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Preface

Cluster detection is a well-established data analysis task with several decades of research. However,
it also includes a large variety of different subtopics investigated by different communities such as data
mining, machine learning, statistics, and database systems. “Discovering, Summarizing and Using Multi-
ple Clusterings” is one of these emerging research fields, which is developed in all of these communities.
Unfortunately, it is difficult to identify related work on this topic as different research communities are
using different vocabulary and are publishing at different venues. This hinders concise and focused re-
search as the amount of literature published every year is scattered and readers might not get the overall
perspective on this topic.

The MultiClust workshop is therefore aiming at bringing together researchers that, somehow, are all
tackling fundamentally identical – or rather similar – problems, around “Discovering, Summarizing and
Using Multiple Clusterings”. Yet they tackle these problems with different backgrounds, focus on dif-
ferent details, and include ideas from different research communities. This diversity is a major potential
for this emerging field and should be highlighted by this workshop. In paper presentations and discus-
sions, we would like to encourage the workshop participants to look at their own research problems from
multiple perspectives.

Bridging research areas in “Multiple Clusterings” can be observed as the general idea of the entire
series of MultiClust Workshops, started at ACM SIGKDD 2010, continued at ECML PKDD 2011, up to
the workshop at SDM 2012. Problems known in subspace clustering met similar problems in other areas
like ensemble clustering, alternative clustering, or multi-view clustering. Related research fields such as
pattern mining came into the focus. Cluster exploration and visualization is another very related field,
which has been discussed in all MultiClust workshops. Keeping this tradition, the 3rd MultiClust work-
shop, at SIAM Data Mining 2012, again encounters insights from other related fields, such as constrained
clustering, distance learning, and co-learning in multiple representations.

Overall, the workshop’s technical program again demonstrates the strong interest from different re-
search communities. In particular, we have five peer-reviewed papers covering multiple research direc-
tions. They passed a competitive selection process ensuring high quality publications. Furthermore, we
are pleased to have two excellent speakers giving invited talks that provide an overview on challenges in
related fields: Carlotta Domeniconi (George Mason University, USA) and Shai Ben-David (University
of Waterloo, Canada) contribute with their recent work in this area. And finally, in the spirit of previous
workshops, the panel opens for a discussion of state-of-the-art, open challenges, and visions for future re-
search. It wraps up the workshop by summarizing common challenges, establishing novel collaborations,
and providing a guideline for topics to be addressed in following workshops.

As organizers of this workshop, we are grateful for the support of the SIAM Data Mining conference,
assisting us with all organization issues. Especially we would like to thank the workshop chairs, Rui
Kuang and Chandan Reddy. Furthermore, we also gratefully acknowledge the MultiClust 2012 program
committee for conducting thorough reviews of the submitted technical papers. We are pleased to have
some of the core researchers of the covered research topics in the MultiClust committee.

Anaheim, CA, USA, April 2012 Emmanuel Müller
Thomas Seidl

Suresh Venkatasubramanian
Arthur Zimek
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Subspace Clustering Ensembles

Carlotta Domeniconi∗

Abstract

It is well known that off-the-shelf clustering methods
may discover different patterns in a given set of data.
This is because each clustering algorithm has its own
bias resulting from the optimization of different criteria.
Furthermore, there is no ground truth against which
the clustering result can be validated. Thus, no cross-
validation technique can be carried out to tune input
parameters involved in the process. As a consequence,
the user has no guidelines for choosing the proper
clustering method for a given data set.

The use of clustering ensembles has emerged as a
technique for overcoming these problems. A clustering
ensemble consists of different clusterings obtained from
multiple applications of any single algorithm with dif-
ferent initializations, or from various bootstrap samples
of the available data, or from the application of different
algorithms to the same data set. Clustering ensembles
offer a solution to challenges inherent to clustering aris-
ing from its ill-posed nature: they can provide more
robust and stable solutions by making use of the con-
sensus across multiple clustering results, while averaging
out emergent spurious structures that arise due to the
various biases to which each participating algorithm is
tuned, or to the variance induced by different data sam-
ples.

Another issue related to clustering is the so-called
curse of dimensionality. Data with thousands of di-
mensions abound in fields and applications as diverse
as bioinformatics, security and intrusion detection, and
information and image retrieval. Clustering algorithms
can handle data with low dimensionality, but as the
dimensionality of the data increases, these algorithms
tend to break down. This is because in high dimen-
sional spaces data become extremely sparse and are far
apart from each other.

A common scenario with high-dimensional data is
that several clusters may exist in different subspaces
comprised of different combinations of features. In
many real-world problems, points in a given region
of the input space may cluster along a given set of
dimensions, while points located in another region may

∗Department of Computer Science, George Mason University,
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form a tight group with respect to different dimensions.
Each dimension could be relevant to at least one of
the clusters. Common global dimensionality reduction
techniques are unable to capture such local structure of
the data. Thus, a proper feature selection procedure
should operate locally in the input space. Local feature
selection allows one to estimate to which degree features
participate in the discovery of clusters. As a result,
many different subspace clustering methods have been
proposed.

Traditionally, clustering ensembles and subspace
clustering have been developed independently of one
another. Clustering ensembles address the ill-posed
nature of clustering, but don’t address in general the
curse of dimensionality problem. Subspace clustering
avoids the curse of dimensionality in high-dimensional
spaces, but typically requires the setting of critical input
parameters whose values are unknown.

To overcome these limitations we have introduced
a unified framework that is capable of handling both
issues: the ill-posed nature of clustering and the curse
of dimensionality. Addressing these two issues is non-
trivial as it involves solving a new problem altogether:
the subspace clustering ensemble problem. Our approach
takes two different perspectives: in the one case we
model the problem as a multi- and single-objective
optimization one [3, 2, 1]; in the other we take a
generative view, and assume that the base clusterings
are generated from a hidden consensus clustering of the
data [5, 4]. Both directions are promising and lead to
interesting challenges. The first can yield general and
efficient solutions, but requires as input the number of
clusters in the consensus clustering. The second has
higher complexity, but provides a principled solution to
the “How many clusters?” question.

In this talk, I focus on the first approach. I intro-
duce the formal definition of the problem of subspace
clustering ensembles, and heuristics to solve it. The ob-
jective is to define methods to exploit the information
provided by an ensemble of subspace clustering solutions
to compute a robust consensus subspace clustering. The
problem is formulated as a multi- and single-objective
optimization problem where the objective functions em-
bed both sides of the ensemble components: the data
clusterings and the assignments of features to clusters.
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Our experimental results on real data sets demonstrate
the effectiveness of the proposed methods.
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Cluster Center Initialization for Categorical Data Using Multiple Attribute
Clustering

Shehroz S. Khan∗ Amir Ahmad†

Abstract

The K-modes clustering algorithm is well known for its
efficiency in clustering large categorical datasets. The
K-modes algorithm requires random selection of initial
cluster centers (modes) as seed, which leads to the prob-
lem that the clustering results are often dependent on
the choice of initial cluster centers and non-repeatable
cluster structures may be obtained. In this paper, we
propose an algorithm to compute fixed initial cluster
centers for the K-modes clustering algorithm that ex-
ploits a multiple clustering approach that determines
cluster structures from the attribute values of given at-
tributes in a data. The algorithm is based on the exper-
imental observations that some of the data objects do
not change cluster membership irrespective of the choice
of initial cluster centers and individual attributes may
provide some information about the cluster structures.
Most of the time, attributes with few attribute values
play significant role in deciding cluster membership of
individual data object. The proposed algorithm gives
fixed initial cluster center (ensuring repeatable cluster-
ing results), their computation is independent of the or-
der of presentation of the data and has log-linear worst
case time complexity with respect to the data objects.
We tested the proposed algorithm on various categorical
datasets and compared it against random initialization
and two other available methods and show that it per-
forms better than the existing methods.

1 Introduction

Clustering aims at grouping multi-attribute data into
homogenous clusters (groups). Clustering is an active
research topic in pattern recognition, data mining,
statistics and machine learning with diverse application
such as in image analysis [19], medical applications [21]
and web documentation [2].

The K-means [1] based partitional clustering meth-
ods are used for processing large numeric datasets
for its simplicity and efficiency. Data mining appli-
cations require handling and exploration of heteroge-

∗University of Waterloo, Ontario, Canada.
†King Abdulaziz University, Rabigh, Saudi Arabia.

neous data that contains numerical, categorical or both
types of attributes together. K-means clustering al-
gorithm fails to handle datasets with categorical at-
tributes because it minimizes the cost function by calcu-
lating means. The traditional way to treat categorical
attributes as numeric does not always produce mean-
ingful results because generally categorical domains are
not ordered. Several approaches have been reported
for clustering categorical datasets that are based on
K-means paradigm. Ralambondrainy [22] present an
approach by using K-means algorithm to cluster cate-
gorical data by converting multiple category attributes
into binary attributes (using 0 and 1 to represent either
a category absent or present) and treat the binary at-
tributes as numeric in the K-means algorithm. Gower
and Diday [7] use a similarity coefficient and other dis-
similarity measures to process data with categorical at-
tributes. CLARA (Clustering LARge Application) [15]
is a combination of a sampling procedure and the clus-
tering program Partitioning Around Medoids (PAM).
Guha et al. [8] present a robust hierarchical cluster-
ing algorithm, ROCK, that uses links to measure the
similarity/proximity between a pair of data points with
categorical attributes that are used to merge clusters.
However this algorithm has worst case quadratic time
complexity.

Huang [12] presents the K-modes clustering algo-
rithm by introducing a new dissimilarity measure to
cluster categorical data. The algorithm replaces means
of clusters with modes, and use a frequency based
method to update modes in the clustering process to
minimize the cost function. The algorithm is shown to
achieve convergance with linear time complexity with
respect to the number of data objects. Huang [13] also
pointed out that in general, the K-modes algorithm is
faster than the K-means algorithm because it needs less
iterations to converge.

In principle, K-modes clustering algorithm func-
tions similar to K-means clustering algorithm except for
the cost function it minimizes, and hence suffers from
the same drawbacks. Likewise K-means, the K-modes
clustering algorithm assumes that the number of clus-
ters, K, is known in advance. Fixed number of K clus-
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ters can make it difficult to predict the actual number
of clusters in the data that may mislead the interpre-
tations of the results. It also fall into problems when
clusters are of differing sizes, density and non-globular
shapes. K-means does not guarantee unique clustering
due to random choice of initial cluster centers that may
yield different groupings for different runs [14]. Simi-
larly, K-modes algorithm is also very sensitive to the
choice of initial centers, an improper choice may yield
highly undesirable cluster structures. Random initial-
ization is widely used as a seed for K-modes algorithm
due to its simplicity, however, this may lead to undesir-
able and/or non-repeatable clustering results. Machine
learning practioners find it difficult to rely on the results
thus obtained and several re-runs of K-modes algorithm
may be required to arrive at a meaningful conclusion.

There are several attempts to initialize cluster cen-
ters for K-modes algorithm, however, most of these
methods suffer from either one or more of the three
drawbacks: a) the initial cluster center computation
methods are non-linear in time complexity with respect
to the number of data objects b) the initial modes are
not fixed and possess some kind of randomness in the
computation steps and c) the methods are dependent on
the presentation of order of data objects (details are dis-
cussed in Section 2). In this paper, we present a multiple
clustering approach that infers cluster structure infor-
mation from the attributes using their attribute values
present in the data for computing initial cluster centers.
Our proposed algorithm performs mulitple partitional
clustering on different attributes of the data to gener-
ate fixed initial centers (modes), is independent of the
order of presentation of data and thus gives fixed clus-
tering results. The proposed algorithm has worst case
log-linear time complexity with respect to the number
of data objects.

The rest of the paper is organized as follows. In
Section 2 we review research work on cluster center
initialization for K-modes algorithm. Section 3 briefly
discusses the K-modes clustering algorithm. In Section
4 we present the proposed approach to compute initial
modes using multiple clustering that takes contributions
from different attribute values of individual attributes
to determine distinguishable clusters in the data. In
Section 5, we present the experimental analysis of the
proposed method on various categorical datasets to
compute initial cluster centers, compare it with other
methods and show improved and consistent clustering
results. Section 6 concludes the presentation with
pointers to future work.

2 Related Work

The K-modes algorithm [12] extends the K-means
paradigm to cluster categorical data and requires ran-
dom selection of initial center or modes. The random
initialization of cluster center may only work well when
one or more chosen initial centers are close to actual
centers present in the data. In the most trivial case, the
K-modes algorithm keeps no control over the choice of
initial centers and therefore repeatability of clustering
results is difficult to achieve. Moreover, inappropriate
choice of initial cluster centers can lead to undesirable
clustering results. Hence, it is desirable to start K-
modes clustering with fixed initial centers that resemble
the true representatives centers of the clusters. Below
we provide a short review of the research work done to
compute initial cluster centers for K-modes clustering
algorithm and discuss their associated problems.

Huang [13] propose two approaches for initializing
the clusters for K-modes algorithm. In the first method,
the first K distinct data objects are chosen as initial K-
modes, whereas the second method calculates the fre-
quencies of all categories for all attributes and assign
the most frequent categories equally to the initial K-
modes. The first method may only work if the top
K data objects come from disjoint K clusters, there-
fore it is dependent on order of presentation of data.
The second method is aimed at choosing diverse clus-
ter center that may improve clustering results, however
a uniform criteria for selecting K-initial centers is not
provided. Sun Yin et al. [23] present an experimen-
tal study on applying Bradley et al.’s iterative initial-
point refinement algorithm [3] to the K-modes cluster-
ing to improve the accuracy and repetitiveness of the
clustering results. Their experiments show that the K-
modes clustering algorithm using refined initial points
leads to higher precision results much more reliably than
the random selection method without refinement. This
method is dependent on the number of cases with refine-
ments and the accuracy value varies. Khan and Ahmad
[16] use Density-based Multiscale Data Condensation
[20] approach with Hamming distance to extract K ini-
tial points, however, their method has quadratic com-
plexity with respect to the number of data objects. He
[10] presents two farthest point heuristic for computing
initial cluster centers for K-modes algorithm. The first
heuristic is equivalent to random selection of initial clus-
ter centers and the second uses a deterministic method
based on a scoring function that sums the frequency
count of attribute values of all data objects. This heuris-
tic does not explain how to choose a point when several
data objects have same scores, and if it randomly break
ties, then fixed centers cannot be guaranteed. Wu et
al. [24] develop a density based method to compute
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the K initial modes which has quadratic complexity.
To reduce its complexity to linear they randomly select
square root of the total points as a sub-sample of the
data, however, this step introduces randomness in the
final results and repeatability of clustering results may
not be achieved. Cao et al. [4] present an initialization
method that consider distance between objects and the
density of the objects. A major drawback of this method
is that it has quadratic complexity. Khan and Kant [18]
propose a method that is based on the idea of evidence
accumulation for combining the results of multiple clus-
terings [6] and only focus on those data objects that are
more less vulnerable to the choice of random selection
of modes and to choose the most diverse set of modes
among them. Their experiment suggest that the ini-
tial modes outperform the random choice, however the
method does not guarantee fixed choice of initial modes.

In the next section, we briefly describe the K-modes
clustering algorithm.

3 K-Modes Algorithm for Clustering
Categorical Data

Due to the limitation of the dissimilarity measure used
by traditional K-means algorithm, it cannot be used to
cluster categorical dataset. The K-modes clustering al-
gorithm is based on K-means paradigm, but removes the
numeric data limitation whilst preserving its efficiency.
The K-modes algorithm extends the K-means paradigm
to cluster categorical data by removing the barrier im-
posed by K-means through following modifications:

1. Using a simple matching dissimilarity measure or
the Hamming distance for categorical data objects

2. Replacing means of clusters by their modes (cluster
centers)

The simple matching dissimilarity measure can be
defined as following. Let X and Y be two categorical
data objects described by m categorical attributes. The
dissimilarity measure d (X,Y ) between X and Y can be
defined by the total mismatches of the corresponding at-
tribute categories of two objects. Smaller the number
of mismatches, more similar the two objects are. Math-
ematically, we can say

d (X,Y ) =
m∑

j=1

δ (xj , yj)(3.1)

where δ (x, = yj) =

{
0 (xj = yj)
1 (xj 6= yj)

d (X,Y ) gives equal importance to each category of
an attribute.

Let Z be a set of categorical data objects described
by categorical attributes, A1, A2, . . . Am. When the
above is used as the dissimilarity measure for categorical
data objects, the cost function becomes

C (Q) =
n∑

i=1

d (Zi, Qi)(3.2)

where Zi is the ith element and Qi is the nearest
cluster center of Zi. The K-modes algorithm minimizes
the cost function defined in Equation 3.2.

The K-modes assumes that the knowledge of num-
ber of natural grouping of data (i.e. K ) is available and
consists of the following steps: -

1. Create K clusters by randomly choosing data ob-
jects and select K initial cluster centers, one for
each of the cluster.

2. Allocate data objects to the cluster whose cluster
center is nearest to it according to equation 3.2.

3. Update the K clusters based on allocation of data
objects and compute K new modes of all clusters.

4. Repeat step 2 to 3 until no data object has changed
cluster membership or any other predefined crite-
rion is fulfilled.

4 Multiple Attribute Clustering Approach for
Computing Initial Cluster Centers

Khan and Ahmad [17] show that for partitional cluster-
ing algorithms, such as K-Means, some of the data ob-
jects are very similar to each other and that is why they
share same cluster membership irrespective to the choice
of initial cluster centers. Also, an individual attribute
may provide some information about initial cluster cen-
ter. He et al. [11] present a unified view on categorical
data clustering and cluster ensemble for the creation of
new clustering algorithms for categorical data. Their
intuition is that attributes present in a categorical data
contributes to the final cluster structure. They con-
sider the attribute values of an attribute as cluster la-
bels giving “best clustering” without considering other
attributes and created a cluster ensemble. We take mo-
tivation from these research works and propose a new
cluster initialization algorithm for categorical datasets
that perform multiple clustering on different attributes
and uses distinct attribute values as cluster labels as
a cue to find consistent cluster structure and an aid
in computing better initial centers. The proposed ap-
proach is based on the following experimental observa-
tions (assuming that the desired number of clusters, K,
are known):
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1. Some of the data objects are very similar to each
other and that is why they have same cluster
membership irrespective of the choice of initial
cluster centers [17].

2. There may be some attributes in the dataset whose
number of attribute values are less than or equal to
K. Due to fewer attribute values per cluster, these
attributes shall have higher discriminatory power
and will play a significant role in deciding the initial
modes as well as the cluster structures. We call
them as Prominent Attributes (P) .

3. There may be few attributes whose number of
attribute values are greater than K. The many
atrribute values in these attributes will be spread
out per cluster, add little to determine proper
cluster structure and contribute less in deciding the
initial representative modes of the clusters.

The main idea of the proposed algorithm is to
partition the data, for every prominent attribute based
on its attribute values, and generate a cluster string
that contains the respective cluster allotment labels of
the full data. This process yields a number of cluster
strings that represent different partition views of the
data. As noted above, some data objects will not
be affected by choosing different cluster centers and
their cluster strings will remain same. The algorithm
assumes that the knowledge of natural clusters in the
data i.e. K is available and merges similar cluster
strings into K partitions. This step will group similar
cluster strings into K clusters. In the final step, the
cluster strings within each K clusters are replaced by
the corresponding data objects and modes of every K
cluster is computed that serves as the initial centers for
the K-modes algorithm. The algorithmic steps of the
proposed approach are presented below.

Algorithm: Compute Initial Modes. Let Z be a
categorical dataset with N data objects embedded in M
dimensional feature space.

1. Calculate the number of Prominent Attributes
(#P)

2. If #P > 0, then use these Prominent Attributes
for computing initial modes by calling getIni-
tialModes(Attributes P)

3. If #P = 0 i.e. there are no Prominent Attributes
in the data, or if #P = M i.e. all attributes are
Prominent Attributes, then use all attributes and
call getInitialModes(Attributes M)

Algorithm: getInitialModes(Attributes A)

1. For every i ∈ A, i=1,2. . .A, repeat step 2 to 4.
Let j denotes the number of attribute values of i th

attribute. Note that if A is P then j ≤ K, else if
A is M then j > K.

2. Divide the dataset into j clusters on the basis of
these j attribute values such that data objects
with different values (of this attribute i) fall into
different clusters.

3. Compute j M -dimensional modes, and partition
the data by performing K-modes clustering that
consumes them as initial modes.

4. Assign cluster label to every data object as Sti,
where t=1,2. . .N

5. Generate cluster string Gt corresponding to every
data object by storing the cluster labels from Sti.
Every data object will have A class labels.

6. Find distinct cluster strings from Gt, count their
frequency, and sort them in descending order.
Their count, K ′, is the number of distinguishable
clusters.

There arise three possibilities:

(a) K ′ > K – Merge similar distinct cluster string
of Gt into K clusters and compute initial
modes (details presented in Section 4.1)

(b) K ′ = K – Distinct cluster strings of Gt

matches the desired number of clusters in the
data. Glean the data objects corresponding
to these K cluster strings, which will serve
as initial modes for the K-modes clustering
algorithm.

(c) K ′ < K – An obscure case may arise where
the number of distinct cluster strings are less
than the chosen K (assumed to represent
the natural clusters in the data). This case
will only happen when the partitions created
based on the attribute values of A attributes
groups the data in the same clusters every
time. A possible scenario is when the attribute
values of all attributes follow almost same
distribution, which is normally not the case
in real data. This case also suggests that
probably the chosen K does not resemble with
the natural grouping and it should be changed
to a lesser value. The role of attributes with
attribute values greater than K has to be
investigated in this case. This particular case
is out of the scope of the present paper.
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4.1 Merging Clusters As discussed in step 6 of al-
gorithm getInitialModes(Attributes A), there may arise
a case when K ′ > K, which means that the number of
distinguishable clusters obtained by the algorithm are
more than the desired number of clusters in the data.
Therefore, K ′ clusters must be merged to arrive at K
clusters. As these K ′ clusters represent distinguishable
clusters, a trivial approach could be to sort them in or-
der of cluster string frequency and pick the top K cluster
strings. A problem with this method is that it cannot
be ensured that the top K most frequent cluster strings
are representative of K clusters. If more than one clus-
ter string comes from same cluster then the K-modes
algorithm will fall apart and will give undesirable clus-
tering results. This observational fact is also verified
experimentally and holds to be true.

Keeping this issue in mind, we propose to use
the hierarchical clustering method [9] to merge K ′

distinct cluster strings into K clusters. Hierarchical
clustering has the disadvantage of having quadratic time
complexity with respect to the number of data objects.
In general, K ′ cluster strings will be less than N.
However, to avoid extreme case such as when K ′ ≈ N ,
we only choose the most frequent N0.5 distinct cluster
strings of Gt. This will make the hierarchical algorithm
log-linear with the number of data objects (K ′ or N0.5

distinct cluster strings here). The infrequent cluster
strings can be considered as outliers or boundary cases
and their exclusion does not affect the computation of
initial modes. In the best case, when K ′ � N0.5,
the time complexity effect of log-linear hierarchical
clustering will be minimal. The hierarchical clusterer
merges K ′ (N0.5 in worst case) distinct cluster strings
of Gt by labelling them in the range of 1 . . .K. For
every cluster label k = 1 . . .K, group the data objects
corresponding to the cluster string with label k and
compute the group modes. This process generates K M -
dimensional modes that are to be used as initial modes
for K-modes clustering algorithm.

4.2 Choice of Attributes. The proposed algorithm
starts with the assumption that there exists prominent
attributes in the data that can help in obtaining dis-
tinguishable cluster structures that can be merged to
obtain initial cluster centers. In the absence of any
prominent attributes (or if all attributes are prominent),
Vanilla Approach, all the attributes are selected to find
initial modes. Since attributes other can prominent at-
tributes contain attribute values more than K, a pos-
sible repercussion is the increased number of distinct
cluster strings Gt due to the availability of more clus-
ter allotment labels. This implies an overall reduction
in the individual count of distinct cluster strings and

many small clusters may arise side-by-side. Since the
hierarchical clusterer imposes a limit of

√
N on the top

cluster strings to be merged, few distinguishable cluster
could lay outside the bound during merging. This may
lead to some loss of information and affects the quality
of the computed initial cluster centers. The best case
occurs when the number of distinct cluster strings is less
than or equal to

√
N .

4.3 Evaluating Time Complexity The above pro-
posed algorithm to compute initial cluster centers has
two parts, namely, getInitialModes(Attributes A) and
merging of clusters. In the first part, the K-modes al-
gorithm is run P times (in the worst case M times).
As the K-modes algorithm is linear with respect to
the size of the dataset [12], the worst case time com-
plexity will be M.O(rKMN), where r is the number
of iterations needed for convergence and � N. In the
second part of the algorithm, the hierarchical cluster-
ing is used. The worst case complexity of the hier-
archical clustering is O(N2logN). As the proposed
approach chooses distinct cluster strings that are less
than or equal to N0.5, the worst case complexity be-
comes O(NlogN). Combining both the parts, the worst
case time complexity of the proposed approach becomes
(M.O(rKMN) + O(NlogN)), which is log-linear with
respect to the size of the dataset.

5 Experimental Analysis

5.1 Datasets. To evaluate the performance of the
proposed initialization method, we use several pure
categorical datasets from the UCI Machine Learning
Repository [5]. All the datasets have multiple attributes
and varied number of classes, and some of the dataset
contain missing values. A short description for each
dataset is given below.

Soybean Small. The soybean disease dataset con-
sists of 47 cases of soybean disease each character-
ized by 35 multi-valued categorical variables. These
cases are drawn from four populations, each one of
them representing one of the following soybean dis-
eases: D1-Diaporthe stem canker, D2-Charcoat rot, D3-
Rhizoctonia root rot and D4-Phytophthorat rot. Ide-
ally, a clustering algorithm should partition these given
cases into four groups (clusters) corresponding to the
diseases. The clustering results on soybean data are
shown in Table 2.

Breast Cancer Data. This data has 699 instances
with 9 attributes. Each data object is labeled as benign
(458 or 65.5%) or malignant (241 or 34.5%). There are
9 instances in Attribute 6 and 9 that contain a missing
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(i.e. unavailable) attribute value. The clustering results
of breast cancer data are shown in Table 3.

Zoo Data. It has 101 instances described by 17 at-
tributes and distributed into 7 categories. All of the
characteristics attributes are Boolean except for the
character attribute corresponds to the number of legs
that lies in the set 0, 2, 4, 5, 6, 8. The clustering results
of zoo data are shown in Table 4.

Lung Cancer Data. This dataset contains 32 in-
stances described by 56 attributes distributed over 3
classes with missing values in attributes 5 and 39. The
clustering results for lung cancer data are shown in Ta-
ble 5.

Mushroom Data. Mushroom dataset consists of 8124
data objects described by 22 categorical attributes
distributed over 2 classes. The two classes are edible
(4208 objects) and poisonous (3916 objects). It has
missing values in attribute 11. The clustering results
for mushroom data are shown in Table 6.

5.2 Comparison and Performance Evaluation
Metric. We compared the proposed cluster initial cen-
ter against the random initialization method and the
methods described by Cao et al. [4] and Wu et al. [24].
For random initialization, we randomly group data ob-
jects into K clusters and compute their modes to be
used as initial centers. The reported results are an av-
erage of 50 such runs.

To evaluate the performance of clustering algo-
rithms and for fair comparison of results, we used the
performance metrics used by Wu et al [24] that are de-
rived from information retrieval. If a dataset contains
K classes for any given clustering method, let ai be the
number of data objects that are correctly assigned to
class Ci, let bi be the number of data objects that are
incorrectly assigned to class Ci, and let ci be the data
objects that are incorrectly rejected from class Ci, then
precision, recall and accuracy are defined as follows:

PR =

∑K
i=1

(
ai

ai+bi

)

K
(5.3)

RE =

∑K
i=1

(
ai

ai+ci

)

K
(5.4)

AC =

∑K
i=1 ai
N

(5.5)

Table 1: Effect of choosing different number of at-
tributes.

Dataset
Proposed Vanilla √

N
#P #CS #A #CS

Soybean 20 21 35 25 7
Zoo 16 7 17 100 11
Breast-Cancer 9 355 9 355 27
Lung-Cancer 54 32 56 32 6
Mushroom 5 16 22 683 91

5.3 Effect of Number of Attributes. To test the
intuition discussed in Section 4.2, we performed a
comparative analysis on the effect of number of selected
attributes on the number of distinct cluster strings. In
Table 1, #P is the number of prominent attributes, #A
is the total number of attributes in the data, #CS is
the number of distinct cluster string and

√
N is the

limit on the number of top cluster strings to be merged
using hierarchical clustering. The table shows that
choosing a Vanilla approach (all attributes) leads to
higher #CS, whereas with the proposed approach the
number of distinct cluster strings are much lesser. For
breast cancer data, all the attributes were prominent
therefore #P and #A are same and hence same #CS.
For lung cancer data #P ≈ #A therefore #CS are
same. Due to the limit of merging top

√
N cluster string

(and reasons described in Section 4.2), clustering results
using a Vanilla approach is worse than the proposed
approach and are not reported in the paper. It is to be
noted that the #CS using proposed approach for Zoo
and Mushroom data are within the bounds of

√
N limit.

5.4 Clustering Results. It can be seen from Table
2 to 6 that the proposed initialization method outper-
forms random cluster initialization for categorical data
in accuracy, precision and recall. Another advantage of
the proposed method is that it generates fixed cluster
centers, whereas the random initialization method does
not. Therefore, repeatable and better cluster structures
can be obtained using the proposed method. In com-
parison to the initialization methods of Cao et al. and
and Wu et al., the findings can be summarized as:

• in terms of accuracy, the proposed method outper-
forms or equals other methods in 4 cases and per-
form worse in one case.

• in terms of precision, the proposed method per-
forms well or equals other methods in 2 cases while
performs worse in 3 cases.

• in terms of recall, the proposed method outper-
forms or equals other methods in 4 cases whereas
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it perform worse in 1 case.

Table 2: Clustering results for Soybean data
Random Wu Cao Proposed

AC 0.8644 1 1 0.9574
PR 0.8999 1 1 0.9583
RE 0.8342 1 1 0.9705

Table 3: Clustering results for Breast Cancer data
Random Wu Cao Proposed

AC 0.8364 0.9113 0.9113 0.9127
PR 0.8699 0.9292 0.9292 0.9292
RE 0.7743 0.8773 0.8773 0.8783

Table 4: Clustering results for Zoo data
Random Wu Cao Proposed

AC 0.8356 0.8812 0.8812 0.891
PR 0.8072 0.8702 0.8702 0.7302
RE 0.6012 0.6714 0.6714 0.8001

Table 5: Clustering results for Lung Cancer data
Random Wu Cao Proposed

AC 0.5210 0.5 0.5 0.5
PR 0.5766 0.5584 0.5584 0.6444
RE 0.5123 0.5014 0.5014 0.5168

Table 6: Clustering results for Mushroom data
Random Wu Cao Proposed

AC 0.7231 0.8754 0.8754 0.8815
PR 0.7614 0.9019 0.9019 0.8975
RE 0.7174 0.8709 0.8709 0.8780

The above results are very encouraging due to the
fact that the worst case time complexity of the proposed
method is log-linear, whereas the method of Cao et
al. has quadratic complexity and the method of Wu
et al. induces random selection of data points. The
accuracy values of proposed method are mostly better
than or equal to other methods, which implies that the
proposed approach is able to find fixed initial centers
that are close to the actual centers of the data. The
only case where the proposed method perform worse
in all three performance metric is the soybean dataset.
We observe that on some datasets the proposed method
gives worse values for precision, which implies that

in those cases some data objects from non-classes are
getting clustered in given classes. The recall values
of proposed method are mostly better than the other
methods, which suggests that the proposed approach
tightly controls the data objects from given classes to
be not clustered to non-classes. Breast cancer data
has no prominent attribute in the data and uses all
the attributes and produces comparable results to other
methods. Lung cancer data, though smaller in size
has high dimension and the proposed method is able
to produce better precision and recall rates than other
methods. It is also observed that the proposed method
perform well on large dataset such as mushroom data
with more than 8000 data objects. In our experiment,
we did not get a scenario where the distinct cluster
strings are less than the desired number of clusters. The
proposed algorithm is also independent of the order of
presentation of data due to he way mode is computed
for different attributes.

6 Conclusions

The results attained by the K-modes algorithm for
clustering categorical data depends intrinsically on the
choice of random initial cluster center, that can cause
non-repeatable clustering results and produce improper
cluster structures. In this paper, we propose an algo-
rithm to compute initial cluster center for categorical
data by performing multiple clustering on attribute val-
ues of attributes present in the data. The present algo-
rithm is developed based on the experimental fact that
similar data objects form the core of the clusters and
are not affected by the selection of initial cluster cen-
ters, and that individual attribute also provide useful in-
formation in generating cluster structures, that eventu-
ally leads to computing initial centers. In the first pass,
the algorithm produces distinct distinguishable clusters,
that may be greater than, equal to or less than the de-
sired number of clusters ( K ). If it is greater than K then
hierarchical clustering is used to merge similar cluster
strings into K clusters, if it is equal to K then data
objects corresponding to cluster strings can be directly
used as initial cluster centers. An obscure possibility
arises when cluster strings are less than K, in which
case either the value of K is to be reduced, or assumed
that the current value of K is not true representative of
the desired number of clusters. However, in our exper-
iment we did not get such situation, largely because it
can happen in a rare occurence when all the attribute
values of different attributes cluster the data in the same
way. These initial cluster centers when used as seed to
K-modes clustering algorithm, improves the accuracy of
the traditional K-modes clustering algorithm that uses
random modes as starting point. Since there is a def-
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inite choice of initial modes (zero standard deviation),
consistent and repetitive clustering results can be gen-
erated. The proposed method also does not depend on
the way data is ordered. The performance of the pro-
posed method is better than or equal to the other two
methods on all datasets except one case. The biggest
advantage of the proposed method is the worst case log-
linear time complexity of computation and fixed choice
of initial cluster centers, whereas both the other two
methods lack either one of them.

In scenarios when the desired number of clusters
are not available at hand, we would like to extend the
proposed multi-clustering approach for categorical data
for finding out the natural number of clusters present
in the data in addition to computing the initial cluster
centers for such case.
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Abstract

There has been a considerable effort on tuning distance
metrics for supervised problems such as kNN classifi-
cation. Most methods in metric learning aim at deriv-
ing an optimized matrix for the Mahanalobis distance.
However, these methods cannot be applied for cluster-
ing methods because there is no training set indicating
which instances are similar and which are not. In this
paper, we will show that the lack of training data can
be overcome by using multiple views. Our new method
Co-RCA combines the idea of co-learning with relevant
component analysis (RCA). Based on the assumption
that the closest pairs in any useful feature space are se-
mantically similar as well, it is possible to improve dis-
tance measures in unsupervised learning tasks such as
clustering. Our experiments demonstrate that Co-RCA
can improve the semantic meaning of the distances for
two image data sets.

1 Introduction

One of the most essential aspects in developing success-
ful knowledge discovery processes is finding suitable fea-
tures spaces. In a well-suited feature space the distance
between two objects should reflect the semantic simi-
larity holding in the given application. There are basi-
cally two methods of optimizing a feature space to bet-
ter represent the underlying similarity structure. The
first method is to directly manipulate the feature space,
for example removing redundant and unimportant fea-
tures or deriving new features. The second method is
manipulating the employed comparison function which
is used to compute object similarity. In most cases,
the comparison function is either a kernel function or
a distance metric. The most common framework for
optimizing features spaces are affine transformations,
like principal component analysis (PCA) and its exten-
sions. The most common framework for metric learning
is the Mahalanobis distance or quadratic form which is
based on a matrix modeling how the features are corre-
lated. It can be shown that any matrix that guarantees

that the Mahalanobis distance is a metric corresponds
to a linear basis transformation where the Euclidian dis-
tance in the transformed space is equivalent the Maha-
lanobis distance in the original space. There exists a
wide variety of methods for learning a proper Maha-
lanobis distance or the equivalent transformation ma-
trix for supervised problems [18]. The core idea of any
such method is to decrease the distances between sim-
ilar objects while increasing the distances between dis-
similar objects. To construct an optimization problem,
metric learning methods employ examples to measure
the contrast between the similarity being computed in
the features space and the similarity being observed by
a human expert. For classification, information about
similarity is usually drawn from the class labels. Objects
belonging to the same class are considered to be similar
and objects belonging to different classes are considered
to be dissimilar. Requiring that all objects belonging
to the same class are closer to each other than to any
object of any different class is often a too strict goal.
Therefore, many methods relax this requirement. For
example, it might be sufficient to optimize the similar-
ity to the k-closest neighbors from the same class instead
of the similarity to all other members of the same class.
Though there are many successful methods for metric
learning for supervised tasks, optimizing feature spaces
without examples for similar and dissimilar objects re-
ceived less attention by researchers. Though there are
many methods which try to reduce the dimensionality
of feature spaces such as PCA, the positive effect on
the quality of the feature space is mainly achieved by
removing redundant information and rescaling the re-
maining features. In some cases, the observed variance
of the resulting feature values gives hints on the impor-
tance of a feature. However, a large variance can be
caused by a feature which is generally measured by a
larger scale. Thus, the feature does not need to have
an increased importance. To conclude, though meth-
ods like PCA yield a powerful tool for improving data
quality, the available information is often not enough to
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improve the meaning of the observed distances.
In this paper, we consider the case of data which is

represented in multiple feature spaces also called multi-
view or multi-represented data. The core idea of our
approach is to improve the similarity information in a
feature space by employing the similarity information
drawn from other views. Thus, the method is unsu-
pervised but integrates information about object simi-
larity which is not derived from the particular feature
space that is currently optimized. Technically, our ap-
proach is based on the idea of ensemble learning and
co-training in particular. Therefore, there are two im-
portant requirements to the underlying feature spaces.
The first is that the information about object similar-
ity provided by different views should be sufficiently
independent from each other. For example, using tex-
ture and color features should yield independent feature
spaces because each of the feature spaces is based on a
different characteristic of a pixel image. The second re-
quirement of ensemble learning is that each weak learner
is sufficiently accurate. In our setting it is required that
there must be a sufficiently large number of cases where
a small distance corresponds to a large similarity and
large distance corresponds to a small degree of simi-
larity. Our algorithm Co-RCA is derived from the co-
training framework introduced in [4]. In a first step, we
derive examples indicating similarity or dissimilarity for
a smaller number of object comparisons from an initial
feature representation. In particular, we consider the
k-closest pairs and k-farthest pairs of objects and use
them to determine similar and dissimilar object pairs.
Given these examples, we employ relevant component
analysis(RCA) to improve the structure of the next fea-
ture space. Thus, the set of examples for similar and
dissimilar objects is increased with each iteration. The
algorithm terminates when no new example pairs for
similar objects are retrieved from either feature space.
Thus, the k-closest pair in all views are stable under the
current transformation.

The rest of the paper is organized as follows: In
section 2, we review related work on metric learning
and feature reduction. Section 3 will shortly survey
the two techniques our method is based on, co-training
and RCA. The new algorithm Co-RCA is introduced in
section 4. The results of our experimental evaluation
are described in section 5. The paper concludes with a
brief summary in section 6.

2 Related Work

In this section, we briefly review existing approaches
to metric learning and affine optimizations of vector
spaces.

Most distance learning try to optimize the Maha-

lanobis distance. In the following, we give a short sum-
mary of existing metric learning approaches. A de-
tailed survey can be found in [18]. Among super-
vised approaches one of the first methods is Fisher’s
Linear Discriminant (FLD) [10]. It maximizes the ra-
tio of the between-class variance and the within-class
variance using a generalized eigenvalue decomposition.
This method has been extended by Belhumeur et al. [2]
to the Fisherfaces approach. It precedes FLD with a
reduction of the input space to its principal compo-
nents and can thus filter unreliable input dimensions.
With RCA [1], Bar-Hillel et al. focus on the problem
of minimizing within-chunklet variance. They argue
that between-class differences are less informative than
within-class differences and that class assignments fre-
quently occur in such a way that only pairs of equally-
labelled objects can be extracted. These pairs are ex-
tended into chunklets (sets) of equivalent objects. The
inverse chunklet covariance matrix is used for calculat-
ing the Mahalanobis distance. NCA [11] proposed by
Goldberger et al. optimizes an objective function based
on a soft neighborhood assignment evaluated via the
leave-one-out error. This setting makes it more resistant
against multi-modal distributions. The loss function
is differentiated and then optimized by general gradi-
ent descent approaches like delta-bar-delta or conjugate
gradients. The result of this optimization is a Maha-
lanobis distance directly aimed at improving nearest-
neighbor classification. The objective function is, how-
ever, not guaranteed to be convex. With Information-
Theoretic Metric Learning (ITML) [8], Davis et al. pro-
pose a low-rank kernel learning problem which gener-
ates a Mahalanobis matrix subject to an upper bound
for inner-class distances and a lower bound to between-
class distances. They regularize by choosing the matrix
closest to the identity matrix and introduce a way to
reduce the rank of the learning problem. LMNN (Large
Margin Nearest Neighbor) [16] by Weinberger et al. is
based on a semi-definite program for directly learning
a Mahalanobis matrix M . They require k-target neigh-
bors for each input object x, specifying a list of objects,
usually of the same class as x, which should always be
mapped closer to x than any object belonging to any
other class. These k-target neighbors are the within-
class k-nearest neighbors. Hence, the loss function con-
sists of two terms for all data points x. One penalizing
the distance of x to its k-target neighbors and a second
penalizing close objects being closer to x than any of its
target neighbors.LMNN requires a specialized solver in
order to be run on larger data sets. For multi-view met-
ric learning, there are already some methods for semi-
supervised settings [17, 19]. Though these methods do
exploit multiple views as Co-RCA does, they still re-
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quire label information even if the amount of labels is
expected to be limited.

The main idea of unsupervised approaches is to re-
duce the feature space to a lower-dimensional space in
order to eliminate noise and enable a more efficient
object comparison. The criteria for selecting such a
subspace are manifold. Principal Component Analysis
(PCA) [12], builds an orthogonal basis aimed at best
preserving the data’s variance, Multidimensional Scal-
ing (MDS) [7] seeks the transformation which best pre-
serves the geodesic distances and Independent Compo-
nent Analysis (ICA) [6] targets a subspace that guar-
antees maximal statistical independence. ISOMAP [15]
by Tenenbaum et al. is a non-linear enhancement of the
MDS principle, in identifying the geodesic manifold of
the data and preserving its intrinsic geometry. Other
unsupervised approaches (e.g. [14, 3]) try to fulfill the
above criteria on a local scale.

3 Preliminaries

Co-Training The co-training framework was in-
troduced by Blum and Mitchell and in [4]. In partic-
ular their original work aimed at the improvement of
webpage classification under the condition of a limited
set of labeled training data. The original set of exper-
iments used two views on webpages. The first view is
text vectors being derived from the actual content of
the webpage. The second view consists of the anchor
texts of the hyper links being directed at the webpage.
Let us note that both views are sufficiently independent
because the words in the anchor text need not appear in
the actual content as well. When starting the algorithm
there is a large set of web pages being described by both
views. However, only a limited portion of the pages are
labeled w.r.t. the given classification task. The algo-
rithm starts with training a text classifier on the first
view based on the already labeled pages. Let us note
that the resulting classifier must meet a sufficiently large
accuracy to act as a weak classifier because co-training
is in its essence an ensemble learning approach. Given
the first classifier the method samples a set of unlabeled
webpages and uses the classifier to predict class labels
for these pages. In the next step, the algorithm joins the
newly labeled objects with the already labeled objects
into a new training set and switches the views. Thus, in
the next step a second classifier is trained based on the
extended set of training objects. Since the second clas-
sifier is based on a different view of the data, it models
the classes independently even though its training set is
partly made of automatically labeled example vectors.
Again the classifier is used to extend the training set.
Afterwards the algorithm switches to the next view and
proceeds in the same way. The algorithm is stopped

when a predefined number of iterations is computed.
Though the general process of Co-RCA and co-

training have a similar algorithmic scheme, there are
considerable differences. First of all, co-training is
aimed at the supervised task of classification with lim-
ited label information. Co-RCA offers a method to im-
prove the expressiveness w.r.t. multiple views without
any task specific labeling. Thus, Co-RCA does not re-
quire any labels but is leveraged by the assumption that
the closest and most distant object pairs in a view are
really similar or dissimilar respectively.

Fisher Faces and RCA Fisher Faces [2] are an
extension of the well known linear classifier known as
Fisher’s discriminant analysis (FDA). The core idea
of FDA is to compare feature correlations occurring
between objects of the same class to those occurring
between objects belonging to different classes. Thus,
the method needs to derive two covariance matrices:
The within class matrix Mw and the between class
matrix Mb. To determine Mw a covariance matrix for
each class c Mc is build and afterwards summed up
over all classes C : Mw =

∑
c∈CMc

Mb is computed as the covariance matrix of the class
means µc for each class c ∈ C.

The idea of FDA is now to find dimensions that
maximize the ratio of the covariance between classes
while considering the covariances within the classes.
Thus, FDA searches the direction ~w which maximizes
the target function S in the following equation:

S(~w) =
~wT ·Mb · ~w
~wT ·Mw · ~w

S can be reduced to a generalized eigenvalue problem
and thus, the optimal ~w is the eigenvector correspond-
ing to the largest eigenvalue of M−1w ·Mb. Using ~w as the
normal vector of a hyperplane yields a linear classifier.
However, when considering the complete base of eigen-
vectors and weighting them with their inverse eigenval-
ues yields an affine transformation of the feature space.
In the transformed feature space the distances can be
expected to express similarity w.r.t. the class labels in
a much better way. Let us note that though there are
more recent and accurate approaches to supervised met-
ric learning, Fisher Faces are still rather popular due to
their simplicity.

Relevant Component Analysis (RCA) was intro-
duced in [1] and overcomes several problems of Fisher
faces. A first problem of Fisher faces is that it cannot
be guaranteed that Mw is invertible. Therefore, RCA
introduces an PCA step to eliminate linear dependen-
cies. Another difference is that RCA does not directly
optimize the feature space to separate classes. Instead
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of objects labeled with classes, RCA requires sets of sim-
ilar objects called chunks. Therefore, the authors intro-
duce RCA as an unsupervised method. In this paper, we
consider RCA as a supervised method because it still re-
quires examples in the form of chunks. For each chunk,
the covariance matrix is built and summed up into a
matrix corresponding to Mw. Determining the counter-
part to Mb in FDA yields another problem. Though
we have the information that vectors within the same
chunk are similar, we cannot conclude that vectors from
different chunks are dissimilar. Therefore, to model the
covariance w.r.t. dissimilar objects, RCA considers the
covariance matrix Mall w.r.t. any object of the data set.
The idea behind this solution is the following. For any
object o in the data set DB, the majority of objects is
usually quite dissimilar. Thus, Mall resembles the co-
variances of dissimilar objects to a much larger extend
than those being observed for similar objects.

Though the optimization step of RCA is quite
similar to the optimization step in Co-RCA, there
is some important differences. While RCA assumes
given information about sets of similar objects (chunks),
our algorithm does not require any such information.
Instead the information that is required for determining
Mw is completely derived from other views by co-
learning. Another difference is that Co-RCA works on
a sample of object pairs being represented as difference
vectors. Thus, the covariance information is not related
to a mean value but over any distance computation
in the complete feature space. Finally, while RCA
suffices to compute Mall to represent the covariance for
dissimilar objects, Co-RCA maintains a dedicated set of
example comparisons for dissimilar object pairs.

4 Co-RCA

A multi-view object o is given by an n-tuple
(x1, . . . , xn) ∈ Fi × . . . × Fn of feature vectors drawn
from various feature spaces Fi. Each feature space
Fi is a subset of Rdi having the dimensionality of
di ∈ N. In the following, we will also refer to Fi as
the ith view. To measure the similarity between two
vectors in view Fi, we assume the Euclidian distance:
dist(xi, yi) = ‖xi − yi‖

Our goal is now to find an affine transformation
Bi for improving Fi in a way that dist(xi · Bi, yi · Bi)
yields a better approximation for the similarity of ox, oy
than dist(xi, yi). In particular, we want to decrease the
distances of similar objects and increase the distances
between dissimilar objects. To achieve this goal, we rely
on the same optimization as FDA and RCA:

S(~w) =
~wT ·Mdis · ~w
~wT ·Msim · ~w

A major difference of Co-RCA to ordinary RCA
are the covariance matrices Mdis and Msim which
are determined in a different way from the previously
discussed methods.

To estimate both matrices, we assume two example
sets. The first set Tsim consists of multi-view object
pairs (o, u) being similar and the second set Tdis consists
of examples for pairs of dissimilar objects. Note that the
sets consists of complete multi-view objects and not of
feature vectors because similarity is considered to hold
for the complete object without any restriction to a
particular view. Given an example set of pairs of multi-
view objects, we can now determine the covariance
matrices M i

sim and M i
dis in the ith view Fi. Since

a covariance matrix is built from feature vectors and
not from object pairs, we first of all built the difference
vector for each object pair o, u with o = (x1, .., xn),u =
(y1, .., yn) in view Fi: δi(o, u) = xi − yi. However, since
the order of o, u in an object pair is arbitrary and the
order of vectors for determining δi(o, u) is not, we also
have to consider the inverse vector δi(u, o) = yi − xi.
Thus, we have to derive a set of 2k difference vectors
from an example set of k object pairs.

Using distance vectors to optimize a feature space
has a major impact to the method. A first effect is that
resulting data distribution is always point symmetric to
the origin. Thus, describing the distribution by a co-
variance matrix makes sense in most cases. Another
important consequence is the amount of distance vec-
tors has the quadratic size of the data set. Thus, it
is often required to restrict the optimization to sample
sets instead of computing the distribution of the com-
plete set of distance vectors. A final result of using
difference vectors is that the optimization is indepen-
dent from the any locality within the data set. Thus,
the information about locations of the compared ob-
jects within the feature space is completely discarded
and only the information about the relative position-
ing of both objects is preserved. Since the goal of our
method is to find a global affine transformation for the
complete feature space, our model cannot cope with lo-
cal differences in the meaning of the features anyway.
Additionally, unlike FDA and RCA, we do not have to
make any assumption of the locality of similar objects.
Thus, we do not need a compact area in the data space
where all objects are considered to be similar to each
other such as chunks or classes.

Formally, we can derive M i
sim for the example set

Tsim in the following way:

M i
sim(Tsim) =∑

(o,u)∈Tsim
δi(o, u) · δi(o, u)T + δi(u, o) · δ(u, o)T

2 ∗ |Tsim|
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Figure 1: Feature space with depicted closest pairs and farthest pairs(left). Corresponding distribution of distance
vectors (right).

M i
dis is determined in the same way by exchanging

Tsim with Tdis.
Now that we know how to determine the matrices

based on object pairs, we have to find a way to
find meaningful example sets for similar and dissimilar
objects. The solution in this paper is based on the
following assumption: If two objects have a very small
distance in a feature space that is useful for describing
similarity, it is very likely that they are semantically
similar as well. To find pairs of semantically dissimilar
objects, we can use a similar argumentation: If two
objects are very different in some feature space, it is
very likely that they are really dissimilar to each other
w.r.t. the judgement of a human expert. Let us note
that the sets of k-closest and k-farthest object pairs
do not necessarily contain information about all data
objects in the data set. It is very likely that the sample
sets contain multiple object pairs containing feature
vectors being located in more dense areas. A further
important aspect of our method is that the closest
object pairs in one feature space are used to optimize the
next dimension. Thus, the object pairs being collected
in view Fi are used to derive difference vectors in
view Fi+i where the corresponding distances might be
considerably larger. Let us note that the major reason
this assumption holds in most cases is that domain
experts tend to select meaningful representations which
are already selected because they are connected to the
task at hand. An expert would not select color features
for comparing medical images such as x-Ray or CT
images, but grey values, gradients and textures. Thus,
using views that do not measure aspects of importance
to object similarity will lead Co-RCA to model an
unwanted notion of similarity. An illustration for our
method to determine covariance matrixes is depicted
in figure 1. In the left picture, there is a set with
some object pairs being marked as similar(dashed lines)

and some object pairs being dissimilar (solid lines). In
the right picture, we see the corresponding difference
vectors and surrounding ellipses for each distributions
to show the general correlations. Though we only have
some information given by object pairs, the distribution
for similar and dissimilar objects offers a good model to
separate the red from the blue vectors on the left side.

To summarize, the example set Tsim is extended in
the ith view of the data set DB by calculating the k-
closest pairs in view i. Analogously, we can record the
k pairs of feature vectors having the largest pairwise
distance in view i to gather examples for Tdis.

The Co-RCA algorithm requires a set of multi-view
data objects DB and a sample size k as input. The
number of views n needs to be at least two.The output
of our algorithm is a set a affine transformation Bi for
each view Fi that minimizes the distances of the object
pairs in Tsim compared to the dissimilar object pairs
in Tdis. Since the transformation for each view tries to
mirror the same set of similarity relations, Co-RCA tries
to achieve an agreement of views.

The algorithm starts with determining Tsim and
Tdis from the k-closest and k-farthest pairs in the first
view F0. Then the algorithm enters its main loop where
a transformation for the next view F1 is computed
and new elements are added to Tsim and Tdis. The
algorithm terminates when no additional examples can
be found among the k closet pairs in any view. We
will now explain the steps that are performed in each
iteration in greater detail. We start with switching
to the next view. When reaching the last view, we
return to the first one. To derive the sample sets of
difference vectors in the current view, we have to iterate
over Tsim. For each object pair (o, u) ∈ Tsim, we
have to compute the difference vector δi(o, u) and use
it compute M i

sim. Correspondingly, we iterate over Tdis
and calculate M i

dis. Let us note that it is important
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Co‐RCA ( MR_Database DB, k)
rep := 1
nochange := 0
T_sim := k‐closet‐pairs(DB[rep],k)
T di k f h i (DB[ ] k)T_dis := k‐farthest‐pairs(DB[rep],k)
B[] //result transformation for all reps
while( |T_sim|+| T_dis| > old or nochange ≠ n)

rep (rep +1)mod nrep := (rep +1)mod n
M_sim := Covariance(T_Sim, rep)
M_dis := Covariance(T_dis rep)
B[rep] :=RCA (M sim M dis DB[rep])B[rep] :=RCA (M_sim , M_dis,DB[rep])
newDB := RCA[rep](DB[rep])
T_sim := T_sim∪ k‐closet‐pairs(newDB,k)
T dis := T dis∪ k‐farthest‐pairs(newDB k)T_dis := T_dis∪ k farthest pairs(newDB,k)
if |T_sim|+| T_dis| = old

nochange := nochange+1
elseelse

nochange := 0
endif
old:=|T_sim|+| T_dis| | _ | | _ |

endwhile
return B[]

Figure 2: Pseudocode of Co-RCA for n views.

that Tsim and Tdis contain examples being close in
other views but not in Fi. Thus, Fi is optimized to
contain similarity relationships from the other views.
Then, we employ both matrices in the optimization
step being similar to RCA. The result is an affine
transformation Bi. The step starts with performing
an PCA on M i

sim to make sure it is invertible. After
applying the PCA, we solve the eigenvalue problem on
(M i

sim)−1 ·Mdis. The resulting affine transformation Bi
is composed of the weighted eigenvectors of (M i

sim)−1 ·
Mdis where each eigenvector vj is weighted with the
inverse square root of the corresponding eigenvalue
λj :

1√√
λj

. This transformation is also known as

whitening transformation. The transformation Bi is
now applied to the the view Fi. Then, the k-closest
and the k-farthest pairs of object are determined in the
transformed feature space leading to new example sets

`Tsim and `Tsim which are joined to the already known
example sets Tsim and Tdis. Let us not that it is possible
that `Tsim ⊂ Tsim or `Tdis ⊂ Tdis, indicating that the
view is already consistent with the example sets. The
algorithm stops when all views are consistent with the
example sets, i.e. no new examples can be found to
extend the example pairs. Therefore, it is necessary
that there are n consecutive iterations not adding any
new examples. The pseudo code of Co-RCA is depicted
in figure 2.

So far the result of Co-RCA is an affine transfor-
mation Bi for each feature space Fi. However, in order
to employ the results in data mining, it is necessary
to integrate the transformations into the data mining
algorithm. The simplest way to do this is to add the

feature transformations Bi into the preprocessing step
of the knowledge discovery process and only work with
the transformed feature spaces. Another option is to use
the original features spaces and work with Mahanalobis
distance using BTi ·Bi. A further problem is how to em-
ploy all representations for determining similarity. The
simplest solution to do this would be to employ only
a single representation. Since the similarity statements
should agree, similarity should be reflected in all repre-
sentations in a similar way. However, though Co-RCA
can improve the similarity relationships in the partic-
ular representation, a less useful relation might not be
transformed into a very useful one by means of a affine
basis transformation. Thus, it is very likely that some
representations yield more information than others and
using a single representation yields the risk of selecting
a less informative one. We therefore argue to employ all
representations by means of a simple multi-represented
distance measure such as the normalized sum of dis-
tances:

distnorm(o, u) =

n∑

1=i

wi · ‖xi − yi‖

where wi is a weight factor reflecting the importance of
representation i. If no weight is available all represen-
tations can be weighted equally, setting wi = 1. Having
a multi-view distance measure allows us to use multi-
ple distance-based data mining algorithms like density-
based clustering such as DBSCAN [9]. Furthermore, the
resulting affine transformations can be easily integrated
into multi-view kernel learning.

5 Experimental Evaluation

In this section, we present the results of preliminary
experiments with Co-RCA. We test our method on
two image data sets where each image is categorized
into exactly one class. The first data set (Conf183)
contains 183 pictures belonging to 35 classes which were
photographed during two sightseeing trips. The second
data set S4B consists of 1743 photographs from 80
classes. We extracted color moments, texture features
[13] and facet-orientations [5] for each image in both
data sets. Thus, both experiments were done on 3
representations.

As comparison partner, we chose the original fea-
tures spaces and their linear combination. Furthermore,
we wanted to compare Co-RCA to the closest supervised
method which is RCA. As chunks for training RCA, we
employed the class label. The classes in both data sets
have all a limited amount of instances and thus, they are
well-suited to be used as chunks. We employed RCA to
see how closely the result of the unsupervised Co-RCA
would get to a supervised method. The sample size k for
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Figure 3: 1NN classification accuracies being achieved on each representation and their linear combination.

Co-RCA was set to 250 for the smaller data set conf183
and to 5000 for the larger data set S4B. Let us note that
though these sample sizes seem to be rather large, they
are still comparably small to the number of all possi-
ble difference vectors. All methods were implemented
in Java 1.7 and tests were run on a dual core (3.0 Ghz)
workstation with 2 GB main memory.

A first test for the quality of a feature space is
nearest neighbor classification. In other words, we test
in how many cases the closest neighbor in a given data
representations is from the same class as the query
object. To avoid that the query object is part of the
database itself, we tested using stratified 10-fold cross-
validation. Let us note that we trained RCA and Co-
RCA on the complete data set instead of the limited
training set within each fold. This, approach is viable
for Co-RCA because it is a completely an unsupervised
method. For RCA, the results might slightly overfit.
However, since RCA is only a comparison partner to
the unsupervised Co-RCA, the results are sufficient
to show how close Co-RCA might get to RCA. The
results are shown in figure 3. For the small and
relatively easy conf183 data set. The 1NN classifier
on the original feature set without any optimization
achieved classification accuracies between 50 % and 70
%. The combination off all three representations did not
yield a performance advantage but performed similar
to the best single representation, i.e. color moments.
As expected the supervised RCA achieved the best
results for all representations and the combination off
all representations improved the accuracy by 4 %. The
unsupervised Co-RCA achieved between 2% and 5 %
less classification accuracy than the supervised RCA
for all representations. For the best result achieved
by combining all representations, the performance was
only 2% less accurate than for the supervised method.
The plot for the larger and more difficult S4B data set

shows similar results. The 1NN classification on the
original feature spaces did not yield convincing results.
However, the unsupervised Co-RCA managed to get
very close to the supervised RCA. For the combination
of all three representations, Co-RCA achieved only 3 %
less accuracy. To conclude, by exploiting the structure
of 3 different views of the data set, it was possible
to considerably improve the similarity of the nearest
neighbors in the underlying feature space.

In the next experiment, we measure the perfor-
mance w.r.t. all similar objects in the data set and
not just for the closest ones. Thus, we pose a ranking
query for each data object and count the number of re-
sult objects belonging to the same class. The resulting
precision recall graph is averaged over all possible query
objects in the database and displays the number of true
hits (precision) in the result set containing at least x %
of the similar objects in the database (recall). For both
graphs, we can observe a similar behavior. Though Co-
RCA cannot achieve the high precision levels of RCA,
it is still able to considerably improve the precision for
any measured level of recall. For the more difficult data
set S4B, the graph is even considerably closer to the
supervised benchmark than to the default case of the
linear combination of the original feature spaces.

6 Conclusions

In this paper, we presented ongoing work in unsuper-
vised feature space optimization for multi-view data.
The core idea of our new method Co-RCA is to combine
co-training and distance learning methods to generate a
multi-view data space yielding a better model for object
similarity. The leverage of our unsupervised method is
the observation that very close and very distant objects
in a meaningful feature space usually indicate pairs of
objects which are semantically similar or dissimilar as
well. Based on this type of information, it is possible
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Figure 4: Precision-recall graph for the joint representations for the three types of feature spaces.

to iteratively select examples for similar and dissimilar
object pairs from all representations. In a co-training
algorithm we iteratively optimize the feature spaces and
select new examples. Our experiments indicate that our
new algorithm Co-RCA can generate feature transfor-
mations of almost comparable quality as the supervised
approach our methods is built on, RCA.
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Abstract

We describe current and future work on the problem
of subspace clustering and its application in the cur-
rent environment where powerful, programmable mobile
communication and computing devices proliferate. We
show that a smartphone cloud computing infrastructure
is feasible. We focus on specific variations of the sub-
space clustering problem, namely the need to develop
algorithms that take into account input from the user
and the need for privacy preserving algorithms.

1 Introduction

The proliferation of powerful, programmable mobile de-
vices along with the availability of wide-area connectiv-
ity has provided a powerful platform to sense and share
location, motion, acoustic and visual data. People carry
these devices with them everywhere. In the early 2010
period, it is reported that 42.7 million people in the
U.S. alone own smartphones, 18 percent higher than 4
months prior [1]. These devices are outfitted with a
wide array of sensing capabilities such as GPS, WiFi,
microphones, cameras and accelerometers.

These mobile devices allow always on, full featured
connectivity, and they bring a true revolution in the
way people connect and use the web. We are now
entering an era where people can share aspects of their
lives online, creating virtual communities, and becoming
both data producers and data consumers at the same
time. With smartphones becoming the mobile platform
of choice, a number of applications have emerged in a
wide variety of domains such as personal life, travel
and work. Examples include traffic monitoring for
real-time delay estimation and congestion detection [2],
location-based services such as personalized weather
information, locating areas of good WiFi connectivity,
location-based games or receiving spatial alarms upon
the arrival to a reference time point [3], and social
networking applications for sharing photos and personal
data with family and friends [4].

The data collection capabilities that are embedded
in these mobile devices coupled with the fact that their
processing power, networking capability and resource

capacity is increasingly rapidly, has make these devices a
very attractive and significant platform for smartphone
cloud computing[5].

2 Desiderata for new mobile systems

Using smartphones to create a cloud computing infras-
tructure opens up new opportunities for mobile com-
puting. The exploitation of these capablities provides
excellent opportunities to sense data at locations where
people travel and provides many possible applications
to study users’ behaviors [6] while the users themselves
provide automatic mobility for sensors.

Although today’s mobile devices offer a powerful
sensing and a versatile computing platform, developing
applications to take advantage of them is challenging
due to a number of issues that must be addressed. We
have established the following design considerations for
the development of the mobile systems and applications
of the future:

1. Distributed Computation: The system should
be distributed, so that it scales with the number of
users and does not have a single point of failure.

2. Ease of Development: The MapReduce frame-
work has been successfully used to develop large
scale distributed applications, and its use can sig-
nificantly simplify and ease the programming and
deployment costs of distributed mobile systems in
the future.

3. Security and Privacy: The system should lever-
age and promote user collaboration; however it
should safeguard the individual user resources and
protect the privacy of the individual user data.

4. Ease of Use: The application must be easy to
use, so that a user can receive and understand
the results easily. This means that the solutions
must be presented in an intuitive and easy to
comprehend way, but also that the user should have
the ability to tune the solutions based in his on her
needs, in a way as simple as possible.

5. Connectivity and failures: The problem of han-
dling spotty connectivity and failures gracefully,
which is a problem afflicting all mobile systems.
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We note here, that some traditional considerations
of mobile distributed systems become less important in
our setting. For example, devices such as smart-phones
and PDAs naturally use a lot of power and therefore are
typically charged regularly–daily. Power consumption,
a very important problem in traditional sensor systems,
while still important, is less important for such mobile
devices.

We should also emphasize here that one difference
between a cloud of smartphones and the traditional IT
infrastructure is how privacy issues can be addressed;
data does not have to be communicated and stored into
remote servers in a data center, data is rather kept
privately on the user phones and communicated only
when certain conditions arise or is needed by the user.
Finally the cost model is different as well. The mobile
cloud is an alternative to traditional data centers where
servers are usually dedicated to particular applications,
as mobile clouds have low infrastructure costs, low
management overhead and exhibit greater flexibility.

3 The MapReduce Framework

To fully take advantage of the available resources, a
simple, but versatile system which eases development
deployment of software is essential. To this end we
have developed Misco [7], a system that implements a
MapReduce framework targeted for smartphones and
mobile devices. The MapReduce framework [8] is a
flexible, distributed data processing framework designed
to automatically parallelize the processing of long run-
ning applications on petabyte sized data in clustered
environments. The MapReduce programming model [8]
supports the weak connectivity model of computations
across open networks, such as mobile networks, which
makes it very appropriate for a mobile setting.

MapReduce provides two functional language prim-
itives: map and reduce. The map function is ap-
plied on a set of input data and produces intermedi-
ary < key, value > pairs, these pairs are then grouped
into R partitions by applying some partitioning func-
tion (e.g. hash(key) MOD R). All the pairs in the
same partition are passed into a reduce function which
produces the final results.

The MapReduce programming model provides a
simple way to split a large computation into a number
of smaller tasks; these tasks are independent of each
other and can be assigned on different worker nodes to
process different pieces of the input data in parallel.

Application development is greatly simplified as the
user is only responsible for implementing the map and
reduce functions and the MISCO system handles the
scheduling, data flow, failures and parallel execution of

the applications.
The Misco system [7] is a MapReduce implemen-

tation that runs on mobile phones. Misco comprises
a Master Server and a number of Worker Nodes. In
[9] we presented the system we have developed that al-
lows for easy development of applications on networks
of mobile smartphones that employ data clustering as a
fundamental data analysis operation, while at the same
time safeguarding individual user resources and preserv-
ing data privacy. Although we focus on clustering, our
approach is general; it shows that the development of ef-
ficient techniques for sophisticated data analysis enables
interesting and novel applications. We demonstrate the
usefulness of this system by implementing an applica-
tion that identifies areas of high WiFi connectivity.

4 Novel Applications

Research in developing sophisticated data analysis tech-
niques in the smartphone cloud computing paradigm is
fundamental for building novel and useful applications
that fully exploit this setting. We expect that the devel-
opment of efficient algorithms for general purpose data
analysis and data mining tasks will enable new appli-
cations that not only will leverage the proliferation of
smartphones but also further accelerate their use.

The main thrust of our work is to allow users to
collaborate through their mobile phones and combine
their individual data to find such areas while maintain-
ing their privacy.

In this work we initiate work to develop subspace
clustering algorithms that run on smartphone clouds.
We describe the problems where such techniques are
important to develop, and investigate the technical
challenges that have to be overcome in order to develop
efficient techniques.

4.1 The setting: We assume the following setting:
Users use their smartphones to connect to the system,
and also to store their local data. Each user can decide
what types of data should be stored, but generally
such data have spatiotemporal charcteristics. Such data
include location data which record the movement of the
user, and possibly geo- and time-tagged information
such as notes, files, pictures. The location data are
sequences of GPS traces over time [10]. We can also
expect that these traces can be joined to metadata
describing specific locations (e.g. stores, landmarks,
etc).

We note here that the problem of enriching the
GPS traces with additional information, which can
also be described as an event discovery process, is of
independent interest, but orthogonal to the problem we
describe here; thus for this work we simply assume that
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we can take advantage of it if available.
The users use their smartphone to access the sys-

tem, ask queries, receive recommendations, analyze the
data, and make their data available, if this is required
or allowed by the user.

4.2 Applications: To motivate our approach, we
briefly describe two different applications or the system.
Identifying locations that are frequently visited
together: consider for example a transit authority
which plans its bus routes and wants to know whether
there is demand for possible new bus routes. In such a
scenario, one is interested in finding out if there is a large
number of people that are having the same trajectory
(possibly passing by the same set of landmarks) without
disclosing their individual trajectories.
Recommending popular locations or tourist
spots for travelers or locals: consider a guide appli-
cation that suggests possible tours through a city, based
on a user’s preferences and by considering the spots vis-
ited by other people with similar interests or history.

4.3 Problems: In both applications the technical
problem is how to find groups of locations that have
been consistently popular for a large group of people
and also, groups of people that have all been in the same
subset of locations in approximately the same order.
This motivation essentially dictates the use of subspace
clustering algorithms to aggress the problem. Formally,
we consider the following problems:
Problem 1: Frequent Locations Problem Given a
set of people, and a trace of locations for each person,
find sets of locations that have been visited by a large
fraction of the people.

We note that the result of Problem 1 can be a very
large set of possible sets of locations. This can create
problems both because the large number of sets makes
the goal of creating an efficient algorithm unrealistic,
but also because the large size of the results makes very
difficult for the user to understand them. Therefore, we
maintain that it is imperative that user input be used
to guide the algorithms and focus the results.
Problem 2: User Constrained Frequent Loca-
tions Discovery Given a set of people, and a trace
of locations for each person, find sets of locations that
have been visited by a large fraction of the people, while
satisfying user constraints that are given on the loca-
tions (one location must appear, or two locations have
to appear either together or separately).

We note that additional information that may be
available about the users can also be exploited in this
setting. In fact, the use of different sets of attributes in a
clustering can potentially identify interesting subgroups

of users.
Finally, we consider a variation of Problem 1, which

specifies that not only the set of the locations visited
must be the same, but the order must be the same
(perhaps approximately) as well.
Problem 3: Frequent Subsequence Discovery
Given a set of people, and a trace of locations for each
person, find sets of locations that have been visited by a
large fraction of the people in the same order.

5 Related work

5.1 Subspace clustering: There is a large body of
work on subspace clustering, and several algorithms
have been proposed in the literature. [11] gives a good
review and a taxonomy of the algorithms. We note that
subspace algorithms come in two varieties: algorithms
that allow overlapping clusters (and therefore an object
can be in more that one clusters) and algorithms that
do not allow overlapping clusters. For the problems we
consider, algorithms that allow overlaps are much more
useful, because it can clearly be the case that due to its
movement an object (or a person) can go through the
locations in more that one frequent sets.

5.2 Clustering in The MapReduce paradigm:
[12] show that co-clustering algorithms can be efficiently
implemented in the MapReduce framework. Their
implementation does not consider mobile systems and
their constraints however. Our recent work shows that
general clustering algorithms (for example, K-Means),
can be implemented in the Misco framework.

5.3 Distributed and privacy preserving Associ-
ation Rule mining: The problem of association rule
mining is very closely related to both the problems we
consider and to some density based formulations of sub-
space clustering. There has been significant amount of
work on how to find frequent itemsets when the data are
distributed to different sites and we want to preserve
the privacy of the users, i.e. the other users should
not get any additional information about the data of
a given user. Generally algorithms fall into two cat-
egories, cryptography-based algorithms that require a
lot of computation ([13], [14]) or randomization based
approaches ([15]). The randomization approach has also
been used to anonymize trajectory data as well [16].

6 Building novel applications in the mobile
environment

The problems we identify above motivate future re-
search along the following lines:
Develop subspace clustering algorithms for mo-
bile systems using the MapReduce framework.
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In this context, the Misco system gives an efficient
testbed to develop and test such algorithms. Cur-
rent work shows that iterative, non-overlapping cluster
methods can be efficiently implemented in a distributed
system. Several questions have to be addressed how-
ever. One of the most important is the development
of lightweight privacy preserving mechanisms. We note
here that cryptography based approaches may prove dif-
ficult to adapt to the mobile environment due to their
computational requirements.
Develop subspace clustering algorthms that in-
corporate user constraints. More specifically, we
will investigate different mechanisms to incorporate user
constraints. These constraints can be used to differen-
tiate between alternative clusterings, if used after the
clustering process, or can be used to guide the cluster-
ing approach, if used during the clustering.
Distributed techniques for sequential pattern
discovery. We note here that finding frequent con-
strained sequential patterns is a problem yet it has
important connections to the subspace clustering algo-
rithms.

Next we outline future research in addressing these
topics, and propose extensions to existing work. Cur-
rent work focuses on non-overlapping clustering ap-
proaches and considers extensions of the iterative clus-
tering framework to take into account constraints and
identify interesting subspaces. The non-overlaping clus-
tering approach (see for example PROCLUS [17] and
related work), can be incorporated in our framework
following the same approach that was taken for com-
puting the K-Means algorithm.

The more general, overlapping-cluster approach
typically uses a density based formulation. The fun-
damental problem here is that we have to develop a
mechanism that can use user input to guide the search
among subspaces since the number of possible subspaces
is large. In addition, we have to understand the impact
of problems such as sampling (of the dataset and of the
solution space), the effect of horizontal vs vertical parti-
tioning of the way data is stored, and of minimizing the
information shared by the users. Finally, related work
[18] has shown that efficient indexing structures can be
used with good benefit to identify frequent subspaces,
however the problem of developing algorithms for the
mobile environment is novel.
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Multiple Clustering Views via Constrained Projections ∗

Xuan Hong Dang, Ira Assent† James Bailey‡

Abstract

Clustering, the grouping of data based on mutual similarity,

is often used as one of principal tools to analyze and un-

derstand data. Unfortunately, most conventional techniques

aim at finding only a single clustering over the data. For

many practical applications, especially those being described

in high dimensional data, it is common to see that the data

can be grouped into different yet meaningful ways. This

gives rise to the recently emerging research area of discov-

ering alternative clusterings. In this preliminary work, we

propose a novel framework to generate multiple clustering

views. The framework relies on a constrained data projec-

tion approach by which we ensure that a novel alternative

clustering being found is not only qualitatively strong but

also distinctively different from a reference clustering solu-

tion. We demonstrate the potential of the proposed frame-

work using both synthetic and real world datasets and dis-

cuss some future research directions with the approach.

1 Introduction.

Cluster analysis has been widely considered as one of
the most principal and effective tools in understanding
the data. Given a set of data observations, its objec-
tive is to categorize those observations that are similar
(under some notion of similarity) into the same cluster
whilst separating dissimilar ones into different clusters.
Toward this goal, many algorithms have been developed
by which some clustering objective function is proposed
along with an optimization mechanism such as k-means,
mixture models, hierarchical agglomerative clustering,
graph partitioning, and density-based clustering. A gen-
eral observation with these algorithms is that they only
attempt to produce a single partition over the data. For
many practical applications, especially those being char-
acterized in high dimensional data, this objective seems
to be not sufficient since it is common that the data
observations can be grouped along different yet equally
meaningful ways. For example, when analyzing a docu-
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ment dataset, one may find that it is possible to catego-
rize the documents according to either topics or writing
styles; or when clustering a gene dataset, it is found that
grouping genes based on their functions or structures is
equally important and meaningful [4]. In both these
applications and many other ones, we may see that the
natural structure behind the observed data is often not
unique and there exist many alternative ways to inter-
pret the data. Consequently, there is a strong demand
to devise novel techniques that are capable of generating
multiple clustering views regarding the data.

In the literature, several algorithms have been de-
veloped to seek alternative clusterings and it is possible
to categorize them into two general approaches: seek-
ing alternative clusterings simultaneously [13, 8, 22] and
seeking alternative clusterings in sequence [3, 6, 10, 9].
In the former approach, all alternative clusterings are
sought at the same time whereas in the latter one, each
novel clustering is found by conditioning on all previous
clusterings. From a modeling view point, the latter ap-
proach has a major advantage that it limits the number
of cluster parameters needed to be optimized concur-
rently.

In this paper, we develop a novel framework to
find multiple clustering views from a provided dataset.
Given the data and a reference clustering C(1) as in-
puts, our objective is to seek a novel alternative clus-
tering that is not only qualitatively strong but also dis-
tinctively different from C(1). The proposed algorithm
achieves this dual objective by adopting a graph-based
mapping approach that preserves the local neighbor-
hood proximity property of the data and further con-
forms the constraint of clustering independence with re-
spect to C(1). Though our research can be categorized
into the second approach of sequentially seeking alter-
native clusterings, it goes beyond the work in the litera-
ture by further ensuring that the geometrical proximity
of the data is retained in the lower mapping subspace
and thus naturally reveals clustering structures which
are often masked in the high dimensional data space.
We formulate our clustering objective in the framework
of a constrained eigendecomposition problem and thus it
has a clear advantage that a closed form solution for the
learning subspace always exists and is guaranteed to be
globally optimal. This property contrasts the proposed
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framework to most existing algorithms, which solely fo-
cus on optimizing the single condition of decorrelation
and may only achieve a local optimal subspace. We
demonstrate the potential of the proposed framework
using both synthetic and real world data and empiri-
cally compare it against several major algorithms in the
literature. Finally, some future studies for our frame-
work are discussed and we shortly suggest some poten-
tial approaches to deal with them.

2 Related Work.

Though being considered related to subspace cluster-
ings [1, 15, 16, 28, 20], the problem of discovering mul-
tiple alternative clusterings is relatively young and re-
cently it has has been drawing much attention from both
data mining and machine learning communities. In [19],
the authors give an excellent tutorial regarding different
approaches to the problem. In this section, we adopt the
taxonomy that can generally divide the majority of work
in the literature into two approaches: those seeking al-
ternative clusterings concurrently and those seeking al-
ternative clusterings in sequence, and briefly review the
algorithms that closely related to our research in this
paper.

In the first approach, two algorithms named Dec-
kmeans and ConvEM are developed in [13] to find two
disparate clusterings at the same time. In Dec-kmeans,
the concept of representative vectors is introduced for
each clustering solution. Subsequently, the objective
function of the k-means method is modified by adding
terms to account for the orthogonality between mean
vectors of one clustering, with respect to the represen-
tative vectors of the other. In the ConvEM algorithm,
a similar approach is applied by assuming that the data
can be modeled as a sum of mixtures and this work as-
sociates each mixture with a clustering solution. This
leads to the problem of learning a convolution of mix-
ture distributions by which the expectation maximiza-
tion method can be employed to find the distributions’
parameters. Another algorithm called CAMI based on
mixture models is developed in [8]. However, instead of
trying to orthogonalize two sets of cluster means, CAMI
takes into account a more general concept of mutual in-
formation to quantify for the decorrelation between two
clustering models. The algorithm thus attempts to min-
imize this quantity while at the same time maximizing
the likelihood of each respective model.

In the second approach, an algorithm named
COALA is proposed in [3]. Given a known cluster-
ing, COALA generates a set of pairwise cannot-link con-
straints and it attempts to find a disparate data parti-
tion by using these constraints within an agglomerative
clustering process. The NACI algorithm developed in [9]

takes a different approach purely stemming from infor-
mation theory. Its clustering objective is thus to max-
imize the mutual information between data instances
and cluster labels of the alternative clustering while
minimizing such information between that alternate and
the provided clustering. However, instead of using the
traditional Shannon entropy [5], this work is developed
based on the use of Renyi’s entropy, with the corre-
sponding quadratic mutual information [14, 24]. Such
an approach allows the MI to be practically approxi-
mated when combined with the non-parametric Parzen
window technique [23]. Recently, this dual-optimized
clustering objective is also exploited in work [21] with
an iterative approach, in contrast to the hierarchical
technique adopted in [9]. Another line in the second ap-
proach are the algorithms developed in [6, 10, 25] which
address the alternative clustering problem via the use
of subspace projection. Work in [6] develops two tech-
niques to find an alternative clustering using orthogonal
projections. Intuitively, one can characterize a data par-
tition by a set of representatives (e.g., cluster means).
It is then possible to expect that a dissimilar partition
might be found by clustering the data in a space orthog-
onal to the space spanned by such representatives. In
the first algorithm in [6], clustering means learnt from a
given partition are used as representatives, whilst in the
second algorithm, principal components extracted from
such centroid vectors are used. A similar approach is
developed in [10] in which the transformation is applied
on the distance matrix learnt from the provided cluster-
ing. Compared to the two methods developed in [6], this
work has a benefit that it can further handle the prob-
lem of which the data dimension can be smaller than
the number of clusters (e.g., spatial datasets). Another
approach based on data transformation is developed in
[25]. This work attempts to transform the data such
that data instances belonging to the same cluster in the
reference clustering are mapped far apart in the newly
transformed space. Our research in this paper is also
to adopt the data projection approach. However, we go
beyond these related algorithms by ensuring that the
novel projection subspace is not only decorrelated from
the provided clustering solution, the local similar prop-
erty of the data is also preserved in the projection sub-
space to strongly support uncovering a novel clustering
structure behind the data.

3 Problem Definition.

We define our problem of generating multiple clustering
views from the data as follows.

Given a set X of d-dimensional data in-
stances/observations X = {x1,x2, ...,xn} and a clus-
tering solution C(1) (i.e., a data partition over X found
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by any clustering algorithm) over X , we seek an algo-
rithm that can learn C(2), a novel clustering solution

from X , whose clusters C
(2)
i satisfy

⋃
i C

(2)
i = X and

C
(2)
i ∩ C

(2)
j = ∅ for ∀i 6= j; i, j ≤ K, where K is the

number of expected clusters in C
(2)
i . The quality of the

alternative clustering should be high and also be dis-
tinctively different from C(1). We will here mostly fo-
cus on the case where only a single reference clustering
is provided but the framework can be straightforwardly
extended to the general case of generating multiple al-
ternative clusterings.

4 The Proposed Framework.

4.1 Subspace Learning Objective with Con-
straint. In generating an alternative clustering, our
study in this work makes use of a subspace learning
approach. Given C(1) as a reference clustering, we aim
to map the data from the original space into a new sub-
space in which it is uncorrelated from C(1) whereas the
mapping also well captures and retains certain prop-
erties of the data. The dimension of the subspace is
usually smaller than the original one and thus the clus-
tering structure behind the data can be more easily un-
covered. Clearly, for our clustering problem, we would
like that if two instances xi and xj are close in the orig-
inal space, they should be mapped also close to each
other in the lower dimensional space. This idea is also
behind several methods including Local Linear Embed-
ding [26], Laplacian Eigenmap [18] and Locality Pre-
serving Projection [12]. However, it is worth mentioning
that these algorithms are naturally developed to learn a
single manifold embedded in a high dimensional space
and to find ways to represent it in an optimal subspace.
Our research in this work, despite sharing a similar map-
ping objective, is clearly different as we aim to seek a set
of clusters from the data and more importantly, further
require the mapping data to be uncorrelated from one
or more reference clusterings.

Following this subspace learning approach, we for-
mulate our problem using graph theory. Let G = {V,E}
be an undirected graph, where V = {v1, . . . , vn} is a set
of vertices and E = {eij} is a set of edges, each con-
necting two vertices (vi, vj). A vertex vi corresponds to
a data instance xi in the dataset X and the edge eij be-
tween vi and vj exists if the respective points xi,xj are
close to each other. Under this setting, the closeness
between xi and xj can be defined using the ℓ-nearest
neighbor concept. Specifically, we define xi to be close
to xj if it is among the ℓ-nearest neighbors of xj or vice
versa. Moreover, for the edge connecting two respec-
tive vertices vi, vj of such xi and xj , we associate Kij

(computed by the Gaussian function [9]) as a measure of

their closeness degree. For two vertices that are not con-
nected, the respective Kij is set to zero. Consequently,
we denote K as the n× n matrix having Kij as its ele-
ments and it is easy to observe that K is symmetric and
typically sparse, since each vertex is only connected to
a limited number of its nearest neighbors.

Given the weight matrix K derived from the graph
G and a reference clustering C(1), our objective is to
learn a novel set Y = {y1, . . . ,yn}, where each yi ∈ Rq

is the mapping of xi ∈ Rd, via a projection matrix
F , that optimally retains the local neighborhood prox-
imity of the original data yet taking the decorrelated
requirement over the reference solution C(1) into ac-
count. Essentially, let us denote X and Y = FTX
two matrices respectively having xi’s and yi’s as their
column vectors and let f be a column in F , then we
can consider f as a transformation vector that linearly
combines X’s dimensions into a 1-dimensional vector
yT = {y1, . . . , yn} = fTX. That means y is one feature
in the mapping space Y . We are now able to define our
subspace learning task with the following optimization
function:

argmin
f

1

2

n∑

i=1

n∑

j=1

(fTxi − fTxj)
2Kij s.t. STXT f = 0

(4.1)

in which S is a feature subspace that best captures the
reference solution C(1) and adding the constant 1/2 does
not affect our optimization objective. The constraint
STXT f = 0 (or equivalently STy = 0) is crucial since
it ensures that the mapping dimension is independent
from S. Also notice that here we assume X is pro-
jected onto f to form an R1 optimal subspace, yielding
1-dimensional vector yT = {y1, . . . , yn}. The general-
ization to q optimal dimensions will be straightforward
once we derive the solution for f and subsequently y.

Observing from Eq.(4.1) that if Kij is large (im-
plying xi and xj are geometrically close in the original
space), the objective function will be large if the two
respective points yi = fTxi and yj = fTxj are mapped
far apart. Therefore, finding an optimal vector f that
minimizes Eq.(4.1) is equivalent to optimally retaining
the local proximity of the data, subject to the constraint
STXT f = 0 to ensure the decorrelation from C(1).

4.2 Fisher Linear Discriminant for S Selection.
We now discuss how to select S, a subspace that
best captures the provided clustering solution C(1).
That means the clusters as components of C(1) can
be well discriminated when data is represented in S.
In achieving this goal, the Fisher’s linear discriminant
(FDA) can be a natural choice. Briefly, FDA is a

25



supervised learning technique that seeks a direction w
as a linear combination of the features over X so that
the within cluster variances are minimized while at the
same time the variances between cluster means and the
total sample mean are maximized. Mathematically, its
objective function is represented by:

max
w

wTSBw

wTSWw
(4.2)

of which SB and SW respectively being called the
between-cluster scatter matrix and within-cluster scat-
ter matrix. They are calculated by:

SB =
∑

k

nk(m
(k) −m)(m(k) −m)T and

SW =
∑

k

nk∑

i

(x
(k)
i −m(k))(x

(k)
i −m(k))T

with m(k) and m are respectively the cluster mean of
the k-th cluster and the total sample mean, and nk is
the number of instances grouped in k-th cluster. Solving
this problem results in that w is the eigenvector corre-
sponding to the largest eigenvalue of the matrix S−1

W SB .
Usually in practice, when the number of clusters is only
2, one may need only a single dimension w to capture
the solution. For a more general case where the number
of clusters is q+1, a set of q eigenvectorsw’s correspond-
ing to the q largest eigenvalues of S−1

W SB are selected.
Therefore in our approach, we choose such q eigenvec-
tors as the optimal subspace S encoding for C(1). Each
row in S corresponds to a projected data instance and
the number of columns in S equals to the number of
retained eigenvectors. Recall that the projected data
instances in S strongly support the reference cluster-
ing C(1) (i.e., highly correlated to the cluster labels in
C(1)). Consequently, by taking the orthogonal condi-
tion of STy, the newly mapped data, the yi’s, should
be decorrelated from the reference solution C(1).

4.3 Solving the Constrained Objective Func-
tion. For solving the objective function with the con-
straint in Eq.(4.1), we can use the Lagrange method.
First, let D be the diagonal matrix with Dii =

∑
j Kij

and let L = D − K, then by expanding the sum in
Eq.(4.1), we can obtain the following function:

∑

i,j

fTxiKijx
T
i f −

∑

i,j

fTxiKijx
T
j f (4.3)

=
∑

i

fTxiDiix
T
i f − fTXKXT f

= fTXDXT f − fTXKXf

= fTXLXT f

We need to put another constraint fTXDXT f = 1
to remove f ’s scaling factor. Then using the Lagrange
method with two Lagrange multipliers α and β, we solve
the following function:

L(α, β, f) = fTXLXT f − α(fTXDXT f − 1)− βSTXT f
(4.4)

For simplicity, let us denote:



L̃ = XLXT

D̃ = XDXT and

S̃ = XS

It is easy to verify that D̃ is symmetric and positive
semi-definite. Moreover, there exists D̃−1/2 and its
transpose being identical. We therefore change the
variable f = D̃−1/2z. It follows that:

fT L̃f = zT D̃−1/2L̃D̃−1/2z = zTQz

and the two constraints respectively are:

fT D̃f = zT z = 1

S̃T f = S̃T D̃−1/2z = 0

Hence, our Lagrange function can be re-written as
follows:

L(α, β, z) = 1

2
zTQz− 1

2
α(zT z− 1)− βUT z (4.5)

of which we have used UT to denote S̃T D̃−1/2 and
adding the constant 1/2 does not affect our optimization
objective. Taking the derivative of L(α, β, z) with
respect to z and setting it equal to zero give us:

δL
δz

= Qz− αz− βU = 0 (4.6)

Left multiplying UT to both sides results in β =
(UTU)−1UTQz and substituting it into Eq.(4.6), we
derive:
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αz = Qz− U(UTU)−1UTQz

=
(
I − U(UTU)−1UT

)
Qz

= PQz

which is an eigenvalue problem with P = I −
U(UTU)−1UT . It is worth mentioning that PQ might
not be symmetric albeit each of its individual matrices
being symmetric. However, it is observed that PT = P
and P 2 = P , so P is a projection matrix. Conse-
quently, it is true that α(PQ) = α(PQP ) or equiva-
lently the eigenvalues of both matrices PQ and PQP
are the same. So instead of directly solving PQz = αz,
we solve PQPv = αv, with v = P−1z.

Notice that the eigenvalues αi’s of PQP are al-
ways no less than zero and the smallest eigenvalue
is indeed α0 = 0, corresponding to the eigenvector
v0 = P−1D̃1/21, where 1 is the unit vector. We thus
remove such trivial eigenvalues/vectors from the solu-
tion. Consequently, the first nontrivial eigenvector v
will correspond to the smallest non-zero eigenvalue α.
This leads to our first optimum transformation vector:

f = D̃−1/2Pv

and subsequently the optimal mapping feature yT =
fTX. Generally, in the case where we want to use
q transformation vectors to transform X into an q-
dimensional subspace Y , i.e. Y = FTX, we can select
the set of q vectors f = D̃−1/2Pv corresponding to
the q smallest positive eigenvalues of PQP . Similar to
the FDA approach, we select q equal to the number of
clusters desired for the alternative clustering C(2) minus
1. Given such novel mapping data, we apply the k-
means to obtain the alternative clustering C(2).

It is worth mentioning that our algorithm can be
extended to find multiple alternative clusterings based
on the observation that it aims to find a subspace
supporting each clustering solution. Therefore, it is
straightforward to include all subspaces of previously
found solutions as columns in the S matrix when
searching for a novel alternative clustering. Certainly,
the number of alternative clusterings can be given by the
user or we can iterate the process until the total sum
of square distances (computed in k-means) for a novel
clustering is significantly larger than those of previously
found clusterings.

5 Experiments.

In this section, we provide some initial experimental
results regarding our method, which we name ACCP
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Figure 1: Alternative Clustering returned by our al-
gorithm on the synthetic dataset (best visualization in
color)

(Alternative Clustering with Constrained Projection)
on synthetic and real-world datasets. Since our algo-
rithm explores the subspace transformation approach,
we mainly compare it against other techniques which
also adopt this direction. In particular, its clustering
performance is compared against two methods from [6]
which we denote by Algo1, Algo2 respectively and the
ADFT algorithm from [10]. For ADFT, we implement
the gradient descent method integrated with the itera-
tive projection technique (in learning the full family of
the Mahalanobis distance matrix) [29, 30]. For all algo-
rithms, including ours, we use k-means as the clustering
algorithm applied in the transformed subspace.

We evaluate the clustering results based on cluster-
ing dissimilarity and clustering quality measures. For
measuring the dissimilarity/decorrelation between two
clusterings, we use the normalized mutual information
(NMI) that has been widely used in [11, 17, 27] and the
Jaccard index (JI) which is used in [3, 10]. For measur-
ing clustering quality, we use the Dunn Index (DI) [3,

10], which is defined by DI(C) =
mini6=j{ δ(ci,cj)}
max1≤ℓ≤k{△(cℓ)} where

C is a clustering, δ : C ×C → R+
0 is the cluster-to-

cluster distance and △: C→R+
0 is the cluster diameter

measure. Note that for the NMI and JI measures, a
smaller value is desirable, indicating higher dissimilar-
ity between clusterings, whereas for the DI measure, a
larger value is desirable, indicating a better clustering
quality.

5.1 Experiments on Synthetic Data. For testing
the performance of our algorithm on a synthetic dataset,
we take a popular one from [10, 3] that is often used
for alternative clusterings. This dataset consists of 4
Gaussian sub-classes, each containing 200 points in a 2-
dimensional data space. The goal of using this synthetic
dataset, when setting k = 2, is to test whether our
algorithm can discover an alternative clustering that is
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Figure 2: Clustering performance returned by four
algorithms on the Cloud data

orthogonal to the existing one. In Figure 1, we show the
clustering results returned by our algorithm. Given the
reference clustering C(1) which groups two Gaussians on
the top and two Gaussians in the bottom as each cluster
(shown in Figure 1(a)), ACCP successfully uncovers
the alternative clustering C(2) which categorizes two
Gaussians on the left and two ones on the right as
clusters (shown in Figure 1(b)).

5.2 Experiments on the UCI data. We use two
real-world datasets from the UCI KDD repository [2]
to compare the performance of our algorithm against
the other techniques. The first dataset is the Cloud
data which consists of data collected from a cloud-
seeding experiment in Tasmania in the time between
mid-1964 and January 1971. For a reference clustering,
we run the k-means algorithm (with K = 4 as the
number of clusters) and its resultant clustering is used
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Figure 3: Clustering performance returned by four
algorithms on the Housing data

as the reference solution for all algorithms. The second
dataset is the Housing data which consists information
about the housing values collected in Boston’s suburbs.
Similar to the Cloud data, we apply k-means algorithm
on this dataset and use it as the reference solution for
all algorithms. We show the clustering performance of
all techniques in Figures 2 and 3 respectively for the
Cloud and Housing data.

As observed from all figures, our algorithm performs
better than two techniques developed in [6] and the
ADFT one in [10]. Its clustering dissimilarity measuring
by the normalized mutual information and the Jaccard
Index is lower than that of Algo1, Algo2 and ADFT
whereas the clustering quality quantified by the Dunn
Index is higher. This advantage can be justified by
the approach of ACCP. Though all algorithms adopt
a linear projection technique to derive a novel subspace
that is decorrelated from the reference clustering, the
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ACCP further takes into account the local neighborhood
proximity of the data by retaining that property in the
novel low dimensional subspace. The novel clustering
structure in this learnt subspace therefore is more
prominent compared to that of the other techniques
which only attempt to minimize the correlation between
two subspaces. Moreover, though the derived subspace
of all techniques is ensured to be independent from
the provided clustering, it is still possible that the
alternative learnt from that subspace might not strongly
decorrelated since there is a need to optimize for the
clustering objective function as well. This generally
explains for the difference in the NMI and JI measures
of all methods.

6 Conclusions and Future Studies.

In this paper, we have addressed an important problem
of uncovering multiple clustering views from a given
dataset. We propose the ACCP framework to learn
a novel lower dimensional subspace that is not only
decorrelated from the provided reference clustering but
the local geometrical proximity of the data is also
being retained. By the second objective, our work
goes beyond the others, which also adopt a subspace
learning approach for seeking alternative clusterings, yet
only focus on the dissimilarity property of the novel
clustering. More importantly, we have demonstrated
our dual-objective can be formulated via a constrained
subspace learning problem of which a global optimum
solution can be achieved.

Several initial empirical results of the proposed
framework over the synthetic and real world datasets
are given. Certainly, these results remain preliminary
and more experimental work should be done in order
to provide more insights into its performance. Addi-
tionally, though our framework is claimed to be capable
of finding multiple clustering views, its performance on
some suitable datasets has not been verified. Determin-
ing an ideal number of alternative clusterings still needs
to be formally addressed. We leave these problems as
an important and immediate task of the future work.

In addition to the above issues, our research in this
paper opens up some potential and interesting direc-
tions for future studies. Specifically, despite advancing
the subspace based learning approach for the alternative
clustering problem, our research has exploited a hard
constraint solution to ensure alternatives’ dissimilarity.
Such an approach might be too strict in some practical
applications and thus some novel approaches based on
soft constraints could be interesting. This implies that a
trade-off factor between two criteria of subspaces’ inde-
pendence and intrinsic data structure retaining can be
introduced, or we can constrain the subspace’s decor-

relation criteria to no less than a given threshold. In
either of the two cases, a data-adaptive learning tech-
nique is required and the compromise between two fac-
tors is worth to study both theoretically and empirically.
Furthermore, our research has not yet focused on the in-
terpretation regarding the resultant alternative cluster-
ings. This is an important problem, especially from the
user perspective. Which features are best to describe a
clustering solution and which ones are least correlated
with respect to that solution are all informative to the
user in understanding the data. Compared to a nonlin-
ear subspace learning approach [7], our research direc-
tion in this work is beneficial due to its linear subspace
learning approach. That means the linear combination
amongst the original features is explicitly represented in
the transformation matrix F . However, seeking for an
optimal and concise set of features that best character-
izes for a clustering solution is still a challenging issue
given the fact that the number of original data features
is usually huge. We believe that these open issues are
worth to be further explored and studied.
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Abstract

In this paper, we present our novel clustering technique

called frequent-groupings as combination of alternative and

ensemble clustering. Our new approach combines the benefit

of both underlying concepts in an integrated way and allows

the creation of robust clustering alternatives. In detail, we

present (1) different approaches for the automatic creation

of alternatives, (2) a user-guided exploratory extraction

process and (3) an evaluation method to compare extracted

alternatives with regards to their similarities.

1 Introduction

The relevance of clustering as a data analysis technique
is more and more increasing. This is due to the ongoing
trend for data gathering, that spreads in different areas
of research and industry. In general, data clustering is
described as the problem of (semi)-automatic partition-
ing of a set of objects into groups, called clusters, so that
objects in the same cluster are similar, while objects in
different clusters are dissimilar. The identification of
similarities between data objects and their arrangement
into groups with regard to these similarities, are essen-
tial tools to gain understanding and acquire previously
unknown knowledge.

As this technique is quite powerful, its application
by humans offers several challenges that need to be tack-
led, because they have a significant influence on the
clustering result. One challenge e.g. is the selection
of the best-fitting clustering algorithm for the dataset.
A multitude of clustering algorithms has been developed
over the years. These traditional algorithms have sev-
eral limitations. On the one hand, they are not generally
applicable, meaning that certain algorithms and param-
eterizations only suit certain datasets. On the other
hand, traditional techniques generate only a single clus-
tering result, but as todays data sets become more com-
plex and high-dimensional there often are multiple valid
clustering results possible for a single dataset. Besides
these data centric problems, usability and applicabil-
ity have become important issues as clustering evolves

from a niche application in research to a widespread
analysis technique employed in an increasing number of
areas. With this trend, more users come into contact
with clustering, who are often experts of their respec-
tive application domain but have no experience in the
area of clustering. This calls for clustering approaches
that can be versatilely applied and lack the complicated
algorithm selection and configuration of traditional ap-
proaches.

In recent years, a number of approaches have been
introduced to tackle some of these issues. The area of
alternative clustering [2, 3] provides multiple cluster-
ing solutions for a dataset. With this, several views on
complex data can be offered, and the very availability
of multiple clusterings usually can free the user from
adjusting a single clustering that proves unsatisfactory.
An opposing approach is ensemble clustering [4, 9] in
which a set of multiple clusterings is integrated to form
a single consensus solution. This input set is also called
clustering-ensemble and contains results that are gen-
erated using different algorithms and parameters. The
consensus result is often more robust than clusterings
generated by a single algorithm and set of parameters,
which means that this technique is more versatile in
terms of application. Additionally, algorithm selection
and configuration is eased as a range of methods and pa-
rameters is utilized instead of a single configuration. On
the downside, ensemble clustering provides just one so-
lution and therefore resembles traditional clustering at
that point. To create an alternative consensus cluster-
ing, the user has to re-configure the clustering-ensemble
by changing algorithms and/or parameters. This is a
very challenging task because multiple algorithms must
be selected and configured.

The concepts of alternative clustering and ensem-
ble clustering have their own benefits compared to tra-
ditional clustering approaches. However, to tackle all
challenging issues of clustering from a users perspec-
tive, a combination of both concepts would be benefi-
cial. In [6], we already introduced our hybrid concept
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called frequent-groupings. This novel technique is based
on the idea of frequent-itemset mining [1] and allows (1)
the identification of robust clusters, occurring through-
out the clustering-ensemble and (2) the derivation of
robust alternative clustering results. After summariz-
ing our concept of [6] in Section 2, we contribute the
following detailed aspects to our hybrid concept in this
paper:

1. We describe different automated approaches for the
extraction of alternative clusterings in Section 3.

2. We propose a method for the explorative extraction
of robust clustering alternatives and describe a way
to measure their similarities in Section 4

Finally, we conclude the paper with some remarks
regarding future work in Section 5 and a brief summary
in Section 6.

2 Frequent Groupings

In our previous work [6], we described the concept
of frequent-groupings as a means to combine benefits
from the area of alternative clusterings and ensemble
clustering. Using frequent-groupings, it is possible
to combine clusters with an increased robustness into
alternative clustering solutions.

The core idea of our approach originates from the
area of ensemble-clustering [5], in which a single con-
sensus solution is generated from an ensemble of dif-
ferent clusterings. Such a consensus solution is gener-
ated by identifying sets of objects, that are frequently
assigned to the same cluster throughout the clustering-
ensemble. These sets, then become the clusters of the
consensus result and form a clustering, whose object
assignments agree with the majority of the members of
the clustering-ensemble.

Lets assume a dataset D = {x1, x2, . . . , xn} of
objects in a multidimensional feature space, and a
clustering-ensemble C = {C1, C2, . . . , Ck} that contains
k clusterings of D, each with a different number of clus-
ters and different cluster composition. In general, there
are two ways to evaluate the similarities of the clus-
ter assignments of an object throughout the ensemble:
(i) label-based approaches that match clusters [9] and
(ii) approaches based on counting pairwise-similarities
and the co-occurence of object pairs [4]. Our frequent-
groupings approach [6] offers an alternative to these
two principles and is based on the concept of frequent-
itemsets [1].

Assuming a set of n items I = {i1, i2, . . . , in} and
a set of transactions T = {t1, . . . , tm} of which each
transaction has a unique id an contains a subset of I, a
set of items X is called frequent if its support exceeds a

given threshold. The support of an itemset X is defined
by the fraction of transactions of T that contain X . At
this point, the analogy to ensemble clustering should be
obvious: while frequent-itemsets aim to identify items
that co-occur in many transitions, ensemble clustering
searches for objects occuring together in the majority
of clusters. For our frequent-groupings approach, we
map the concepts of I, T and support to the domain
of ensemble-clustering, whereas I corresponds to the
dataset and T corresponds to the clusters of the ensem-
ble. According to these mappings, the support of a set
of data objects X shows the fraction of the clustering-
ensemble, in which X is part of the same cluster. If
support(X ) exceeds a certain threshold, we call X a
frequent-grouping.

To illustrate our frequent-groupings idea, we regard
a small example from our previous work [6], featuring a
dataset D = {x1, x2, . . . , x9} and a clustering-ensemble
C containing the following 4 clusterings:

• C1 = {(x1, x2, x3) (x4, x5, x6) (x7, x8, x9)}
• C2 = {(x1, x2, x3) (x4, x5, x7, x9) (x6, x8)}
• C3 = {(x2) (x1, x3, x4, x5)(x6) (x7, x8, x9)}
• C4 = {(x1, x2, x3) (x4, x5) (x6, x8) (x7, x9)}

For frequent-grouping generation, we specify a minimal
support threshold of 50%, meaning that objects occur-
ing together in at least 2 clusterings of the ensemble
are considered as frequent in our example. Figure 1
shows the frequent-groupings generated from the de-
scribed setting.

The generation of frequent-groupings does not re-
sult in a simple list of object sets but in a more complex
graph-like structure. This structure consists of nodes
representing the frequent-groupings and edges showing
subset/superset relations between frequent-groupings.
Each node contains three values: (i) an id , (ii) a num-
ber showing the support of the grouping, and (iii) the
objects that are part of this grouping. Besides the nine
nodes with an id, there are several greyed-out nodes in
the figure. These represent groupings that occur in the
clustering-ensemble but do not meet the required mini-
mal support and are thus filtered out. For example, each
of three nodes in the upper part of Figure 1 occurs only
in one of the clusterings of the ensemble. In order to
further limit the number of actual frequent-groupings,
we require that all frequent-groupings are closed, which
means that no frequent-grouping fgX is a subset of an-
other frequent-grouping fgY that has the same support
as fgX. In compliance with this closed constraint the re-
maining greyed-out nodes at the base of the graph are
rejected as valid frequent-groupings. As already men-
tioned, the edges of the graph show relations between
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Figure 1: Example structure of frequent-groupings from [6].

the different frequent-groupings. Each edge represents a
subset/superset relationship between the nodes it con-
nects and thus plays a vital part in the construction of
clustering alternatives.

To construct a clustering solution from the obtained
frequent-groupings, we interpret them as clusters, and
combine them in a way that all objects of D are part
of one cluster. Regarding Figure 1, we can construct
a clustering solution C1, containing three clusters fg2

,fg4 and fg7 that include all objects of the dataset. As
the generated frequent-groupings overlap, it is possible
to produce multiple alternative combinations for the
dataset. For example fg2 has two subsets fg1 and fg3

that can replace fg2, thus a first clustering alternative
to C1 can be created. Our small example shown in
Figure 1 contains a total of six alternative consensus
clusterings, which can be simply created by the user
without any algorithmic assistance. Although manual
creation of clustering alternatives is a valid option in
the toy scenario described so far, it certainly is not
for datasets and clustering-ensembles of a bigger scale.
In the following sections, we introduce a scaled up
scenario and apply our frequent-groupings approach in
two different ways.

3 Automatic Extraction of Alternatives

As a running example for the remainder of this paper,
we utilize the dataset depicted in Figure 2. The
synthetic dataset contains about 1500 objects located
in a 2-dimensional feature space, whereas the roman
literal at each corner marks the respective quadrant of
the dataspace. Although this can still be considered as a
small setting, its scale is large enough to prevent manual
processing as in the introductory example but still
small enough to be handled in the scope of this paper.
For our clustering example, we generated 10 different
clusterings, using the k-means clustering algorithm with
k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 and a different initialization
for each run. The dataset was crafted in order to provide

structures that are hard to identify for partitioning
algorithms like k-means e.g., the non-spherical clusters
in quadrant III.

We already mentioned, the parallels of our frequent-
groupings approach and the generation of frequent-
itemsets in Section 2. Therefore, we examined exist-
ing algorithms for frequent-itemset mining in order to
identify an efficient method for generating frequent-
groupings. Regarding our scenario, we can state that
the size of I—1500 objects—is considerably higher than
the size of T , which contains only 69 clusters, found
in our clustering-ensemble. We assume that in the
most clustering scenarios, the number of objects will be
higher than the number of clusters, and thus chose to
employ the CARPENTER algorithm[8] for the extrac-
tion of frequent-groupings, as it is optimized for such
a setting. CARPENTER works by enumerating trans-
actions and intersecting them. It also utilizes different
pruning techniques to optimize its runtime.

In order to use CARPENTER for the computa-
tion of frequent-groupings, we extended the algorithm
so that the particular support value is stored with each
frequent-grouping. For our running example, we ap-
plyed this method using a minimum support of 50%.
As a result, we obtained a set of 72 frequent-groupings.

After obtaining the frequent-groupings, we want
to generate multiple clustering alternatives from them.
This is done by interpreting the frequent-groupings
as clusters and combining them to a clustering where
each element of the dataset is contained in exactly one
frequent-grouping/cluster. To phrase it in another way:
in a valid clustering alternative all clusters are dis-
joint and their union contains the complete underlying
dataset. While other definitions of clustering alterna-
tives are possible—e.g. objects are assigned to multiple
clusters—we keep the former for the rest of this pa-
per. The decision problem of combining our frequent-
groupings in a way that the given conditions are sat-
isfied, is also known as the ’exact cover problem’ and
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(a) Scatterplot of the data. (b) Connected components / stem clusters per quadrant.

Figure 2: Running example for our scenario.

belongs to the class of NP-complete problems.
As a method to find all solutions of an exact

cover problem, Donald E. Knuth proposed Algorithm
X [7]. This algorithm works with an incidence matrix,
representing the specific problem of exact cover and
uses a recursive, depth-first search with backtracking
to find all possible solutions. Knuth also proposes a
concept for the efficient implementation of Algorithm X
called Dancing Links (DLX)[7], which we used to find
all clustering alternative.

When we applied DLX to our running example, the
number of the resulting alternative clusterings turns out
to be very high. With the input of all 72 frequent-
groupings, the algorithm produces about 570.000 dif-
ferent valid clustering alternatives. It is safe to assume
that the bulk of generated alternatives will be very simi-
lar. The reason for this is, that the minimum differences
between clustering alternatives depend on the smallest
frequent-groupings and very small groupings commonly
occur in every clustering-ensemble. That means, a high
number of very small frequent-groupings not only in-
flates the number of possible clustering alternatives, but
also leads to results that only differ in the assignment of
one or two objects. We are now faced with the challenge
to find interesting clustering alternatives inside this vast
amount of clusterings. In order to achieve this, we have
to reduce the number of generated alternatives and find
a way to identify distinctive solutions. In the follow-
ing, we describe three unguided/automatic approaches
to the issue.

Filtering A straightforward approach to this prob-
lem is to filter out very small frequent-groupings be-
fore the construction of alternatives. On the one hand,
this reduces the the number of possible clusterings. On

the other hand, the generated alternatives become more
dissimilar and thus more interesting as the minimal
frequent-grouping size is increased. Unfortunately, the
filtering approach is troublesome work as an optimal
threshold for the minimum size must be determined.
Furthermore, each removal of a frequent grouping can
lead to a situation where it is impossible to cover each
element of the dataset with a frequent-grouping. There-
fore, continuous tests for coverage are necessary during
the procedure.

Scoring Another way for finding interesting and
dissimilar alternatives would be to apply quality or
similarity measures to the generated alternatives. In
doing so, all obtained solutions could be ranked by
score and presented to the user as a top-k list. For
this approach, one or more appropriate measures for
clustering-similarity and/or clustering-quality must be
selected. Which is a very challenging task, regarding
the number of available metrics and their applicability
in different settings. Due to the high number of
clusterings, the calculation of these measures needs
significant computation effort. Furthermore, the top-
k ranking requires the identification of an optimal k.

Greedy Top-k Selection This approach is simi-
lar to the described Filtering, as we try to limit the num-
ber of clustering alternatives by reducing the number
of frequent-groupings. Instead of removing the smallest
groupings, we sorted all frequent-groupings according to
their two essential characteristics—size and support—
in descending order. From this list, we choose the top-k
biggest frequent-groupings as input for the generation
of clustering alternatives. If the value for k is chosen
randomly, it cannot be guaranteed that the selected
groupings will cover the whole dataset, thus it is not
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possible to guarantee that even one clustering can be
constructed. In order to make sure that at least one
valid result is generated, we used a kind of brute-force
approach, i.e. we start with k = 1 and execute our
DLX implementation. If no result is returned k is incre-
mented and the algorithm is run again. This is repeated
until at least one clustering is returned. Although this
approach is not very elegant, it can narrow the gener-
ated alternatives down to a number in the single dig-
its. However, after continued testing we found out that
the effectiveness of this method is unpredictable and de-
pends highly on the underlying clustering-ensemble. We
applied the described procedure, using the dataset from
our running example and different ensemble configura-
tions. Some configurations returned 10 or less alterna-
tives, while other configurations returned much larger
result sets, containing up to 300.000 clustering alterna-
tives.

None of the approaches is optimal to reach our
goal of finding a compact set of interesting clustering
alternatives. Therefore we introduce an additional
approach in the following section, that reaches the
described goal by including the user into the process
of building robust clustering alternatives.

4 Explorative Extraction of Alternatives

In the previous section, we showed that the straight-
forward automatic extraction of clustering alternatives
leaves the user with a very large set of results, of which
most will be very similar. To tackle this issue, we de-
scribed some approaches that aim to create not all, but
a compact set of distinctive clustering alternatives. All
of these automatic approaches for extraction have draw-
backs, mostly due to configuration challenges and pre-
dictability. As full automation of the extraction seems
to be suboptimal, we incorporate the user into the gen-
eration process, thus allowing an explorative creation of
clustering alternatives.

The core idea of this kind of extraction is to use the
graph structure of our frequent-groupings as guidance
for the creation of clustering alternatives. Lets look at
the graph of frequent-groupings of our running exam-
ple. After generating all 72 frequent-groupings with a
minimal support of 50%, this graph consists of the 4
connected components shown in Figure 2(b), of which
each represents one quadrant of our dataspace. This
one-to-one correspondence is random and results from
our clustering-ensemble. Different ensemble configura-
tions will also lead to different connected components.
These connected components form the starting point of
our explorative extraction and we will refer to them as
stem clusters. All stem clusters are disjoint and their
union contains all objects of the dataset. Therefore we

could derive a clustering solution with 4 clusters from
this setting. However, such a clustering would not be
a valid result. It would not correctly represent the oc-
currence of clusters in the clustering ensemble, but just
unites a set of overlapping frequent groupings. There-
fore, each stem cluster must be differentiated into one of
diverse final clusters—like stem cells—in order to cre-
ate a valid clustering alternative. This differentiation
works according to the frequent-grouping relations that
are contained in the graph structure.

To illustrate this approach, let us regard the stem
cluster/connected component for quadrant IV of our
running example, that is depicted in Figure 3. The
display is similar to the graph we already described in
Figure 1, but due to its larger size and complexity some
small changes were made. Again, each node represents a
frequent-grouping and shows its information according
to the pattern id : [support] : size. As the groupings
feature a bigger size, we do not list all of their member
identifiers but only display the size of the grouping.
For better readability, we placed the nodes according to
their support. At the top of the graph, we find groupings
occurring in 5 of 10 clusterings—thus representing the
minimal support requirement—while groupings that
occurred in all clusterings of the ensemble are located
at the lowest tier of the graph structure. Again, edges
indicate subset/superset relations.

As stated, a frequent-grouping can be substituted
by its subsets to generate a clustering alternative. These
subset relations are used in the differentiation of the
stem cluster. Based on this, we choose those nodes of
the connected component that have no superset, as a
starting points for the differentiation. The more subsets
such a node has, the more possible alternatives can
be created. As nodes with no supersets are generally
few and contain a high number of objects, we can
assume that the generated clustering alternatives will
feature a small number of big clusters, which should
be beneficial for the creation of dissimilar alternatives.
For the remainder of this section, we will refer to these
nodes as roots. The stem cluster/connected component
in Figure 3 has 5 roots, namely fg71, fg70, fg48, fg 65
and fg55. Each of these roots will be the starting point
for one run of the differentiation algorithm described in
the following.

Our proposed algorithm traverses the frequent-
groupings graph of a stem cluster in a top-down fashion
starting at one of its roots. Each run of our algorithm
creates one clustering alternative, which means that
the number of roots determines the maximum number
of alternative clusterings that can be differentiated
for a stem cluster. Based on this, two cases can
occur during differentiation of a stem cluster. If there
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Figure 3: Frequent-groupings and clustering alternatives for quadrant 4 of the running example.

is exactly one root—first case—, then this root is
the single most general alternative for the respective
stem cluster. Therefore, it becomes a cluster in the
clustering alternative and the differentiation is finished.
In contrast—second case—, if there are multiple roots,
the algorithm is executed for each root. Our proposed
algorithm works as follows:

1. Select a root.(In the first iteration the root is
provided. In further iterations the root with the
highest size is selected.)

2. The selected root becomes a cluster for the cluster-
ing alternative.

3. Mark the successor set of the selected root.

4. Delete all nodes from the graph that are not part of
the current root’s successor set but have a path into
it. This is done to remove all remaining groupings
that overlap with the selected cluster.

5. Delete the current root and its successor set.

6. If the graph contains no more nodes, the algorithm
terminates and outputs the resulting clustering
alternative. Otherwise the algorithm is repeated
from step one.

To illustrate the workflow of our algorithm, lets
look at Figure 4. We execute our algorithm with the
first of the four roots fg71. The root is selected and
becomes the first cluster of our clustering alternative
A1. The successor set of fg71 is marked, which is
depicted by a frame in Figure 4. Nodes are deleted
according to step 4 and marked by a cross in the
figure. After the successor set of fg71 is deleted only
one connected component remains. The single root

of this connected component is fg65 which is selected
for the second iteration of our algorithm. After this
iteration, the graph contains no further nodes, thus
our algorithm terminates and outputs the clustering
alternative A1 containing the two clusters fg71 and
fg65. This alternative is also generated when starting
with root fg65. The executions of our algorithm for
the root fg70 results in clustering alternative A2 =
{fg70 , fg64 , fg5}, while the algorithm runs for roots fg48
and fg55 yield identical results which we summarize
as clustering alternative A3 = {fg48 , fg55 , fg60 , fg47}.
This shows the predictability of our algorithms, from
the 5 roots of the stem cluster, 5 clustering alternatives
are created of which 3 are unique. The nodes of the
three unique alternatives are shown in Figure 3 and
marked with different symbols. After the differentiation
is done, the user is presented with a compact list
of alternatives for each stem cluster. The user then
generates a complete clustering alternative that covers
the whole dataset by selecting one alternative for each
stem cluster. If the user wants more alternatives for
a certain stem cluster, the clusters of its alternative
differentiation can be turned into further stem clusters.
As an example, regard A1 = {fg71 , fg65}. The single-
root connected component of fg71 and its successor
set—depicted in Figure 4—can be turned into a multi-
root stem cluster by removing fg71. The new stem
cluster has the roots fg69 and fg47, thus offering at most
2 further clustering alternatives for the objects formerly
covered by fg71.

Let us regard the alternatives for the stem cluster
of quadrant IV in detail. They are depicted as scatter
plots in Figure 6. As we assumed the generated
alternatives in general contain a small number of big
clusters. Nonetheless, the clusterings A1 and A2 are
very similar, in fact they only disagree in the assignment
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Figure 4: Execution of our algorithm with starting point fg71.

Figure 5: Maximum cluster intersection of A1, A3.

of 3 objects (fg5 ). So emphasizing the use of big
clusters during the generation of alternatives does not
necessarily lead to dissimilar alternatives. Therefore,
in the following, we describe a similarity measure for
our generated clustering alternatives, that again uses
information from the frequent-groupings graph.

The idea for our similarity measure originates from
the area of ensemble clustering. As already mentioned
the goal of this technique is to identify sets of objects
that are assigned to the same clusters in different
clusterings. We transfer this idea to our scenario by
using the number of objects that are placed in the
same cluster in two different clustering alternatives as
a measure of similarity between the two. In order to
calculate this similarity, we intersect the clusters of both
and look for the biggest sets of shared objects. Let
us regard the alternatives A1 and A3 of our running
example. All information regarding intersections can
be easily derived from our frequent-grouping graph
by examining subset/superset relations and mutual
successors. We start by intersecting all clusters of A1
with those of A3. The results of this intersection are
shown on the left side of Figure 5. On the right side are
the results of the intersections between A3 and A1.

To get the overall intersection of both clusterings,

we select the maximum intersection of each cluster
of one alternative with the other alternative and sum
them up. As we can see there occurs a problem
that results from the different number of clusters in
both alternatives. When we sum up the maximum
intersections of the clusters of A1 with A3 we get a total
intersection of 151 + 208 = 359 objects. In contrast, if
we add up the maximum intersections of the clusters
of A3 with A1 we get an overall intersection of 23 +
151 + 128 + 208 = 510 objects, which is higher than the
actual object-count of the respective stem cluster. This
means our similarity measure is not commutative. This
characteristic comes from the subset/superset relations
we use to derive the maximum intersections. In order
to get the correct overlap we select the maxima from
A1 with A3 and A3 with A1 intersect both result sets.
In doing so we only get those cluster overlaps that exist
in both directions, thus resulting in 151 + 208 = 359.
As the stem cluster for quadrant 4 covers 425 objects of
the dataset, the similarity of A1 and A3 is 84%. When
we calculate the similarity of A1 and A2 we get a high
similarity of 99% which we already observed in Figure
6. This similarity information can be used by the user
during the selection of alternatives for stem clusters.

5 Future Work

With our proposed extraction approach a user explores
the frequent-groupings graph in a top-down fashion and
generates different clustering alternatives on the way.
As these alternatives are generated according to the
subsets found under each root node, we can generally
state that alternatives are created by splitting up stem
clusters in different ways. This split is one of the four
high-level feedback operations we already introduced in
[5], that can be used to shape a clustering. A major
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Figure 6: Scatter plots of clustering alternatives A1, A2 and A3.

part of our future work will be, to map the remaining
operations merge, refine and restructure to our frequent
groupings scenario.

As split works in a top-down fashion its contrary
operation merge would resemble a bottom-up proce-
dure. In such a scenario the starting point for our ex-
ploratory extraction, would be created from the smaller
high support frequent-groupings at the bottom of the
graph. By traversing the ascending edges of our graph,
these smaller clusters/frequent-groupings can be com-
bined into larger clusters. Thus new alternative clus-
terings could be generated. An exploratory extraction
based on the merge operation would also require a new
equivalent for the stem clusters we introduced in this
paper.

In general we will examine new ways to determine
a suitable starting point for the exploratory extraction.
As pure top-down or bottom-up approaches start at
only one end of the frequent-groupings graph—root or
leaf—and just allow one direction of traversal, it would
be interesting to look for a starting point in between
those extremes. Such a median start would allow an
exploration using split and merge in combination. For
this kind of scenario it is also important to look at the
influence of different minimal supports on the graph
structure.

6 Conclusion

In this paper, we expanded our frequent-grouping con-
cept [6] for the generation of robust clustering alter-
natives. We described the generation of our frequent-
groupings and illustrated ways for the automatic extrac-
tion of all possible clustering alternatives. After that we
pointed out the challenge of selecting interesting and
dissimilar clustering alternatives from the vast amount
of solutions, that can be generated using automatic ex-
traction. To tackle this challenge, we proposed an ex-
ploratory approach, that allows the predictable creation
of a manageable number of alternative clustering solu-
tions. In addition, we derived a similarity measure for

our clustering alternatives, that can aid the user during
the extraction process.
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