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ABSTRACT
The overwhelming amount of published literature in the
biomedical domain and the growing number of collabora-
tions across scientific disciplines results in an increasing top-
ical complexity of research articles. This represents an im-
mense challenge for efficient biomedical knowledge discov-
ery from text. We present a new graphical model, the so-
called Topic-Concept Model, which extends the basic La-
tent Dirichlet Allocation framework and reflects the gener-
ative process of indexing a PubMed abstract with termino-
logical concepts from an ontology. The generative model
captures the latent topic structure of documents by learn-
ing the statistical dependencies between words, topics and
MeSH (Medical Subject Headings) concepts. A number of
important tasks for biomedical knowledge discovery can be
solved with the here introduced model. We provide results
for the extraction of the hidden topic-concept structure from
a large medical text collection, the identification of the most
likely topics given a specific MeSH concept, and the extrac-
tion of statistical relationships between MeSH concepts and
words. Moreover, we apply the introduced generative model
to a challenging multi-label classification task. A benchmark
with several classification methods on two independent data
sets proves our method to be competitive.
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1. INTRODUCTION
In the last decade, powerful new biomedical research tools

and methods have been developed, resulting in an unprece-
dented increase of biomedical data and literature. High-
throughput experiments, such as DNA microarrays or pro-
tein arrays, produce large quantities of high-quality data,
leading to an explosion of scientific articles published in this
field. Thus, automated extraction of useful information from
large document collections has become an increasingly im-
portant research area [12, 11]. To ensure an efficient ac-
cess to this steadily increasing source of bibliographic infor-
mation, it is required to efficiently index incoming articles,
i. e. to label unstructured free text with a structured ma-
chine readable annotation. Articles selected for inclusion in
PubMed1, for example, are indexed with concepts from the
Medical Subject Headings2 (MeSH) thesaurus to facilitate
later retrieval. This additional meta information provides a
rich source of knowledge, which can be exploited for biomed-
ical knowledge discovery and data mining tasks and this is
the focus of this work.

Recently, powerful techniques such as Probabilistic Latent
Semantic Analysis (PLSA) [15] or Latent Dirichlet Alloca-
tion (LDA) [7] have been proposed for automated extraction
of useful information from large document collections. Ap-
plications include automatic topic extraction, query answer-
ing, document summarization, and trend analysis. Gener-
ative statistical models such as the above mentioned ones,
have been proven effective in addressing these problems. In
general, the following advantages of topic models are high-
lighted in the context of document modeling: First, topics
can be extracted in a complete unsupervised fashion, requir-
ing no initial labeling of the topics. Second, the resulting
representation of topics for a document collection is inter-
pretable and last but not least, each document is usually
expressed by a mixture of topics, thus capturing the topic
combinations that arise in documents [15, 7, 14]. In the

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://www.nlm.nih.gov/mesh/



biomedical domain, the classical LDA model has been ap-
plied to the task of finding life span related genes from the
Caenorhabditis Genetic Center Bibliography [5] and to the
task of identifying biological concepts from a protein-related
corpus [33]. Depending on the addressed generative process,
the LDA framework has been extended e. g. to model the de-
pendencies between authors, topics and documents [30] or
the dependencies between author and recipients [20]. Fur-
ther approaches include the modeling of images and their
corresponding captions [6] as well as the modeling of depen-
dencies between topics and named entities [25].

In this paper, we introduce another extension of the LDA
framework, the so-called Topic-Concept (TC) model, to re-
semble the generative process of creating an indexed PubMed
abstract. The approach simultaneously models the way how
the document is generated as well as the way how the docu-
ment is subsequently indexed with MeSH concepts (see fig-
ure 1 for a comparison with the classical LDA approach).
We refer to MeSH as a terminological ontology, where rela-
tions are partially described as subtype-supertype relations
and where the concepts are described by concept labels or
synonyms [2].

By modeling the indexing process of PubMed abstracts,
we can answer a range of important queries for knowledge
discovery about the content of biomedical text collections.
With such a model, we can provide a bird’s eye view of
biomedical topics discussed in a large document collection
associated with prominent MeSH concepts (i. e. uncovering
the hidden topic-concept structure in a biomedical text col-
lection). In contrast to the classical LDA, this results in
a richer representation of topics, since topics are not solely
represented by their most likely words. Instead, topics in the
TC model are, in addition to the words, associated with their
most likely MeSH terms (see section 3.2.1). Furthermore, we
can identify several types of statistical relationships between
different classes of document entities (i. e. words, MeSH con-
cepts and topics). We provide results for identifying statis-
tical relationships between concepts and words based on the
topics (see section 3.2.2). Another interesting use case we
consider, is the estimation of the most likely topics given
a MeSH concept. This results in a fast overview over the
topics in which a specific MeSH term is most likely to be
involved (see section 3.2.2). Last but not least, we can use
the TC model for multi-label classification. To validate the
predictive power of the here presented model, we apply our
generative method to a challenging multi-label classification
problem with 108 classes. A benchmark on two independent
corpora against (1) a multi-label naive Bayes classifier, (2) a
method currently used by the National Library of Medicine
(NLM) and (3) a state-of-the-art multi-label support vector
machine (SVM) shows encouraging results.

The remainder of the paper is organized as follows: In
Section 2 we describe the extension of the classical LDA to-
wards the TC model. Section 3.1 describes the experimental
setup. Afterwards results are presented and a concluding
discussion is given.

2. METHODS
In the following we will describe two generative mod-

els, the first simulating the process of document generation
alone and the second simulating both the process of docu-
ment generation and the process of document indexing. Let

Figure 1: Graphical model for a) LDA and b)
Concept-LDA in plate notation. Shaded nodes rep-
resent observed random variables, unshaded nodes
represent latent random variables.

D = {d1, d2, ..., dD} be a set of documents, where D denotes
the number of documents in the corpus. A document d is
represented by a vector of Nd words, wd, where each word
wi is chosen from a vocabulary of size N . In the second
model, a document d is additionally described by a vector
of Md MeSH concepts cd, where each concept ci is chosen
from a set of MeSH concepts of size M . The collection of D
documents is defined by D = {(w1, c1), ..., (wD, cD)}.

2.1 Classical Latent Dirichlet Allocation (LDA)
model

The Latent Dirichlet Allocation model (LDA) is based
upon the idea that the probability distribution over words
in a document can be expressed as a mixture of topics, where
each topic is expressed as a mixture of words [7]. In LDA,
the generation of a document collection is modeled as a three
step process. First, for each document, a distribution over
topics is sampled from a Dirichlet distribution. Second, for
each word in the document, a single topic is chosen accord-
ing to this distribution. Finally, a word is sampled from
a multinomial distribution over words specific to the sam-
pled topic. The hierarchical Bayesian model shown (using
plate notation) in Figure 1(a) depicts this generative pro-
cess. θ represents the document-specific multinomial distri-
bution over T topics, each being drawn independently from
a symmetric Dirichlet prior α. Φ denotes the multinomial
distribution over N vocabulary items for each of T topics be-
ing drawn independently from a symmetric Dirichlet prior
β. For each of the Nd words w in document d, z denotes the
topic responsible for generating that word, drawn from θ,
and w is the word itself, drawn from the topic distribution
Φ conditioned on z. According to the graphical model rep-
resentation, the probability distribution over N vocabulary
items for the generation of word wi within a given document
is specified as

p(wi) =

T∑
t=1

p(wi|zi = t)p(zi = t) (1)

where zi = t represents the assignment of topic t to the ith
word, p(wi|zi = t) is given by the topic-word distribution Φ
and p(zi = t) by the document-topic distribution θ.



Table 1: Corpora statistics for the two data sets used in this paper.

random 50K genetics-related

Documents 50.000 84.076
Unique Words 22.531 31.684
Total Words 2.369.616 4.293.992
Unique MeSH Main Headings 17.716 18.350
Total MeSH Main Headings 470.101 912.231

2.2 Extension to the Topic-Concept (TC) Model
The Topic-Concept model extends the LDA framework by

simultaneously modeling the generative process of document
generation and the process of document indexing. In addi-
tion to the three steps mentioned above, two further steps
are introduced to model the process of document indexing.
For each of the Md concepts in the document a topic z̃ is
uniformly drawn based on the topic assignments for each
word in the document. Finally, each concept c is sampled
from a multinomial distribution over concepts specific to the
sampled topic. This generative process corresponds to the
hierarchical Bayesian model shown in Figure 1(b). In this
model, Γ denotes the vector of multinomial distribution over
M concepts for each of T topics being drawn independently
from a symmetric Dirichlet prior γ. After the generation
of words, a topic z̃ is drawn from the document specific
distribution, and a concept c is drawn from the z̃ specific
distribution Γ. The probability distribution over M MeSH
concepts for the generation of a concept ci within a docu-
ment is specified as:

p(ci) =

T∑
t=1

p(ci|z̃i = t)p(z̃i = t|z) (2)

where z̃i = t represents the assignment of topic t to the ith
concept, p(ci|z̃i = t) is given by the concept-topic distri-
bution Γ. The topic for the concept is selected uniformly
out off the assignments of topics in the document model,
i.e., p(z̃i = t|z) = Unif(z1, z2, . . . , zNd) leading to a coupling
between both generative components.

The generative process of the Topic-Concept model is es-
sentially the same as the Correspondence LDA model pro-
posed in [6] with the difference that the Topic-Concept model
imitates the generation of documents and their subsequent
annotation, while [7] models the dependency between image
regions and captions.

2.3 Learning the Topic-Concept Model from
Text Collections

Estimating Φ, θ and Γ provides information about the
underlying topic distribution in a corpus and the respective
word and MeSH concept distributions in each document.
Given the observed documents, the learning task is to in-
fer these parameters for each document. Instead of esti-
mating the parameters directly [16, 6] we follow the idea
of [14] and estimate Φ and θ from the posterior distribu-
tion over the assignments of words to topics p(w|z). As
the posterior cannot computed directly we resort to a Gibbs
sampling strategy generating samples from the posterior by
repeatedly drawing a topic for each observed word from its
probability conditioned on all other variables. In the LDA
model, the algorithm goes over all documents word by word.
For each word wi, a topic zi is assigned by drawing from its

distribution conditioned on all other variables

p(zi = t|wi = n, z−i,w−i) ∝
p(wi = n|zi = t)p(zi = t) ∝

CWT
nt + β∑

n′ CWT
n′t +Nβ

CDT
dt + α∑

t′ C
DT
dt′ + Tα

(3)

where zi = t represents the assignments of the ith word in
a document to topic t, wi = n represents the observation
that the ith word is the nth word in the lexicon, and z−i

represents all topic assignments not including the ith word.
Furthermore, CWT

nt is the number of times word n is as-
signed to topic t, not including the current instance, and
CDT

dt is the number of times topic t has occurred in doc-
ument d, not including the current instance. Additionally,
in the Topic-Concept model, the posterior p(c|z̃) is approx-
imated by assigning for each concept ci, a topic z̃i from the
following distribution

p(z̃i = t|ci = m, z̃i, z−i,w−i) ∝
p(ci = m|z̃i = t)p(z̃i = t|z) ∝

CCT
mt + γ∑

m′ CCT
m′t +Mγ

CTD
td

Nd
(4)

where z̃i = t represents the assignments of the ith concept
in a document to topic t, ci = m represents the observation
that the ith concept in the document is the mth concept
in the lexicon, and z−i represents all topic assignments not
including the ith concept. Furthermore, CCT

mt is the number
of times concept m is assigned to topic t, not including the
current instance, and CTD

td is the number of times topic t has
occurred in document d, not including the current instance.

For any single sample we can estimate Φ, θ and Γ using

Φ̂nt =
CWT

nt + β∑
n′ CWT

n′t +Nβ
(5)

θ̂dt =
CDT

dt + α∑
t′ C

WT
dt′ + Tα

(6)

Γ̂mt =
CCT

mt + γ∑
m′ CCT

m′t +Mγ
(7)

Instead of estimating the hyperparameters α, β and γ, we
fix them to 50/T , 0.001 and 1/M respectively in each of the
experiments. The values were chosen according to [30, 14].

3. EXPERIMENTS AND RESULTS

3.1 Experimental setting
Two large PubMed corpora previously generated by [23,

24] were used in the experiments. The first data set is a
collection of PubMed abstracts randomly selected from the
MEDLINE 2006 baseline database provided by the NLM.



Table 2: Selected topics, learned from the genetics-related corpus (T = 300). For each topic the fifteen most
probably words and MeSH terms are listed with their corresponding probabilities.

Topic 6

Word Prob. Mesh Term Prob.

ethic 0.043 Humans 0.150
research 0.039 United States 0.038
issu 0.023 Informed Consent 0.017
public 0.014 Ethics, Medical 0.011
medic 0.013 Personal Autonomy 0.001
health 0.013 Decision Making 0.001
moral 0.013 Ethics, Research 0.008
consent 0.012 Great Britain 0.008
practic 0.012 Human Experimentation 0.007
concern 0.011 Public Policy 0.007
polici 0.001 Morals 0.007
conflict 0.008 Biomedical Research 0.006
right 0.008 Research Subjects 0.006
articl 0.008 Social Justice 0.006
accept 0.008 Confidentiality 0.006

Topic 17

Word Prob. Mesh Term Prob.

viru 0.118 Humans 0.06
viral 0.064 HIV-1 0.06
infect 0.058 HIV Infections 0.059
hiv-1 0.047 Virus Replication 0.045
virus 0.035 RNA, Viral 0.042
hiv 0.033 Animals 0.027
replic 0.033 DNA, Viral 0.027
immunodef. 0.025 Cell-Line 0.023
envelop 0.012 Genome, Viral 0.022
aids 0.012 Viral Proteins 0.020
particl 0.011 Molecular Sequence Data 0.017
capsid 0.011 Anti-HIV Agents 0.016
host 0.011 Viral Envelope Proteins 0.013
infecti 0.010 Drug Resistance, Viral 0.012
antiretrovir 0.001 Acquired Immunodef. Synd. 0.011

Topic 16

Word Prob. Mesh Term Prob.

phosphoryl 0.130 Phosphorylation 0.123
kinas 0.118 Prot.-Serine-Threonine Kin. 0.075
activ 0.060 Proto-Oncogene Prot. 0.060
akt 0.060 Proto-Oncogene Proteins c-akt 0.047
tyrosin 0.036 1-Phosphatidylinositol 3-Kin. 0.047
protein 0.029 Humans 0.043
phosphatas 0.025 Signal Transduction 0.038
signal 0.025 Animals 0.028
pten 0.024 Protein Kinases 0.021
pi3k 0.022 Tumor Suppressor Proteins 0.016
pathwai 0.020 Phosphoric Monoester Hydrol. 0.016
regul 0.018 Enzyme Activation 0.015
serin 0.015 Cell Line, Tumor 0.014
inhibit 0.015 Enzyme Activation 0.001
src 0.015 Mice 0.013

Topic 26

Word Prob. Mesh Term Prob.

breast 0.372 Breast Neoplasms 0.319
cancer 0.323 Humans 0.120
women 0.032 Middle Aged 0.024
tamoxifen 0.028 Receptors, Estrogen 0.023
mcf-7 0.026 Tamoxifen 0.022
estrogen 0.012 Antineopl. Agents, Hormon. 0.017
mda-mb-231 0.007 Aged 0.016
adjuv 0.007 Carcinoma, Ductal, Breast 0.013
statu 0.007 Chemotherapy, Adjuvant 0.013
hormon 0.007 Mammography 0.012
tam 0.006 Breast 0.012
aromatas 0.006 Adult 0.011
ductal 0.006 Neoplasm Staging 0.010
mammari 0.006 Aromatase Inhibitors 0.009
postmenop. 0.005 Receptors, Progesterone 0.009

The collection consists of D = 50.000 abstracts, M = 17.716
unique MeSH main headings and N = 22.531 unique word
stems. Word tokens from title and abstract were stemmed
with a standard Porter stemmer [27] and stop words were
removed using the PubMed stop word list 3. Additionally,
word stems occurring less than five times in the corpus were
filtered out. Note that no filter criterion was defined for the
MeSH vocabulary.

The second data set contains D = 84.076 PubMed ab-
stracts, with M = 18.350 unique MeSH main headings and
a total of N = 31.684 unique word stems. The same fil-
tering steps were applied as described above. This corpus
is composed of genetics-related abstracts from the MED-
LINE 2005 baseline corpus. The here introduced bias to-
wards genetics-related abstracts resulted from using NLM’s
Journal Descriptor Indexing Tool by applying some genetics-
related filtering strategies [23]. See [23, 24] for more infor-
mation about both corpora. In the following, the data sets
are referred to as random 50K data set and genetics-related
data set respectively. For the extraction of statistical rela-
tionships between the various document entities and for un-
covering the hidden-topic concept structure, we decided to
use the larger genetics-related corpus with all 18.350 MeSH
main headings (see section 3.2.1 and section 3.2.2), while for

3http://www.ncbi.nlm.nih.gov/entrez/
query/static/help/pmhelp.html#Stopwords

the multi-label classification task, we used both corpora in
a pruned setting (see next section 3.1.1).

Parameters for the Topic-Concept model were estimated
by averaging samples from ten randomly-seeded runs, each
running over 100 iterations, with an initial burn-in phase of
500 iterations (resulting in a total of 1.500 iterations). We
found 500 iterations to be a convenient choice by observing
a flattening of the log likelihood. The training time ranged
from ten to fifteen hours depending on the size of the data
set, the number of used MeSH concepts as well as on the
predefined number of topics (run on a standard Linux PC
with Opteron Dual Core processor, 2.4 GHz).

3.1.1 Multi-label classification task
In this setting, we prune each MeSH descriptor to the first

level of each taxonomy-subbranch resulting in 108 unique
MeSH concepts (M = 108). For example, if a document is
indexed with Muscular Disorders, Atrophic [C10.668.550],
the concept is pruned to Nervous System Diseases [C10].
Therefore, the task is to assign at least one of the 108 classes
to an unseen PubMed abstract. Note that from a machine
learning point of view, this is a challenging 108 multi-label
classification problem and corresponds to other state-of-the-
art text classification problems such as the Reuters text clas-
sification task [19], where the number of classes is approxi-
mately the same. In the pruned setting of our task, we have
on average 9.6/10.5 (random 50K/genetics-related) pruned



Table 3: Selected MeSH concepts from the Disease and the Drug & Chemicals subbranch with the 20 most
probable word stems estimated based on a topic-concept model learned from the genetics-related corpus
(T = 300). The font size of each word stem encodes its probability given the corresponding MeSH concept.
The number in brackets is euqal to the number of times, the MeSH terms occurs in the corpus

Diseases

Myelodysplastic Syndromes (208)

acut aml bcr-abl blast chronic cml flt3
hematolog imatinib leukaemia leukem

leukemia lymphoblast marrow

mds myelodysplast myeloid patient relaps
syndrom

Pulmonary Embolism (39)

activ associ case clinic diagnos

diagnosi diagnost factor incid men

mortal patient platelet preval

protein rate risk studi women year

Drugs & Chemicals

Erythropoietin (85)
abnorm anaemia anemia caus cell defect

defici disord epo erythrocyt erythroid
erythropoietin g6pd hemoglobin increas model

normal patient sever studi

Paclitaxel (309)

advanc agent anticanc cancer

chemotherapi cisplatin combin cytotox

drug effect median paclitaxel

patient phase regimen respons sensit

surviv toxic treatment

MeSH labels per document. Parameter estimation remains
the same as mentioned in the previous paragraph.

In particular, we are interested in evaluating the classi-
fication task in a user-centered or semi-automatic scenario,
where we want to recommend a set of classes for a specific
document (e. g. a human indexer gets recommendations of
MeSH terms for a document). Thus, we decided to follow
the evaluation of [13] and average the effectiveness of the
classifiers over documents rather than over categories. In
addition, we weight recall over precision and use the F2-
macro measure, because it reflects that human indexers will
accept some inappropriate recommendations as long as the
major fraction of recommended index terms will be correct
[13].

3.2 Results

3.2.1 Uncovering the hidden topic-concept structure

Table 2 illustrates several different topics (out of 300)
from the genetics-related corpus, obtained from a partic-
ular Gibbs sampler run after the 1.500th iteration. Each
table shows the fifteen most likely word stems assigned to a
specific topic and its corresponding most likely MeSH main
headings. To show the descriptive power of our learned
model, we chose four topics describing different aspects of
biomedical research. Topic 6 is ethics-related, topic 16 is re-
lated to a special biochemical process, namely signal trans-
duction, and the last two topics represent aspects of specific
disease classes. Topic 26 represents a topic centered around
breast cancer, while topic 17 refers to HIV. The model in-
cludes several other topics related to specific diseases, bio-
chemical processes, organs and other aspects of biomedical
research like e. g. Magnetic Resonance Spectroscopy. Recall
that the here investigated corpus is biased towards genetics-
related topics, thus, some topics can describe quite specific
aspects of genetics research. More generic topics in the cor-
pus are related to terms, common to almost all biomedical

research areas including terminology, describing experimen-
tal setups or methods. In general, the extracted topics are,
of course, dependent on the corpus seed. The full list of top-
ics with corresponding word and MeSH distributions is avail-
able at www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/
TC_structure.txt.

It can be seen that the word stems already provide an intu-
itive description of specific aspects. Furthermore, the topics
gain more descriptive power by their associated MeSH con-
cepts, providing an accurate description in structured from.
Note that the standard topic models are only able to rep-
resent topics with the single word descriptions. In contrast,
the TC model provides a richer representation of topics by
additionally linking topics to concepts from a terminological
ontology. We found that the topics obtained from different
Gibbs sampling runs were relatively stable. A variability in
terms of ranking of the words and MeSH terms in the topics
can be observed, but overall the topics match very closely.
For studies about topic stability in aspect models, please
refer to [29].

3.2.2 Extraction of statistical relationships
Besides uncovering the hidden topic-concept structure,

we apply the model to derive statistical relations between
MeSH concepts and word stems, thus bridging the gap be-
tween natural free text and the structured semantic anno-
tation. The derived relations could be e. g. used for im-
proving word sense disambiguation [18]. In Table 3, four
MeSH concepts from the Disease and the Drug & Chemi-
cals subbranch and their twenty most probable word stems
are shown. For each MeSH concept, the distribution over
words is graphically represented by varying the font size for
each word stem with respect to the probability. Given a con-
cept c, the conditional probability for each word is estimated
by p(w|c) ∝

∑
t p(w|t)p(t|c), which is computed from the

learned model parameters. The word distributions describe
the corresponding MeSH concept in an intuitive way, cap-
turing the topical diversity of certain MeSH concepts. Note

http://www.nlm.nih.gov/cgi/mesh/2008/MB_cgi?mode=&term=Myelodysplastic+Syndromes
http://www.nlm.nih.gov/cgi/mesh/2008/MB_cgi?mode=&term=Pulmonary+Embolism
http://www.nlm.nih.gov/cgi/mesh/2008/MB_cgi?mode=&term=Erythropoietin
http://www.nlm.nih.gov/cgi/mesh/2008/MB_cgi?mode=&term=Paclitaxel
www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/TC_structure.txt
www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/TC_structure.txt


Table 4: Selected MeSH concepts from the Disease and the Drug & Chemicals subbranch with the three most
probable topics estimated based on a topic-concept model learned from the genetics-related corpus (T = 300).
Topics are illustrated here by the twenty most probable word stems.

MeSH term Topic Word stems

Myelodysplastic Syndromes (208)

Topic 46 (p = 0.20) leukemia acut myeloid aml mds lymphoblast
leukaemia blast leukem patient myelodysplast marrow
syndrom malign flt3 bone promyelocyt hematolog mll
granulocyt

Topic 75 (p = 0.02) transplant donor recipi graft stem allogen reject au-
tolog cell immunosuppress allograft marrow surviv
hematopoiet condit receiv acut gvhd engraft diseas

Topic 25 (p = 0.01) chromosom aberr transloc cytogenet delet abnorm re-
arrang genom karyotyp gain loss region arm break-
point trisomi mosaic duplic cgh case imbal

Erythropoietin (85)

Topic 177 (p = 0.30) defici adren anemia malaria parasit plasmodium
mosquito falciparum erythrocyt cortisol erythropoi-
etin caus g6pd insuffici adrenocort acth anaemia epo
anophel develop

Topic 14 (p = 0.14) cell stem progenitor hematopoiet differenti embryon
lineag hsc adult marrow bone erythroid cd34+ precur-
sor potenti cd34 marker hematopoiesi msc self-renew

Topic 140 (p = 0.07) activ nf-kappab factor nuclear transcript express cell
induc inhibit constitut ap-1 regul c-jun suppress p65
kappa curcumin transloc nfkappab c-fo

that there are many other opportunities to access statisti-
cal relations between MeSH concepts and words. One could
e. g. use measurements like relative frequency or χ2 statis-
tics. It may be that the TC model captures relationships
that can’t be captured in a simpler way, but this evalua-
tion is out of scope of the here presented work. We provide
all word clouds for all MeSH terms occurring in the cor-
pus from the Disease and the Drug & Chemicals subbranch
as supplementary data (www.dbs.ifi.lmu.de/~bundschu/
TCmodel_supplementary/).

Another important use case we consider, is the task of es-
timating the most likely topics given a specific MeSH term
with respect to a seed corpus. This results in a fast overview
over the topics in which a specific MeSH term is most likely
to be involved. Table 4 shows two such examples extracted
from the genetics-related corpus. Because of lack of space,
we only represent the topics by the most likely word stems
(the associated MeSH terms for the topics can be investi-
gated in the supplementary file, mentioned in section 3.2.1).
The first example shows the three most likely topics for
the MeSH term myelodysplastic syndromes. Myelodysplastic
syndromes, also called pre-leukemia or ‘smoldering’ leukemia,
are diseases in which the bone marrow does not function nor-
mally and not enough blood cells are produced [26]. This
fact is reflected by the most likely topic for this MeSH term
(Table 4, Topic 46). Furthermore, a state-of-the-art treat-
ment of this disease, is bone marrow transplantation. First,
all of the bone marrow in the body is going to be destroyed
by high-doses of chemotherapy and/or radiation therapy.
Then healthy marrow is taken from a donor (i. e. another
person) and is given to the patient [26]. This is described
by the second most likely topic (Table 4, Topic 75). Topic
25 constitutes that Myleodysplastic syndromes have a ge-
netic origin and that gene and chromosome aberrations are
a likely cause of this disease [26].

The second MeSH term in table 4, Erythropoietin (EPO),

is a hormone which is produced by the kidney and liver.
It is known to regulate red blood cell production. In the
mined genetics-related corpus, the most likely topic (Table
4, Topic 177) states that erythropoietin could be used as a
treatment during malaria infection [9] and this is a current
issue of ongoing research [3, 31]. Erythropoietin is known to
directly promote the generation of neuronal stem cells from
progenitors, which is reflected by Topic 14. Last but not
least, Topic 140 provides information about the gene regu-
latory context of EPO. NF-kappaB, e. g. , regulates EPO [8],
while EPO in turn regulates expression of c-jun and AP-1
[28].

A full list of all MeSH terms and its most likely associated
topics is available online. (www.dbs.ifi.lmu.de/~bundschu/
TCmodel_supplementary/mesh_associated_topics.pdf).

3.2.3 Multi-label classification

In what follows, we will first describe the used bench-
mark methods and then present the results for the multi-
label classification problem with 108 classes for the genetics-
related corpus and the random 50K corpus. The prediction
results of the Topic-Concept model are benchmarked against
a method currently used by the NLM [17], which we refer
to as centroid profiling, a multi-label naive Bayes classifier
and a multi-label SVM. For both data sets and all methods,
5-fold cross-validation was conducted.

In [17] classification is tackled by computing for each word
token wi and each class label ym, in a training corpus, a
term frequency measure TFi,m = wi,ym/

∑M
m=1 wi,ym with

M equals to the total number of classes. Thus, TFi,m mea-
sures the number of times a specific word wi co-occurs with
the class label ym, normalized by the total number of times
the word wi occurs. As a consequence, each word token in
the training can be represented by a profile consisting of the
term frequency distribution over all M classes. When index-

http://www.nlm.nih.gov/cgi/mesh/2008/MB_cgi?mode=&term=Myelodysplastic+Syndromes
http://www.nlm.nih.gov/cgi/mesh/2008/MB_cgi?mode=&term=Erythropoietin
www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/
www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/
www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/mesh_associated_topics.pdf
www.dbs.ifi.lmu.de/~bundschu/TCmodel_supplementary/mesh_associated_topics.pdf
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(a) random 50K corpus
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(b) genetics-related corpus

Figure 2: F2-macro, recall and precision plots for discipline-based indexing. Results are plotted according to
the number of top n recommended MeSH terms. In average every document has 9.6 such assignments in our
experimental setting. (a) Plots for the randomly selected data set. (b) Plots for the genetics-related data set

ing a new unseen document, the centroid over all profiles for
the word tokens in the test document is computed. This
centroid represents the ranking of all class labels for the test
document. This method was chosen, because it is currently
used by the NLM in a classification task to predict so-called
journal descriptors [17].

According to [22], naive Bayes classifiers are a very suc-
cessful class of algorithms for learning to classify text doc-
uments. For the multi-label naive Bayes classifier, we as-
sumed a bag of words representation like for the Topic-
Concept model and trained it for each of the 108 labels. We
used the popular multinomial model for naive Bayes [21].

The multi-label SVM setting was implemented according
to [19]. In this setting, a linear kernel is used and the pop-
ular so-called binary method is used to adapt the SVM to
a multi-label setting. It has been shown that this setting
produced very competitive results on a large-scale text clas-
sification task on the RCV1 Reuters corpus [19]. LIBLIN-
EAR, a part of the LIBSVM package [10] is used for the
implementation. Two different weighting schemes are eval-
uated: Term frequency (Tf) as well as cosine-normalized
Term frequency-inverse document frequency (Tf-Idf).

In the TC-model, the prediction of concept terms for un-
seen documents can be formulated as follows: Based on the
word-topic and concept-topic count matrices learned from
an independent data set, the likelihood of a concept c given
the test document d is p(c|d) =

∑
t p(c|t)p(t|d). The first

probability in the sum, p(c|t), is given by the learned topic-

concept distribution (see Equation 7). The mixture of top-
ics for the document p(t|d) is estimated by drawing for each
word token in the test document a topic based on the learned
word-topic distribution p(w|t) (see Equation 5). Therefore,
the TC model directly predicts a ranked list of class recom-
mendations, in contrast to the classical task of topic models
in text classification problems, where they are usually used
for dimensionality reduction and afterwards standard clas-
sifiers are applied [7].

We now discuss experimental results using 5-fold cross-
validation. Figure 2 plots F2-macro measure, recall and
precision against the number of recommended MeSH terms.
Figure 2(a) shows results for the random 50K data set and
Figure 2(b) for the genetics-related data set respectively.
Our TC model and the centroid profiling method provide
as output a ranked list of recommendations. In order to
be able to compare these two methods with the other clas-
sifiers, a thresholding strategy is needed [32]. We decided
to use the simple rank-based thresholding (Rcut) [32] and
evaluate the results until a cut-off value of 30 (Recall that
each document has in average 9.6 (random 50K) and 10.5
(genetics-related) MeSH entries in our experimental setting.
The Topic-Concept model was trained with two different
number of topics on both data sets (T = 300, T = 600
for the 50K random corpus and T = 300, T = 600 for the
genetics-related corpus). For clarity, we only show the re-
sults for T = 600 here, since experimental validation showed



that the number of topics is not very sensitive to the overall
performance. We also exclude the NB classifier from the fig-
ure for clarity (F-measure 0.58 and 0.60 for random 50K and
genetics-related). In terms of F2-macro, recall and precision,
the Topic-Concept model clearly outperforms the centroid
profiling. The naive Bayes classifier already yields quite
competitive results. Regarding F2-macro, the TC models
reach their optimum at 15 returned recommendations for
both data sets (0.61 (random 50K)/0.635 (genetics-related)).
At a cut-off value of 15 recommendations, centroid profiling
reaches a F2-macro of 0.558 for the random 50K data set
(optimum at 17 recommendations with 0.562) and 0.562 for
the genetics-related corpus (optimum at 13 recommenda-
tions with 0.564). Using a cut-off value which equals to the
number of average MeSH assignments (rounded-up) in the
two training corpora the F2-macro is for the best TC mod-
els 0.59 (random 50K) and 0.61 (genetics-related), while the
centroid profiling reaches only 0.517 (random 50K) and 0.55
(genetics-related) at this cut-off value. Note that using the
average number of MeSH assignments is the most simple
way to determine an appropriate cut-off value. A more ana-
lytical way of determining the threshold would be to set up
an independent development set for the given corpus and
to maximize the F2-macro measure according to the num-
ber of recommendations. Other approaches e. g. use a de-
fault length of 25 recommended index terms [1] for unpruned
MeSH recommendation. The evaluation of the multi-label
SVM shows that the performance is very sensitive to the
used term weighting scheme (see Figure 2). When using Tf-
Idf, the SVM is approximately on par with the TC model in
terms of F2-macro on both data sets (F2-macro SVM, Tf-
Idf is 0.60 (random 50K) and 0.645 (genetics-related)). The
SVM is clearly superior in terms of precision due to its dis-
criminative nature. When considering recall, the TC model
outperforms the SVM with Tf-Idf, effective from a cut-off
value of recommended MeSH terms, which is the average
number of MeSH terms in the training corpora.

4. CONCLUSION AND OUTLOOK
This study presents a new probabilistic topic model for

modeling medical text indexing processes. The so-called
Topic-Concept model automatically learns the relation be-
tween words, MeSH terms, documents and topics from large
text corpora of PubMed abstracts. The method uses a gen-
erative probabilistic process to learn the just mentioned re-
lationships by extracting the latent topic structure. Gibbs
sampling is used to learn the Topic-Concept model.

The TC model uncovers novel information from a biomed-
ical text corpus, including the extraction of the hidden topic-
concept structure, using all occurring unique MeSH terms
in the corpus (18.350 distinct MeSH terms). In contrast to
standard topic models, where topics are solely represented
by their most likely words, the here extracted topic-concept
structure can be interpreted as a richer representation of
topics by additionally linking to concepts from the MeSH
thesaurus. Thus, the enriched topic representation provides
important additional information from a terminological on-
tology. Other use cases we explore, are the extraction of
statistical relationships between words and MeSH terms as
well as between topics and MeSH terms. The just mentioned
applications can have impact on several other closely related
areas such as information retrieval or information extraction
(see e. g. [25]).

The Topic-Concept model can be easily applied to text
classification tasks. Even though the here proposed method
is generative, the experimental evaluation on a challenging
multi-label classification problem on two independent data
sets with 108 class labels against discriminative methods
proves our method to be competitive in terms of F2-macro
and even superior in terms of recall. In contrast to most text
categorization algorithms, the here proposed model provides
a ranking of recommended index terms for prediction tasks.
Up to now, the choice of the number of returned recom-
mended index terms is user-defined. Using a simple cut-off
value which is equal to the number of average index terms
assigned in a training collection, already yields competitive
results.

In the current setting, our model neglects the hierarchi-
cal property of the MeSH thesaurus. The extension of the
underlying generative process for capturing the hierarchy of
terminological ontologies is a matter of ongoing research. To
further tune prediction performance, we are also considering
an expansion of the generative Topic-Concept model to a su-
pervised topic model for multi-label classification as lately
proposed by [4] for multi-class classification problems.
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