1) and
(2). Therefore MLSI takes as special case the unsupervised
LSI, or more specifically, kernel PCA [10, 11]. Kernel PCA
is the dual form of PCA and turns out to solve the eigen-
value problem Kxα = λα with kernel matrix (Kx)i,j =
kx(xi,xj). To build this connection, we see from (9) that
C = Kx holds when β = 0 in MLSI. Therefore from Ta-
ble 2 it is easy to check that MLSI solves the generalized
eigenvalue problem

K2
xα = λ(1 + γ)Kxα,

which is identical to kernel PCA since Kx is invertible. Un-
der this situation, the regularization term controlled by γ is
just a rescaling of the cost function, as can be seen in (10).
Hence γ is just a nuisance parameter and we obtain rescaled
eigenvalues compared to kernel PCA. From this perspec-
tive, MLSI in general performs label informed kernel PCA
or supervised kernel PCA, since it can be viewed as directly
modifying the kernel matrix C with label information.

In the literature there are some other well-known super-
vised projection methods, like linear discriminant analy-
sis (LDA) (e.g., [13]), canonical correlation analysis (CCA)
(e.g., [6, 3]) and partial least squares (PLS) [15, 9]. MLSI
substantially differs from them. LDA is focusing on single
classification problem where the output is one-dimensional,
while in contrast MLSI considers predictions with multivari-
ate labels and is thus more general. CCA finds the corre-
lations between two representatives of the same documents
(e.g., inputs X and outputs Y in our setting) by minimizing
‖vx − vy‖2 subject to both vx and vy being unitary and
linear mappings of xi and yi (see a recent discussion in [3]).
However, it does not require the projections vx and vy to
promise low-reconstruction error of x and y and thus ig-
nores the intra correlation of either (especially y). Instead,
MLSI takes into account all the inter and intra dependen-
cies, since the projections minimize the reconstruction error
of inputs and outputs simultaneously. PLS can be seen as a
penalized CCA, but it cannot find a space of larger dimen-
sionality than that of Y, thus its generalization performance
on new dimensions of outputs is restricted (see discussions
in [14]). Instead, MLSI can find in principle N orthogonal
dimensions (if Kx is positive definite).

4. EMPIRICAL STUDY
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Figure 1: Classification performance on Reuters data set. Upper rows ((a),(b),(c)) show results with setting
(I), and lower rows ((d),(e),(f)) show results with setting (II).

In this section we evaluate the proposed MLSI algorithm
based on the task of multi-label text classification, in which
we allow one document to be assigned to multiple labels.
One can treat each classification problem separately, but
these problems could have correlations between each other
and could be solved simultaneously. We solve this problem
by applying MLSI and encoding the labelling information
into the mapping, and then each classification problem is
solved independently using the projected features. By in-
corporating the output information that may be difficult
to reveal from inputs, the indexing is biased by the specific
classification tasks and is thus more suitable for discriminate
analysis.

We compare the classification performance using features
learned by MLSI and normal LSI, where in the latter case no
labelling information is used in indexing. Experiments are
performed on two text data sets taken from Reuters-21578
and RCV1, respectively, followed by detailed discussions.

4.1 Data Sets and Preparation
Our first data set is a text corpus which contains all the

documents in Reuters-21578 that are associated with mul-
tiple categories. Eliminating those minor categories that
contain less then 50 documents, we have 47 categories to
work with. Picking up all the words that occur at least in
5 documents, we finally obtain 1600 documents with 6076
words that are used in computing TFIDF feature vectors.
In average, each document is assigned to 2.48 categories,
and each category has 85 positive documents.

The other data set is a subset of the RCV1-v2 text data
set, provided by Reuters and corrected by Lewis et al. [7].
The data set contains topics, regions and industries infor-
mation to each document and a hierarchical structure for

topics and industries. Since it is common that one docu-
ment is assigned to multiple topics, this is an ideal data
set for multi-label text classification. We use topics as the
classification tasks and simply ignore the topic hierarchy.
A small part of the data set is chosen, and similar prepro-
cessing as for Reuters-21578 is done by picking up words
with more than 5 occurrences and topics with more than
50 positive assignments. We end up with 3588 documents
with 5496 words, and have 79 topics left. In average, each
topic contains 180 positive documents, and each document
belongs to 3.96 topics. In the following we denote “Reuters”
and “RCV1” for these two data sets respectively.

4.2 Experimental Design
We have two settings in this experiment. In the first

setting (I), we randomly pick up 70% categories for clas-
sification and employ 5-fold cross-validation with one fold
training and 4 folds testing. This is a standard classifica-
tion setting, and our goal is to evaluate whether the feature
mappings are generalizable to new data points. The second
setting (II) aims to test the generalization performance of
the projection methods on new categorization tasks. For
this we consider the classification problems for the rest 30%
categories. To make a fair comparison, we perform 5-fold
cross-validation on previous unseen data (with the same size
as training data), using the feature mappings derived from
setting (I).

We will compare the following three methods in our ex-
periment:

1. Original Features: A linear SVM with all the text
features is trained for each category, and this serves as
the baseline for comparison.
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Figure 2: Classification performance on RCV1 data set. Upper rows ((a),(b),(c)) show results with setting
(I), and lower rows ((d),(e),(f)) show results with setting (II).

2. LSI: Standard unsupervised projection is performed
which maps the input data into a low-dimensional space.
Then a linear SVM is trained on this projected space.

3. MLSI: Additional label information for training data
is used for making a supervised mapping. Then the
same SVM is trained on this projected space.

In both of the projection methods LSI and MLSI, we use
the dual form in this experiment simply because this gives
much improved efficiency. In case of linear kernels, this will
give the same results as that in primal form.

The classification performance is compared using F1 Macro,
Micro and AUC (Area Under Curve) score. F1-measure de-
fines a trade-off between precision and recall, and is known
to be a good metric for classification evaluation. In case of
multiple outputs, F1 Macro is just the arithmetic average
of F1 measures of all output dimensions, and F1 Micro can
be seen as a weighted average. Alternatively, AUC score is
the area under the ROC (receiver operating characteristics)
curve, which plots sensitivity versus 1-specificity. It is known
to measure the objective quality of ranking for specific classi-
fication problems. A higher AUC indicates a better ranking.
It is also averaged over all the output dimensions. We also
tried classification accuracy, but didn’t get informative com-
parison because most of the classification problems are very
unbalanced (more than 90% of data are negative examples).

We choose all the parameters for these algorithms as fol-
lows. We use LIBSVM with linear kernel and fix C = 100,
which gives Original Features the best performance and
is then fixed for the other two methods. For MLSI we set
the parameter β to 0.5 after we scale Kx and Ky to ensure
they have equal traces for balance. γ is simply fixed as 0

to give the best performance. For both settings we repeat
the experiments 50 times with randomization, and the per-
formance versus dimensionality of projection is shown with
means and standard deviations in Figure 1 and Figure 2 for
Reuters and RCV1, respectively.

The first observation from these figures is that MLSI out-
performs LSI in all the cases for setting (I). This indicates
that the mapping functions in MLSI are generalizable to
new test data, by incorporating the output information for
the training data.

Another encouraging observation is that MLSI in most
cases can even lead to better classification performance than
Original Features, which uses at least 50 times more fea-
tures. MLSI in this case can not only greatly accelerate the
classification tasks, but also improve the performance. This
is especially true for F1 Macro and AUC score, where a
large gap can be observed for all the figures. For F1 Micro
the effect of MLSI is mixed, and an interesting decrease can
be observed in Figure 1(e) and Figure 2(e). Consider the
difference between F1 Macro and F1 Micro measures, these
results indicate that MLSI is particularly useful for classifi-
cation problems with small positive training examples, since
by randomly choosing training data we are more likely to
choose small positive examples for them. For large classes
that have lots of training data, SVMs with full features can
already do a very good job.

MLSI has two tunable parameters β and γ that controls
the kernel combination weights and the strength of regu-
larization, respectively. For previous figures it is assumed
fixed, and in this last experiments we study the classifica-
tion performance when they varied. Since we can see similar
results for both data sets on all the evaluation measures, we
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Figure 3: Performance of MLSI with respect to β ((a),(b)) and γ ((c),(d)) for Reuters data set. (a),(c) show
results with setting (I), and (b),(d) show results with setting (II).

only show in Figure 3 the illustrations for Reuters with AUC
score. Figures for β are shown with dimensionality K fixed
as 50 since it is insensitive to the results.

A first impression from Figure 3 is that the curves are
rather smooth (except when β approaching 1 in setting (II)).
This indicates that the performance is not very sensitive to
small changes of β value. When β increases from 0 to 1, it
is seen that all the curves first increase and then decrease,
indicating that a good trade-off should be identified for best
performance. When β approaches 0, MLSI tends to be LSI
and thus unsupervised. Outputs are ignored in this case,
and poor performance is observed for both settings. On
the other hand when β approaches 1, the mappings tend to
solely explain outputs Y, ignoring the intrinsic structure of
inputs X. This also leads to poor performance, especially for
setting (II) because the mappings are not good to generalize
to new outputs. Overfitting occurs in this case, where a
sharp decrease can be observed with even a much worse
performance than LSI (β = 0). Finally, β = 0.5 is seen to
be a good trade-off for both settings. From our experiences,
a slightly larger β (e.g., 0.6) is better for setting (I), and a
slightly smaller β (e.g., 0.4) is more stable for setting (II).
For γ we have the observation that small γ leads to better
performance for setting (I), while an appropriately chosen γ
is necessary for setting (II). This reflects its regularization
effect, since for setting (II) new categories are considered
and setting γ = 0 will lead to overfitting.

5. CONCLUSIONS
In this paper we propose a novel indexing algorithm MLSI

for multi-label informed latent semantic indexing. The map-
pings are supervised and retain the statistical information
of not only input features but also the multivariate outputs.
We present both the primal and the dual formalisms for the
linear mappings, and nonlinear mappings can also be de-
rived by using reproducing kernels. The final solution ends
up as a simple generalized eigenvalue problem that can be
easily solved. The algorithm is applied for multi-label text
classification with very encouraging results. Currently we
are mainly exploiting linear dependency of inputs as well
as outputs. In the near future we plan to apply the algo-
rithm to other types of objects like images with suitable
kernels (e.g., RBF kernels), and define kernels to explore
richer structured outputs.
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APPENDIX

A. PROOFS

A.1 Proof of Theorem 1
Applying the rule ‖C‖2 = Tr

[
CCT

]
for an arbitrary matrix

C, we obtain

J(A,B,V) : = (1− β)‖X−VA‖2 + β‖Y −VB‖2

= (1− β)Tr
[
XXT − 2VAXT + VAAT VT

]

+ βTr
[
YYT − 2VBYT + VBBT VT

]
.

Let the derivative of J with respect to A and B be zero, we have

∂J

∂A
= 2(1− β)(VT X−VT VA) = 0 ⇒ A = VT X,

∂J

∂B
= 2β(VT Y −VT VB) = 0 ⇒ B = VT Y,

which proves (a). Then we use the results (a) to replace A and B

in J and obtain Jopt = Tr [C] − Tr
[
VT CV

]
, which is first part

of (c).

Since Tr [C] is fixed, this suggests that problem (2) can be
considered to be an optimization problem only with respect to
V:

max
V∈RN×K

Tr
[
VT CV

]
(13)

subject to: VT V = I.

For notation simplicity, we denote the optimal solution for V
as Ṽ = [ṽ1, . . . , ṽK ] for a moment. The Lagrange formalism of
problem (13) is

L(Ṽ, Λ̃) =
K∑

i=1

ṽT
i Cṽi −

K∑

i=1

λ̃i,i(ṽ
T
i ṽi − 1)− 2

∑

i>j

λ̃i,j ṽ
T
i ṽj ,

where (Λ̃)i,j = λ̃i,j is a symmetric matrix if we define λ̃i,j = λ̃j,i

for i < j. Setting its derivative with respect to ṽi to be zero, we
obtain

∂L

∂ṽi
= 2Cṽi − 2

K∑

j=1

λ̃i,j ṽj = 0, i = 1, . . . , K

which can be rewritten as CṼ = ṼΛ̃. Since Λ̃ is a symmetric
matrix, we have Λ̃ = RT ΛR where Λ is a diagonal matrix and
R ∈ RK×K is an orthogonal rotation matrix satisfying RRT =
RT R = I. Then

CṼ = ṼRT ΛR ⇒ CṼRT = ṼRT Λ

Since Λ is diagonal, it is easy to see that the columns of V = ṼRT

are the eigenvectors of C. Thus the optimal Ṽ is formed by an
arbitrary rotation of C’s eigenvectors, i.e. Ṽ = VR. Inserting Ṽ
back into the objective function, we have the value of objective
function as Tr [Λ], i.e., sum of the K corresponding eigenvalues
of C. It is easy to see that the maximal Tr [Λ] is the sum of the
K largest eigenvalues, which proves second part of (c). In this

case, Ṽ is an arbitrary rotation of the K largest eigenvectors,
thus conclusion (b) holds. ¤

A.2 Proof of Theorem 2
Let J(w) denote the cost function in (5), i.e.,

J(w) := wT XT C−1Xw + γ‖w‖2.

Obviously J(w) achieves the minimum at the first eigenvector
w of the generalized eigenvalue problem (6). Denote w‖ as the
projection of w on the subspace

span{x1, . . . ,xN},
then we can write w = w‖ + w⊥, where w⊥ is orthogonal to the

subspace. Compare J(w‖) with J(w). We have

wT xi = wT
‖ xi + wT

⊥xi = wT
‖ xi,

so Xw‖ = Xw, which means J(w‖) and J(w) agree on the first

term. Since ‖w‖2 = ‖w‖‖2 + ‖w⊥‖2 ≥ ‖w‖‖2, J(w) ≥ J(w‖)
holds. However, this must be an equation since J(w) achieves
the minimum. Therefore we have ‖w⊥‖ = 0, and hence w⊥ =
0, which means w is actually a linear combination of xi, i =
1, . . . , N .

So far we have proved the theorem for the first eigenvector
(with the smallest eigenvalue). Given eigenvectors wj , j = 1, . . . , n−
1, it is known that the n-th eigenvector is obtained by first de-

flating the matrix C−1 with C† = C−1 −∑n−1
j=1 λjXwjw

T
j XT ,

and then solving the following problem

min
w∈RM

wT XT C†Xw + γ‖w‖2

subject to : wT XT Xw = 1.

Following the same procedure as before, we can prove that the
eigenvector wn also lies in the span of xi, i = 1, . . . , N . ¤


