
Dirichlet Enhanced Latent Semantic Analysis

1 The Goal

In latent semantic analysis (LSA), we aim at modelling a large corpus of
high-dimensional discrete datafrom probabilisticperspective.

The Assumption: one data point can be modelled bylatent factors, which
account for the co-occurrence of items within the data.

We are also interested in theclusteringstructure of the data, which may
benefit from the latent factors of the items.

For example:

In document modelling, the data are document-word pairs.
Latent factors: topics for words
Data clustering: categories of documents

In collaborative filtering, the data are user ratings (for, e.g., movies).
Latent factors: categories or structures of movies
Data clustering: user interest groups

We wish to build a probabilistic model that

is flexible enoughto learn arbitrary probabilistic dependencies

will not overfitthe training data and generalize poorly

facilitatesmodel selection, e.g., choosing the number of clusters

We choosedocument modelling as the working example in this poster, and
call the latent factors for words astopics.

2 Previous Models

Take different assumptions and have corresponding limitations:

Mixture of Unigrams
Assign a discrete latent model to words

– Assumption: Words are i.i.d. sampled after choosing a topic

– Limitation: One document only belongs to one word topic

Probabilistic Latent Semantic Indexing (PLSI) [Hofmann, 1999]
Assign a discrete latent model to document-word pairs

– Assumption: Document-word pairs are i.i.d. sampled given a topic

– Limitation: Not a well-defined model because long documents
could get higher probability in the sampling process

Latent Dirichlet Allocation (LDA) [Blei et al., 2003]
Assign a discrete latent model to words and let each document maintain
a random variableθ, saying its probabilities of belonging to each topic

– Assumption: Assign a Dirichlet prior forθ

– Limitation: A single Dirichlet distribution is not flexible enough
and no clustering structure can be found for documents

The true distribution of The learned Dirichlet
θ in a toy problem distribution in LDA

3 Dirichlet Enhanced
Latent Semantic Analysis

Thekey point of the DELSA model is to replace the single Dirichlet distri-
bution in LDA with anonparametric Dirichlet process prior, which gains:

a flexible enough distribution to fit an arbitrary prior

a natural discreteclusteringstructure for documents

automatic determination of the number of clusters

Notations: We consider a corpusD containingD documents. Each doc-
umentd is denoted bywd = {wd,1, . . . , wd,Nd} with Nd words. wd,n is a
variable for then-th word inwd and denotes the index of the corresponding
word in a vocabularyV of lengthV.

The Model

wd,n|zd,n; β ∼ Mult(βzd,n) θd ∼ G
zd,n|θd ∼ Mult(θd) G; G0,α0 ∼ DP(G0,α0)

Each documentwd maintains a variableθd of topic mixtures

Each wordwd,n in documentwd is sampled by first choosing a topiczd,n
givenθd, and then sampling the word given the topic-word matrixβ

Variablesθd are sampled from theDirichlet process, with a Dirichlet dis-
tribution G0(·|λ) as thebase distribution, and a positive scalarα0 as the
concentration parameter

Plate models for DELSA with DP prior (left) and stick-breaking (right)

Stick-breaking and Dirichlet Enhancing

The unknown distributionG in DP has astick-breakingrepresentation:

G(·) =
∞
∑
l=1

πlδθ∗l
(·)

θ∗l are countably infinite variables i.i.d. sampled fromG0

δθ(·) are point mass distributions concentrated atθ

πl ≥ 0, ∑∞
l πl = 1 are sampled bystick-breaking process:

π1 = B1, πl = Bl

l−1

∏
j=1

(1− B j), l > 1

whereBl are i.i.d. sampled from Beta distribution Beta(1,α0).

Parameters of the model(total numberk + 2 + k× (V − 1)):

We fix the number of word topics to bek

G0(θ) ∼ Dir(θ|λ) is the base distribution, which tellshow the distinct
θ’s are sampled. It reflects our prior knowledge of thecluster centers

α0 is the concentration parameter, whichcontrols the flexibility of gener-
ating new clusters. Largerα0 results more clusters.

β is ak×V matrix.β(i, n) = p(wn|zi) tells the probability of generat-
ing wordwn from topiczi. Each row ofβ sums to 1

An equivalent graphical model for DELSA with stick-breaking is shown.
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Dirichlet-Multinomial Allocation

Great difficulty emerges when we turn to inference, since we have to deal
with the unknown distributionG with infinite number of pairs(πl,θ∗l ).
Markov chain Monte Carlo methods can be applied based on Pólya urn
scheme, but could be very slow for high dimensional data like text.

Therefore we turn toDirichlet-multinomial allocation (DMA), a finite ap-
proximation to DP denoted as DPN:

GN(·) =
N

∑
l=1

πlδθ∗l
(·)

where
N is a large positive integer

{π1, . . . , πN} ∼ Dir(α0
N , . . . , α0

N)

θ∗l are i.i.d. sampled fromG0

with N → +∞, DPN → DP

Now the model also has a very intuitive explanation from the perspective
of finite mixture modelling. By settingN to be very large, the model can
automatically discovera small number of clusters, leaving others empty.

The likelihood of the whole collectionD (conditional onα0, λ, β) is

LDPN(D) =
∫

π

∫
θ∗

D

∏
d

[
N

∑
cd

p(cd|π)
Nd

∏
n

k

∑
zd,n

p(wd,n|zd,n; β)p(zd,n|θ∗cd
)

]
dP(θ∗; G0)dP(π ;α0)

Variational Inference and Learning

To overcome the intractability of the integral, we applymean-field approx-
imationto the posterior of hidden variables with following tractable form:

Q(π ,θ∗, c, z|η, γ,ϕ,φ) = Q(π |η)
N

∏
l=1

Q(θ∗l |γl)
D

∏
d=1

Q(cd|ϕd)
D

∏
d=1

Nd

∏
n=1

Q(zd,n|φd,n)

By applying Jensen’s inequality we obtain a lower bound of the likelihood
and get the updates for variational parameters invariational E-step:

φd,n,i ∝ βi,wd,n exp

{
N

∑
l=1

ϕd,l

[
Ψ(γl,i)− Ψ

(
k

∑
j=1

γl, j

)]}

ϕd,l ∝ exp

{
k

∑
i=1

[(
Ψ(γl,i)− Ψ

(
k

∑
j=1

γl, j

))
Nd

∑
n=1

φd,n,i

]
+ Ψ(ηl)− Ψ

(
N

∑
j=1

η j

)}

γl,i =
D

∑
d=1

Nd

∑
n=1

ϕd,lφd,n,i + λi , ηl =
D

∑
d=1

ϕd,l +
α0

N

The parameters(α0, λ, β) can be updated invariational M-step by maxi-
mizing the lower bound with respect to them.β can be updated by

βi, j ∝
D

∑
d=1

Nd

∑
n=1

φd,n,iδ j(wd,n)

α0 andλ can be updated using Newton-Raphson method.

4 Evaluation

Toy Data
A dictionary of 200 words are associated with 5 latent topics. 100 docu-
ments are generated with6 document clusters.N = 100 before learning.

Random initialization After 1 EM step After 5 EM step (final)

We then vary the number of clusters from 5 to 12 and randomize the data
for 20 trials. We record the detected number of clusters.

We can correctly detect number of clusters

The calculation is fast without overfitting

The recovered parameterβ is very good

Document Modelling
We compare DELSA with PLSI and LDA on Reuters-21578 and 20-
Newsgroup in terms ofperplexity: Perp(Dt) = exp (− ln p(Dt)/ ∑d |wd|).

DELSA is consistently better than PLSI and LDA without overfitting

Better for data set with strong clustering structure (like 20-Newsgroup)

Clustering
We test DELSA on 20-Newsgroup data with 4 categoriesautos, motorcy-
cles, baseballandhockey, each taking 446 documents. 6 clusters are found.

Documents in one category show similar behavior

Clear difference observable for different categories except related

Perplexity for Reuters Perplexity for Newsgroup Clustering for Newsgroup

5 Things to Keep in Mind

Nonparametric Bayesian modelling with Dirichlet enhancement isflexi-
ble enough to fit any prior distribution without overfitting

A natural discrete structure of DP results in aclusteringstructure for the
data, with automatically determined number of clusters

Variational methods for inference and learning are available for DP en-
hanced models, with which good performance can be obtained

Future works include investigating other DP enhancement (e.g., [Teh
et al., 2005]), and comparing different approximation methods for DP
enhanced models (e.g., Blei and Jordan [2004])
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