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Abstract. We describe a general framework for modelling probabilis-
tic databases using factorization approaches. The framework includes
tensor-based approaches which have been very successful in modelling
triple-oriented databases and also includes recently developed neural net-
work models. We consider the case that the target variable models the
existence of a tuple, a continuous quantity associated with a tuple, multi-
class variables or count variables. We discuss appropriate cost functions
with different parameterizations and optimization approaches. We argue
that, in general, some combination of models leads to best predictive
results. We present experimental results on the modelling of existential
variables and count variables.

1 Introduction

Tensor models have been shown to efficiently model triple-oriented databases [10]
where the main goal is to predict the probability for the existence of a triple.
Here we generalize the approach in several directions. First, we show that rela-
tions with any arity can be modeled, not just triple stores. Second, we show that
any set of target variables that is associated with a triple can be modelled. As
examples one might predict the rating of a user for an item, the amount of a spe-
cific medication for a patient, or the number of times that team A played against
team B. In each of these cases a different likelihood model might be appropriate
and we discuss different likelihood functions, their different parameterizations
and learning algorithms. Third, we discuss a more general framework that in-
cludes recently developed neural network models [13, 1]. Finally, we argue that
model combinations sometimes offer greater flexibility and predictive power. We
present experimental results on the modelling of existential variables and count
variables using different likelihood models.

The paper is organized as follows. In the next section we describe the prob-
abilistic setting and in Section 3 we introduce the factorization framework and
some specific models. In Section 4 we describe the learning rules and Section 5
contains our experimental results. Section 6 describes extensions. Section 7 con-
tains our conclusions.
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2 Probabilistic Database Models

2.1 Database Notation

Consider a database as a set of M relations {rk}Mk=1. A relation is a table with
attributes as columns and tuples Ei = {el(i,1), el(i,2), . . . , el(i,Lk)} as rows where

Lk is the number of attributes or the arity of the relation rk. l(i, i′) is the index
of the domain entity in tuple Ei in column i′. A relation rk is closely related
to the predicate rk(Ei), which is a function that maps a tuple to true (or 1) if
the Ei belongs to the relation and to false (or 0) otherwise. We model a triple
(s, p, o) as a binary relation p where the first column is the subject s and the
second column is the object o.

2.2 Probabilistic Database Model

We now associate with each instantiated relation rk(Ei) a target quantity xki .
Formally we increase the arity of the relation by the dimension of xki , so a binary
relation would become a ternary relation, if xki is a scalar. Here, the target xki
can model different quantities. It can stand for the fact that the tuple exists
(xki = 1) or does not exist (xki = 0) i.e., we model the predicate. In another
application Ei might represent a user/item pair and xki is the rating of the user
for the item. Alternatively, xki might be a count, for example the number of times
that the relation rk(Ei) has been observed. In the following we form predictive
models for xki ; thus we can predict, e.g., the likelihood that a tuple is true, or
the rating of a user for an item, or the number of times that relation rk(Ei) has
been observed.

2.3 Likelihood Functions and Cost Functions

Convenient likelihood functions originate from the (overdispersed) exponential
family of distributions.

Bernoulli. The Bernoulli model is appropriate if the goal is to predict the
existence of a tuple, i.e., if we model the predicate. With xki ∈ {0, 1}, we model

P (xki = 1|θki ) = θki

with 0 ≤ θki ≤ 1. From this equation we can derive the penalized log-likelihood
cost function

lossBeki = −(xki + αki − 1) log θki − (βki +Kk
i − xki ) log(1− θki ). (1)

Here, Kk
i = 0; αki > 0 and βki > 0 are derived from the conjugate beta-

distribution and can represent virtual data, in the sense that they represent
αki − 1 additional observations of xki = 1 and βki − 1 additional observations of
xki = 0. The contribution of the prior drops out with αki = 1, βki = 1.

Note that we have the constraints that 0 ≤ θki ≤ 1. A convenient re-
parameterization can be achieved using the framework of the exponential family
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of distributions which suggests the parametrization θki = sig(ηki ), where the nat-
ural parameter ηki is unconstraint and where sig(arg) = 1/(1 + exp(−arg)) is the
logistic function.

Gaussian. The Gaussian model can be used to predict continuous quantities,
e.g., the amount of a given medication for a given patient. The Gaussian model
is

P (xki |θki ) ∝ exp− 1

2σ2
(xki − θki )2

where we assume that either σ2 is known or is estimated as a global parameter
in a separate process. With a Gaussian likelihood function we get

lossGk
i =

1

2(σki )2
(xki − θki )2 +

1

2(αki )
2 (cki − θki )2.

Note that the first term is simply the squared error. The second term is de-
rived from the conjugate Gaussian distribution and implements another cost
term, which can be used to model a prior bias toward a user-specified cki . The
contribution of the prior drops out with αki →∞.

Binomial. If the Bernoulli model represents the outcome of the tossing of
one coin, the binomial model corresponds to the event of tossing a coin K times.
We get

P (xki |θki ) ∝ (θki )x
k
i (1− θki )

K−xk
i .

The cost function is identical to the cost function in the Bernoulli model (Equa-
tion 1), only that Kk

i = K − 1 and xki ∈ {0, 1, . . . ,K} is the number of observed
“heads”.

Poisson. Typical relational count data which can be modelled by Poisson
distributions are the number of messages sent between users in a given time
frame. For the Poisson distribution, we get

P (xki |θki ) ∝ (θki )x
k
i exp(−θki ) (2)

and
lossPki = −(xki + αki − 1) log θki + (βki + 1)θki

with xki ∈ N0; αki > 0, βki > 0 are parameters in the conjugate gamma-distribution.
The contribution of the prior drops out with αki = 1, βki = 0. Here, the natural
parameter is defined as θki = exp(ηki ). Note that the cost function of the Poisson
model is, up to parameter-independent terms, identical to the KL-divergence
cost function [3].

Multinomial. The multinomial distribution is often used for textual data
where counts correspond to how often a term occurred in a given document. For
the multinomial model we get

lossMk
i = −(xki + αki − 1) log θki

with θki ≥ 0,
∑
i θ
k
i = 1. The natural parameter is defined as θki = exp(ηki ) and

for observed counts, xki ∈ N0. The contribution of the Dirichlet prior drops out
with αki = 1.
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Ranking Criterion. Finally we consider the ranking criterion which is used
in the Bernoulli setting with xki ∈ {0, 1}. It is not derived from an exponential
family model but has successfully been used in triple prediction, e.g., in [13].
Consider a binary relation where the first attribute is the subject and the second
attribute is the object. For a known true tuple with xki = 1 we define lossRk

i =∑C
c=1 max

(
0, 1− θki + θki,c

)
where θki,c is randomly chosen from all triples with

the same subject and predicate but with a different object with target 0. Thus
one scores the correct triple higher than its corrupted one up to a margin of
1. The use of a ranking criterion in relational learning was pioneered by [12] as
Bayesian Personalized Ranking (BPR) with a related ranking cost function of

the form lossBPRk
i =

∑C
c=1 log sig(θki − θki,c).

Interpretation. After modelling, the probability P (xki |θki ), resp. P (xki |ηki ),
can be interpreted as the plausibility of the observation given the model. For
example, in the Bernoulli model we can evaluate how plausible an observed
tuple is and we can predict which unobserved tuples would very likely be true
under the model.

3 A Framework for Latent-Factor Models

3.1 The General Setting

We consider two models where all relations have the same arity Lk. In the multi-
task setting, we assume the model

θkEi={el(i,1),el(i,2),...,el(i,Lk)
} = fwk

(
al(i,1), al(i,2), . . . , al(i,Lk)

)
. (3)

Here al is a vector of γ ∈ N latent factors associated with el to be optimized
during the training phase.4 l(i, i′) maps attribute i′ of tuple Ei to the index of
the entity. This is a multi-task setting in the sense that for each relation rk a
separate function with parameters wk is modelled.

In the single-task setting, we assume the model

θkEi={el(i,1),el(i,2),...,el(i,Lk)
} = fw

(
al(i,1), al(i,2), . . . , al(i,Lk), ãk

)
.

Note that here we consider a single function with parameter vector w where a
relation is represented by its latent factor ãk.

In case that we work with natural parameters, we would replace θkEi
with ηkEi

in the last two equations.

3.2 Predictive Models

We now discuss models for fwk(·) and fw(·). Note that not only the model
weights are uncertain but also the latent factors of the entities. We first describe

4 Here we assume that the rank γ is the same for all entities; this assumption can be
relaxed in some models.
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tensor approaches for the multi-task setting and the single-task setting and then
describe two neural network models.

Tensor Models for the Multi-task Setting. Here, the model is

fwk

(
al(i,1), al(i,2), . . . , al(i,Lk)

)
(4)

=

γ∑
s1=1

γ∑
s2=1

. . .

γ∑
s
Lk=1

wks1,s2,...sLk

(
al(i,1),s1al(i,2),s2 . . . al(i,Lk),s

Lk

)
.

This equation describes a RESCAL model which is a special case of a Tucker ten-
sor model with the constraint that an entity has a unique latent representation,
independent of where it appears in a relation [10]. This property is important to
achieve relational collective learning [10].

In the original RESCAL model, one considers binary relations with Lk = 2
(RESCAL2). Here A with (A)l,s = al,s is the matrix of all latent representations
of all entities. Then Equation 4 can be written in tensor form as

F = R×1 A×2 A

with tensor (F)l1,l2,k = fwk(al1 , al2) and core tensor (R)s1,s2,k = wks1,s2 .
Tensor Models for the Single-task Setting. Here, the model is

fw
(
al(i,1), al(i,2), . . . , al(i,Lk), ãk

)
(5)

=

γ∑
s1=1

γ∑
s2=1

. . .

γ∑
s
Lk=1

γ∑
t=1

ws1,s2,...sLk ,t

(
al(i,1),s1al(i,2),s2 . . . al(i,Lk),s

Lk
ãk,t

)
.

Note that the main difference is that now the relation is represented by its own
latent factor ãk. Again, this equation describes a RESCAL model. For binary
relations one speaks of a RESCAL3 model and Equation 5 becomes

F = R×1 A×2 A×3 Ã

where (Ã)k,t = ãk,t and the core tensor is (R)s1,s2,t = ws1,s2,t.
If ãk,t is a unit vector with the 1 at k = t, then we recover the multi-

task setting. If all weights are 0, except for “diagonal” weights with s1 = s2 =
. . . = sLk = t, this is a PARAFAC model and only a single sum remains. The
PARAFAC model is used in the factorization machines [12]. In factorization
machines, attributes with ordinal or real values are modelled by āz(i) = z(i)ā
where z(i) is the value of the attribute in Ei and ā is a latent factor vector for
the attribute independent of the particular value z(i).

Please note that the Lk-order polynomials also contain all lower-order poly-
nomials, if we set, e.g., al,1 = 1, ∀l. In the factorization machine, the order of
the polynomials is typically limited to 1 or 2, i.e. all higher-order polynomials
obtain a weight of 0.

Neural Tensor Networks. Here, the model is
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fwk,vk
(
al(i,1), al(i,2), . . . , al(i,Lk)

)
=

H∑
h=1

wkh sig

 γ∑
s1=1

γ∑
s2=1

. . .

γ∑
s
Lk=1

vh,ks1,s2,...sLk

(
al(i,1),s1al(i,2),s2 . . . al(i,Lk),s

Lk

) .

The output is a weighted combination of the logistic function applied to H
different tensor models. This is the model used in [13], where the tanh(·) was
used instead of the logistic function.

Google Vault Model. Here a neural network is used of the form

fw
(
al(i,1), al(i,2), . . . , al(i,Lk), ãk

)
=

H∑
h=1

wkh sig

 γ∑
s1=1

v1,s1al(i,1),s1 + . . .+

γ∑
s
Lk=1

vLk,s
Lk
al(i,Lk),s

Lk
+

γ∑
t=1

ṽtãk,t

 .

The latent factors are simply the inputs to a neural network with one hidden
layer. This model was used in [1] in context of the Google Knowledge Graph. It
is related to tensor models for the single-task setting where the fixed polynomial
basis functions are replaced by adaptable neural basis functions with logistic
transfer functions.

4 Parameter Estimates

4.1 Missing Values

Complete Data. This means that for all relevant tuples the target variables
are available.

Assumed Complete Data. This is mostly relevant when xki is an existential
variable, where one might assume that tuples that are not listed in the relation
are false. Mathematically, we then obtain a complete data model and this is the
setting in our experiments. Another interpretation would be that with sparse
data xki = 0 is a correct imputation for those tuples.

Missing at Random. This is relevant, e.g, when xki represents a rating.
Missing ratings might be missing at random and the corresponding tuples should
be ignored in the cost function. Computationally, this can most efficiently be ex-
ploited by gradient-based optimization methods (see Section 4.3). Alternatively
one can use αki and βki to implement prior knowledge about missing data.

Ranking Criterion. On the ranking criterion one does not really care if
unobserved tuples are unknown or untrue, one only insists that the observed
tuples should obtain a higher score by a margin than unobserved tuples.

4.2 Regularization

In all approaches the parameters and latent factors are regularized with penalty
term λA‖A‖F and λW ‖W‖F where ‖·‖F indicates the Frobenius norm and where
λA ≥ 0 and λW ≥ 0 are regularization parameters.
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4.3 Optimizing the Cost Functions

Alternating Least Squares. The minimization of the Gaussian cost function
lossG with complete data can be implemented via very efficient alternating least
squares (ALS) iterative updates, effectively exploiting data sparsity in the (as-
sumed) complete data setting [10, 7]. For example, RESCAL has been scaled up
to work with several million entities and close to 100 relation types. The number
of possible tuples that can be predicted is the square of the number of entities
times the number of predicates: for example RESCAL has been applied to the
Yago ontology with 1014 potential tuples [11].

Natural Parameters: Gradient-Based Optimization. When natural
parameters are used, unconstrained gradient-based optimization routines like
L-BFGS can be employed, see for example [6, 9].

Non-Negative Tensor Factorization. If we use the basis representation
with θki parameters, we need to enforce that θki ≥ 0. One option is to employ non-
negative tensor factorization which leads to non-negative factors and weights. For
implementation details, consult [3].

Stochastic Gradient Descent (SGD). In principal, SGD could be applied
to any setting with any cost function. In our experiments, SGD did not converge
to any reasonable solutions in tolerable training time with cost functions from
the exponential family of distributions and (assumed) complete data. SGD and
batch SGD were successfully used with ranking cost functions in [12, 13] and we
also achieved reasonable results with BPR.

5 Experiments

Due to space limitations we only report experiments using the binary multi-task
model RESCAL2. We performed experiments on three commonly used bench-
mark data sets for relational learning:

Kinship 104 entities and M = 26 relations that consist of several kinship rela-
tions within the Alwayarra tribe.

Nations 14 entities and M = 56 relations that consist of relations between
nations (treaties, immigration, etc). Additionally the data set contains at-
tribute information for each entity.

UMLS 135 entities and M = 49 relations that consist of biomedical relation-
ships between categorized concepts of the Unified Medical Language System
(UMLS).

5.1 Experiments with Different Cost Functions and Representations

Here xki = 1 stands for the existence of a tuple, otherwise xki = 0. We evaluated
the different methods using the area under the precision-recall curve (AUPRC)
performing 10-fold cross-validation. Table 1 shows results for the three data
sets (“nn” stands for non-negative and “nat“ for the usage of natural parame-
ters). In all cases, the RESCAL model with lossG (“RESCAL”) gives excellent
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Table 1. AUPRC for Different Data Sets

Rand RESCAL nnPoiss nnMulti natBern natPoiss natMulti SGD stdev

Nations 0.212 0.843 0.710 0.704 0.850 0.847 0.659 0.825 0.05
Kinship 0.039 0.962 0.918 0.889 0.980 0.981 0.976 0.931 0.01
UMLS 0.008 0.986 0.968 0.916 0.986 0.967 0.922 0.971 0.01

Table 2. AUPRC for Count Data

Rand RESCAL nnPoiss nnMulti natBin natPoiss natMulti RES-P stdev

Nations 0.181 0.627 0.616 0.609 0.637 0.632 0.515 0.638 0.01
Kinship 0.035 0.949 0.933 0.930 0.950 0.952 0.951 0.951 0.01
UMLS 0.007 0.795 0.790 0.759 0.806 0.806 0.773 0.806 0.01

performance and the Bernoulli likelihood with natural parameters (“natBern”)
performs even slightly better. The Poisson model with natural parameters also
performs quite well. The performance of the multinomial models is significantly
worse. We also looked at the sparsity of the solutions. As can be expected only
the models employing non-negative factorization lead to sparse models. For the
Kinship data set, only approximately 2% of the coefficients are nonzero, whereas
models using natural parameters are dense. SGD with the BPR ranking criterion
and AdaGrad batch optimization was slightly worse than RESCAL.

Another issue is the run-time performance. RESCAL with lossG is fastest
since the ALS updates can efficiently exploit data sparsity, taking 1.9 seconds
on Kinship on an average Laptop (Intel(R) Core(TM) i5-3320M with 2.60 GHz).
It is well-known that the non-negative multiplicative updates are slower, having
to consider the constraints, and take approximately 90 seconds on Kinship. Both
the non-negative Poisson model and the non-negative multinomial model can ex-
ploit data sparsity. The exponential family approaches using natural parameters
are slowest, since they have to construct estimates for all ground atoms in the
(assumed) complete-data setting, taking approximately 300 seconds on Kinship.
SGD converges in 108 seconds on Kinship.

5.2 Experiments on Count Data

Here xki ∈ N0 is the number of observed counts. Table 2 shows results where we
generated 10 database instances (worlds) from a trained Bernoulli model and
generated count data from 9 database instances and used the tenth instance for
testing. Although RESCAL still gives very good performance, best results are

Table 3. AUPRC for Combined Models

RESCAL2 SUNS-S SUNS-P Combined stdev

Nations 0.855 0.761 0.831 0.886 0.01
Kinship 0.960 0.916 0.004 0.968 0.01
UMLS 0.979 0.942 0.293 0.980 0.01
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obtained by models more appropriate for count data, i.e., the binomial model
and the Poisson model using natural parameters. The non-negative models are
slightly worse than the models using natural parameters.

5.3 Probabilities with RESCAL

Due to its excellent performance and computational efficiency, it would be very
desirable to use the RESCAL model with lossG and ALS, whenever possible.
As discussed in [5], by applying post-transformations RESCAL predictions can
be mapped to probabilities in Bernoulli experiments. For Poisson data we can
assume a natural parameter model with αki = 2 and model x̃ki = log(1 + xki )
which leads to a sparse data representation that can efficiently be modelled with
RESCAL and lossG. The results are shown as RES-P in Table 2 which are among
the best results for the count data!

6 Extensions

6.1 SUNS Models

Consider a triple store. In addition to the models described in Section 3 we can
also consider the following three model for f(subject, predicate, object)

γ∑
m=1

γ∑
u=1

asubject,ma
po
u ,

γ∑
m=1

γ∑
u=1

aobject,ma
sp
u ,

γ∑
m=1

γ∑
u=1

apredicate,ma
so
u .

These are three Tucker1 models and were used as SUNS models (SUNS-S, SUNS-
O, SUNS-P) in [14]. apo, asp, and aso are latent representations of (p, o), (s, p),
and (s, o), respectively.

6.2 Model Combinations

The different SUNS models and RESCAL models have different modelling ca-
pabilities and often a combination of several models gives best results [2, 8].
Table 3 shows the performance for the RESCAL model, two SUNS models and
the performance of an additive model of all three models. For Nations, SUNS-P
performs well and boosts the performance of the combined model. SUNS-P can
model correlations between relations, e.g., between likes and loves.

7 Conclusions

We have presented a general framework for modelling probabilistic databases
with factor models. When data are complete and sparse, the RESCAL model
with a Gaussian likelihood function and ALS-updates is most efficient and highly
scalable. We show that this model is also applicable for binary data and for



10 Krompaß, Jiang, Nickel and Tresp

count data. Non-negative modelling approaches give very sparse factors but per-
formance decreases slightly. An issue is the model rank γ. In [8] it has been
shown that the rank can be reduced by using a combination of a factor model
with a model for local interactions, modelling for example the triangle rule. Sim-
ilarly, the exploitation of type-constraints can drastically reduce the number of
plausible tuples and reduces computational load dramatically [4, 1].

Acknowledgements. M. N. acknowledges support by the Center for Brains,
Minds and Machines, funded by NSF STC award CCF-1231216.
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