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Introduction

Clustering : categorizes similar objects into same groups

High dimensional data → Multiple clusterings may exist.

(a) A clustering solution based on persons


(b) A clustering solution based on poses


Other data : text/document data, gene data,...

Challenge : How to find all meaningful solutions ?
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Alternative Clustering Problem

Several algorithms have been developed.

Seeking alternative clusterings simultaneously.
Eg : Maximize L(Θ(1);X ) + L(Θ(2);X )− I(C (1);C (2)|Θ)

Seeking alternative clusterings in sequence.
Eg : Maximize L(Θ(2);X )− I(C (1);C (2))
⇒ model view point : latter approach has limited number of
parameters optimized
⇒ our approach in this work

Given X = {x1, x2, . . . , xn} in R
d and C (1) as reference, seek C (2)

as an alternative :
⋃

i C
(2)
i = X and C

(2)
i ∩ C

(2)
j = ∅ for

∀i 6= j ; i , j ≤ k
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Objective

Subspace learning :

un-correlate from C (1) ⇒ ensure difference.

retaining local data proximity ⇒ ensure quality.

With graph based approach :

K
ij


G={V,E}


e
ij
v
i


X={x
1
,…, x
n
}


x
i


F : maps {xi}
n
i=1 into {yi}

n
i=1 (i.e., Y = F T X )

⇒ f in F combines X into 1-dim : fT X = {y1, . . . , yn} = yT .

Define objective :

arg min
f

1
2

∑n
i=1

∑n
j=1(f

T xi − fT xj)
2Kij s.t. ST XT f = 0

⇒ S is a feature subspace capturing C (1)

⇒ Penalize : Kij large but yi , yj are mapped far apart
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Learn S with LDA

Learn S as a subspace best capturing C (1).
⇒ C (1)’s clusters represented in S are most separable.

Fisher LDA is a good choice :

max
w

wT SBw

wT SW w

where

SB =
∑

k

nk(m
(k) −m)(m(k) −m)T

SW =
∑

k

nk∑

i

(x
(k)
i −m(k))(x

(k)
i −m(k))T

m
(1)


m
(2)


d1


d2


w


Optimal w’s are eigenvectors of S−1
W SB

S is chosen with leading w’s.
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Solving Constrained Function(1)

Define D with Dii =
∑

j Kij and L = D − K

Deploying summation :

1

2

n∑

i=1

n∑

j=1

(fT xi − fT xj)
2Kij = fT XLXT f

Adding fT XDXT f = 1 to remove f’s freedom :

L(α, β, f) = fT XLXT f − α(fT XDXT f − 1)− βST XT f

For simplicity :




L̃ = XLXT

D̃ = XDXT

S̃ = XS
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Solving Constrained Function(2)

D̃ is symmetric, pos.semi-definite. Change f = D̃−1/2z :

fT L̃f = zT D̃−1/2L̃D̃−1/2z = zT Qz

and two constraints :

{
fT D̃f = zT z = 1

S̃T f = S̃T D̃−1/2z = 0
Lagrange function can be re-written :

L(α, β, z) = 1
2
zT Qz− 1

2
α(zT z− 1)− βUT z

where UT = S̃T D̃−1/2.

Taking derivative and with little algebra :

αz = Qz− U(UT U)−1UT Qz

=
(
I − U(UT U)−1UT

)
Qz

= PQz

⇒ eigenvalue problem
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Solving Constrained Function(3)

Solving : αz = PQz

Notice PQ might not be symmetric ; yet, α(PQ) = α(PQP)
due to PT = P and P2 = P.
⇒ not solving PQz = αz but PQPv = αv, with v = P−1z

Eigenvalues of PQP are non-negative :
⇒ α0 = 0 is smallest
⇒ v0 = P−1D̃1/21 is trivial

Optimal direction f :

f = D̃−1/2Pv

with corresponding smallest non-zero eigenvalue α.
⇒ F is formed based on q leading eigenvectors of PQP

corresponding to smallest non-zero α’s.
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Initial experimental results
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(a) Synthetic data with 4 Gaussians


(b) Cloud data from UCI repository


(c) Housing data from UCI repository
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Conclusions

Novel approach from subspace learning

not only being uncorrelated from provided clustering
but also retaining local geometrical data proximity

Global optimum solution can be achieved

Capability of seeking multiple clusterings (adding more
subspaces into S).

The approach is extendable for non-linear cases.

Future work :

More experiments required on diverse datasets
Soft constraint with tradeoff factor (subspace independence vs.
local data structure retaining)
Alternative clustering interpretation.
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