Probabilistic Latent-Factor Database Models

Denis Krompaf$', Xueyian Jiang', Maximilian Nickel?, and Volker Tresp':

! Ludwig Maximilian University of Munich, Germany
2 Massachusetts Institute of Technology, Cambridge, MA
and Istituto Italiano di Tecnologia, Genova, Italy
3 Siemens AG, Corporate Technology, Munich, Germany

Abstract. We describe a general framework for modelling probabilis-
tic databases using factorization approaches. The framework includes
tensor-based approaches which have been very successful in modelling
triple-oriented databases and also includes recently developed neural net-
work models. We consider the case that the target variable models the
existence of a tuple, a continuous quantity associated with a tuple, multi-
class variables or count variables. We discuss appropriate cost functions
with different parameterizations and optimization approaches. We argue
that, in general, some combination of models leads to best predictive
results. We present experimental results on the modelling of existential
variables and count variables.

1 Introduction

Tensor models have been shown to efficiently model triple-oriented databases [10]
where the main goal is to predict the probability for the existence of a triple.
Here we generalize the approach in several directions. First, we show that rela-
tions with any arity can be modeled, not just triple stores. Second, we show that
any set of target variables that is associated with a triple can be modelled. As
examples one might predict the rating of a user for an item, the amount of a spe-
cific medication for a patient, or the number of times that team A played against
team B. In each of these cases a different likelihood model might be appropriate
and we discuss different likelihood functions, their different parameterizations
and learning algorithms. Third, we discuss a more general framework that in-
cludes recently developed neural network models [13,1]. Finally, we argue that
model combinations sometimes offer greater flexibility and predictive power. We
present experimental results on the modelling of existential variables and count
variables using different likelihood models.

The paper is organized as follows. In the next section we describe the prob-
abilistic setting and in Section 3 we introduce the factorization framework and
some specific models. In Section 4 we describe the learning rules and Section 5
contains our experimental results. Section 6 describes extensions. Section 7 con-
tains our conclusions.

2 Krompa$, Jiang, Nickel and Tresp

2 Probabilistic Database Models

2.1 Database Notation

Consider a database as a set of M relations {r*}} . A relation is a table with
attributes as columns and tuples E; = {ey; 1), €i(3,2), - - - » €l(i)Lk)} as rows where
LF is the number of attributes or the arity of the relation r*. (i, ') is the index
of the domain entity in tuple FE; in column i’. A relation r* is closely related
to the predicate r*(E;), which is a function that maps a tuple to true (or 1) if
the E; belongs to the relation and to false (or 0) otherwise. We model a triple
(s,p,0) as a binary relation p where the first column is the subject s and the
second column is the object o.

2.2 Probabilistic Database Model

We now associate with each instantiated relation 7*(E;) a target quantity z¥.
Formally we increase the arity of the relation by the dimension of z¥, so a binary
relation would become a ternary relation, if z¥ is a scalar. Here, the target x¥
can model different quantities. It can stand for the fact that the tuple exists
(zF = 1) or does not exist (z¥ = 0) i.e.,, we model the predicate. In another
application E; might represent a user/item pair and z¥ is the rating of the user
for the item. Alternatively, ¥ might be a count, for example the number of times
that the relation r*(E;) has been observed. In the following we form predictive
models for xf; thus we can predict, e.g., the likelihood that a tuple is true, or
the rating of a user for an item, or the number of times that relation r*(E;) has

been observed.

2.3 Likelihood Functions and Cost Functions

Convenient likelihood functions originate from the (overdispersed) exponential
family of distributions.

Bernoulli. The Bernoulli model is appropriate if the goal is to predict the
existence of a tuple, i.e., if we model the predicate. With mf € {0,1}, we model

Pt = 110) = 0}

with 0 < Gf < 1. From this equation we can derive the penalized log-likelihood
cost function
lossBel = —(zF + a¥ — 1)log 6% — (BF + KF — z¥)log(1 — 6%). (1)
Here, KF = 0; of > 0 and ¥ > 0 are derived from the conjugate beta-
distribution and can represent virtual data, in the sense that they represent
a¥ — 1 additional observations of ¥ = 1 and 8F — 1 additional observations of
z¥ = 0. The contribution of the prior drops out with of =1, 8F = 1.
Note that we have the constraints that 0 < Gf < 1. A convenient re-
parameterization can be achieved using the framework of the exponential family

Probabilistic Latent-Factor Database Models 3

of distributions which suggests the parametrization 8% = sig(n¥), where the nat-
ural parameter n¥ is unconstraint and where sig(arg) = 1/(1 + exp(—arg)) is the
logistic function.

Gaussian. The Gaussian model can be used to predict continuous quantities,
e.g., the amount of a given medication for a given patient. The Gaussian model
is

P(a}|0F) o< exp — o (aF = 07)°

202
where we assume that either o2 is known or is estimated as a global parameter
in a separate process. With a Gaussian likelihood function we get

lossGF = (zF —0F)* +

2(oF)? ek

K2

Note that the first term is simply the squared error. The second term is de-
rived from the conjugate Gaussian distribution and implements another cost
term, which can be used to model a prior bias toward a user-specified c¥. The
contribution of the prior drops out with af — co.

Binomial. If the Bernoulli model represents the outcome of the tossing of
one coin, the binomial model corresponds to the event of tossing a coin K times.
We get

P(ak]0%) oc () (1 — 95)" "

The cost function is identical to the cost function in the Bernoulli model (Equa-
tion 1), only that K¥ = K — 1 and z¥ € {0,1,..., K} is the number of observed
“heads”.

Poisson. Typical relational count data which can be modelled by Poisson
distributions are the number of messages sent between users in a given time
frame. For the Poisson distribution, we get

P(a¥]6%) oc (6%)" exp(—6Y) (2)

and
lossP¥ = — (¥ + aF — 1)1log 6F + (8F + 1)6%

with 2% € No; of > 0, 8 > 0 are parameters in the conjugate gamma-distribution.
The contribution of the prior drops out with ¥ = 1, 3¥ = 0. Here, the natural
parameter is defined as % = exp(n¥). Note that the cost function of the Poisson
model is, up to parameter-independent terms, identical to the KL-divergence
cost function [3].

Multinomial. The multinomial distribution is often used for textual data
where counts correspond to how often a term occurred in a given document. For
the multinomial model we get

lossMF = —(zF + af — 1) log 0¥

with 0¥ > 0,5, 0¥ = 1. The natural parameter is defined as 6% = exp(nF) and
for observed counts, xf € Np. The contribution of the Dirichlet prior drops out
with of = 1.

4 Krompa$, Jiang, Nickel and Tresp

Ranking Criterion. Finally we consider the ranking criterion which is used
in the Bernoulli setting with z¥ € {0,1}. It is not derived from an exponential
family model but has successfully been used in triple prediction, e.g., in [13].
Consider a binary relation where the first attribute is the subject and the second
attribute is the object. For a known true tuple with xf = 1 we define losst =
Zle max (0,1 — 6F + Hﬁc) where Hf;c is randomly chosen from all triples with
the same subject and predicate but with a different object with target 0. Thus
one scores the correct triple higher than its corrupted one up to a margin of
1. The use of a ranking criterion in relational learning was pioneered by [12] as
Bayesian Personalized Ranking (BPR) with a related ranking cost function of
the form lossBPRY = ZCC=1 log sig(0F — 0r.).

Interpretation. After modelling, the probability P(:rﬂef), resp. P(xﬂnf),
can be interpreted as the plausibility of the observation given the model. For
example, in the Bernoulli model we can evaluate how plausible an observed
tuple is and we can predict which unobserved tuples would very likely be true
under the model.

3 A Framework for Latent-Factor Models

3.1 The General Setting

We consider two models where all relations have the same arity L¥. In the multi-
task setting, we assume the model

0= (eriomencimmeneonyt = Jor (@161, @1G.2), -5 QGi,Ls)) - (3)

Here a; is a vector of v € N latent factors associated with e; to be optimized
during the training phase.* I(i,i’) maps attribute i’ of tuple E; to the index of
the entity. This is a multi-task setting in the sense that for each relation 7% a
separate function with parameters w* is modelled.

In the single-task setting, we assume the model

k _)) . ~
HEi:{el(i,l)vel(i,m7'~~;el(i,Lk)} = fu (a’l(lvl)’ @1(3,2)5 - - -5 A3, L*)> ak) :

Note that here we consider a single function with parameter vector w where a
relation is represented by its latent factor ay.

In case that we work with natural parameters, we would replace 9%7, with 77%{
in the last two equations. / '

3.2 Predictive Models

We now discuss models for f,«(-) and f,(-). Note that not only the model
weights are uncertain but also the latent factors of the entities. We first describe

4 Here we assume that the rank ~y is the same for all entities; this assumption can be
relaxed in some models.

Probabilistic Latent-Factor Database Models 5

tensor approaches for the multi-task setting and the single-task setting and then
describe two neural network models.
Tensor Models for the Multi-task Setting. Here, the model is

Juk (az(u), Qy(3,2)y -+ - aal(i,Lk)) (4)

2 2 Yy
— E E E k
- e w51782;“-st (al(irl)vslal(ivz):SZ e al(i,Lk)}st) .
81:1 82:1 SLkzl

This equation describes a RESCAL model which is a special case of a Tucker ten-
sor model with the constraint that an entity has a unique latent representation,
independent of where it appears in a relation [10]. This property is important to
achieve relational collective learning [10].

In the original RESCAL model, one considers binary relations with L* = 2
(RESCAL2). Here A with (A); s = a; s is the matrix of all latent representations
of all entities. Then Equation 4 can be written in tensor form as

J-':Rxle2A

with tensor (F)i, 1,k = fur(a1,,a1,) and core tensor (R)s, sk = wh, .

Tensor Models for the Single-task Setting. Here, the model is

Juw (agi1ys g 2ys - - Qi pey, k) (5)
Y vy Y Y
=D DD DI DD DN (TR PR ERUISR B
s1=1s2=1 spe=11t=1

Note that the main difference is that now the relation is represented by its own
latent factor ai. Again, this equation describes a RESCAL model. For binary
relations one speaks of a RESCAL3 model and Equation 5 becomes

F=Rx; AxqgAx3A
where (zzl)k,t = a,; and the core tensor is (R)s, sp.t = Ws; sp.t-

If ar, is a unit vector with the 1 at £ = ¢, then we recover the multi-
task setting. If all weights are 0, except for “diagonal” weights with s; = s9 =
... = spr = t, this is a PARAFAC model and only a single sum remains. The
PARAFAC model is used in the factorization machines [12]. In factorization
machines, attributes with ordinal or real values are modelled by a.q; = z(i)a
where z(7) is the value of the attribute in F; and @ is a latent factor vector for
the attribute independent of the particular value z(3).

Please note that the L*-order polynomials also contain all lower-order poly-
nomials, if we set, e.g., a;;; = 1, Vi. In the factorization machine, the order of
the polynomials is typically limited to 1 or 2, i.e. all higher-order polynomials
obtain a weight of 0.

Neural Tensor Networks. Here, the model is

6 Krompa$, Jiang, Nickel and Tresp

fwkﬂ)k (al(i,l)a Qy(i,2)s -+ - 7al(i,Lk))

H Y Y
_ k o
- E :wh S1g E : 2 : 2 : 917527 Spk (al(ivl)aslal(i72)732 tee al(i,L’“),st)

The output is a welghted combmatlon of the logistic function applied to H
different tensor models. This is the model used in [13], where the tanh(-) was
used instead of the logistic function.

Google Vault Model. Here a neural network is used of the form

fo (@uii1ys i 2ys - - i vy, k)

Y

H Y Y
g h51g g V1,5 Q1(i,1),8; T -+ -+ E Uik s, x QU(i,LF),5, 5 E VA

S1—= 1 SLkzl

The latent factors are simply the inputs to a neural network with one hidden
layer. This model was used in [1] in context of the Google Knowledge Graph. It
is related to tensor models for the single-task setting where the fixed polynomial
basis functions are replaced by adaptable neural basis functions with logistic
transfer functions.

4 Parameter Estimates

4.1 Missing Values

Complete Data. This means that for all relevant tuples the target variables
are available.

Assumed Complete Data. This is mostly relevant when xf is an existential
variable, where one might assume that tuples that are not listed in the relation
are false. Mathematically, we then obtain a complete data model and this is the
setting in our experiments. Another interpretation would be that with sparse
data xk = 0 is a correct imputation for those tuples.

Mlssmg at Random. This is relevant, e.g, when z¥ represents a rating.
Missing ratings might be missing at random and the correspondlng tuples should
be ignored in the cost function. Computationally, this can most efficiently be ex-
ploited by gradient-based optimization methods (see Section 4.3). Alternatively
one can use af and Bf to implement prior knowledge about missing data.

Ranking Criterion. On the ranking criterion one does not really care if
unobserved tuples are unknown or untrue, one only insists that the observed
tuples should obtain a higher score by a margin than unobserved tuples.

4.2 Regularization

In all approaches the parameters and latent factors are regularized with penalty
term A 4||A|lg and Ay ||W||g where ||-||F indicates the Frobenius norm and where
A4 >0 and Ay > 0 are regularization parameters.

Probabilistic Latent-Factor Database Models 7

4.3 Optimizing the Cost Functions

Alternating Least Squares. The minimization of the Gaussian cost function
lossG with complete data can be implemented via very efficient alternating least
squares (ALS) iterative updates, effectively exploiting data sparsity in the (as-
sumed) complete data setting [10, 7]. For example, RESCAL has been scaled up
to work with several million entities and close to 100 relation types. The number
of possible tuples that can be predicted is the square of the number of entities
times the number of predicates: for example RESCAL has been applied to the
Yago ontology with 104 potential tuples [11].

Natural Parameters: Gradient-Based Optimization. When natural
parameters are used, unconstrained gradient-based optimization routines like
L-BFGS can be employed, see for example [6, 9].

Non-Negative Tensor Factorization. If we use the basis representation
with ¥ parameters, we need to enforce that #¥ > 0. One option is to employ non-
negative tensor factorization which leads to non-negative factors and weights. For
implementation details, consult [3].

Stochastic Gradient Descent (SGD). In principal, SGD could be applied
to any setting with any cost function. In our experiments, SGD did not converge
to any reasonable solutions in tolerable training time with cost functions from
the exponential family of distributions and (assumed) complete data. SGD and
batch SGD were successfully used with ranking cost functions in [12, 13] and we
also achieved reasonable results with BPR.

5 Experiments

Due to space limitations we only report experiments using the binary multi-task
model RESCAL2. We performed experiments on three commonly used bench-
mark data sets for relational learning:

Kinship 104 entities and M = 26 relations that consist of several kinship rela-
tions within the Alwayarra tribe.

Nations 14 entities and M = 56 relations that consist of relations between
nations (treaties, immigration, etc). Additionally the data set contains at-
tribute information for each entity.

UMLS 135 entities and M = 49 relations that consist of biomedical relation-
ships between categorized concepts of the Unified Medical Language System
(UMLS).

5.1 Experiments with Different Cost Functions and Representations

Here z¥ = 1 stands for the existence of a tuple, otherwise ¥ = 0. We evaluated
the different methods using the area under the precision-recall curve (AUPRC)
performing 10-fold cross-validation. Table 1 shows results for the three data
sets (“nn” stands for non-negative and “nat* for the usage of natural parame-
ters). In all cases, the RESCAL model with lossG (“RESCAL”) gives excellent

8 Krompa$, Jiang, Nickel and Tresp

Table 1. AUPRC for Different Data Sets

Rand|RESCAL |nnPoiss|nnMulti|natBern|natPoiss|natMulti| SGD |stdev
Nations|0.212| 0.843 0.710 | 0.704 | 0.850 | 0.847 | 0.659 [0.825|0.05
Kinship[0.039] 0.962 0.918 | 0.889 | 0.980 | 0.981 0.976 |0.931| 0.01
UMLS [0.008| 0.986 | 0.968 | 0.916 | 0.986 | 0.967 0.922 (0.971| 0.01

Table 2. AUPRC for Count Data

Rand|RESCAL nnPoiss/nnMulti|natBin|natPoiss|natMulti|RES-P |stdev
Nations|0.181| 0.627 0.616 | 0.609 |0.637| 0.632 0.515 |0.638]| 0.01
Kinship|0.035| 0.949 0.933 | 0.930 [0.950| 0.952 | 0.951 |[0.951|0.01
UMLS [0.007| 0.795 0.790 | 0.759 |0.806| 0.806 0.773 |0.806 | 0.01

performance and the Bernoulli likelihood with natural parameters (“natBern”)
performs even slightly better. The Poisson model with natural parameters also
performs quite well. The performance of the multinomial models is significantly
worse. We also looked at the sparsity of the solutions. As can be expected only
the models employing non-negative factorization lead to sparse models. For the
Kinship data set, only approximately 2% of the coefficients are nonzero, whereas
models using natural parameters are dense. SGD with the BPR ranking criterion
and AdaGrad batch optimization was slightly worse than RESCAL.

Another issue is the run-time performance. RESCAL with lossG is fastest
since the ALS updates can efficiently exploit data sparsity, taking 1.9 seconds
on Kinship on an average Laptop (Intel(R) Core(TM) i5-3320M with 2.60 GHz).
It is well-known that the non-negative multiplicative updates are slower, having
to consider the constraints, and take approximately 90 seconds on Kinship. Both
the non-negative Poisson model and the non-negative multinomial model can ex-
ploit data sparsity. The exponential family approaches using natural parameters
are slowest, since they have to construct estimates for all ground atoms in the
(assumed) complete-data setting, taking approximately 300 seconds on Kinship.
SGD converges in 108 seconds on Kinship.

5.2 Experiments on Count Data

Here 2% € Ny is the number of observed counts. Table 2 shows results where we
generated 10 database instances (worlds) from a trained Bernoulli model and
generated count data from 9 database instances and used the tenth instance for
testing. Although RESCAL still gives very good performance, best results are

Table 3. AUPRC for Combined Models

RESCAL2|SUNS-S|SUNS-P|Combined |stdev
Nations| 0.855 0.761 0.831 0.886 0.01
Kinship| 0.960 0.916 0.004 0.968 | 0.01
UMLS 0.979 0.942 0.293 0.980 | 0.01

Probabilistic Latent-Factor Database Models 9

obtained by models more appropriate for count data, i.e., the binomial model
and the Poisson model using natural parameters. The non-negative models are
slightly worse than the models using natural parameters.

5.3 Probabilities with RESCAL

Due to its excellent performance and computational efficiency, it would be very
desirable to use the RESCAL model with lossG and ALS, whenever possible.
As discussed in [5], by applying post-transformations RESCAL predictions can
be mapped to probabilities in Bernoulli experiments. For Poisson data we can
assume a natural parameter model with o = 2 and model 7% = log(1 + xF)
which leads to a sparse data representation that can efficiently be modelled with
RESCAL and lossG. The results are shown as RES-P in Table 2 which are among
the best results for the count datal

6 Extensions

6.1 SUNS Models

Consider a triple store. In addition to the models described in Section 3 we can
also consider the following three model for f(subject, predicate, object)

Y Y Y 2 Y Y
§ E 0 § § s § : E so
asubject,maﬁ) aobject,maup7 Apredicate,m @y, -
u=1

m=1 m=1u=1 m=1u=1

These are three Tuckerl models and were used as SUNS models (SUNS-S, SUNS-
O, SUNS-P) in [14]. aP°, a®°P, and a®° are latent representations of (p, o), (s,p),
and (s, 0), respectively.

6.2 Model Combinations

The different SUNS models and RESCAL models have different modelling ca-
pabilities and often a combination of several models gives best results [2,8].
Table 3 shows the performance for the RESCAL model, two SUNS models and
the performance of an additive model of all three models. For Nations, SUNS-P
performs well and boosts the performance of the combined model. SUNS-P can
model correlations between relations, e.g., between likes and loves.

7 Conclusions

We have presented a general framework for modelling probabilistic databases
with factor models. When data are complete and sparse, the RESCAL model
with a Gaussian likelihood function and ALS-updates is most efficient and highly
scalable. We show that this model is also applicable for binary data and for

10 Krompa$, Jiang, Nickel and Tresp

count data. Non-negative modelling approaches give very sparse factors but per-
formance decreases slightly. An issue is the model rank +. In [8] it has been
shown that the rank can be reduced by using a combination of a factor model
with a model for local interactions, modelling for example the triangle rule. Sim-
ilarly, the exploitation of type-constraints can drastically reduce the number of
plausible tuples and reduces computational load dramatically [4, 1].

Acknowledgements. M. N. acknowledges support by the Center for Brains,
Minds and Machines, funded by NSF STC award CCF-1231216.

References

1. X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In KDD, 2014.

2. X. Jiang, V. Tresp, Y. Huang, and M. Nickel. Link prediction in multi-relational
graphs using additive models. In SeRSy workshop, ISWC, 2012.

3. D. Krompaf3, M. Nickel, X. Jiang, and V. Tresp. Non-negative tensor factorization
with rescal. In Tensor Methods for Machine Learning, ECML workshop, 2013.

4. D. KrompaB, M. Nickel, and V. Tresp. Factorizing large heterogeneous multi-
relational-data. In Int. Conf. on Data Science and Advanced Analytics, 2014.

5. D. Krompaf}, M. Nickel, and V. Tresp. Querying factorized probabilistic triple
databases. In ISWC, 2014.

6. B. London, T. Rekatsinas, B. Huang, and L. Getoor. Multi-relational learning
using weighted tensor decomposition with modular loss. In arXiv:1303.1733, 2013.

7. M. Nickel. Tensor factorization for relational learning. PhD-thesis, Ludwig-
Maximilian-University of Munich, Aug. 2013.

8. M. Nickel, X. Jiang, and V. Tresp. Learning from latent and observable patterns
in multi-relational data. In NIPS, 2014.

9. M. Nickel and V. Tresp. Logistic tensor factorization for multi-relational data. In
WSTRUC WS at the ICML, 2013.

10. M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning
on multi-relational data. In /ICML, 2011.

11. M. Nickel, V. Tresp, and H.-P. Kriegel. Factorizing yago: scalable machine learning
for linked data. In WWW, 2012.

12. S. Rendle, L. B. Marinho, A. Nanopoulos, and L. Schmidt-Thieme. Learning op-
timal ranking with tensor factorization for tag recommendation. In KDD, 2009.

13. R. Socher, D. Chen, C. D. Manning, and A. Y. Ng. Reasoning with neural tensor
networks for knowledge base completion. In NIPS, 2013.

14. V. Tresp, Y. Huang, M. Bundschus, and A. Rettinger. Materializing and querying
learned knowledge. In IRMLeS, ESWC workshop, 2009.

