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1. Introduction

The Semantic Web (SW) presents new challenges to
statistical relational learning. One of the main fea-
tures of SW data is that it is notoriously incomplete.
Consider friend-of-a-friend (FOAF) data. The purpose
of the FOAF project is to create a web of machine-
readable pages describing people, their relationships,
and people’s activities and interests, using SW technol-
ogy. Obviously people vary in their motivation to com-
municate private information such that person-specific
information varies from almost nothing to great detail.
Another feature of SW data is the great sparsity of re-
lational information such as friendship: listed friends
in the knowledge base are a small subset of all poten-
tial friends. Finally, there is a variety of additional
untested and potentially conflicting schema informa-
tion specified by users. We are expecting that the data
situation in the FOAF setting will be characteristic for
many other SW domains. Naturally, missing informa-
tion can be supplemented. First, deductive reasoning
can be used to complement factual knowledge based
on axioms. The advantage is that deduced facts can
be queried with powerful query languages such as SQL
for relational data bases and SPARQL for SW data. A
common problem is that, generally, valid axioms are
rare and many true facts in an application cannot be
derived. Inductive reasoning, the focus of this paper,
is the second way for gaining additional knowledge by
exploiting regularities in the data. The advantage of
inductive reasoning is that one can perform inference
on a large number of statements. Disadvantages are
that only the probability of the truth values of state-
ments can be derived and that machine learning needs
to be performed by machine learning experts. The goal
of the work presented here is to apply statistical rela-
tional learning in sparse and unreliable domains such
as the SW. Several requirements need to be fulfilled.

The statistical relational learning algorithms need to
be able to deal with sparse data typical for SW do-
mains, they must be scalable, they need to be easily
configurable, finally it should be possible to integrate
the learning results into querying. For the user there
should be almost no difference between querying facts,
deduced facts and induced information.

We define an extension of SPARQL, which allows the
integration of the learned probabilistic statements into
querying. Statements that can be inferred via logical
reasoning can readily be integrated into learning and
querying. We study learning algorithms that are suit-
able for the resulting high-dimensional sparse data ma-
trix. We present experimental results using a friend-
of-a-friend data set.

The work on inductive databases (Imielinski & Man-
nila, 1996; Raedt et al., 2002; Kramer et al., 2006)
pursues similar goals but is focussed on the less-
problematic data situation in relational databases.
In (Kiefer et al., 2008) the authors describe SPARQL-
ML, a framework for adding data mining support to
SPARQL but without considering the special data sit-
uation on the SW.

2. Learning Procedure

To define an appropriate statistical setting, we require
the user to define key entities (i.e., statistical units)
and a population. Key entities are the entities (e.g.
persons) that are the source of the variables or features
of interest. A population is the set of key entities, for
which statistical inference is performed. The popula-
tion might be defined in various ways. For example, it
might concern all persons in a particular country or,
alternatively, all female students at a particular uni-
versity. In a statistical analysis only a subset of the
population is made available for investigation, i.e., a
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sample. A data matrix is generated in which the rows
correspond to the key entities in the sample and the
columns correspond to features that represent actual
and potential relations of the key entities.1

The resulting data matrix is typically quite large, bi-
nary and sparse. A one stands for a statement known
to be true and a zero for a statement whose truth
value is unknown. Such a data situation has been
studied in various context in the past and a number
of matrix completion methods have proven to be suc-
cessful in this context. We investigate matrix comple-
tion based on an eigenvector analysis of the data ma-
trix (SVD), matrix completion based on non-negative
matrix factorization (NNMF) (Lee & Seung, 1999)
and matrix completion using latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003). All three approaches
estimate unknown matrix entries via a low-rank matrix
approximation. SVD is based on a singular value de-
composition and NNMF is a decomposition under the
constraints that all terms in the factoring matrices are
non-negative. LDA is based on a Bayesian treatment
of a generative topic model. After matrix completion,
the entries are interpreted as certainty values that the
corresponding statements are true. After training, the
models can be applied to key entities in the population
outside the sample.

3. SPARQL Extension

Figure 1. Top: A SPARQL query. Bottom: An extended
SPARQL query that includes probabilistic information.

We now discuss how SPARQL needs to be extended
to be able to incorporate the derived probabilities. As
an example, we consider a challenge that was posed at
a recent LarKC (LarKC, 2008) consortium meeting.

1An example is given in the experimental section.

First consider a regular SPARQL query that finds all
actors that act in movies that are filmed in an Ital-
ian city (Figure 1, Top). With learned probabilistic
triples we can pose the question: Find all actors that
are likely to act in movies that are filmed in an Ital-
ian city (Figure 1, Bottom). Note that we have added
the keywords WITH PROB. The variable ?prob assumes
the value 1 for explicit triples or triples derived from
ontological reasoning and assumes the estimated prob-
abilities for the learned triples. ORDER BY returns first
the actors, for which it is known for certainty that they
have acted in movies that are filmed in an Italian city
and then returns actors sorted by the probabilistic la-
bels ?prob. The keyword DISTINCT can be employed
to remove redundancy.

4. Experiments

4.1. Data Set and Set Up

Data Set: The experiments are based on friend-of-
a-friend (FOAF) data. We selected 636 persons with
a “dense” friendship information. On average, a given
person has 18 friends. Numerical values such as date
of birth or the number of blog posts were discretized.
The resulting data matrix, after pruning columns with
few ones, has 636 persons (rows) and 491 columns.2

462 of the 491 columns (friendship attributes) refer to
the property knows . The remaining columns (general
attributes) refer to general information about age, lo-
cation, number of blog posts, attended school, etc.

Evaluation Procedure and Evaluation Measure:
The task is to predict potential friends of a person. For
each person in the data set, we randomly selected one
known friendship statement and set the correspond-
ing matrix entry to zero, to be treated as unknown
(test statement). In the test phase we then predict
all unknown friendship entries, including the entry for
the test statement. The test statement should obtain
a high likelihood value, if compared to the other un-
known friendship entries. Here we use the normal-
ized discounted cumulative gain (NDCG) (Jarvelin &
Kekalainen, 2000) to evaluate a predicted ranking. To
focus more on the top-ranked items, we also consider
the NDCG@n which only counts the top n items in the
rank list. These scores are averaged over all functions
for comparison.

Benchmark methods: Baseline: Here, we create
a random ranking for all unknown triples, i. e. every
unknown triple gets a random probability assigned.
SVM: We use the one-class support vector machine.
Two different input feature sets were examined: one

2Columns with fewer than 3 ones were removed.
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Figure 2. NDCG comparison between different algorithms.
Top: NDCG all is plotted against the number of latent
variables. Bottom: NDCG@n score for different thresh-
olds.

contains only general attributes of persons (such as
age, location and number of blog posts) (SVM attr.)
and the second one contains, in addition, the friend-
ship information to all persons (SVM attr.+knows).

4.2. Results

Figure 2 (top) plots the NDCG all score of all algo-
rithms against the number of latent variables. All
three matrix completion methods clearly outperform
the benchmark algorithms, while LDA outperforms
the two other matrix completion algorithms NNMF
and SVD. In addition, LDA is not very sensitive to
the predefined number of latent variables as long as
the number is reasonably high. LDA reaches it maxi-
mum NDCG all score with T = 50 latent variables and
the performance does not deteriorate when the num-
ber of latent factors is increased. In contrast, the two
other matrix completion methods are sensitive with
respect to the predefined number of latent variables.

They both reach the maximum with T = 20. Figure
2 (bottom) plots the NDCG@n score against thresh-
olds n. Again, LDA performs best at every threshold
n and the two SVM settings are inferior to all matrix
completion methods.

5. Conclusion and Outlook

We have presented a generic learning approach for de-
riving probabilistic SW statements and have demon-
strated how these can be integrated into an extended
SPARQL query. The learning process is to a large
degree autonomous. Only the key entity and the pop-
ulation need to be defined by a user. Since the num-
ber of columns in the learning matrix is rather inde-
pendent of the overall size of the SW and since the
sample size can be controlled, learning is essentially
independent of the overall size of the SW. The gener-
alization from the sample to the population is linear
in the size of the population. In our experiment based
on the FOAF data set, LDA showed best performance,
which we attribute to the fact that LDA, in contrast to
NNMF and SVD, uses a Bayesian approach, which has
a smaller tendency to overfitting. As confirmed by our
experiments, support vector machines do not exhibit
competitive performance in learning high-dimensional
relational data.
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