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Introduction

Introduction

@ Clustering : categorizes similar objects into same groups

@ High dimensional data — Multiple clusterings may exist.

\ (a) A clustering solution based on persons

(b) A clustering solution based on poses

@ Other data : text/document data, gene data,...

@ Challenge : How to find all meaningful solutions?



Alternative Clustering Problem

Alternative Clustering Problem

Several algorithms have been developed.
@ Seeking alternative clusterings simultaneously.
Eg : Maximize L(O(); X) + L(©®); x) — 1(CW; c?)|©)
@ Seeking alternative clusterings in sequence.
Eg : Maximize L(©®); x) — I(C(D); ¢(?)
=- model view point : latter approach has limited number of
parameters optimized
= our approach in this work
Given X = {x1,X2,...,%,} in R and C) as reference, seek C(?)
as an alternative : |J; C® = & and ¢® n Cj(z) = () for
Vi#j i, j<k



Subspace Learning with Constraint

Objective

Subspace learning :

@ un-correlate from C(1) = ensure difference.
@ retaining local data proximity = ensure quality.

With graph based approach :

X=X s X} G={V,E}

o F :maps {x;}_; into {y;}"; (i.e., Y = FTX)
=finF comblnes X into 1-dim : fTX ={y,...,yat=y"
@ Define objective :

arg:nin iy, y " (FTxi — fTx;)%K; st. STXTF=0 J

= S is a feature subspace capturing c®
= Penalize : Kjj large but y;, y; are mapped far apart



Subspace Learning with Constraint

Learn S with LDA

@ Learn S as a subspace best capturing C(1).
= C(W)’s clusters represented in S are most separable.

a2

@ Fisher LDA is a good choice :

W Sew
w wlSyw

where

Sg = Z (M — m)(m® —m)7 ’

k
Sw = ZZ (k) m(k))T

@ Optimal w's are eigenvectors of 5‘;/153
@ S is chosen with leading w's.



Subspace Learning with Constraint
Solving Constrained Function(1)

@ Define D with D;; = ZJ- Kijand L=D - K
@ Deploying summation :

722 Txi — F7x;)° Ky = FTXLXTf
i=1j=1

e Adding fTXDXTf =1 to remove f's freedom :

£, B,) = FTXLXT — a(fTXDXTF — 1) — BSTXTF |

@ For simplicity :



Subspace Learning with Constraint
Solving Constrained Function(2)

e D is symmetric, pos.semi-definite. Change f = D~1/2z :
fTIf=2"D V2D 127 = 2" Qz
fIDf=2Tz=1
STF=S"DY2z=0
@ Lagrange function can be re-written :
L(o,B,2)=32"Qz— 3a(zTz— 1) - BUTz J

where UT = §TD-1/2,
@ Taking derivative and with little algebra :

and two constraints :

az = Qz — U(UTU)*IUTQZ
= (1-UWUTU)UT) @z
= PQz

= eigenvalue problem



Subspace Learning with Constraint

Solving Constrained Function(3)

@ Solving : az = PQz

@ Notice PQ might not be symmetric; yet, a(PQ) = a(PQP)
due to PT = P and P2 = P.
= not solving PQz = az but PQPv = av, withv = P~z

@ Eigenvalues of PQP are non-negative :
= o = 0 is smallest
= vg = P~1DY/21 is trivial

@ Optimal direction f :

f=D"12py J

with corresponding smallest non-zero eigenvalue «.
= F is formed based on ¢ leading eigenvectors of PQP
corresponding to smallest non-zero o's.



Initial Experiments

Initial experimental results
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Conclusions

Conclusions

)

Novel approach from subspace learning

@ not only being uncorrelated from provided clustering
e but also retaining local geometrical data proximity

Global optimum solution can be achieved

Capability of seeking multiple clusterings (adding more
subspaces into S).

The approach is extendable for non-linear cases.

Future work :

[

o More experiments required on diverse datasets

@ Soft constraint with tradeoff factor (subspace independence vs.
local data structure retaining)

@ Alternative clustering interpretation.



	Introduction
	Alternative Clustering Problem
	Subspace Learning with Constraint
	Initial Experiments
	Conclusions

