ORACLE

PL/SQL

User's Guide and Reference
10g Release 1 (10.1)

Part No. B10807-01

December 2003

PL/SQL User's Guide and Reference, 10g Release 1 (10.1)
Part No. B10807-01

Copyright © 1996, 2003 Oracle. All rights reserved.
Primary Author: John Russell

Contributors: Shashaanka Agrawal, Cailein Barclay, Dmitri Bronnikov, Sharon Castledine, Thomas
Chang, Ravindra Dani, Chandrasekharan Iyer, Susan Kotsovolos, Neil Le, Warren Li, Bryn Llewellyn, Chris
Racicot, Murali Vemulapati, Guhan Viswanathan, Minghui Yang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SeNA US YOUT COMMEBNTES ...ttt XV
PlrOIACE ...ttt e et XVii
NS Lo <) VT SSR TR XVil
How This Book Is Organized............ccccccciviiiiiiiiiininiiiiiiiiceee s XVii
Related DOCUIMENTATIONc.viiieiiiiiiceiecceeeeee ettt ettt et e st e e eaeesaeesaseeatessaseenseesseesrseesaeesnees XiX
(@) 7723 4L Te) s 1= ISR XX
Sample Database Tablesccccccciiiiiiiiiiiiiiii s XXi
Documentation ACCESSIDILIEYc.c.eueuruiiiuiiiiiirieicicieieeeeceeee et XXii
Reading the Syntax DIagramscccocueiiiiiirieiiiiiciee e XXii
What's NEW 1N PLISQL? ..ottt Xxiii
New Features in PL/SQL for Oracle Database 10gc.ccccoeviviiiiiiiiiniiiiiiiciccneens XXiii
New Features in PL/SQL fOr OTaclei.........cooccuiiiiiiiirieieeiieieeieecteeeeete ettt et sreeae e esve s e eseereens XXVi

1 Overview of PL/SQL

Advantages of PLISQL ..o 1-1
Tight Integration With SQLc.ccciiiiiiiiiiiiieecc e 1-1
SUPPOTIt £Or SQL....oiieei s 1-2
Better PerfOrMNANCE.ocuveiviceieiecieetecee ettt ettt ettt et et te et be e e e ebeeabesbeensessaensenseeaseeseenns 1-2
Higher PrOdUCHVILY ...c.c.cueuiuiiiiiiiiicciccccce e 1-3
FUIL POItabilityooeceeiie et 1-3
TAGIE SECUTILY ... 1-3
Support for Object-Oriented Programmingc.cccceeueueueieurureeiiieieinieieieeieeeeeeeeeeeeeeneeeneeeeseenenes 1-3

Understanding the Main Features of PL/SQLcccccococoviiniiiinnn 1-4
BLOCK SETUCGEUTE. ...ttt ettt ettt ettt ettt e et et e be e b e eteeabeereeseesaeseersesseessesseessesesssenseenns 1-4
Variables and CONSLANES........c.cciciiiiieirerierteiet et ettt e e eteetessesbessesesbessessessessessassessassesessens 1-5
Processing Queries with PL/SQL........ccccocoiiiiiiiiiiiiiccssnnes 1-6
Declaring PL/SQL Variables...........cccccciviiiiiiiiiiiiiiiccccccccceeeseeeescseesacnnes 1-6
CONIIOL SEIUCEUTES . .cvvevveeieiieeieetettette ettt sttt et et sb e st e e e st esaeseeseesaebessessesbessassessessessessassassessasenss 1-7
Writing Reusable PL/SQL Code........cooiiiiiiiiiiiiiiisssssnnes 1-9
Data ADSITACHION....cveiuiicrieieerecieerecteete ettt ettt e e et e beeteebeesseebeebeeseesseeseeseessenseeseensesrsesesaeas 1-10
Error Handingc.ccocoeiiiiicceeecceeeee ettt eaees 1-12

PL/SQL ATCRILECHUTEceiniiieiiiieee ettt ettt sttt ettt et et e et e st ebeebesbeebebas 1-12
In the Oracle Database SEIVETcuccuieieiiicieeieeeeeeecteete ettt ettt et et re et ereeere e e saeersesseeanas 1-13

) Hq @ Vel (=T o Yo) TSRS 1-14

Fundamentals of the PL/SQL Language

CRaracter Set...........oooiiiiiii s 2-1
Lexical UNtS ..o 2-1
DEIIMNILETS ..o 2-2
LAENEILIETS. ..o 2-3
LEEETALS . 2-4
L0 4 g1 44T - OO 2-7
DeClarations.............coiiiiiiiiiiiiii s 2-8
Using DEFAULTcoooiiiiiici s 2-9
Using NOT NULL ... 2-9
Using the %TYPE AHibULeooeiii s 2-9
Using the %ROWTYPE Attributeccccocoiiiiiiiiiiiiiiiis 2-10
Restrictions on Declarations ... 2-12
PL/SQL Naming COnvVentionscccccocoviiiiiiiiiiiiiiiiiiic s 2-12
Scope and Visibility of PL/SQL Identifiers..............cccococvviiiniiinnnnins 2-14
Assigning Values to Variables ... 2-16
Assigning Boolean Values ..o 2-17
Assigning a SQL Query Result to a PL/SQL Variable ..., 2-17
PL/SQL Expressions and COMPATiSONS...........c.cceevvereuiririerereireniereiirenrerereesnesereesessesesesessenesescssesenens 2-17
LOgical OPeIators.......cceiiuiiiiiieiiciect e 2-18
Boolean EXPIeSSIONScccoceiiiiiiiiiiiiiiiiiiiiic s 2-21
CASE EXPIESSIONS ...c.vuviiiiiiiiiiiiiicic s 2-24
Handling Null Values in Comparisons and Conditional Statements ..o, 2-25
Summary of PL/SQL Built-In FUnctions.............ccccccoovviiiiniiiis 2-28

PL/SQL Datatypes

Overview of Predefined PL/SQL Datatypes...........c.cccccovnnninininiinnnniiiinnnnn, 3-1
PL/SQL NUMDET TYPESeviiiiiiiiiiiiiiiieicicieieieicieee e 3-2
PL/SQL Character and String TYPeSccooueuiiriniiiniiiiiciciec e 3-4
PL/SQL National Character TYPescccceiiiiiiiiiiiiiiiiicccccciccccsesnnes 3-8
PL/SQL LOB TYPES ...ouvuiiiriiiiiciici i 3-10
PL/SQL BOOIEAN TYPES.......ouviiuiiiieiiieiiieiiie it 3-11
PL/SQL Date, Time, and Interval TyPes.........cccccceeviviiiiiiiiiiiiiniiiiiniciciccccs 3-12
Datetime and Interval ArithmetiC........ccccoviiiiiiiiiiiiiic e, 3-15
Avoiding Truncation Problems Using Date and Time Subtypes...........ccccoooeeiniiriiiiininnnnn, 3-16

Overview of PL/SQL SUDLYPEScccccoviiiiiiiiiiiiiiic s 3-16
Defining SUDLYPES ...c.cuoviiiiiiiiiiiiciccecec e 3-16
USING SUDLYPES ..ot 3-17

Converting PL/SQL Datatypes............cccccovviiiniiniiiiiiiiiiniisnnssssssssse s 3-18
EXPLICIt CONVETSION......viiiiiiiicicicieieietee ettt 3-18
IMplicit CONVETSION «...vviiieiiiictci et 3-18
Choosing Between Implicit and Explicit CONVersionccocoeeveivirininiciiceieicceecce, 3-20
DATE VAlUES......coiiiiiiiiiiict s 3-20
RAW and LONG RAW ValUEScccccoviiiiiiiiiiiiiiiicii s 3-20

Using PL/SQL Control Structures

Overview of PL/SQL Control SEructUIesccoiieiiieieieieee ettt 4-1
Testing Conditions: IF and CASE Statements ..., 4-2
Using the IF-THEN Statementcooouoiiiiiiiic s 4-2
Using the IF-THEN-ELSE Statement..........cccccocociiiiiiiniiiiiiiiiiiiineecsnnes 4-2
Using the IF-THEN-ELSIF Statement...........ccccccoiiiiniiiiiiiiii s 4-3
Using the CASE Statementcoooiiiiiiii s 4-3
Guidelines for PL/SQL Conditional Statements..........ccoooveeeveeerieiieeeieeee et 4-5
Controlling Loop Iterations: LOOP and EXIT Statements..............cccccooviiinnnninnnnniirrneene 4-6
Using the LOOP Statement..........ccouiiiiiiiiiciic s 4-6
Using the EXIT Statementcccciiiiiiiiiiiiiiiiiccssssesnes 4-7
Using the EXIT-WHEN Statement...........cccooviiiiiiiiiiiiicciiiccccceceeccscesesccenesnenes 4-7
Labeling a PL/SQL LOOPccueiiuriiirieicieicieicie s 4-7
Using the WHILE-LOOP Statement...........cccccovuiiiiiiiiniiiiiiiiiiiiiiiseeeenssnnes 4-8
Using the FOR-LOOP Statementccccociiiiiiiiiiiiiiiccciciecccseseceescsssecsescsssassenes 4-9
Sequential Control: GOTO and NULL Statementsccccccooviiiiinniiiic 4-12
Using the GOTO Statementccccvuiiiiiiiiiiiiiiiiiiiiii s 4-12
Using the NULL Statement...........cccoviiiiininiiiiici e 4-13

Using PL/SQL Collections and Records

What Is @ COlLeCtion?coviiiiiiiiiiiiicc s 5-1
Understanding Nested Tables...........cooouoiiiiiiiiiii 5-2
Understanding VaITays.......c.cocciiiiiiiiiiiiiiiiiciiciciciieiseieiesessssse e sssssssssssssssssssenes 5-2
Understanding Associative Arrays (Index-By Tables)cccccovvvininininnninnnncccees 5-3
How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays............cccc....... 5-4

Choosing Which PL/SQL Collection Types to Use...........cccccccovnvinininnnnniiniin, 5-4
Choosing Between Nested Tables and Associative ATTaysccccccevvuereurerirerieeeeeererieieieieeennas 5-5
Choosing Between Nested Tables and Varrays.........c.cccoooeueueiiiiieiiiicccccecce 5-5

Defining Collection TYPeScccccovuiiiiiiiiiiiiiiiiiiic s 5-6
Defining SQL Types Equivalent to PL/SQL Collection TYPescccceeueururururururururriviciiieirnenes 5-7

Declaring PL/SQL Collection Variables.............cccccoooiiiiiiiiiiiiiiiiies 5-8

Initializing and Referencing Collectionsccccccoviviiiiiniiiiiiiiiis 5-10
Referencing Collection EIEMeNtscccccccuiuiiiiiiiiiiiiiiiiiiiicceciececee s 5-12

Assigning Collections.............ccccviiiiiiiiiiiiiiiii s 5-13

Comparing ColleCtions............ccovviviiiiiiiiiiiii s 5-16

Using PL/SQL Collections with SQL Statementsccccccoeiiiiiiniiinicccreeeeeees 5-17
Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statementsc.cc.cc....... 5-20
Manipulating Individual Collection Elements with SQL.........ccccooooiiiiii, 5-21

Using Multilevel Collectionsccccceuiiiiiiiiiiiiiiiiiiiicicceeee e 5-21

Using Collection Methods..............ccccoviiiiiiiiiiiiiiiiicc s 5-23
Checking If a Collection Element Exists (EXISTS Method)cccccceviiiiinniniiinniiiinn, 5-24
Counting the Elements in a Collection (COUNT Method)ccccevuvueiiiiinnniiiricciceene 5-24
Checking the Maximum Size of a Collection (LIMIT Method)c.ccoevieininiiniiiiicne 5-24
Finding the First or Last Collection Element (FIRST and LAST Methods)cccccceueuennne. 5-25
Looping Through Collection Elements (PRIOR and NEXT Methods).........cccccccoerueurivucunnnne. 5-26
Increasing the Size of a Collection (EXTEND Method)coooeeiiiiiiiiiiiccce 5-27

vi

Decreasing the Size of a Collection (TRIM Method)........ccccccviiiviiiiiiiiniiniiiici, 5-28

Deleting Collection Elements (DELETE Method)ccccceviviiiiinininiiniiiiiiiiiice, 5-29
Applying Methods to Collection Parameters............cccccccueuiuririiiiinniiiinccccceceeeeees 5-30
Avoiding Collection EXCeptionscccccceviiiiiiiiiiiiiiiiiiiii s 5-30
What Is @ PL/SQL RECOTA?cuiiiiiieieieeeetee ettt ettt ettt sttt ettt ese e st eseeseeseesees 5-32
Defining and Declaring Recordsccccooiiiiiiiiiiiiiiicceeeeee s 5-32
Using Records as Procedure Parameters and Function Return Valuesccccoeuevneen. 5-33
Assigning Values t0 Records............ccccocoiiiiiiiiiiiiiiiiiiiiiis 5-34
Comparing RECOTASc.cciuiiiiriiiiiiiiiiccceee e 5-35
Inserting PL/SQL Records into the Database.............ccccocovvviniiiiiniiiiicn, 5-36
Updating the Database with PL/SQL Record Valuesccooooiviiiiiniiiiceicccce, 5-36
Restrictions on Record Inserts/Updates...........cccceueueiriciiiiinininiiiiicccceececeeeeeeeeeees 5-37
Querying Data into Collections of Recordsccoceueuiiiiniiiiiiiniicicce s 5-38

Performing SQL Operations from PL/SQL

Overview of SQL Support in PL/SQL ..o 6-1
Data Manipulationccccoiiiiiiiiii e 6-1
Transaction CONIOLcciiiiiiiiiiie s 6-2
SOL FUNCHONS. .. ceutietteieeteieeteeteetesteete st este st esbessaebeessesseessasseessesseessesssessesssessesssessesssessenssansenssensennes 6-2
SQL PSEUAOCOIUININIS ..ottt ettt ettt e et ebeeasesbeesesseesseeseeseessessesssesseessessaessensesssesseenes 6-2
SQL OPETAtOTS ...t 6-4

Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)......................... 6-5
Overview of Implicit Cursor AHributesooooeiiiiiiii e 6-6

Using PL/SQL Records in SQL INSERT and UPDATE Statements.............ccccccccccevvvniinnnnnne 6-7

Issuing Queries from PL/SQL..........cccccooiiiiiiiiiiiii s 6-7
Selecting At Most One Row: SELECT INTO Statementcccouevoiimiieiniccieiiccceie 6-7
Selecting Multiple Rows: BULK COLLECT Clauseccevueuriiiiirinieiieicicirieieieiceceeeeeeeieeeeeennes 6-8
Looping Through Multiple Rows: Cursor FOR LOOP......c.ccoeeiiiiiiiiiicicicc e 6-8
Performing Complicated Query Processing: Explicit CUrsors............ccccceeuvivriniciciniiiiiniininnnnns 6-8

Querying Data with PL/SQLcccccoiiiiiiiiiinirercer s 6-9
Querying Data with PL/SQL: Implicit Cursor FOR LOOPccccovivimuniiieiieiieiee 6-9
Querying Data with PL/SQL: Explicit Cursor FOR LOOPSccccceuviviiiiinininiiiniiiiiiiiiniins 6-9
Defining Aliases for Expression Values in a Cursor FOR LoOp.......ccccccceeuvviniciicirniciceene 6-10
Overview of EXPLiCit CUISOIScoviuiiiiieiiieiieicici e 6-10

USING SUDQUETIES ..o s 6-13

Using Correlated Subqueries..............ccccooooiiiiiiiiii s 6-15
Writing Maintainable PL/SQL QUETIES.........ccccoiiiiiiiiiniiiiiiiiiiicscsni 6-15

Using Cursor ARIDULEScccoiiiiiii s 6-16
Overview of Explicit Cursor AtribULes........c.cccceuiuiiiiriiiiiiiiccceeeeeee s 6-16

Using Cursor Variables (REF CURSORS)ccccocoiviiiiiiiiiiiiiiiiiiccns 6-19
What Are Cursor Variables (REF CURSORS)?.......coeirririeirieineenieenietnieresieneeienesie s 6-19
Why Use Cursor Variables? ... 6-19
Declaring REF CURSOR Types and Cursor Variablescccooiiiiiiie, 6-20
Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE............cccccccocevvnnnnnnnne. 6-22
Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL 6-26
Avoiding Errors with Cursor Variables............coii e, 6-26
Restrictions on Cursor Variables ...t 6-27

Using Cursor EXPressions............cccciiiiiiiiiiiiic s 6-27

Restrictions on Cursor EXPressions.........cooiiiiiiiiniiiiciicnc s 6-28
Example of CUrsor EXPIreSSIONSc.ccccucucuiuiiiiiiiiiiiicieieicicicieieeeieieeieeeeee e 6-28
Constructing REF CURSORs with Cursor Subqueries............ccocoiiiiiiiicicccce, 6-29
Overview of Transaction Processing in PL/SQLccccccoovviiiinnniins 6-29
Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQLcccccovviiiniiniiiineneninns 6-29
How Oracle Does Implicit ROIIDACKScccceuiiiiiiiieiiicicice e 6-31
Ending Transactions ... 6-31
Setting Transaction Properties with SET TRANSACTIONccccoceviiiiiinniniciereeeeeeenes 6-32
Overriding Default LOCKINGcccooiiiiiiiieiicicicc e 6-32
Doing Independent Units of Work with Autonomous Transactions.............ccccecevvviiininnnnnn. 6-35
Advantages of Autonomous Transactions...........cccccceeeueeeirririiiinneeceeeeeeeeeeeeeeees 6-35
Defining Autonomous TranSactionsc.ccceueirueirieicieicie e 6-35
Controlling Autonomous Transactionscccceeeiriiiiiiiiinininiiies 6-37
Using Autonomous TrigGers ..o s 6-38
Calling Autonomous Functions from SQL...........cccooeiiiiniiniiiiieee e 6-39

Performing SQL Operations with Native Dynamic SQL

What Is Dynamic SQL?ccccooiiiiiiiiiiiiii e 7-1
Why Use Dynamic SQL?........cccocoiiiiiiiiiii s 7-2
Using the EXECUTE IMMEDIATE Statementccccooiiiiiinc 7-2
Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings.........c.ccccccoverueiunnee. 7-4
Building a Dynamic Query with Dynamic SQLccccccoiiiiiiniii, 7-4
Examples of Dynamic SQL for Records, Objects, and Collectionsccccccceevuvirvvniinnnenne 7-5
Using Bulk Dynamic SQLccccocoiiiiiiii e 7-6
Using Dynamic SQL with Bulk SQLcccccccoiiiiiiiiiiiiiiiies 7-6
Examples of Dynamic Bulk Binds..........cccccccoiiiiiiiiiiiiiiiccccccceecececneeeenenes 7-7
Guidelines for Dynamic SQLccccccooiiiiiniiiiiiii 7-8
When to Use or Omit the Semicolon with Dynamic SQLcccoooiviiiiiiiie 7-8
Improving Performance of Dynamic SQL with Bind Variables............ccccccooiiiinnnninnnnns 7-8
Passing Schema Object Names As Parameterscccooeeueveiiiicieiiiicicieceee s 7-9
Using Duplicate Placeholders with Dynamic SQLcccccoooiiiiiiiiiiiiec e 7-9
Using Cursor Attributes with Dynamic SQL.......ccooiiiininiiec e 7-10
Passing Nulls to Dynamic SQLccooeuiiiiiiiiiiiic e 7-10
Using Database Links with Dynamic SQLcccoooiiiiiiii e, 7-10
Using Invoker Rights with Dynamic SQL........cccooiiiiiiiniie e 7-11
Using Pragma RESTRICT_REFERENCES with Dynamic SQL.........ccccooiiiiiiiiine, 7-11
Avoiding Deadlocks with Dynamic SQLccccccoviiiiiiiinniiiiies 7-12
Backward Compatibility of the USING Clauseccccccueururuririiiieirieieiicecceceeeeeeeeeeeenes 7-12

Using PL/SQL Subprograms

What Are SUDPIrOgrams? ... s 8-1
Advantages of PL/SQL Subprograms..............cccccoceviiiiiiiiiiiiniiiiiiiineeess e 8-2
Understanding PL/SQL Procedures..............cccccoiiiiiiiiiiiiiiiiiiicccccicscscssasnnes 8-3
Understanding PL/SQL FUNCHONSccccooiiiiiiiiiiiiiccceeeceeeeeeeeee e 8-3

Using the RETURN Statementcooouoiiiiiiiiici i 8-4

Vii

viii

Declaring Nested PL/SQL SUbProgramscccccoeeviiiiiiiiiiiiiiiiiiiieineeeneseesesenssseesesennes 8-5

Passing Parameters to PL/SQL Subprograms ..., 8-6
Actual Versus Formal Subprogram Parameters..............cccccceuvueuiiiirnirnieiininniiceeeeeeeeeeeees 8-6
Using Positional, Named, or Mixed Notation for Subprogram Parameters.............c.ccccccouc.... 8-7
Specifying Subprogram Parameter Modes............ccooeueiiiiininiiiieiiiccee e 8-7
Using Default Values for Subprogram Parameters...........c.coooovviivninininininnncnninncecececee 8-9

Overloading Subprogram NAmescccccovviviiiiiiiii e 8-9
Guidelines for Overloading with Numeric Typescccocoeoioiiiiiiiiiiiciiccceecc e, 8-11
Restrictions on OVerloading.........c.ccccceiuiiiiiiiniiiiieccceeeeeee e 8-11

How Subprogram Calls Are Resolved ..o 8-12
How Overloading Works with Inheritance...........ccccouovoiieiiiicc e, 8-13

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)ccccccceeuvuvvivirernnunuene. 8-15
Advantages of Invoker's Rightsccooiiiiiiiiii 8-15
Specifying the Privileges for a Subprogram with the AUTHID Clause...........cccccccvuvunurunnnnne. 8-16
Who Is the Current User During Subprogram Execution?............ccccevnvnninnnnnnnincneence. 8-16
How External References Are Resolved in Invoker's Rights Subprograms...........ccccccc...... 8-16
Overriding Default Name Resolution in Invoker's Rights Subprograms............cccccccoeeeeue... 8-17
Granting Privileges on Invoker's Rights SUDPrograms...........ccccccceeueueiciiirnnnieccncccceene 8-17
Using Roles with Invoker's Rights Subprograms...........c.ccccooiiiiii, 8-18
Using Views and Database Triggers with Invoker's Rights Subprograms............c.cccccc.c..... 8-18
Using Database Links with Invoker's Rights Subprogramsc.cccccoveininnnnnninncncnnnce. 8-18
Using Object Types with Invoker's Rights Subprogramscccoceeieiiceiiicicne, 8-19

Using Recursion with PL/SQL...........ccccccocoiiiiiiiiiiiiiiiiin s 8-20
What Is a Recursive SUDProgram?...........cccooiriiiniinininiiccec e 8-20

Calling External SUbPrograms..............cccccovviviiiiiniiiiiiiiiii s 8-21

Creating Dynamic Web Pages with PL/SQL Server Pages.............ccccocovvvnnnnninnniinnnn, 8-22

Controlling Side Effects of PL/SQL Subprogramsccccccovvuvririrninenirnnnieeeeeeeeeeeees 8-22

Understanding Subprogram Parameter Aliasingcccocovvviiiiiiiiiiiiicc, 8-23

Using PL/SQL Packages

What Is a PL/SQL Package?..........ccccovuiiiiiiiiiiiiiiiiiiiicccee s 9-2
What Goes In a PL/SQL Package? ..o 9-2
Example of @ PL/SQL PaCKagec.c.ceuiuiiiiiiiiiiiiiicccciccciccicccceeccese e 9-3

Advantages of PL/SQL Packages............cccccoeuiiiiiiiiiiiiniiiiiiiiiiies s 9-3

Understanding The Package Specification ... 9-4
Referencing Package CONLENESccceiiuiiiiiiiiiiicccceeccccceee e 9-5

Understanding The Package Bodycccccoooviiiiiiiiiiiiccan 9-6

Some Examples of Package Features ..., 9-7

Private Versus Public Items in Packagescccocoviiiiiiiiiiiiniiiinccceeeeeeeees 9-11

Overloading Packaged Subprograms...............ccccovviiiiiiiiiiiiiiis 9-11

How Package STANDARD Defines the PL/SQL Environmentcccccccoevvvvinnninnnnnnn. 9-12

Overview of Product-Specific PACKAGES.............coviviiiiiriiiiiiiiircccceeee s 9-12
About the DBMS_ALERT Package..........ccccoceviiiiiiiiiiiiiiiiiiiicicie s 9-12
About the DBMS_OUTPUT Packagecccceuvuriiiuiiniiiieieriicieiscsceticce s 9-12
About the DBMS_PIPE Packagec.ccccceuiuiuiiriiiiiiieieiciciccieeceiceieeeee e 9-13
About the UTL_FILE Package.........cccccevuiiiiiiiiiiiiiiiiiiciciiceee s 9-13
About the UTL_HTTP Package.........cccccovuiiiiiiiiniiiiiiiiiiiiiiiens 9-13

10

11

Guidelines for Writing Packages..............ccccovviiiiiiniiiiiiiiics 9-13

Separating Cursor Specs and Bodies with Packages..............ccccocovvnnniinnnnniii, 9-14
Handling PL/SQL Errors
Overview of PL/SQL Runtime Error Handling.............ccccocovviiinnnn, 10-1
Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions...........cccccccceueunneee. 10-3
Advantages of PL/SQL EXCEPHONS..........ccccoovuiviiiiiiiiiiiiiiiciiiccccce s 10-3
Summary of Predefined PL/SQL EXceptions............cccccocvuviiiiiiininininiiiniiiiiinncnccs 10-4
Defining Your Own PL/SQL EXCEPHONSc.ccovuiiiiiiiiiiiiiiciiicccceeeeee s 10-6
Declaring PL/SQL EXCEPHONSc.cvueiiueiiiniiiciicisicici e 10-6
Scope Rules for PL/SQL EXCEPHONSccuvvriiiiiiiiiiiiiiiiiiciciiiiis 10-6
Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT 10-7
Defining Your Own Error Messages: Procedure RAISE_APPLICATION_ERROR.............. 10-8
Redeclaring Predefined EXCEPiONS.........cccccvuviiiiiiiiiiiiiiiiiiiiciciiiics 10-9
How PL/SQL Exceptions Are Raised............cccccovieieinininieiicininieiinnecinereceneeneeeesneneneesnenenene 10-9
Raising Exceptions with the RAISE Statementccoooooiiiiiiii, 10-9
How PL/SQL Exceptions Propagate..............cccccooiiiiiiiiiiiiiiiiiiiiiis 10-10
Reraising a PL/SQL EXCEPLIONccooiiiiimiiiiiiiiiicccccccccccceee e 10-12
Handling Raised PL/SQL EXCEPHIONS..........cccceviviiiiiiiiiiiiiciiiiciccci s 10-12
Handling Exceptions Raised in Declarations..............ccccceoevviiiiiininiiiniiiciicens 10-13
Handling Exceptions Raised in Handlers...........cccccceeiiiiiiiiiiiiiicccccecceeeceennees 10-14
Branching to or from an Exception Handlerc..ccoovriiiininiiniiiee, 10-14
Retrieving the Error Code and Error Message: SQLCODE and SQLERRM 10-14
Catching Unhandled EXCEPHIONSc.ccccucuiuiiiiiiiiiiiiiiiiicciccecccceee s 10-15
Tips for Handling PL/SQL EXTOrs...........cccccoviiiiiiiiiiiiiiiiiiiciicc s 10-15
Continuing after an Exception Is Raisedccccccceiiiiiiiiiiiiiiiiiiiiccce 10-15
Retrying a Transaction ..o s 10-16
Using Locator Variables to Identify Exception Locations...........cccccoveuiniiieininininiiieinn, 10-17
Overview of PL/SQL Compile-Time Warnings.............cccccooeiiiiiiiiiiiiiiciiiccccccennes 10-17
PL/SQL Warning CategOTiesccccerueuiuiuiuriiiiiiieieieieieieeieieeeieeiereseieae e senenens 10-18
Controlling PL/SQL Warning MeSSages...........cccoweuiueuiurinininiiieinieicie s, 10-18
Using the DBMS_WARNING Package........ccccccccviiiiniiiiiiiiiiiiiiiiieeeees 10-19
Tuning PL/SQL Applications for Performance
How PL/SQL Optimizes Your Programs............ccccccceviviiiiiiinininininiiiiiseeseseneees 11-1
When to TUNE PL/ISQL COE.......coooiiiiiiieieieeeecteeceecteeeteete ettt et ere et re et eteevesaeeaeeteeseessenseereens 11-1
Guidelines for Avoiding PL/SQL Performance Problemscccccocovniinininininnennn, 11-2
Avoiding CPU Overhead in PL/SQL Code.........ccccccviiiiiiiiinininiiiiiiiiicciccns 11-2
Avoiding Memory Overhead in PL/SQL Codeccccceiuiiiiiiiiiiiiiiiiiccccccceeceeeeees 11-5
Profiling and Tracing PL/SQL Programs............cccccocoviiiiininiiiiiniiiiiiiiineessesesesssseenenens 11-6
Using The Profiler API: Package DBMS_PROFILER..........ccccccooeiiiiiniiniiiiiiiie, 11-6
Using The Trace APIL: Package DBMS_TRACEcccoiniiieee e 11-7
Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT). 11-7
Using the FORALL Statement..........ccccocciiiiiiiiiiiiiiiiiiiiiiiins 11-8
Retrieving Query Results into Collections with the BULK COLLECT Clause..................... 11-15
Writing Computation-Intensive Programs in PL/SQL..............ccccccccoviiniinnii, 11-19

12

Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables........................... 11-19

Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint............ccccccoeevvinnnnnnn 11-20
Restrictions on NOCOPY ..o e 11-21
Compiling PL/SQL Code for Native EXecution..............ccccooooiiiiiiiiiiiiicccccnes 11-22
Setting Up Transformation Pipelines with Table Functionsccccoooiiiiiin. 11-28
Overview of Table FUNCHONSccoviiiiiiiiiiic e 11-28
Using Pipelined Table Functions for Transformations...........cccccoceuvieieieinininieinieneeen. 11-30
Writing a Pipelined Table FUNCHOMN..........cccccoiiiiiiiiiiiiiiiic s 11-31
Returning Results from Table FUNCHONSc.ccccceuiiiiiiiiiiiiiiccccccccccecceeeeceees 11-31
Pipelining Data Between PL/SQL Table FuNctions...........ccccocevmiiiniiiniiceees 11-32
Querying Table FUNCLONS.........ccccciiiiiiiiiiiiiiiiii s 11-32
Optimizing Multiple Calls to Table FUNCHONSc.ccccceeuiiiiiiiiiiiiiiiicccceeeccceeeeeeees 11-33
Fetching from the Results of Table FUNCHONS............cccoviviiiiiiiiiccc e, 11-33
Passing Data with Cursor Variables............cccooiiiiiiiiiicc e 11-33
Performing DML Operations Inside Table FUNCtionscccccccceiiiiiniiicicciccee 11-35
Performing DML Operations on Table FUNCHONS.........ccccoouiimiiiiniiccc 11-35
Handling Exceptions in Table FUNCHONS...........ccccceuviiiiiiiiiiiiiiiiiiciiiccice 11-36

Using PL/SQL Object Types

Overview of PL/SQL ODbject TYPes...........cccoviviviiiniiiiiiiiiiiiiniiicsnnssssss s 12-1
What Is an Object TYPe? ... 12-2
Why Use Object TYPeS?........cccviiiiiiiiiiiiiiciicicc s 12-3
Structure of an Object TYPe........ccccocviiiiiiiiiii s 12-3
Components of an ODJect TYPEccovvviriiiiiiiiiiccrrree s 12-5
What Languages can I Use for Methods of Object Types?.........ccccooeviuiiirniieiiiciicciiee, 12-6
How Object Types Handle the SELF Parameter............ccccoeevoiiiieiniininieiceeecce e, 12-6
OVETIOAAINE ... 12-7
Changing Attributes and Methods of an Existing Object Type (Type Evolution) 12-9
Defining Object TYPeS.........ccccoiiiiiiiiiiiiiiiiiii s 12-9
Overview of PL/SQL Type Inheritance..........c.cccccocueeiiiiiiiiiiiiiccceccceeeeeeeeeeeenenenenens 12-10
Declaring and Initializing Objectscccccoeiiiiiiiiiiiiiiiiiii s 12-11
Declaring ODJECtSccciiiiiiiiiiiiiiiiiiiicic s 12-11
INitialiZing ODJECESc.cveviuiiiiiieicicicicicieeie e 12-12
How PL/SQL Treats Uninitialized Objects.........ccccceviviiiiviiiiniiiiiiicne, 12-12
Accessing Object Attributes.............cccccooiiiiiiiiiiii 12-13
Defining Object CONSEIUCIOTSc.couiuiiiiiiiiiiiiiiicccce s 12-13
Calling Object CONnStruCtOrs. ... 12-14
Calling Object Methods...........cccooiiiiiiiiiiiii e 12-15
Sharing Objects through the REF Modifierccoooooiiiiiiiiiiiccccccccceeenenes 12-16
Forward Type Definitions.........c.ccoeueviiiiiiiiiiiiiicicc e 12-17
Manipulating Objects through SQL.............ccccccccoiiiiiii 12-17
SEleCtiNg ODJECESvvviiiicicieieiciccceee et 12-18
INSErting ObJECES.......cvoviiiecie 12-21
Updating ODbJECtS......c.ccuviiiiiiiiiiiiiiiiiii s 12-22
Deleting ODJECES.cucviuiiiiciiiicieiciciccceee e 12-22

13 PL/SQL Language Elements

Assignment Statement ... 13-3
AUTONOMOUS_TRANSACTION Pragma........ccccccouvuiuiiiininiiiininiiciiicccnsneecesss s 13-6
33 ool TSRS 13-8
CASE Stat@mMENt......c..oiiiiiiiieiieceeceeeteet ettt et et e et e e s aeesbe e sbesbe e saesssaesssessseessseesseessessseenseenns 13-14
CLOSE Stat@mENnt.........ccoooiiiiiieeieeeeeeest ettt ettt e st et e s e et esse et e sseenseeneensesssesesneensennses 13-16
Collection IMEEROMScocviiiiiieieeeeeeeeeet ettt e sb e b s e e b e s te e b e s reesseeseessessaesesssenseeneas 13-17
COLLECHIONS ...ttt ettt ettt ettt et e e be et e ete e beeae e beessesbeesbessaesseseessesssenseessansesssansessseseensas 13-21
COMUMEINESceiiiieiieeiieie et te et e st et e et e et eese e aesaeesesssesseensesseenseseensenseenseaseansenssensennsensennses 13-26
COMMIT Stat@mMENt......cccueiiiiiriieiieiieeieeeie ettt ettt e eteesteesteesttessbeesseessbaesssessseesssesssessssesssesssaenns 13-27
Constants and Variables..............cooui ittt b et et r e ean e aeeneas 13-28
CUISOT AITDULES ...ttt sttt s e et e e e s e et e e s e enseeneesesneenseennas 13-31
CUISOT VATTIADIES ..ottt ettt sttt st sbe b e st e e b e ae e b e sse e st aeseensesseessesssenseeneas 13-34
CUTSOTSeteeiieeeieeiteeie ettt et e e te e bt e s tte e beessbe e baesseeesbaassseasseeassaesseessseessaasseeassaasseasseessansseessenssennseenns 13-38
DELETE Statement........cc.coovieiiiieieiieieeeeestee ettt ettt eesaeeaesseesse s e e sesnsesesnsenseensenseenes 13-41
EXCEPTION_INIT Pragmacccccoooiiniiiiiiiiiiiiiccc e 13-44
EXCEPHONS ...t s 13-45
EXECUTE IMMEDIATE Statementcccocvieiiiiirieniieiereeieseeteseee st te et eseesseeneesseennes 13-47
EXIT STatemEntcc.oooiiiiiiiiieeieeeeeeceee ettt ettt e st e e te et e s be e baesabaesasessseessaesssesseesnsesnsaenns 13-50
EXPIESSIONS ...ttt s 13-52
FETCH Statementooveiieieiieieieeieeeee et tete e et e et e e e tesseeseesseessesneessesneessesnsensesssensesnsensesnes 13-60
FORALL Statementcoocviiiiiiiiiieeieeie ettt ste et e steeste e sbeesaaessteessaesssesbaesssesnsnesnsaeseenssenn 13-64
FUNCHONS ..ottt ettt e et e e teeeae e bt essbeesbeessbaesaessseesssaessaessseensaessseassaenseenssenn 13-67
GOTO SEAtEIMIENLcoeieeieiieieieeeeeeerte ettt et e et e ste st e teetesseessesseessesseensesseenseassensesssesesnsessennses 13-71
IF SEAt@IMENL.......ooiiiiiiiiiieie ettt ettt e e e st e e te e bt esbe e seessbaesstesnse e saessseeseessseensaenns 13-72
INSERT Statementcocviiiiiiiiiiiiecieceeeteeteete ettt e ete e teesae e tbesbeessaessbaessaeesseesssassseessessseesseeans 13-74
5T =] Y PSS 13-76
LOCK TABLE Statement............ccooiiieiiieiecieiieeceeeete et sttt e eese e se s e sesseessessaessessnesseennas 13-78
LOOP StatemeEntScccueeeuiiiiiieieciiecieeteecte et eeteeeteesteeteestaeesbe e stesbeesseessseesssessseesssasssessssessseesseeans 13-79
MERGE SEAteMENtooviiniieeieiieieeeeeeee ettt ettt te et e saeessesaeessesneessesnsensesnsenseensenseenes 13-84
INULL STatemENtc..ooeiiiiiieieeieciteeteete ettt ete et este et e st e ebeesabeessaessteessaesssesnseesssesnseesssaenseenssens 13-85
ODBJECE TYPES ... 13-86
OPEN SHateIMENt.......oovieeieiiiieieeieceeeste ettt et st este st esse st esseessesseessesseensesseenseaseensenssesesssessesnses 13-93
OPEN-FOR Stat@menitcccveiriiiiiiiiieiienieeitente et este st esteesteestessseessaessbeesssessseesssesssessseesssessseenns 13-95
OPEN-FOR-USING Stat@ment.........c.ccciveiiiiiiieiieeiiiecieeieesieesieesteesaeeseesveessaesseesssesssessssesssessseenns 13-97
PACKAGES ... 13-99
PrOCEAULES........ooiieieeieeeeee ettt ettt et e et e s te e b e saeesaesseessesseessesssessesssensanssansaessansensaenns 13-104
RAISE SHateImMENtcccviiiiiiiiecieeeecteeeeete ettt et et e et e s ae e be e saeesbeesseessseessaeessaesssaesseesseeensessens 13-108
RECOTAS ...ttt ettt et e st e et e st e et e saeessesse et e sntenseentensesnsenseensenseensenseennenns 13-110
RESTRICT_REFERENCES Pragmaccccoccocoiiiiiiiiiiiiiiiciescecesese s 13-113
RETURN Stat@ment.......ccccviiiiiiiiieiieiieeeeeie ettt e ete et e saeeste e aesteessaessveessaeessaesssasssessssessesnsens 13-115
ROLLBACK StateImeNnt..........cocveeierieeieieeieieeieteeiestteteseeeteseeesaesseessessessesssessesssessesssessesssessesssenns 13-117
YoROWTYPE ARIIDULE ..ottt ettt ettt re et e e b e s reebessaesaeesneeas 13-119
SAVEPOINT StatemeNt..........cocoiiiiiiiiieieecieecieecte et eete et ste et e eeebeesseesbeessaeessaesssassseesssesnseensens 13-121
SCN_TO_TIMESTAMP FUNCHONcovieeieiieiieiieieetteeesteteseeeae e saesee e ssessesssesseensenseensesssensenns 13-122
SELECT INTO Statementooviiiiiiieieiieieeeteseeteseete st eae e e sae s e esae s s essesssessesssasseessassesssenns 13-123
SERIALLY_REUSABLE Pragma..........cccccoiviiniiiiiiiiniiiiciiciciceceete e 13-127

Xi

Xii

SET TRANSACTION Statement..........cccooeviiiiiniiniiiiiiiiiiiiiiiieee e 13-129

SOL CUISOT ...ttt ettt ettt ettt et e et e b e e s et e ea e et e eat e bt eatesaeeabesbeebesbeenbeebeenbesstenbeesteneesseenes 13-131
SQLCODE FUNCHONoooiiiiitiiieciieeieeie ettt eetteeveesaeeteestaeeseessseessaesseessseesssessseesssasseessseesesnsens 13-135
SQLERRM FUNCHON ..ottt ettt ettt te et e steestesaeesaesseessessaessessaessesssensesssassenssessesssenns 13-136
TIMESTAMP_TO_SCN FUNCHONooviiiiiiieieieeiecteceeteeteee ettt sve e s veeaesveeae e ennens 13-138
JoOTYPE ARIIDULE ...ttt ettt sttt e et e ene e s e e neessesnnensesnseneas 13-139
UPDATE Statement.........ccoviiiiiiiiiiieiieeite ettt e ste et esteeste e sbeesseessteessaesssessseesssessseessesnseennee 13-141

Sample PL/SQL Programs

Where to Find PL/SQL Sample Programscccccoceeiiiiiiniiiiiiiiiniiiiieeessnessssssssnenenns A-1
Exercises for the Reader ..o A-1

Understanding CHAR and VARCHAR2 Semantics in PL/SQL

Assigning Character Values ..o B-1
Comparing Character VAIUESccoooiiiiiiiiiiiiiire e B-2
Inserting Character Values ..o B-2
Selecting Character ValUues ... B-3

Obfuscating Source Code with the PL/SQL Wrap Utility

Advantages of Wrapping PL/SQL Procedures...............ccccccoviviniiniinninininiiinnins C-1
Running the PL/SQL Wrap UtIlityccooviiiiiiiiiiiircre s C-1

Input and Output Files for the PL/SQL Wrap Utilityccccooormiivriiiiiiiiccccecee C-2
Limitations of the PL/SQL Wrap Utilityccccccooiiiniiiiiiiis C-3

How PL/SQL Resolves Identifier Names

What Is Name ReSOIUtiON?cocoouiiiiiiiiiiiiciic et D-1
Examples of Qualified Names and Dot Notation.............ccccccvveeinnieeienneccnneccneeeceneenene D-2
Differences in Name Resolution Between SQL and PL/SQL..........ccoooooieiiieecienieieeeeeeeee D-3
Understanding Capture.............ccccooiviiiiiiiiiiniiiiiiii s D-3

INNEr CaPUTE.....cooiiiiiiiic s D-3

Same-Scope CaPTUTE........oouiiiiiiii s D-4

OULer CaPLUTE....ceiiiii s D-4
Avoiding Inner Capture in DML Statementscccoviiiiiiiininiiie D-4
Qualifying References to Object Attributes and Methods...............ccccccciiiiiiiiiiie, D-5
Calling Parameterless Subprograms and Methodsccccovvnnniiininnn D-5
Name Resolution for SQL Versus PL/SQL...........coooioiiiiiiiiiieeeeeceeete ettt eeve e ere e D-6

PL/SQL Program Limits
List of PL/SQL Reserved Words

Frequently Asked Questions About PL/SQL

When Should I Use Bind Variables with PL/SQL?...........cccooioiiiiiiieceeeeeeeeteeeeere et G-1
When Do I Use or Omit the Semicolon with Dynamic SQL?ccccccovviniiiniiiiii, G-1
How Can I Use Regular Expressions with PL/SQL?............cccccccouiinnninnniii G-1

How Do I Continue After a PL/SQL Exception?ccccccoovviviiiiiiiiiiniiiiiiiccccs G-2

Does PL/SQL Have User-Defined Types or Abstract Data Types?cccccccovvvvnninnnnnnn G-2
How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?.......c.ccccceevvvncvnvnenennnns G-2
How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation? G-2
What Can I Do with Objects and Object Types in PL/SQL?..........c.cccccovivvnnnnnnnniiiiinn G-3
How Do I Create a PL/SQL Procedure?..........c.oovoovieiiirieiieeeeeeereeeee ettt e eteeeveereeeveeveeeveereenre e G-3
How Do I Input or Output Data with PL/SQL?ccccccooviiiiiiiiiiiics G-4
How Do I Perform a Case-Insensitive QUery?ccccovviviviiiiininiiiinnnns G-4
Index

Xiii

Xiv

Send Us Your Comments

PL/SQL User's Guide and Reference, 10g Release 1 (10.1)
Part No. B10807-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

= Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?

= What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
= FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

XV

XVi

Audience

Preface

This guide explains the concepts behind the PL/SQL language and shows, with
examples, how to use various language features.

This preface contains these topics:
= Audience

= How This Book Is Organized
= Related Documentation

= Conventions

= Sample Database Tables

= Documentation Accessibility

= Reading the Syntax Diagrams

PL/SQL, Oracle's procedural extension of SQL, is an advanced fourth-generation
programming language (4GL). It offers software-engineering features such as data
encapsulation, overloading, collection types, exceptions, and information hiding.
PL/SQL also supports rapid prototyping and development through tight integration
with SQL and the Oracle database.

Anyone developing PL/SQL-based applications for Oracle should read this book. This
book is intended for programmers, systems analysts, project managers, database
administrators, and others who need to automate database operations. People
developing applications in other languages can also produce mixed-language
applications with parts written in PL/SQL.

To use this guide effectively, you need a working knowledge of the Oracle database,
the SQL language, and basic programming constructs such as | F- THEN comparisons,
loops, and procedures and functions.

How This Book Is Organized

The PL/SQL User’s Guide and Reference contains:

Getting Started with PL/SQL
Chapter 1, "Overview of PL/SQL"

Summarizes the main features of PL/SQL and their advantages. Introduces the basic
concepts behind PL/SQL and the general appearance of PL/SQL programs.

XVii

XViii

Chapter 2, "Fundamentals of the PL/SQL Language"

Focuses on the small-scale aspects of PL/SQL: lexical units, scalar datatypes,
user-defined subtypes, data conversion, expressions, assignments, block structure,
declarations, and scope.

Chapter 3, "PL/SQL Datatypes"

Discusses PL/SQL's predefined datatypes, which include integer, floating-point,
character, Boolean, date, collection, reference, and LOB types. Also discusses
user-defined subtypes and data conversion.

Chapter 4, "Using PL/SQL Control Structures”

Shows how to control the flow of execution through a PL/SQL program. Describes
conditional, iterative, and sequential control, with control structures such as
| F-THEN-EL SE, CASE, and WHI LE-LOOP.

Chapter 5, "Using PL/SQL Collections and Records"

Discusses the composite datatypes TABLE, VARRAY, and RECORD. You learn how to
reference and manipulate whole collections of data and group data of different types
together.

Database Programming with PL/SQL
Chapter 6, "Performing SQL Operations from PL/SQL"

Shows how PL/SQL supports the SQL commands, functions, and operators for
manipulating Oracle data. Also shows how to process queries and transactions.

Chapter 7, "Performing SQL Operations with Native Dynamic SQL"

Shows how to build SQL statements and queries at run time.

Software Engineering with PL/SQL
Chapter 8, "Using PL/SQL Subprograms"

Shows how to write and call procedures, functions. It discusses related topics such as
parameters, overloading, and different privilege models for subprograms.

Chapter 9, "Using PL/SQL Packages"

Shows how to bundle related PL/SQL types, items, and subprograms into a package.
Packages define APIs that can be reused by many applications.

Chapter 10, "Handling PL/SQL Errors"

Shows how to detect and handle PL/SQL errors using exceptions and handlers.
Chapter 11, "Tuning PL/SQL Applications for Performance”

Shows how to improve performance for PL/SQL-based applications.

Chapter 12, "Using PL/SQL Object Types"

Introduces object-oriented programming based on object types. You learn how to write
object methods and manipulate objects through PL/SQL.

PL/SQL Language Reference
Chapter 13, "PL/SQL Language Elements"

Shows the syntax of statements, parameters, and other PL/SQL language elements.
Also includes usage notes and short examples.

Appendixes
Appendix A, "Sample PL/SQL Programs"

Provides several PL/SQL programs to guide you in writing your own. The sample
programs illustrate important concepts and features.

Appendix B, "Understanding CHAR and VARCHAR2 Semantics in PL/SQL"

Explains the subtle but important semantic differences between the CHAR and
VARCHAR?Z base types.

Appendix C, "Obfuscating Source Code with the PL/SQL Wrap Utility"

Shows you how to run the Wrap Utility, a standalone programming utility that enables
you to deliver PL/SQL applications without exposing your source code.

Appendix D, "How PL/SQL Resolves Identifier Names"

Explains how PL/SQL resolves references to names in potentially ambiguous SQL and
procedural statements.

Appendix E, "PL/SQL Program Limits"

Explains the compile-time and runtime limits imposed by PL/SQL .
Appendix F, "List of PL/SQL Reserved Words"

Lists the words that are reserved for use by PL/SQL.

Appendix G, "Frequently Asked Questions About PL/SQL"

Provides tips and answers to some of the most common PL/SQL questions.

Related Documentation
For more information, see these Oracle resources:

Various aspects of PL/SQL programming, in particular details for triggers and stored
procedures, are covered in Oracle Database Application Developer’s Guide - Fundamentals

For extensive information on object-oriented programming using both PL/SQL and
SQL features, see Oracle Database Application Developer’s Guide - Object-Relational
Features

For information about programming with large objects (LOBs), see Oracle Database
Application Developer’s Guide - Large Objects

For SQL information, see the Oracle Database SQL Reference and Oracle Database
Administrator’s Guide. For basic Oracle concepts, see Oracle Database Concepts.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore.oracl e.com
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracl e. com nenber shi p/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracl e.com docunent ati on/

Xix

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
« Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.

a glossary, or both.

Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.
(fixed-width elementsinclude parameters, privileges, .
font) datatypes, RMAN keywords, SQL Eil&aggﬁﬁggﬁe database by using the
keywords, SQL*Plus or utility commands, ’

packages and methods, as well as Query the TABLE_NAME column in the USER _

system-supplied column names, database TABLES data dictionary view.

;)(E)l]sscts and structures, usernames, and Use the DBVS_ STATS.GENERATE_STATS

‘ procedure.
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names, . i 1. .
(fixed-width andsample user-supplied elements. Such The password is specified in the or apwd file.
font) elements include computer and database = Back up the datafiles and control files in the
names, net service names, and connect / di sk1/ or acl e/ dbs directory.

identifiers, as well as user-supplied Thedepar t ment _i d,depart nent _nane,and

database objects and structures, column | {i i d col in th

names, packages and classes, usernames ocatlon_i d columns are in the

4 . g hr . depart ment s table.

and roles, program units, and parameter

values. Setthe QUERY_REWRI TE_ENABLEDinitialization

Note: Some programmatic elements use a parameter to t rue.

mixture of UPPERCASE and lowercase. =~ Connect as o€ user.

Enter these elements as shown. The JRepUt i | class implements these methods.
| oner case Lowercase monospace italic font You can specify the par al | el _cl ause.
Er]?in)c()zgz_a\(l:fdt A represents placeholders or variables. RunUol d_r el ease. SQLwhereol d_r el ease
font) italic refers to the release you installed prior to

upgrading.

XX

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT usernanme FROM dba_users WHERE usernanme = 'M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning

Example

[1 Brackets enclose one or more optional
items. Do not enter the brackets.

{} Braces enclose two or more items, one of
which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

» That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

| ower case Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

- - A double hyphen begins a single-line
comment, which extends to the end of a
line.

[* */ A slash-asterisk and an asterisk-slash
delimit a multi-line comment, which can
span multiple lines.

DECI MAL (digits [, precision])

{ENABLE | DI SABLE}

{ENABLE | DI SABLE}
[COWPRESS | NOCOVPRESS]

CREATE TABLE ... AS subquery;
SELECT col 1, col2, ... , coln FROM
enpl oyees;

acctbal NUMBER(11, 2);
acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em password
DB_NAME = dat abase_nane

SELECT | ast _name, enpl oyee_id FROM
enpl oyees;

SELECT * FROM USER TABLES;
DROP TABLE hr. enpl oyees;

SELECT | ast _namne, enpl oyee_id FROM
enpl oyees;

sql plus hr/hr

CREATE USER nj ones | DENTI FI ED BY
t y3MU9;

[* *

Sample Database Tables

Some programming examples in this guide use tables and other objects from the HR

schema of the sample database. These tables, such as EMPLOYEES and DEPARTVENTS,

XXi

are more extensive and realistic than the EMP and DEPT tables used in previous
releases.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e.com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Reading the Syntax Diagrams

XXii

To understand the syntax of a PL/SQL statement, trace through its syntax diagram,
reading from left to right and top to bottom.

The diagrams represent Backus-Naur Form (BNF) productions. Within the diagrams,
keywords are enclosed in boxes, delimiters in circles, and identifiers in ovals.

Each diagram defines a syntactic element. Every path through the diagram describes a
possible form of that element. Follow in the direction of the arrows. If a line loops back
on itself, you can repeat the element enclosed by the loop.

What's New in PL/SQL?

This section describes new features of PL/SQL release 10g, and provides pointers to
additional information.

The following sections describe the new features in PL/SQL:
= New Features in PL/SQL for Oracle Database 10g
« New Features in PL/SQL for Oracle9i

New Features in PL/SQL for Oracle Database 10g

Release 1 (10.1)
Improved Performance

PL/SQL performance is improved across the board. Most improvements are
automatic, with no action required from you.

Global optimization of PL/SQL code is controlled by the PLSQL_OPTI M ZE_LEVEL
initialization parameter. The default optimization level improves performance for a
broad range of PL/SQL operations. Most users should never need to change the
default optimization level.

Performance improvements include better integer performance, reuse of expression
values, simplification of branching code, better performance for some library calls, and
elimination of dead code.

The new datatypes Bl NARY_FLOAT and Bl NARY_DOUBLE can improve performance
in number-crunching applications, such as processing scientific data.

Native compilation is easier and more integrated, with fewer initialization parameters
to set, less compiler configuration, the object code stored in the database, and
compatibility with Oracle Real Application Clusters environments.

The FORALL statement can handle associate arrays and nested tables with deleted
elements. You can now use this performance construct in more situations than before,
and avoid the need to copy elements from one collection to another.

Enhancements to PL/SQL Native Compilation
This feature now requires less setup and maintenance.

A package body and its spec do not need to be compiled with the same setting for
native compilation. For example, a package body can be compiled natively while the
package spec is compiled interpreted, or vice versa.

XXii

XXV

Natively compiled subprograms are stored in the database, and the corresponding
shared libraries are extracted automatically as needed. You do not need to worry about
backing up the shared libraries, cleaning up old shared libraries, or what happens if a
shared library is deleted accidentally.

The initialization parameters and command setup for native compilation have been
simplified. The only required parameter is PLSQL_NATI VE_LI BRARY_DI R The
parameters related to the compiler, linker, and make utility have been obsoleted. The
file that controls compilation is now a command file showing the commands and
options for compiling and linking, rather than a makefile. Any errors that occur during
native compilation are reflected in the USER_ERRCRS dictionary view and by the
SQL*Plus command SHOW ERRORS.

Native compilation is turned on and off by a separate initialization parameter,
PLSQL_CODE_TYPE, rather than being one of several options in the
PLSQL_COWPI LER_FLAGS parameter, which is now deprecated.

See Also:

= "Compiling PL/SQL Code for Native Execution" on page 11-22

FORALL Support for Non-Consecutive Indexes

You can use the | NDI CES OF and VALUES OF clauses with the FORALL statement to
iterate over non-consecutive index values. For example, you can delete elements from
a nested table, and still use that nested table in a FORALL statement.

See Also:

= "Using the FORALL Statement" on page 11-8

New IEEE Floating-Point Types

New datatypes Bl NARY_FLOAT and Bl NARY_DOUBLE represent floating-point
numbers in IEEE 754 format. These types are useful for scientific computation where
you exchange data with other programs and languages that use the IEEE 754 standard
for floating-point. Because many computer systems support IEEE 754 floating-point
operations through native processor instructions, these types are efficient for intensive
computations involving floating-point data.

Support for these types includes numeric literals such as 1. 0f and 3. 141d, arithmetic
operations including square root and remainder, exception handling, and special
values such as not-a-number (NaN) and infinity.

The rules for overloading subprograms are enhanced, so that you can write math
libraries with different versions of the same function operating on PLS_| NTEGER,
NUMBER, Bl NARY_FLOAT, and Bl NARY_DOUBLE parameters.

See Also:

= "PL/SQL Number Types" on page 3-2

Improved Overloading

You can now overload subprograms that accept different kinds of numeric arguments,
to write math libraries with specialized versions of each subprogram for different
datatypes.

See Also:

= "Guidelines for Overloading with Numeric Types" on page 8-11

Nested Table Enhancements

Nested tables defined in PL/SQL have many more operations than previously. You
can compare nested tables for equality, test whether an element is a member of a
nested table, test whether one nested table is a subset of another, perform set
operations such as union and intersection, and much more.

See Also:
= "Assigning Collections" on page 5-13
= "Comparing Collections" on page 5-16

Compile-Time Warnings
Oracle can issue warnings when you compile subprograms that produce ambiguous
results or use inefficient constructs. You can selectively enable and disable these
warnings through the PLSQL_WARNI NGS initialization parameter and the
DBM5_WARNI NG package.

See Also:

= "Overview of PL/SQL Compile-Time Warnings" on page 10-17

Quoting Mechanism for String Literals
Instead of doubling each single quote inside a string literal, you can specify your own
delimiter character for the literal, and then use single quotes inside the string.

See Also:

= "String Literals" on page 2-6

Implicit Conversion Between CLOB and NCLOB

You can implicitly convert from CLOB to NCLOB or from NCLOB to CLOB. Because
this can be an expensive operation, it might help maintainability to continue using the
TO_CLOB and TO_NCLOB functions.

Regular Expressions

If you are familiar with UNIX-style regular expressions, you can use them while
performing queries and string manipulations. You use the REGEXP_LI| KE operator in
SQL queries, and the REGEXP_I NSTR, REGEXP_REPLACE, and REGEXP_SUBSTR
functions anywhere you would use | NSTR, REPLACE, and SUBSTR

See Also:
= "Summary of PL/SQL Built-In Functions" on page 2-28
= "How Can I Use Regular Expressions with PL/SQL?" on
page G-1
Flashback Query Functions

The functions SCN_TO_TI MESTAMP and TI MESTAMP_TO_SCN et you translate
between a date and time, and the system change number that represents the database
state at a point in time.

XXV

See Also:
=« "SCN_TO_TIMESTAMP Function" on page 13-122
« "TIMESTAMP_TO_SCN Function" on page 13-138

New Features in PL/SQL for Oracle9i

Release 2 (9.2)

XXVi

Insert/update/select of entire PL/SQL records
You can now insert into or update a SQL table by specifying a PL/SQL record

variable, rather than specifying each record attribute separately. You can also select
entire rows into a PL/SQL table of records, rather than using a separate PL/SQL
table for each SQL column.

See Also:

» "Inserting PL/SQL Records into the Database" on page 5-36

= "Updating the Database with PL/SQL Record Values" on
page 5-36

= "Querying Data into Collections of Records" on page 5-38

Associative arrays

You can create collections that are indexed by VARCHARZ values, providing
features similar to hash tables in Perl and other languages.

See Also:
= "Understanding Associative Arrays (Index-By Tables)" on
page 5-3
User-defined constructors

You can now override the system default constructor for an object type with your
own function.

See Also:

= "Defining Object Constructors" on page 12-13

Enhancements to UTL_FILE package
UTL_FI LE contains several new functions that let you perform general
file-management operations from PL/SQL.

See Also:

« PL/SQL Packages and Types Reference

TREAT function for object types

You can dynamically choose the level of type inheritance to use when calling
object methods. That is, you can reference an object type that inherits from several
levels of parent types, and call a method from a specific parent type. This function
is similar to the SQL function of the same name.

See Also:

= Oracle Database SQL Reference

Better linking in online documentation

Many of the cross-references from this book to other books have been made more
specific, so that they link to a particular place within another book rather than to
the table of contents. Because this is an ongoing project, not all links are improved
in this edition. If you are reading a printed copy of this book, you can find the
online equivalent at ht t p: / / ot n. or acl e. conf docurent at i on/ , with full
search capability.

Release 1 (9.0.1)

Integration of SQL and PL/SQL parsers

PL/SQL now supports the complete range of syntax for SQL statements, such as
| NSERT, UPDATE, DELETE, and so on. If you received errors for valid SQL syntax
in PL/SQL programs before, those statements should now work.

See Also: Because of more consistent error-checking, you might
find that some invalid code is now found at compile time instead of
producing an error at runtime, or vice versa. You might need to
change the source code as part of the migration procedure. See
Oracle Database Upgrade Guide for details on the complete migration
procedure.

CASE statements and expressions

CASE statements and expressions are a shorthand way of representing IF/THEN
choices with multiple alternatives.

See Also:

= "CASE Expressions" on page 2-24

= "Using the CASE Statement" on page 4-3
= "CASE Statement" on page 13-14

Inheritance and Dynamic Method Dispatch
Types can be declared in a supertype/subtype hierarchy, with subtypes inheriting

attributes and methods from their supertypes. The subtypes can also add new
attributes and methods, and override existing methods. A call to an object method
executes the appropriate version of the method, based on the type of the object.
See Also:
= "Overview of PL/SQL Type Inheritance" on page 12-10

= "How Overloading Works with Inheritance" on page 8-13

Type Evolution

Attributes and methods can be added to and dropped from object types, without
the need to re-create the types and corresponding data. This feature lets the type
hierarchy adapt to changes in the application, rather than being planned out
entirely in advance.

XXVil

XXViii

See Also: "Changing Attributes and Methods of an Existing
Object Type (Type Evolution)" on page 12-9

New Date/Time Types

The new datatype TI MESTAMP records time values including fractional seconds.
New datatypes TI MESTAMP W TH TI ME ZONE and TI MESTAMP W TH LOCAL
TI ME ZONE allow you to adjust date and time values to account for time zone
differences. You can specify whether the time zone observes daylight savings time,
to account for anomalies when clocks shift forward or backward. New datatypes

| NTERVAL DAY TO SECONDand | NTERVAL YEAR TO MONTHrepresent
differences between two date and time values, simplifying date arithmetic.

See Also:
= "PL/SQL Date, Time, and Interval Types" on page 3-12
= "Datetime and Interval Arithmetic" on page 3-15

= '"Datetime Literals" on page 2-6

Native Compilation of PL/SQL Code

Improve performance by compiling Oracle-supplied and user-written stored
procedures into native executables, using typical C development tools. This setting
is saved so that the procedure is compiled the same way if it is later invalidated.

See Also: "Compiling PL/SQL Code for Native Execution” on
page 11-22

Improved Globalization and National Language Support

Data can be stored in Unicode format using fixed-width or variable-width
character sets. String handling and storage declarations can be specified using byte
lengths, or character lengths where the number of bytes is computed for you. You
can set up the entire database to use the same length semantics for strings, or
specify the settings for individual procedures; this setting is remembered if a
procedure is invalidated.

See Also:
= "PL/SQL Character and String Types" on page 3-4
= "PL/SQL National Character Types" on page 3-8

Table Functions and Cursor Expressions

You can query a set of returned rows like a table. Result sets can be passed from
one function to another, letting you set up a sequence of transformations with no
table to hold intermediate results. Rows of the result set can be returned a few at a
time, reducing the memory overhead for producing large result sets within a
function.

See Also:

= "Setting Up Transformation Pipelines with Table Functions" on
page 11-28

= "Using Cursor Expressions" on page 6-27

Multilevel Collections

You can nest the collection types, for example to create a VARRAY of PL/SQL
tables, a VARRAY of VARRAYS, or a PL/SQL table of PL/SQL tables. You can model
complex data structures such as multidimensional arrays in a natural way.

See Also: "Using Multilevel Collections" on page 5-21

Better Integration for LOB Datatypes

You can operate on LOB types much like other similar types. You can use character
functions on CLOB and NCLOB types. You can treat BLOB types as RAV.
Conversions between LOBs and other types are much simpler, particularly when
converting from LONGto LOB types.

See Also: "PL/SQL LOB Types" on page 3-10

Enhancements to Bulk Operations

You can now perform bulk SQL operations, such as bulk fetches, using native
dynamic SQL (the EXECUTE | MVEDI ATE statement). You can perform bulk insert
or update operations that continue despite errors on some rows, then examine the
problems after the operation is complete.

See Also:

« "Reducing Loop Overhead for DML Statements and Queries
(FORALL, BULK COLLECT)" on page 11-7

= "Using Bulk Dynamic SQL" on page 7-6
« "EXECUTE IMMEDIATE Statement" on page 13-47

MERGE Statement

This specialized statement combines insert and update into a single operation. It is
intended for data warehousing applications that perform particular patterns of
inserts and updates.

See Also:

= "MERGE Statement" on page 13-84 for a brief discussion and
example

= Oracle Database SQL Reference for detailed information

XXiX

XXX

1

Overview of PL/SQL

The limits of my language mean the limits of my world. —Ludwig Wittgenstein

This chapter introduces the main features of the PL/SQL language. It shows how
PL/SQL deals with the challenges of database programming, and how you can reuse
techniques that you know from other programming languages.

This chapter contains these topics:
= Advantages of PL/SQL on page 1-1
« Understanding the Main Features of PL/SQL on page 1-4
= PL/SQL Architecture on page 1-12
See Also: Access additional information and code samples for

PL/SQL on the Oracle Technology Network, at
http://otn.oracle.comtech/pl _sql/ .

Advantages of PL/SQL

PL/SQL is a completely portable, high-performance transaction processing language
that offers the following advantages:

= Support for SQL

= Support for object-oriented programming
= Better performance

= Higher productivity

= Full portability

= Tight integration with Oracle

= Tight security

Tight Integration with SQL

The PL/SQL language is tightly integrated with SQL. You do not have to translate
between SQL and PL/SQL datatypes: a NUMBER or VARCHAR2 column in the database
is stored in a NUMBER or VARCHAR? variable in PL/SQL. This integration saves you
both learning time and processing time. Special PL/SQL language features let you
work with table columns and rows without specifying the datatypes, saving on
maintenance work when the table definitions change.

Overview of PL/SQL 1-1

Advantages of PL/SQL

Running a SQL query and processing the result set is as easy in PL/SQL as opening a
text file and processing each line in popular scripting languages.

Using PL/SQL to access metadata about database objects and handle database error
conditions, you can write utility programs for database administration that are reliable
and produce readable output about the success of each operation.

Many database features, such as triggers and object types, make use of PL/SQL. You
can write the bodies of triggers and methods for object types in PL/SQL.

Support for SQL

SQL has become the standard database language because it is flexible, powerful, and
easy to learn. A few English-like commands such as SELECT, | NSERT, UPDATE, and
DELETE make it easy to manipulate the data stored in a relational database.

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction
control commands, as well as all the SQL functions, operators, and pseudocolumns.
This extensive SQL support lets you manipulate Oracle data flexibly and safely. Also,
PL/SQL fully supports SQL datatypes, reducing the need to convert data passed
between your applications and the database.

PL/SQL also supports dynamic SQL, a programming technique that makes your
applications more flexible and versatile. Your programs can build and process SQL
data definition, data control, and session control statements at run time, without
knowing details such as table names and WHERE clauses in advance.

Better Performance

Without PL/SQL, Oracle must process SQL statements one at a time. Programs that
issue many SQL statements require multiple calls to the database, resulting in
significant network and performance overhead.

With PL/SQL, an entire block of statements can be sent to Oracle at one time. This can
drastically reduce network traffic between the database and an application. As

Figure 1-1 shows, you can use PL/SQL blocks and subprograms to group SQL
statements before sending them to the database for execution. PL./SQL even has
language features to further speed up SQL statements that are issued inside a loop.

PL/SQL stored procedures are compiled once and stored in executable form, so
procedure calls are efficient. Because stored procedures execute in the database server,
a single call over the network can start a large job. This division of work reduces
network traffic and improves response times. Stored procedures are cached and shared
among users, which lowers memory requirements and invocation overhead.

1-2 PL/SQL User's Guide and Reference

Advantages of PL/SQL

Figure 1-1 PL/SQL Boosts Performance

Other DBMSs

Uil

Application :

v v

@

Oracle
Database
with PL/SQL

Application

Oracle
o Database
Application RPC » | with PL/SQL
and Stored
Procedures

Higher Productivity

PL/SQL extends tools such as Oracle Forms and Oracle Reports. With PL/SQL in
these tools, you can use familiar language constructs to build applications. For
example, you can use an entire PL/SQL block in an Oracle Forms trigger, instead of
multiple trigger steps, macros, or user exits.

PL/SQL is the same in all environments. Once you learn PL/SQL with one Oracle
tool, you can transfer your knowledge to other tools.

Full Portability

Applications written in PL/SQL can run on any operating system and platform where
the Oracle database runs. With PL/SQL, you can write portable program libraries and
reuse them in different environments.

Tight Security

PL/SQL stored procedures move application code from the client to the server, where
you can protect it from tampering, hide the internal details, and restrict who has
access. For example, you can grant users access to a procedure that updates a table, but
not grant them access to the table itself or to the text of the UPDATE statement.

Triggers written in PL/SQL can control or record changes to data, making sure that all
changes obey your business rules.

Support for Object-Oriented Programming

Object types are an ideal object-oriented modeling tool, which you can use to reduce
the cost and time required to build complex applications. Besides allowing you to
create software components that are modular, maintainable, and reusable, object types
allow different teams of programmers to develop software components concurrently.

By encapsulating operations with data, object types let you move data-maintenance
code out of SQL scripts and PL/SQL blocks into methods. Also, object types hide

Overview of PL/SQL 1-3

Understanding the Main Features of PL/SQL

implementation details, so that you can change the details without affecting client
programs.

In addition, object types allow for realistic data modeling. Complex real-world entities
and relationships map directly into object types. This direct mapping helps your
programs better reflect the world they are trying to simulate.

Understanding the Main Features of PL/SQL

PL/SQL combines the data-manipulating power of SQL with the processing power of
procedural languages.

You can control program flow with statements like | F and LOOP. As with other
procedural programming languages, you can declare variables, define procedures and
functions, and trap runtime errors.

PL/SQL lets you break complex problems down into easily understandable
procedural code, and reuse this code across multiple applications. When a problem
can be solved through plain SQL, you can issue SQL commands directly inside your
PL/SQL programs, without learning new APIs. PL/SQL's data types correspond with
SQL's column types, making it easy to interchange PL/SQL variables with data inside
a table.

Block Structure

The basic units (procedures, functions, and anonymous blocks) that make up a
PL/SQL program are logical blocks, which can be nested inside one another.

A block groups related declarations and statements. You can place declarations close to
where they are used, even inside a large subprogram. The declarations are local to the
block and cease to exist when the block completes, helping to avoid cluttered
namespaces for variables and procedures.

As Figure 1-2 shows, a PL/SQL block has three parts: a declarative part, an executable
part, and an exception-handling part that deals with error conditions. Only the
executable part is required.

First comes the declarative part, where you define types, variables, and similar items.
These items are manipulated in the executable part. Exceptions raised during
execution can be dealt with in the exception-handling part.

Figure 1-2 Block Structure

[DECLARE
-- decl arations]
BEGA N
- statenents
[EXCEPTI ON
- handl ers]
END;

You can nest blocks in the executable and exception-handling parts of a PL/SQL block
or subprogram but not in the declarative part. You can define local subprograms in the
declarative part of any block. You can call local subprograms only from the block in
which they are defined.

1-4 PL/SQL User's Guide and Reference

Understanding the Main Features of PL/SQL

Variables and Constants

PL/SQL lets you declare constants and variables, then use them in SQL and
procedural statements anywhere an expression can be used. You must declare a
constant or variable before referencing it in any other statements.

Declaring Variables

Variables can have any SQL datatype, such as CHAR, DATE, or NUMBER, or a
PL/SQL-only datatype, such as BOOLEAN or PLS_| NTEGER. For example, assume that
you want to declare a variable named part _no to hold 4-digit numbers and a variable
named i n_st ock to hold the Boolean value TRUE or FALSE. You declare these
variables as follows:

part_no NUMVBER(4);
i n_stock BOOLEAN;

You can also declare nested tables, variable-size arrays (varrays for short), and records
using the TABLE, VARRAY, and RECORD composite datatypes.

Assigning Values to a Variable

You can assign values to a variable in three ways. The first way uses the assignment
operator (: =), a colon followed by an equal sign. You place the variable to the left of
the operator and an expression (which can include function calls) to the right. A few
examples follow:

tax := price * tax_rate;

valid_id := FALSE

bonus := current_salary * 0. 10;

wages : = gross_pay(enp_id, st_hrs, ot_hrs) - deductions;

The second way to assign values to a variable is by selecting (or fetching) database
values into it. In the example below, you have Oracle compute a 10% bonus when you
select the salary of an employee. Now, you can use the variable bonus in another
computation or insert its value into a database table.

SELECT salary * 0.10 I NTO bonus FROM enpl oyees WHERE enpl oyee_id = enp_id;

The third way to assign values to a variable is by passing it as an OUT or | NOUT
parameter to a subprogram, and doing the assignment inside the subprogram. The
following example passes a variable to a subprogram, and the subprogram updates
the variable:

DECLARE
my_sal REAL(7,2);
PROCEDURE adj ust _sal ary (enp_id INT, salary IN QUT REAL) IS ...

BEG N
SELECT AVG(sal) INTO ny_sal FROM enp;
adj ust _sal ary(7788, ny_sal); -- assigns a new value to ny_sal

Declaring Constants

Declaring a constant is like declaring a variable except that you must add the keyword
CONSTANT and immediately assign a value to the constant. No further assignments to
the constant are allowed. The following example declares a constant:

credit_limt CONSTANT NUMBER : = 5000. 00;

Overview of PL/SQL 1-5

Understanding the Main Features of PL/SQL

Processing Queries with PL/SQL

Processing a SQL query with PL/SQL is like processing files with other languages. For
example, a Perl program opens a file, reads the file contents, processes each line, then
closes the file. In the same way, a PL/SQL program issues a query and processes the
rows from the result set:

FOR soneone | N (SELECT * FROM enpl oyees)

LOoP
DBMS_QUTPUT. PUT_LINE(' First name ="' || someone.first_nane);
DBVS_QUTPUT. PUT_LI NE(' Last name = ' || soneone.|ast_nane);
END LOOP;

You can use a simple loop like the one shown here, or you can control the process
precisely by using individual statements to perform the query, retrieve data, and finish
processing.

Declaring PL/SQL Variables

As part of the declaration for each PL/SQL variable, you declare its datatype. Usually,
this datatype is one of the types shared between PL/SQL and SQL, such as NUMBER or
VARCHAR2(| engt h) . For easier maintenance of code that interacts with the database,
you can also use the special qualifiers % YPE and YROAMTYPE to declare variables that
hold table columns or table rows.

%TYPE

The %'YPE attribute provides the datatype of a variable or database column. This is
particularly useful when declaring variables that will hold database values. For
example, assume there is a column named ti t | e in a table named books. To declare
a variable named ny_t i t | e that has the same datatype as columnti t| e, use dot
notation and the %' YPE attribute, as follows:

my_title books.title%lYPE;

Declaring ny_t i t | e with %I'YPE has two advantages. First, you need not know the
exact datatype of t i t | e. Second, if you change the database definitionoftitl e
(make it a longer character string for example), the datatype of ny_ti t | e changes
accordingly at run time.

%ROWTYPE

In PL/SQL, records are used to group data. A record consists of a number of related
fields in which data values can be stored. The %RONTYPE attribute provides a record
type that represents a row in a table. The record can store an entire row of data
selected from the table or fetched from a cursor or cursor variable.

Columns in a row and corresponding fields in a record have the same names and
datatypes. In the example below, you declare a record named dept _r ec. Its fields
have the same names and datatypes as the columns in the dept table.

DECLARE
dept _rec dept YROMYPE, -- declare record variable

You use dot notation to reference fields, as the following example shows:

my_deptno : = dept _rec. deptno;

1-6 PL/SQL User's Guide and Reference

Understanding the Main Features of PL/SQL

If you declare a cursor that retrieves the last name, salary, hire date, and job title of an
employee, you can use YROANYPE to declare a record that stores the same information,

as follows:
DECLARE
CURSR c1 IS
SELECT enane, sal, hiredate, job FROM enp;
enp_rec cl9ROMYPE, -- declare record variable that represents

-- arowfetched fromthe enp table

When you execute the statement

FETCH c1 | NTO enp_rec;

the value in the enane column of the enp table is assigned to the enane field of
enp_r ec, the value in the sal column is assigned to the sal field, and so on.

Control Structures

Control structures are the most important PL/SQL extension to SQL. Not only does
PL/SQL let you manipulate Oracle data, it lets you process the data using conditional,
iterative, and sequential flow-of-control statements such as | F- THEN- ELSE, CASE,
FOR- LOOP, WHI LE- LOCP, EXI T- WHEN, and GOTO.

Conditional Control

Often, it is necessary to take alternative actions depending on circumstances. The

| F- THEN- ELSE statement lets you execute a sequence of statements conditionally.
The | F clause checks a condition; the THEN clause defines what to do if the condition
is true; the ELSE clause defines what to do if the condition is false or null.

Consider the program below, which processes a bank transaction. Before allowing you
to withdraw $500 from account 3, it makes sure the account has sufficient funds to
cover the withdrawal. If the funds are available, the program debits the account.
Otherwise, the program inserts a record into an audit table.

-- available online in file 'exanp2'

DECLARE
acct _bal ance NUMBER(11, 2);
acct CONSTANT NUMBER(4) := 3;
debit_ant CONSTANT NUMBER(5, 2) : = 500. 00;
BEG N

SELECT bal INTO acct_bal ance FROM account s
WHERE account _id = acct
FOR UPDATE OF bal ;
| F acct _bal ance >= debit_anmt THEN
UPDATE accounts SET bal = bal - debit_ant
WHERE account id = acct;
ELSE
I NSERT I NTO tenp VALUES
(acct, acct_balance, 'Insufficient funds');
-- insert account, current bal ance, and message
END | F;
COWM T;
END;

To choose among several values or courses of action, you can use CASE constructs. The
CAGSE expression evaluates a condition and returns a value for each case. The case
statement evaluates a condition and performs an action (which might be an entire
PL/SQL block) for each case.

Overview of PL/SQL 1-7

Understanding the Main Features of PL/SQL

-- This CASE statenment performs different actions based
-- on a set of conditional tests.
CASE
VWHEN shape = 'square' THEN area := side * side;
WHEN shape = "circle' THEN
BEG N
area := pi * (radius * radius);
DBMS_QUTPUT. PUT_LI NE(' Val ue i s not exact because pi is irrational.");
END;
VWHEN shape = 'rectangle' THEN area := length * width;
ELSE
BEG N
DBMS_OUTPUT. PUT_LINE(' No formula to calculate area of a' || shape);
RAI SE PROGRAM_ERROR;
END;
END CASE;

A sequence of statements that uses query results to select alternative actions is
common in database applications. Another common sequence inserts or deletes a row
only if an associated entry is found in another table. You can bundle these common
sequences into a PL/SQL block using conditional logic.

Iterative Control

LOCOP statements let you execute a sequence of statements multiple times. You place
the keyword LOCP before the first statement in the sequence and the keywords END
LOOP after the last statement in the sequence. The following example shows the
simplest kind of loop, which repeats a sequence of statements continually:

LOooP
-- sequence of statenents
END LOOP;

The FOR- LOCP statement lets you specify a range of integers, then execute a sequence
of statements once for each integer in the range. For example, the following loop
inserts 500 numbers and their square roots into a database table:

FOR num IN 1..500 LOOP
I NSERT I NTO roots VALUES (num SQRT(num);
END LOOP;

The WHI LE- LOOP statement associates a condition with a sequence of statements.
Before each iteration of the loop, the condition is evaluated. If the condition is true, the
sequence of statements is executed, then control resumes at the top of the loop. If the
condition is false or null, the loop is bypassed and control passes to the next statement.

In the following example, you find the first employee who has a salary over $2500 and
is higher in the chain of command than employee 7499:

-- available online in file 'exanpd'

DECLARE
salary enp. sal YWaYPE : = 0;
ngr_num enp. ngr % YPE;
| ast _name enp. ename% YPE;
starting_enpno enp. enpno% YPE : = 7499;
BEG N

SELECT mgr | NTO ngr_num FROM enp
VHERE enpno = starting_enpno;
VWH LE sal ary <= 2500 LOOP
SELECT sal, mgr, ename |INTO salary, ngr_num |ast_name
FROM emp WHERE enpno = mgr_num

1-8 PL/SQL User's Guide and Reference

Understanding the Main Features of PL/SQL

END LOOP;
I NSERT I NTO tenp VALUES (NULL, salary, |ast_nane);
COWM T,
EXCEPTI ON
VWHEN NO_DATA_FOUND THEN
I NSERT INTO tenp VALUES (NULL, NULL, 'Not found');
COWM T;
END;

The EXI T- WHEN statement lets you complete a loop if further processing is impossible
or undesirable. When the EXI T statement is encountered, the condition in the WHEN
clause is evaluated. If the condition is true, the loop completes and control passes to
the next statement. In the following example, the loop completes when the value of

t ot al exceeds 25,000:

LOoP

total :=total + salary;

EXIT WHEN total > 25000; -- exit loop if condition is true
END LOCP,

- control resumes here

Sequential Control

The GOTOstatement lets you branch to a label unconditionally. The label, an
undeclared identifier enclosed by double angle brackets, must precede an executable
statement or a PL/SQL block. When executed, the GOTOstatement transfers control to
the labeled statement or block, as the following example shows:

IFrating > 90 THEN
QOTO cal c_raise; ~-- branch to |abel
END | F;

<<cal c_rai se>>
IF job_ title = 'SALESMAN THEN -- control resunes here

anmount := conmission * 0. 25;
ELSE

amount := salary * 0.10;
END | F;

Writing Reusable PL/SQL Code

PL/SQL lets you break an application down into manageable, well-defined modules.
PL/SQL meets this need with program units, which include blocks, subprograms, and
packages. You can reuse program units by loading them into the database as triggers,
stored procedures, and stored functions.

Subprograms

PL/SQL has two types of subprograms called procedures and functions, which can take
parameters and be invoked (called). As the following example shows, a subprogram is
like a miniature program, beginning with a header followed by an optional declarative
part, an executable part, and an optional exception-handling part:

PROCEDURE awar d_bonus (enp_id NUMBER) IS

bonus REAL;
conm ni ssi ng EXCEPTI ON,
BEG N -- executable part starts here

SELECT comm * 0.15 I NTO bonus FROM enp WHERE enpno = enp_id;
| F bonus |'S NULL THEN

Overview of PL/SQL 1-9

Understanding the Main Features of PL/SQL

RAI SE comm ni ssi ng;
ELSE
UPDATE payrol | SET pay = pay + bonus WHERE enpno = enp_i d;
END | F;
EXCEPTION -- exception-handling part starts here
VWHEN conm ni ssing THEN

END awar d_bonus;

When called, this procedure accepts an employee number. It uses the number to select
the employee's commission from a database table and, at the same time, compute a
15% bonus. Then, it checks the bonus amount. If the bonus is null, an exception is
raised; otherwise, the employee's payroll record is updated.

Packages

PL/SQL lets you bundle logically related types, variables, cursors, and subprograms
into a package, a database object that is a step above regular stored procedures. The
packages defines a simple, clear, interface to a set of related procedures and types.

Packages usually have two parts: a specification and a body. The specification defines
the application programming interface; it declares the types, constants, variables,
exceptions, cursors, and subprograms. The body fills in the SQL queries for cursors and
the code for subprograms.

The following example packages two employment procedures:

CREATE PACKAGE enp_actions AS -- package specification
PROCEDURE hi re_enpl oyee (enpno NUMBER, ename CHAR, ...);
PROCEDURE fire_enpl oyee (enp_id NUMBER);

END enp_acti ons;

CREATE PACKAGE BODY enp_actions AS -- package body
PROCEDURE hi re_enpl oyee (enpno NUMBER, enane CHAR ...) IS
BEG N
I NSERT | NTO enp VALUES (enpno, enanme, ...);
END hi re_enpl oyee;
PROCEDURE fire_enpl oyee (enp_id NUMBER) IS
BEG N
DELETE FROM enp WHERE enpno = enp_i d;
END fire_enpl oyee;
END enp_acti ons;

Applications that call these procedures only need to know the names and parameters
from the package spec. You can change the implementation details inside the package
body without affecting the calling applications.

Packages are stored in the database, where they can be shared by many applications.
Calling a packaged subprogram for the first time loads the whole package and caches
it in memory, saving on disk I/O for subsequent calls. Thus, packages enhance reuse
and improve performance in a multi-user, multi-application environment.

Data Abstraction

Data abstraction lets you work with the essential properties of data without being too
involved with details. Once you design a data structure, you can focus on designing
algorithms that manipulate the data structure.

1-10 PL/SQL User's Guide and Reference

Understanding the Main Features of PL/SQL

Collections

PL/SQL collection types let you declare high-level datatypes similar to arrays, sets,
and hash tables found in other languages. In PL/SQL, array types are known as
varrays (short for variable-size arrays), set types are known as nested tables, and hash
table types are known as associative arrays. Each kind of collection is an ordered
group of elements, all of the same type. Each element has a unique subscript that
determines its position in the collection.

To reference an element, use subscript notation with parentheses. For example, the
following call references the fifth element in the nested table (of type St af f) returned
by function new_hi r es:

DECLARE
TYPE Staff IS TABLE OF Enpl oyee;
staffer Enployee;
FUNCTI ON new_hires (hiredate DATE) RETURN Staff IS

BEG N ... END;
BEG N

staffer := new hires(' 10-NOV-98')(5);
END;

Collections can be passed as parameters, so that subprograms can process arbitrary
numbers of elements.You can use collections to move data into and out of database
tables using high-performance language features known as bulk SQL.

Records

Records are composite data structures whose fields can have different datatypes. You
can use records to hold related items and pass them to subprograms with a single
parameter.

You can use the “ROMYPE attribute to declare a record that represents a row in a table
or a row from a query result set, without specifying the names and types for the fields.

Consider the following example:

DECLARE
TYPE TimeRec |'S RECORD (hours SMALLINT, ninutes SMALLINT);
TYPE MeetingTyp IS RECORD (
dat e_hel d DATE,
duration TimeRec, -- nested record
| ocation VARCHAR2(20),
purpose VARCHAR2(50));

Object Types

PL/SQL supports object-oriented programming through object types. An object type
encapsulates a data structure along with the functions and procedures needed to
manipulate the data. The variables that form the data structure are known as
attributes. The functions and procedures that manipulate the attributes are known as
methods.

Object types reduce complexity by breaking down a large system into logical entities.
This lets you create software components that are modular, maintainable, and
reusable.

Object-type definitions, and the code for the methods, are stored in the database.
Instances of these object types can be stored in tables or used as variables inside
PL/SQL code.

Overview of PL/SQL 1-11

PL/SQL Architecture

CREATE TYPE Bank_Account AS OBJECT (
acct _nunber | NTEGER(5),
bal ance REAL,
status VARCHAR2(10) ,
MEMBER PROCEDURE open (anount | N REAL),
MEMBER PROCEDURE verify_acct (num N | NTEGER),
MEMBER PROCEDURE cl ose (num IN | NTEGER, anount OUT REAL),
MEMBER PROCEDURE deposit (num IN I NTEGER amount |N REAL),
MEMBER PROCEDURE wi t hdraw (num I'N I NTEGER, anount |N REAL),
MEMBER FUNCTI ON curr_bal (num I N I NTEGER) RETURN REAL

Error Handling

PL/SQL makes it easy to detect and process error conditions known as exceptions.
When an error occurs, an exception is raised: normal execution stops and control
transfers to special exception-handling code, which comes at the end of any PL/SQL
block. Each different exception is processed by a particular exception handler.

Predefined exceptions are raised automatically for certain common error conditions
involving variables or database operations. For example, if you try to divide a number
by zero, PL/SQL raises the predefined exception ZERO_Dl VI DE automatically.

You can declare exceptions of your own, for conditions that you decide are errors, or to
correspond to database errors that normally result in ORA- error messages. When you
detect a user-defined error condition, you execute a RAlI SE statement. The following
example computes the bonus earned by a salesperson. The bonus is based on salary
and commission. If the commission is null, you raise the exception comm _ni ssi ng.

DECLARE

comm ni ssing EXCEPTION, -- declare exception
BEG N

I F commission IS NULL THEN

RAI SE comm ni ssing; -- raise exception

END | F;

bonus := (salary * 0.10) + (conmission * 0.15);
EXCEPTI ON

WHEN conm missing THEN ... -- process the exception

PL/SQL Architecture

The PL/SQL compilation and run-time system is an engine that compiles and executes
PL/SQL blocks and subprograms. The engine can be installed in an Oracle server or in
an application development tool such as Oracle Forms or Oracle Reports.

In either environment, the PL/SQL engine accepts as input any valid PL/SQL block or
subprogram. Figure 1-3 shows the PL/SQL engine processing an anonymous block.
The PL/SQL engine executes procedural statements but sends SQL statements to the
SQL engine in the Oracle database.

1-12 PL/SQL User's Guide and Reference

PL/SQL Architecture

Figure 1-3 PL/SQL Engine

- Y
PL/SQL Engine

procedural > Procedural
PL/SQL PL/SQL Statement

Block Block Executor
SQL
N—
- ™
‘ SQL Statement Executor ’
Oracle Server
N /

In the Oracle Database Server
Typically, the Oracle database server processes PL/SQL blocks and subprograms.

Anonymous Blocks

Anonymous PL/SQL blocks can be submitted to interactive tools such as SQL*Plus
and Enterprise Manager, or embedded in an Oracle Precompiler or OCI program. At
run time, the program sends these blocks to the Oracle database, where they are
compiled and executed.

Stored Subprograms

Subprograms can be compiled and stored in an Oracle database, ready to be executed.
Once compiled, it is a schema object known as a stored procedure or stored function,
which can be referenced by any number of applications connected to that database.

Stored subprograms defined within a package are known as packaged subprograms.
Those defined independently are called standalone subprograms.

Subprograms nested inside other subprograms or within a PL/SQL block are known
as local subprograms, which cannot be referenced by other applications and exist only
inside the enclosing block.

Stored subprograms are the key to modular, reusable PL/SQL code. Wherever you
might use a JAR file in Java, a module in Perl, a shared library in C++, or a DLL in
Visual Basic, you should use PL/SQL stored procedures, stored functions, and
packages.

You can call stored subprograms from a database trigger, another stored subprogram,
an Oracle Precompiler or OCI application, or interactively from SQL*Plus or
Enterprise Manager. You can also configure a web server so that the HTML for a web
page is generated by a stored subprogram, making it simple to provide a web interface
for data entry and report generation.

For example, you might call the standalone procedure cr eat e_dept from SQL*Plus
as follows:

SQL> CALL create_dept (' FINANCE' , ' NEW YORK');

Overview of PL/SQL 1-13

PL/SQL Architecture

Subprograms are stored in a compact compiled form. When called, they are loaded
and processed immediately. Subprograms take advantage of shared memory, so that
only one copy of a subprogram is loaded into memory for execution by multiple users.

Database Triggers

A database trigger is a stored subprogram associated with a database table, view, or
event. The trigger can be called once, when some event occurs, or many times, once for
each row affected by an | NSERT, UPDATE, or DELETE statement. The trigger can be
called after the event, to record it or take some followup action. Or, the trigger can be
called before the event to prevent erroneous operations or fix new data so that it
conforms to business rules. For example, the following table-level trigger fires
whenever salaries in the enp table are updated:

CREATE TRI GGER audi t _sal
AFTER UPDATE OF sal ON enp

FOR EACH ROW
BEG N

I NSERT I NTO enp_audit VALUES ...
END;

The executable part of a trigger can contain procedural statements as well as SQL data
manipulation statements. Besides table-level triggers, there are instead-of triggers for
views and system-event triggers for schemas. For more information, see Oracle Database
Application Developer's Guide - Fundamentals.

In Oracle Tools

An application development tool that contains the PL/SQL engine can process
PL/SQL blocks and subprograms. The tool passes the blocks to its local PL/SQL
engine. The engine executes all procedural statements inside the application and sends
only SQL statements to the database. Most of the work is done inside the application,
not on the database server. If the block contains no SQL statements, the application
executes the entire block. This is useful if your application can benefit from conditional
and iterative control.

Frequently, Oracle Forms applications use SQL statements to test the value of field
entries or to do simple computations. By using PL/SQL instead, you can avoid calls to
the database. You can also use PL/SQL functions to manipulate field entries.

1-14 PL/SQL User's Guide and Reference

2

Fundamentals of the PL/SQL Language

There are six essentials in painting. The first is called spirit; the second, rhythm; the third,
thought; the fourth, scenery; the fifth, the brush; and the last is the ink. ~ —Ching Hao

The previous chapter provided an overview of PL/SQL. This chapter focuses on the
detailed aspects of the language. Like other programming languages, PL/SQL has a
character set, reserved words, punctuation, datatypes, and fixed syntax rules.

This chapter contains these topics:

= Character Set on page 2-1

= Lexical Units on page 2-1

= Declarations on page 2-8

= PL/SQL Naming Conventions on page 2-12

= Scope and Visibility of PL/SQL Identifiers on page 2-14
= Assigning Values to Variables on page 2-16

= PL/SQL Expressions and Comparisons on page 2-17

« Summary of PL/SQL Built-In Functions on page 2-28

Character Set
You write a PL/SQL program as lines of text using a specific set of characters:

Upper- and lower-case letters A.. Zand a .. z

Numerals 0 .. 9

Symbols () +-*/ <>=1 ~"; 1" @%, "#$&_| {} ?[]
Tabs, spaces, and carriage returns

PL/SQL keywords are not case-sensitive, so lower-case letters are equivalent to
corresponding upper-case letters except within string and character literals.

Lexical Units
A line of PL/SQL text contains groups of characters known as lexical units:

delimiters (simple and compound symbols)
identifiers, which include reserved words
literals

comments

Fundamentals of the PL/SQL Language 2-1

Lexical Units

To improve readability, you can separate lexical units by spaces. In fact, you must
separate adjacent identifiers by a space or punctuation. The following line is not
allowed because the reserved words ENDand | F are joined:

IF x >y THEN high := x; ENDIF; -- not allowed, nust be END IF
You cannot embed spaces inside lexical units except for string literals and comments.

For example, the following line is not allowed because the compound symbol for
assignment (: =) is split:

count : =count + 1; -- not allowed, nust be :=

To show structure, you can split lines using carriage returns, and indent lines using
spaces or tabs. The formatting makes the | F statement on the right more readable:

I F x>y THEN max: =x; ELSE nmax:=y; END | F; | IF x >y THEN
| max = X;
| ELSE
| mx =y,
| END | F;

Delimiters

A delimiter is a simple or compound symbol that has a special meaning to PL/SQL. For
example, you use delimiters to represent arithmetic operations such as addition and
subtraction.

Symbol Meaning

+ addition operator
% attribute indicator

character string delimiter

component selector

/ division operator
(expression or list delimiter
) expression or list delimiter

host variable indicator
, item separator
* multiplication operator
quoted identifier delimiter

= relational operator

< relational operator
> relational operator
@ remote access indicator

; statement terminator

- subtraction/negation operator

2-2 PL/SQL User's Guide and Reference

Lexical Units

Identifiers

Symbol Meaning

L= assignment operator
=> association operator

|] concatenation operator

*x exponentiation operator

<< label delimiter (begin)

>> label delimiter (end)

/* multi-line comment delimiter (begin)
*/ multi-line comment delimiter (end)

range operator
<> relational operator
1= relational operator

~= relational operator

A= relational operator
<= relational operator
>= relational operator

-- single-line comment indicator

You use identifiers to name PL/SQL program items and units, which include
constants, variables, exceptions, cursors, cursor variables, subprograms, and packages.
Some examples of identifiers follow:

X

t2

phone#
credit_limt
Last Name

or acl e$nunber

An identifier consists of a letter optionally followed by more letters, numerals, dollar
signs, underscores, and number signs. Other characters such as hyphens, slashes, and
spaces are not allowed, as the following examples show:

m ne&yours -- not allowed because of anpersand
debit-amount -- not allowed because of hyphen
on/ of f -- not allowed because of slash
user id -- not allowed because of space

Adjoining and trailing dollar signs, underscores, and number signs are allowed:

nmoney$$$t r ee
SN##
try_again_

You can use upper, lower, or mixed case to write identifiers. PL/SQL is not case
sensitive except within string and character literals. If the only difference between
identifiers is the case of corresponding letters, PL/SQL considers them the same:

| ast nane

Fundamentals of the PL/SQL Language 2-3

Lexical Units

Literals

Last Name -- same as | astname
LASTNAME -- same as |astname and Last Name

The size of an identifier cannot exceed 30 characters. Every character, including dollar
signs, underscores, and number signs, is significant. For example, PL/SQL considers
the following identifiers to be different:

| ast nane
| ast _name

Identifiers should be descriptive. Avoid obscure names such as cpm Instead, use
meaningful names such as cost _per _t housand.

Reserved Words

Some identifiers, called reserved words, have a special syntactic meaning to PL/SQL.
For example, the words BEG Nand END are reserved. Trying to redefine a reserved
word causes a compilation error. Instead, you can embed reserved words as part of a
longer identifier:

DECLARE
- end BOCOLEAN, -- not allowed; causes conpilation error
end_of _game BOOLEAN, -- allowed

BEG N
NULL;

END;

/

Often, reserved words are written in upper case for readability. For a list of reserved
words, see Appendix F.

Predefined Identifiers

Identifiers globally declared in package STANDARD, such as the exception
I NVALI D_NUMBER, can be redeclared. However, redeclaring predefined identifiers is
error prone because your local declaration overrides the global declaration.

Quoted Identifiers

For flexibility, PL/SQL lets you enclose identifiers within double quotes. Quoted
identifiers are seldom needed, but occasionally they can be useful. They can contain
any sequence of printable characters including spaces but excluding double quotes.
Thus, the following identifiers are valid:

"X

"l ast name"

"on/of f switch"

"enpl oyee(s)"

"*** header info ***"

The maximum size of a quoted identifier is 30 characters not counting the double
quotes. Though allowed, using PL/SQL reserved words as quoted identifiers is a poor
programming practice.

A literal is an explicit numeric, character, string, or Boolean value not represented by
an identifier. The numeric literal 147 and the Boolean literal FALSE are examples.

2-4 PL/SQL User's Guide and Reference

Lexical Units

Numeric Literals
Two kinds of numeric literals can be used in arithmetic expressions: integers and reals.
An integer literal is an optionally signed whole number without a decimal point. Some
examples follow:

030 6 -14 0 +32767

A real literal is an optionally signed whole or fractional number with a decimal point.
Several examples follow:

6.6667 0.0 -12.0 3.14159 +8300.00 .5 25.

PL/SQL considers numbers such as 12. 0 and 25. to be reals even though they have
integral values.

Numeric literals cannot contain dollar signs or commas, but can be written using
scientific notation. Simply suffix the number with an E (or e) followed by an optionally
signed integer. A few examples follow:

2E5 1.0E-7 3.141590 -1E38 -9.5e-3

E stands for "times ten to the power of." As the next example shows, the number after
E is the power of ten by which the number before E is multiplied (the double asterisk
(**) is the exponentiation operator):

5E3 = 5 * 10**3 = 5 * 1000 = 5000

The number after E also corresponds to the number of places the decimal point shifts.
In the last example, the implicit decimal point shifted three places to the right. In this
example, it shifts three places to the left:

5E-3 =5 * 10**-3 =5 * 0.001 = 0.005

As the following example shows, if the value of a numeric literal falls outside the
range 1E- 130 .. 10E125, you get a compilation error:

DECLARE
n NUVBER;
BEG N
n := 10E127; -- causes a 'nuneric overflow or underflow error
END;
/

Real literals can also use the trailing letters f and d to specify the types
Bl NARY_FLOAT and Bl NARY_DOUBLE, respectively:

DECLARE
x BI'NARY_FLOAT := sqrt(2.0f); -- Single-precision floating-point nunber
y BI NARY_DOUBLE : = sqrt(2.0d); -- Double-precision floating-point nunber
BEG N
NULL;
END;

/

Character Literals

A character literal is an individual character enclosed by single quotes (apostrophes).
Character literals include all the printable characters in the PL/SQL character set:
letters, numerals, spaces, and special symbols. Some examples follow:

A "% A Y ‘7' (!

Fundamentals of the PL/SQL Language 2-5

Lexical Units

PL/SQL is case sensitive within character literals. For example, PL/SQL considers the
literals ' Z' and' z' to be different. Also, the character literals ' 0" .."' 9' are not
equivalent to integer literals but can be used in arithmetic expressions because they are
implicitly convertible to integers.

String Literals

A character value can be represented by an identifier or explicitly written as a string
literal, which is a sequence of zero or more characters enclosed by single quotes.
Several examples follow:

"Hello, world!'

" XYZ Cor porati on’

" 10- NOv- 91

"He said "Life is like licking honey froma thorn."'
' $1, 000, 000

All string literals except the null string (") have datatype CHAR

To represent an apostrophe within a string, you can write two single quotes, which is
not the same as writing a double quote:

“I'""ma string, you''re a string.'

Doubling the quotation marks within a complicated literal, particularly one that
represents a SQL statement, can be tricky. You can also use the following notation to
define your own delimiter characters for the literal. You choose a character that is not
present in the string, and then do not need to escape other single quotation marks
inside the literal:

-- g'!...!" notation lets us use single quotes inside the literal.
string_var :=q'!l'ma string, you're a string.!";

-- To use delimters [, {, < and (, pair themwith], }, > and).

-- Here we pass a string literal representing a SQ statement

-- to a subprogram without doubling the quotation marks around

-- "INVALID .

func_call (q'[sel ect index_name from user_indexes where status = "INVALID]");

-- For NCHAR and NVARCHAR? literals, use the prefix ng instead of g.
where_cl ause : = nq' #where col _value like '%"# ;

PL/SQL is case sensitive within string literals. For example, PL/SQL considers the
following literals to be different:

" baker'
' Baker'

Boolean Literals

Boolean literals are the predefined values TRUE, FALSE, and NULL (which stands for a
missing, unknown, or inapplicable value). Remember, Boolean literals are values, not
strings. For example, TRUE is no less a value than the number 25.

Datetime Literals
Datetime literals have various formats depending on the datatype. For example:
DECLARE

d1l DATE := DATE ' 1998-12-25;
t1 TIMESTAWP : = TI MESTAWP ' 1997-10-22 13:01:01";

2-6 PL/SQL User's Guide and Reference

Lexical Units

Comments

t2 TIMESTAMP WTH TI ME ZONE : = TI MESTAMWP ' 1997-01- 31 09: 26: 56. 66 +02: 00" ;
- Three years and two nonths
- (For greater precision, we would use the day-to-second interval)

i1 INTERVAL YEAR TO MONTH : = INTERVAL ' 3-2' YEAR TO MONTH,
- Five days, four hours, three mnutes, two and 1/100 seconds

i 2 | NTERVAL DAY TO SECOND : = I NTERVAL 5 04:03:02.01' DAY TO SECOND;

You can also specify whether a given interval value is YEAR TO MONTHor DAY TO
SECOND. For example, current _ti nmestanp - current_ti mestanp produces a
value of type | NTERVAL DAY TO SECOND by default. You can specify the type of the
interval using the formats:

« (interval expression) DAY TO SECOND
« (interval expression) YEAR TO MONTH

For details on the syntax for the date and time types, see the Oracle Database SQL
Reference. For examples of performing date/time arithmetic, see Oracle Database
Application Developer’s Guide - Fundamentals.

The PL/SQL compiler ignores comments, but you should not. Adding comments to
your program promotes readability and aids understanding. Generally, you use
comments to describe the purpose and use of each code segment. PL/SQL supports
two comment styles: single-line and multi-line.

Single-Line Comments

Single-line comments begin with a double hyphen (- -) anywhere on a line and extend
to the end of the line. A few examples follow:

DECLARE
howrany NUMBER;
BEG N
- begin processing
SELECT count (*) | NTO howrany FROM user_obj ects
WHERE obj ect _type = 'TABLE'; -- Check nunber of tables
howmany := howrany * 2; -- Conpute sone other val ue
END;
/

Notice that comments can appear within a statement at the end of a line.

While testing or debugging a program, you might want to disable a line of code. The
following example shows how you can "comment-out" the line:

- DELETE FROM enpl oyees WHERE comm pct |'S NULL;

Multi-line Comments

Multi-line comments begin with a slash-asterisk (/ *), end with an asterisk-slash (*/),
and can span multiple lines. Some examples follow:

DECLARE
sonme_condi ti on BOOLEAN,
pi NUMBER : = 3.1415926; radius NUMBER := 15; area NUMBER;
BEG N
[* Performsonme sinple tests and assignnents */
IF2+2=4THN
some_condition := TRUE, /* W expect this THEN to al ways be done */

Fundamentals of the PL/SQL Language 2-7

Declarations

END | F;

/*
The followi ng Iine conputes the area of a
circle using pi, which is the ratio between
the circunference and dianeter.

*/
area := pi * radius**2;

END;

/

You can use multi-line comment delimiters to comment-out whole sections of code:
/ *
LOOP

FETCH c1 | NTO enp_rec;
EXI T WHEN c19%NOTFOUND;

END LCCP;
*|

Restrictions on Comments
You cannot nest comments.

You cannot use single-line comments in a PL/SQL block that will be processed by an
Oracle Precompiler program because end-of-line characters are ignored. As a result,
single-line comments extend to the end of the block, not just to the end of a line. In this
case, use the / * */ notation instead.

Declarations

Your program stores values in variables and constants. As the program executes, the
values of variables can change, but the values of constants cannot.

You can declare variables and constants in the declarative part of any PL/SQL block,
subprogram, or package. Declarations allocate storage space for a value, specify its
datatype, and name the storage location so that you can reference it.

A couple of examples follow:

DECLARE
birthday DATE;
enmp_count SMALLINT := 0;

The first declaration names a variable of type DATE. The second declaration names a
variable of type SMALLI NT and uses the assignment operator to assign an initial value
of zero to the variable.

The next examples show that the expression following the assignment operator can be
arbitrarily complex and can refer to previously initialized variables:

DECLARE
pi REAL : = 3.14159;
radius REAL : = 1;
area REAL := pi * radius**2;
BEG N
NULL;
END;

/

2-8 PL/SQL User's Guide and Reference

Declarations

By default, variables are initialized to NULL, so it is redundant to include ": = NULL"
in a variable declaration.

To declare a constant, put the keyword CONSTANT before the type specifier:

DECLARE
credit _|imt CONSTANT REAL := 5000. 00;
max_days_i n_year CONSTANT | NTEGER : = 366;
urban_| egend CONSTANT BOOLEAN : = FALSE;
BEG N
NULL;
END;
/

This declaration names a constant of type REAL and assigns an unchangeable value of
5000 to the constant. A constant must be initialized in its declaration. Otherwise, you
get a compilation error.

Using DEFAULT

You can use the keyword DEFAULT instead of the assignment operator to initialize
variables. For example, the declaration

bl ood_type CHAR := 'O ;

can be rewritten as follows:

bl ood_t ype CHAR DEFAULT 'O ;

Use DEFAULT for variables that have a typical value. Use the assignment operator for
variables (such as counters and accumulators) that have no typical value. For example:

hours_worked | NTEGER DEFAULT 40;
enpl oyee_count | NTEGER : = 0;

You can also use DEFAULT to initialize subprogram parameters, cursor parameters,
and fields in a user-defined record.

Using NOT NULL

Besides assigning an initial value, declarations can impose the NOT NULL constraint:

DECLARE
acct_id | NTEGER(4) NOT NULL := 9999;

You cannot assign nulls to a variable defined as NOT NULL. If you try, PL/SQL raises
the predefined exception VALUE_ERROR

The NOT NULL constraint must be followed by an initialization clause.

PL/SQL provide subtypes NATURALN and PCSI Tl VEN that are predefined as NOT
NULL. You can omit the NOT NULL constraint when declaring variables of these types,
and you must include an initialization clause.

Using the %TYPE Attribute

The %' YPE attribute provides the datatype of a variable or database column. In the
following example, % YPE provides the datatype of a variable:

DECLARE
credit NUMBER(7,2);
debit credit%YPE,

Fundamentals of the PL/SQL Language 2-9

Declarations

name VARCHAR2(20) := 'JoHn SnitH ;
-- |If we increase the Iength of NAME, the other variables
-- becone | onger too.
upper _nane nane%lYPE : = UPPER(name);
| ower _nane nane%lYPE : = LOAER(nane);
init_name name% YPE : = | Nl TCAP(nane);
BEG N
NULL;
END;
/

Variables declared using %I YPE are treated like those declared using a datatype
specifier. For example, given the previous declarations, PL/SQL treats debi t like a
REAL(7, 2) variable. A %I'YPE declaration can also include an initialization clause.

The %'YPE attribute is particularly useful when declaring variables that refer to
database columns. You can reference a table and column, or you can reference an
owner, table, and column, as in

DECLARE
-- If the length of the colum ever changes, this code
-- will use the new length automatically.
the_trigger user_triggers.trigger_name% YPE;
BEG N
NULL;
END;
/

When you use t abl e_nare. col urm_narme. TYPE to declare a variable, you do not
need to know the actual datatype, and attributes such as precision, scale, and length. If
the database definition of the column changes, the datatype of the variable changes
accordingly at run time.

%I YPE variables do not inherit the NOT NULL column constraint. In the next example,
even though the database column enpl oyee_i d is defined as NOT NULL, you can
assign a null to the variable nmy_enpno:

DECLARE

my_enpno enpl oyees. enpl oyee_i d%I'YPE;
BEG N

my_enmpno := NULL; -- this works
END;

/

Using the %ROWTYPE Attribute

The YROMYPE attribute provides a record type that represents a row in a table (or
view). The record can store an entire row of data selected from the table, or fetched
from a cursor or strongly typed cursor variable:

DECLARE
-- YROMYPE can include all the colums in a table...
enp_rec enpl oyeesYRONYPE;
-- ...0r a subset of the colums, based on a cursor.
CURSOR cl1 IS
SELECT departnent _id, departnent_name FROM departnents;
dept _rec clY%RONYPE;
-- Could even make a YROMYPE with colums fromnultiple tables.
CURSOR c2 IS
SELECT enpl oyee_id, email, enployees.manager_id, |ocation_i

o

2-10 PL/SQL User's Guide and Reference

Declarations

FROM enpl oyees, departments
WHERE enpl oyees. departnent _id = departments. departnent _id;
join_rec c29RONYPE;
BEG N
-- W know EMP_REC can hold a row fromthe EMPLOYEES tabl e.
SELECT * | NTO enp_rec FROM enpl oyees WHERE ROMUM < 2;
-- W can refer to the fields of EMP_REC using col utm names
-- fromthe EMPLOYEES tabl e.
I F enp_rec.departnent _id = 20 AND enp_rec.last_nane = ' JOHNSON THEN
enp_rec.salary := enp_rec.salary * 1.15;
END | F;
END;
/

Columns in a row and corresponding fields in a record have the same names and
datatypes. However, fields in a “RONTYPE record do not inherit the NOT NULL column
constraint.

Aggregate Assignment

Although a ¥ROW YPE declaration cannot include an initialization clause, there are
ways to assign values to all fields in a record at once. You can assign one record to
another if their declarations refer to the same table or cursor. For example, the
following assignment is allowed:

DECLARE
dept _recl depart nment sYRONTYPE;
dept _rec2 depart ment s¥RONTYPE;
CURSOR c1 | S SELECT departnent _id, |ocation_id FROM departnents;
dept _rec3 clYROMYPE;

BEG N
dept _recl := dept_rec2; -- allowed
-- dept_rec2 refers to a table, dept_rec3 refers to a cursor
-- dept_rec2 := dept_rec3; -- not allowed
END;

/

You can assign a list of column values to a record by using the SELECT or FETCH
statement, as the following example shows. The column names must appear in the
order in which they were defined by the CREATE TABLE or CREATE VI EWstatement.

DECLARE
dept _rec depart nent SUROMYPE;
BEG N
SELECT * | NTO dept _rec FROM departments
WHERE departnent _id = 30 and ROMUM < 2;
END;
/

However, there is no constructor for a record type, so you cannot assign a list of
column values to a record by using an assignment statement.

Using Aliases

Select-list items fetched from a cursor associated with %ROWI'YPE must have simple
names or, if they are expressions, must have aliases. The following example uses an
alias called conpl et e_narme to represent the concatenation of two columns:

BEG N
-- \ assign an alias (COWLETE_NAME) to the expression value, because
-- it has no col um nane.

Fundamentals of the PL/SQL Language 2-11

PL/SQL Naming Conventions

FORitemIN

SELECT first_nanme || ' ' || last_nanme conpl ete_nanme
FROM enpl oyees WHERE ROMNUM < 11

)

LooP
- Now we can refer to the field in the record using this alias.
dbns_out put. put _| i ne(* Enpl oyee name: ' || item conpl ete_nane);
END LOOP;
END;

/

Restrictions on Declarations

PL/SQL does not allow forward references. You must declare a variable or constant
before referencing it in other statements, including other declarative statements.

PL/SQL does allow the forward declaration of subprograms. For more information,
see "Declaring Nested PL/SQL Subprograms” on page 8-5.

Some languages allow you to declare a list of variables that have the same datatype.
PL/SQL does not allow this. You must declare each variable separately:

DECLARE
- Miltiple declarations not allowed.
- i, j, k, | SMALLINT;
- Instead, declare each separately.
i SMALLI NT;
j SMALLI NT;

- To save space, you can declare nore than one on a line.
k SMALLINT; | SMALLINT;
BEG N
NULL;
END;
/

PL/SQL Naming Conventions

The same naming conventions apply to all PL/SQL program items and units including
constants, variables, cursors, cursor variables, exceptions, procedures, functions, and
packages. Names can be simple, qualified, remote, or both qualified and remote. For
example, you might use the procedure name r ai se_sal ary in any of the following

ways:
raise_salary(...); -- sinple
enp_actions.raise_salary(...); -- qualified

rai se_sal ary@ewyork(...); -- renmote

enp_actions. raise_salary@ework(...); ~-- qualified and remote

In the first case, you simply use the procedure name. In the second case, you must
qualify the name using dot notation because the procedure is stored in a package
called enp_act i ons. In the third case, using the remote access indicator (@, you
reference the database link newyor k because the procedure is stored in a remote

database. In the fourth case, you qualify the procedure name and reference a database
link.

2-12 PL/SQL User's Guide and Reference

PL/SQL Naming Conventions

Synonyms

You can create synonyms to provide location transparency for remote schema objects
such as tables, sequences, views, standalone subprograms, packages, and object types.
However, you cannot create synonyms for items declared within subprograms or
packages. That includes constants, variables, cursors, cursor variables, exceptions, and
packaged subprograms.

Scoping

Within the same scope, all declared identifiers must be unique; even if their datatypes
differ, variables and parameters cannot share the same name. In the following
example, the second declaration is not allowed:

DECLARE

valid_id BOOLEAN,

valid_id VARCHAR2(5); -- not allowed, duplicate identifier
BEG N

-- The error occurs when the identifier is referenced, not
-- in the declaration part.
valid_id := FALSE
END;
/

For the scoping rules that apply to identifiers, see "Scope and Visibility of PL/SQL
Identifiers" on page 2-14.

Case Sensitivity

Like all identifiers, the names of constants, variables, and parameters are not case
sensitive. For instance, PL/SQL considers the following names to be the same:

DECLARE

zi p_code | NTEGER;

Zip_Code INTEGER, -- duplicate identifier, despite Z/z case difference
BEG N

zip_code := 90120; -- causes error because of duplicate identifiers
END;

/

Name Resolution

In potentially ambiguous SQL statements, the names of database columns take
precedence over the names of local variables and formal parameters. For example, if a
variable and a column with the same name are both used in a WHERE clause, SQL
considers that both cases refer to the column.

To avoid ambiguity, add a prefix to the names of local variables and formal
parameters, or use a block label to qualify references.

CREATE TABLE enpl oyees2 AS SELECT | ast_nane FROM enpl oyees;

<<MAI N>>
DECLARE
| ast _name VARCHAR2(10) := 'King';
my_l ast _name VARCHAR2(10) := "King';
BEG N

-- Deletes everyone, because both LAST_NAMES refer to the colum
DELETE FROM enpl oyees2 WHERE | ast _nanme = | ast_nane;
dbns_out put. put _line(' Deleted ' || SQLYROACOUNT || ' rows.');
ROLLBACK;

Fundamentals of the PL/SQL Language 2-13

Scope and Visibility of PL/SQL Identifiers

- K, colum and variable have different nanes
DELETE FROM enpl oyees2 WHERE | ast _nanme = ny_l ast _nane;
dbns_out put. put _line('Deleted ' || SQLYROACCUNT || ' rows.');
ROLLBACK;

- O, block name specifies that 2nd LAST_NAME is a variable
DELETE FROM enpl oyees2 WHERE | ast _nanme = main. | ast _nane;
dbms_out put. put _line(' Deleted ' || SQURONOUNT || ' rows.');
ROLLBACK;

END;
/

DROP TABLE enpl oyees2;

The next example shows that you can use a subprogram name to qualify references to
local variables and formal parameters:

DECLARE
FUNCTI ON dept _nane (department _id I N NUMBER)
RETURN departments. depart nment _name% YPE
IS
department _name departnents. department _name% YPE;
BEG N
- DEPT_NAME. DEPARTMENT_NAME specifies the [ocal variable
- instead of the table colum
SELECT departnent _name | NTO dept _name. depart nent _nane
FROM depart nent's
VWHERE departnent _id = dept_name. departnent _id;
RETURN department _name;

END;
BEG N
FOR item I N (SELECT departnent _id FROM departnments)
LooP
dbns_out put. put _|ine(' Department: ' || dept_name(itemdepartnent_id));
END LOOP;
END;

/

For a full discussion of name resolution, see Appendix D.

Scope and Visibility of PL/SQL Identifiers

References to an identifier are resolved according to its scope and visibility. The scope
of an identifier is that region of a program unit (block, subprogram, or package) from
which you can reference the identifier. An identifier is visible only in the regions from
which you can reference the identifier using an unqualified name. Figure 2-1 shows
the scope and visibility of a variable named X, which is declared in an enclosing block,
then redeclared in a sub-block.

Identifiers declared in a PL/SQL block are considered local to that block and global to
all its sub-blocks. If a global identifier is redeclared in a sub-block, both identifiers
remain in scope. Within the sub-block, however, only the local identifier is visible
because you must use a qualified name to reference the global identifier.

Although you cannot declare an identifier twice in the same block, you can declare the
same identifier in two different blocks. The two items represented by the identifier are
distinct, and any change in one does not affect the other. However, a block cannot
reference identifiers declared in other blocks at the same level because those identifiers
are neither local nor global to the block.

2-14 PL/SQL User's Guide and Reference

Scope and Visibility of PL/SQL Identifiers

Figure 2-1 Scope and Visibility

Scope Visibility
DECLARE DECLARE
X REAL; X REAL:
BEG N BEG N
DECLARE DECLARE
outer x X REAL: X REAL:
BEG N BEG N
END; END;
END; END;
DECLARE DECLARE
X REAL: X REAL:
BEG N BEG N
DECLARE DECLARE
Inner x X REAL; X REAL:
BEG N BEG N
END; END;
END; END;

The example below illustrates the scope rules. Notice that the identifiers declared in
one sub-block cannot be referenced in the other sub-block. That is because a block
cannot reference identifiers declared in other blocks nested at the same level.

DECLARE
a CHAR
b REAL;
BEG N
-- identifiers available here: a (CHAR), b
DECLARE
a | NTEGER;
¢ REAL;
BEG N
-- identifiers available here: a (INTEGER), b, ¢
END;
DECLARE
d REAL;
BEG N
-- identifiers available here: a (CHAR), b, d
END;
-- identifiers available here: a (CHAR), b
END;
/

Recall that global identifiers can be redeclared in a sub-block, in which case the local
declaration prevails and the sub-block cannot reference the global identifier unless you
use a qualified name. The qualifier can be the label of an enclosing block:

<<out er>>
DECLARE
bi rt hdat e DATE;
BEG N
DECLARE
bi rt hdat e DATE;

Fundamentals of the PL/SQL Language 2-15

Assigning Values to Variables

BEG N

IF birthdate = outer.birthdate THEN ...
END;

END;
/

As the next example shows, the qualifier can also be the name of an enclosing
subprogram:

PROCEDURE check credit (...) IS
rati ng NUMBER,
FUNCTION valid (...) RETURN BOOLEAN IS
rating NUMVBER,
BEG N

I F check credit.rating < 3 THEN ...
END;
BEG N

END;
/

However, within the same scope, a label and a subprogram cannot have the same
name.

Assigning Values to Variables

You can use assignment statements to assign values to variables. For example, the
following statement assigns a new value to the variable bonus, overwriting its old
value:

bonus := salary * 0.15;

Unless you expressly initialize a variable, its value is undefined (NULL).

Variables and constants are initialized every time a block or subprogram is entered. By
default, variables are initialized to NULL:

DECLARE
counter | NTEGER,

BEG N

-- COUNTER is initially NULL, so 'COUNTER + 1' is also null.
counter := counter + 1;

I F counter IS NULL THEN
dbns_out put. put _| i ne(* Sure enough, COUNTER is NULL not 1.");
END | F;
END;
/

To avoid unexpected results, never reference a variable before you assign it a value.

The expression following the assignment operator can be arbitrarily complex, but it
must yield a datatype that is the same as or convertible to the datatype of the variable.

2-16 PL/SQL User's Guide and Reference

PL/SQL Expressions and Comparisons

Assigning Boolean Values

Only the values TRUE, FALSE, and NULL can be assigned to a Boolean variable. You
can assign these literal values, or expressions such as comparisons using relational
operators.

DECLARE
done BOOLEAN, -- DONE is initially NULL
counter NUMBER : = O;
BEG N
done := FALSE; -- Assign a literal value
WH LE done != TRUE -- Conpare to a literal value

LooP
counter := counter + 1;
done := (counter > 500); -- If counter > 500, DONE = TRUE
END LOCP;
END;

/

Assigning a SQL Query Result to a PL/SQL Variable

You can use the SELECT statement to have Oracle assign values to a variable. For each
item in the select list, there must be a corresponding, type-compatible variable in the
| NTOlist. For example:

DECLARE
enp_id enployees. enpl oyee_i d%YPE : = 100;
enp_name enpl oyees. | ast _name%l YPE;
wages NUMBER(7, 2) ;
BEG N
SELECT | ast_name, salary + (salary * nvl(conm ssion_pct,0))
I NTO enp_nane, wages FROM enpl oyees
VHERE enpl oyee_id = enp_i d;
dbns_out put. put _line(' Enpl oyee ' || enp_name || ' might make ' || wages);
END;
/

Because SQL does not have a Boolean type, you cannot select column values into a
Boolean variable.

PL/SQL Expressions and Comparisons

Expressions are constructed using operands and operators. An operand is a variable,
constant, literal, or function call that contributes a value to an expression. An example
of a simple arithmetic expression follows:

-X/ 2+3

Unary operators such as the negation operator (-) operate on one operand; binary
operators such as the division operator (/) operate on two operands. PL/SQL has no
ternary operators.

The simplest expressions consist of a single variable, which yields a value directly.
PL/SQL evaluates an expression by combining the values of the operands in ways
specified by the operators. An expression always returns a single value. PL/SQL
determines the datatype of this value by examining the expression and the context in
which it appears.

Fundamentals of the PL/SQL Language 2-17

PL/SQL Expressions and Comparisons

Operator Precedence

The operations within an expression are done in a particular order depending on their
precedence (priority). Table 2-1 shows the default order of operations from first to last
(top to bottom).

Table 2-1 Order of Operations

Operator Operation

o exponentiation

+, - identity, negation

* multiplication, division

+-,11 addition, subtraction, concatenation
=,<,>,<=,>=5,<>, 1 =, ~=, A= comparison

I SNULL, LI KE, BETVEEN, | N

NOT logical negation

AND conjunction

oR inclusion

Operators with higher precedence are applied first. In the example below, both
expressions yield 8 because division has a higher precedence than addition. Operators
with the same precedence are applied in no particular order.

5+ 12/ 4
12/ 4 +5

You can use parentheses to control the order of evaluation. For example, the following
expression yields 7, not 11, because parentheses override the default operator
precedence:

(8 +6) / 2

In the next example, the subtraction is done before the division because the most
deeply nested subexpression is always evaluated first:

100 + (20 / 5 + (7 - 3))

The following example shows that you can always use parentheses to improve
readability, even when they are not needed:

(salary * 0.05) + (conmission * 0.25)

Logical Operators

The logical operators AND, OR, and NOT follow the tri-state logic shown in Table 2-2.
AND and ORare binary operators; NOT is a unary operator.

Table 2-2 Logic Truth Table

X y XxANDYy xORYy NOT x
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
TRUE NULL NULL TRUE FALSE
FALSE TRUE FALSE TRUE TRUE

2-18 PL/SQL User's Guide and Reference

PL/SQL Expressions and Comparisons

Table 2-2 (Cont.) Logic Truth Table

X y xANDy xORYy NOT x
FALSE FALSE FALSE FALSE TRUE
FALSE NULL FALSE NULL TRUE
NULL TRUE NULL TRUE NULL
NULL FALSE FALSE NULL NULL
NULL NULL NULL NULL NULL

As the truth table shows, AND returns TRUE only if both its operands are true. On the
other hand, ORreturns TRUE if either of its operands is true. NOT returns the opposite
value (logical negation) of its operand. For example, NOT TRUE returns FALSE.

NOT NULL returns NULL, because nulls are indeterminate. Be careful to avoid
unexpected results in expressions involving nulls; see "Handling Null Values in
Comparisons and Conditional Statements" on page 2-25.

Order of Evaluation

When you do not use parentheses to specify the order of evaluation, operator
precedence determines the order. Compare the following expressions:

NOT (valid AND done) | NOT valid AND done

If the Boolean variables val i d and done have the value FALSE, the first expression
yields TRUE. However, the second expression yields FALSE because NOT has a higher
precedence than AND. Therefore, the second expression is equivalent to:

(NOT valid) AND done

In the following example, notice that when val i d has the value FALSE, the whole
expression yields FALSE regardless of the value of done:

valid AND done

Likewise, in the next example, when val i d has the value TRUE, the whole expression
yields TRUE regardless of the value of done:

valid OR done

Short-Circuit Evaluation

When evaluating a logical expression, PL/SQL uses short-circuit evaluation. That is,
PL/SQL stops evaluating the expression as soon as the result can be determined. This
lets you write expressions that might otherwise cause an error. Consider the following
OR expression:

DECLARE
on_hand | NTEGER : = 0;
on_order | NTEGER := 100;

BEG N
- Does not cause divide-by-zero error; evaluation stops after 1st expr.
IF (on_hand = 0) OR ((on_order / on_hand) < 5) THEN
dbns_out put. put _Iine(' There are no nore widgets left!');
END | F;
END;
/

Fundamentals of the PL/SQL Language 2-19

PL/SQL Expressions and Comparisons

When the value of on_hand is zero, the left operand yields TRUE, so PL/SQL does not
evaluate the right operand. If PL/SQL evaluated both operands before applying the
OR operator, the right operand would cause a division by zero error.

Comparison Operators

Comparison operators compare one expression to another. The result is always true,
false, or null. Typically, you use comparison operators in conditional control
statements and in the WHERE clause of SQL data manipulation statements. Here are
some examples of comparisons for different types:

DECLARE
PROCEDURE assert (assertion VARCHAR2, truth BOOLEAN)
IS
BEG N
IF truth I'S NULL THEN

dbns_out put. put _| i ne(* Assertion ' || assertion || ' is unknown (NULL)');
ELSIF truth = TRUE THEN
dbns_out put. put _line(' Assertion ' || assertion || ' is TRUE);
ELSE
dbns_out put . put _line(" Assertion ' || assertion || " is FALSE');
END I F;
END;
BEG N
assert('2 +2 =4, 2 +2=4),;
assert('10 > 1', 10 > 1);
assert('10 <= 1', 10 <= 1);
assert('5 BETWEEN 1 AND 10', 5 BETVEEN 1 AND 10);

(
(
(
(
assert("NULL !'= 0", NULL != 0);
assert("3 1N (1,3,5"', 3IN(1,3,5));
(
(
(

assert(''"'A <" Z) T <7,
assert('''baseball'" LIKE '"%l|l%"'"', 'baseball' LIKE " '%l|%);
assert('''suit'' || ''‘case'' = ''suitcase''', 'suit' || 'case' = 'suitcase');

END;
/

Relational Operators

Operator Meaning

= equal to

<>, =,~=,"= notequal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

IS NULL Operator

The | SNULL operator returns the Boolean value TRUE if its operand is null or FALSE
if it is not null. Comparisons involving nulls always yield NULL. Test whether a value
is null as follows:

|F variable I'S NULL THEN ...

2-20 PL/SQL User's Guide and Reference

PL/SQL Expressions and Comparisons

LIKE Operator

You use the LI KE operator to compare a character, string, or CLOB value to a pattern.
Case is significant. LI KE returns the Boolean value TRUE if the patterns match or
FALSE if they do not match.

The patterns matched by LI KE can include two special-purpose characters called
wildcards. An underscore (_) matches exactly one character; a percent sign (%
matches zero or more characters. For example, if the value of enane is' JOHNSON ,
the following expression is true:

ename LIKE 'J%_N

To search for the percent sign and underscore characters, you define an escape
character and put that character before the percent sign or underscore. The following
example uses the backslash as the escape character, so that the percent sign in the
string does not act as a wildcard:

| F sale_sign LIKE '50\%of f!' ESCAPE "\' THEN...

BETWEEN Operator

The BETVEEN operator tests whether a value lies in a specified range. It means "greater
than or equal to low value and less than or equal to high value." For example, the
following expression is false:

45 BETWEEN 38 AND 44

IN Operator

The | Noperator tests set membership. It means "equal to any member of." The set can
contain nulls, but they are ignored. For example, the following expression tests
whether a value is part of a set of values:

letter IN('a,"b",'c")
Be careful when inverting this condition. Expressions of the form:

val ue NOT IN set

yield FALSE if the set contains a null.

Concatenation Operator

Double vertical bars (| |) serve as the concatenation operator, which appends one
string (CHAR, VARCHAR2, CLOB, or the equivalent Unicode-enabled type) to another.
For example, the expression

"suit' || 'case'

returns the following value:

'sui tcase'

If both operands have datatype CHAR, the concatenation operator returns a CHAR

value. If either operand is a CLOB value, the operator returns a temporary CLOB.
Otherwise, it returns a VARCHAR?2 value.

Boolean Expressions

PL/SQL lets you compare variables and constants in both SQL and procedural
statements. These comparisons, called Boolean expressions, consist of simple or complex

Fundamentals of the PL/SQL Language 2-21

PL/SQL Expressions and Comparisons

expressions separated by relational operators. Often, Boolean expressions are
connected by the logical operators AND, OR, and NOT. A Boolean expression always
yields TRUE, FALSE, or NULL.

In a SQL statement, Boolean expressions let you specify the rows in a table that are
affected by the statement. In a procedural statement, Boolean expressions are the basis
for conditional control. There are three kinds of Boolean expressions: arithmetic,
character, and date.

Boolean Arithmetic Expressions

You can use the relational operators to compare numbers for equality or inequality.
Comparisons are quantitative; that is, one number is greater than another if it
represents a larger quantity. For example, given the assignments

nunber1 :
nunber 2 :

75;
70;

the following expression is true:

nunber1 > nunber?2

Boolean Character Expressions

You can compare character values for equality or inequality. By default, comparisons
are based on the binary values of each byte in the string.

For example, given the assighments

stringl := 'Kathy';
string2 := 'Kathleen';

the following expression is true:

stringl > string2

By setting the initialization parameter NLS_COMP=ANSI , you can make comparisons
use the collating sequence identified by the NLS_SORT initialization parameter. A
collating sequence is an internal ordering of the character set in which a range of
numeric codes represents the individual characters. One character value is greater than
another if its internal numeric value is larger. Each language might have different rules
about where such characters occur in the collating sequence. For example, an accented
letter might be sorted differently depending on the database character set, even
though the binary value is the same in each case.

Depending on the value of the NLS_SORT parameter, you can perform comparisons
that are case-insensitive and even accent-insensitive. A case-insensitive comparison
still returns true if the letters of the operands are different in terms of uppercase and
lowercase. An accent-insensitive comparison is case-insensitive, and also returns true
if the operands differ in accents or punctuation characters. For example, the character
values' True' and' TRUE' are considered identical by a case-insensitive comparison;
the character values ' Cooper ate',' Co- Operate' ,and’' codperate' areall
considered the same. To make comparisons case-insensitive, add _Cl to the end of
your usual value for the NLS_SORT parameter. To make comparisons
accent-insensitive, add _Al to the end of the NLS_SORT value.

There are semantic differences between the CHAR and VARCHARZ base types that come
into play when you compare character values. For more information, see Appendix B.

Many types can be converted to character types. For example, you can compare,
assign, and do other character operations using CLOB variables. For details on the
possible conversions, see "PL/SQL Character and String Types" on page 3-4.

2-22 PL/SQL User's Guide and Reference

PL/SQL Expressions and Comparisons

Boolean Date Expressions
You can also compare dates. Comparisons are chronological; that is, one date is greater
than another if it is more recent. For example, given the assignments

"01-JAN-91';
' 31- DEC-90';

datel :
date2 :

the following expression is true:

datel > date2

Guidelines for PL/SQL Boolean Expressions

= In general, do not compare real numbers for exact equality or inequality. Real
numbers are stored as approximate values. For example, the following | F
condition might not yield TRUE:

DECLARE
fraction BI NARY_FLOAT := 1/3;
BEG N
IF fraction = 11/33 THEN
dbns_out put. put _l i ne(' Fractions are equal (luckily!)");
END | F;
END;
/

= Itisagood idea to use parentheses when doing comparisons. For example, the
following expression is not allowed because 100 <t ax yields a Boolean value,
which cannot be compared with the number 500:

100 < tax < 500 -- not allowed

The debugged version follows:
(100 < tax) AND (tax < 500)

= A Boolean variable is itself either true or false. You can just use the variable in a
conditional test, rather than comparing it to the literal values TRUE and FALSE.
For example, the following loops are all equivalent:

DECLARE

done BOOLEAN ;
BEG N
-- Each WH LE I oop is equival ent

done : = FALSE;

VWH LE done = FALSE

LooP

done : = TRUE;
END LOOP;

done : = FALSE;
VWH LE NOT (done = TRUE)
LOOP
done : = TRUE;
END LOOP;

done : = FALSE;
WH LE NOT done
LOOP
done : = TRUE;
END LOOP;
END;

Fundamentals of the PL/SQL Language 2-23

PL/SQL Expressions and Comparisons

/

= Using CLOB values with comparison operators, or functions such as LI KE and
BETWEEN, can create temporary LOBs. You might need to make sure your
temporary tablespace is large enough to handle these temporary LOBs.

CASE Expressions

A CASE expression selects a result from one or more alternatives, and returns the
result. Although it contains a block that might stretch over several lines, it really is an
expression that forms part of a larger statement, such as an assignment or a procedure
call.

The CASE expression uses a selector, an expression whose value determines which
alternative to return. A CASE expression has the following form:

CASE sel ect or
VHEN expressionl THEN resultl
VHEN expression2 THEN result2

WHEN expressi onN THEN resul t N
[ELSE resul t N+1]
END

The selector is followed by one or more VWHEN clauses, which are checked sequentially.
The value of the selector determines which clause is evaluated. The first WHEN clause
that matches the value of the selector determines the result value, and subsequent
VWHEN clauses are not evaluated. For example:

DECLARE
grade CHAR(1) :="'B';
apprai sal VARCHAR2(20) ;
BEG N
appraisal :=
CASE grade
WHEN " A" THEN ' Excel | ent’
VHEN ' B' THEN ' Very Good'
VHEN ' C THEN ' Good'
VWHEN 'D THEN 'Fair’
VHEN ' F' THEN ' Poor'
ELSE ' No such grade'
END;
dbms_output.put _line('Gade ' || grade || ' is ' || appraisal);
END;
/

The optional ELSE clause works similarly to the ELSE clause in an | F statement. If the
value of the selector is not one of the choices covered by a WHEN clause, the ELSE
clause is executed. If no ELSE clause is provided and none of the WHEN clauses are
matched, the expression returns NULL.

An alternative to the CASE expression is the CASE statement, where each WHEN clause
can be an entire PL/SQL block. For details, see "Using the CASE Statement” on
page 4-3.

Searched CASE Expression

PL/SQL also provides a searched CASE expression, which lets you test different
conditions instead of comparing a single expression to various values. It has the form:

CASE

2-24 PL/SQL User's Guide and Reference

PL/SQL Expressions and Comparisons

WHEN search_conditionl THEN result1l
WHEN search_condition2 THEN result2

WHEN sear ch_condi ti onN THEN resul tN
[ELSE resul t N+1]
END;

A searched CASE expression has no selector. Each WHEN clause contains a search
condition that yields a Boolean value, so you can test different variables or multiple
conditions in a single WHEN clause. For example:

DECLARE
grade CHAR(1) :="'B';
apprai sal VARCHAR2(120);
id NUMBER : = 8429862;
attendance NUMBER : = 150;
m n_days CONSTANT NUMBER : = 200;
FUNCTI ON attends_t his_school (i d NUMBER) RETURN BOCLEAN IS
BEG N RETURN TRUE; END;
BEG N
appraisal :=
CASE
VHEN attends_this_school (id) = FALSE THEN ' N'A - Student not enrolled
- Have to put this condition early to detect
- good students with bad attendance
VWHEN grade = 'F OR attendance < nin_days THEN ' Poor (poor perfornance or
bad attendance)’

WHEN grade = " A" THEN ' Excel | ent’
WHEN grade = 'B° THEN ' Very Good'
WHEN grade = 'C THEN ' Good'

WHEN grade = 'D THEN 'Fair'
ELSE ' No such grade'

END;
dbns_out put.put _line(' Result for student ' || id |]
is' || appraisal);

END;
/

The search conditions are evaluated sequentially. The Boolean value of each search
condition determines which WHEN clause is executed. If a search condition yields
TRUE, its WHEN clause is executed. After any WHEN clause is executed, subsequent
search conditions are not evaluated. If none of the search conditions yields TRUE, the
optional ELSE clause is executed. If no WHEN clause is executed and no ELSE clause is
supplied, the value of the expression is NULL.

Handling Null Values in Comparisons and Conditional Statements

When working with nulls, you can avoid some common mistakes by keeping in mind
the following rules:

= Comparisons involving nulls always yield NULL
= Applying the logical operator NOT to a null yields NULL

« In conditional control statements, if the condition yields NULL, its associated
sequence of statements is not executed

= If the expression in a simple CASE statement or CASE expression yields NULL, it
cannot be matched by using WHEN NULL. In this case, you would need to use the
searched case syntax and test WHEN expression |I'S NULL.

Fundamentals of the PL/SQL Language 2-25

PL/SQL Expressions and Comparisons

In the example below, you might expect the sequence of statements to execute because
X and y seem unequal. But, nulls are indeterminate. Whether or not X is equal to y is
unknown. Therefore, the | F condition yields NULL and the sequence of statements is

bypassed.
DECLARE
X NUMBER : = 5;
y NUMBER : = NULL;
BEG N
IF x !=y THEN -- yields NULL, not TRUE
dbms_output. put _line('x !'=y"'); -- not executed

ELSIF x =y THEN -- also yields NULL
dbns_out put. put _line('x =y');
ELSE
dbns_output.put _line('Can''t tell if x and y are equal or not...");
END | F;
END;
/

In the next example, you might expect the sequence of statements to execute because a
and b seem equal. But, again, that is unknown, so the | F condition yields NULL and
the sequence of statements is bypassed.

DECLARE
a NUMBER : = NULL;
b NUMBER : = NULL;
BEG N
IFa=DbTHEN -- yields NULL, not TRUE
dbns_output.put_line(*a =b"); -- not executed
ELSIF a '= b THEN -- yields NULL, not TRUE
dbns_output.put _line('a'!="h"); -- not executed
ELSE
dbns_output.put _line('Can''t tell if two NULLs are equal');
END | F;
END;

/

NULLs and the NOT Operator

Recall that applying the logical operator NOT to a null yields NULL. Thus, the following
two statements are not always equivalent:

IF x >y THEN | IF NOT x >y THEN
high := x; | high :=vy;
ELSE | ELSE
high :=vy; | high : = x;
END I F; | END | F;

The sequence of statements in the EL SE clause is executed when the | F condition
yields FALSE or NULL. If neither X nor y is null, both | F statements assign the same
value to hi gh. However, if either x or y is null, the first | F statement assigns the value
of y to hi gh, but the second | F statement assigns the value of x to hi gh.

NULLs and Zero-Length Strings

PL/SQL treats any zero-length string like a null. This includes values returned by
character functions and Boolean expressions. For example, the following statements
assign nulls to the target variables:

DECLARE

2-26 PL/SQL User's Guide and Reference

PL/SQL Expressions and Comparisons

null _string VARCHAR2(80) := TO CHAR('');
address VARCHAR2(80);
zi p_code VARCHAR2(80) := SUBSTR(address, 25, 0);
name VARCHAR2(80);
valid BOOLEAN : = (name !="");
BEG N
NULL;
END;
/

Use the | SNULL operator to test for null strings, as follows:
IF ny_string I'S NULL THEN ...

NULLs and the Concatenation Operator
The concatenation operator ignores null operands. For example, the expression

"apple' || NULL || NULL || 'sauce'

returns the following value:

" appl esauce'

NULLs as Arguments to Built-In Functions

If a null argument is passed to a built-in function, a null is returned except in the
following cases.

The function DECODE compares its first argument to one or more search expressions,
which are paired with result expressions. Any search or result expression can be null.
If a search is successful, the corresponding result is returned. In the following example,
if the column r at i ng is null, DECCDE returns the value 1000:

DECLARE
t he_manager VARCHAR2(40);
name enpl oyees. | ast _name% YPE;
BEG N
- NULL is a valid argument to DECODE. In this case, manager _id is null
- and the DECODE function returns 'nobody'.
SELECT DECODE(manager _id, NULL, 'nobody', 'sonebody'), |ast_name
I NTO t he_nanager, name FROM enpl oyees WHERE enpl oyee_id = 100;
dbns_out put. put _line(name || " is managed by ' || the_manager);
END;
/

The function NVL returns the value of its second argument if its first argument is null.
In the following example, if the column specified in the query is null, the function
returns the value -1 to signify a non-existent employee in the output:

DECLARE

the_manager enpl oyees. nanager _i d9dYPE;

name enpl oyees. | ast _name% YPE;
BEG N
- NULL is a valid argument to NVL. In this case, manager_id is null
- and the NVL function returns -1.

SELECT NVL(nmnager_id, -1), last_nanme

I NTO t he_nanager, name FROM enpl oyees WHERE enpl oyee_id = 100;

dbns_out put. put _line(name || ' is managed by enployee # || the_manager);
END;
/

Fundamentals of the PL/SQL Language 2-27

Summary of PL/SQL Built-In Functions

The function REPLACE returns the value of its first argument if its second argument is
null, whether the optional third argument is present or not. For example, the following
call to REPLACE does not make any change to the value of OLD_STRI NG

DECLARE
string_type VARCHAR2(60);
old_string string_typeddYPE := 'Apples and oranges';
my_string string_type%dYPE := 'nore apples';
- NULL is a valid argument to REPLACE, but does not match
- anything so no replacenment is done.
new string string_type%YPE : = REPLACE(ol d_string, NULL, nmy_string);
BEG N
dbns_out put. put _line(' Od string
dbns_out put. put _I'ine(' New string
END;
/

|| old_string);
|| new_string);

If its third argument is null, REPLACE returns its first argument with every occurrence
of its second argument removed. For example, the following call to REPLACE removes
all the dashes from DASHED_STRI NG instead of changing them to another character:

DECLARE

string_type VARCHAR2(60);

dashed string_type%YPE := "'Gold-i-locks';
- When the substitution text for REPLACE is NULL,
- the text being replaced is deleted.

name string_type%YPE : = REPLACE(dashed, '-', NULL);
BEG N

dbns_out put . put _l i ne(' Dashed nane ="' || dashed);

dbns_out put . put _l i ne(' Dashes renmoved = ' || name);
END;
/

If its second and third arguments are null, REPLACE just returns its first argument.

Summary of PL/SQL Built-In Functions

PL/SQL provides many powerful functions to help you manipulate data. These
built-in functions fall into the following categories:

error reporting
number

character

datatype conversion
date

object reference
miscellaneous

Table 2-3 shows the functions in each category. For descriptions of the error-reporting
functions, see Chapter 13. For descriptions of the other functions, see Oracle Database
SQL Reference.

Except for the error-reporting functions SQLCODE and SQLERRM you can use all the
functions in SQL statements. Also, except for the object-reference functions DEREF,
REF, and VALUE and the miscellaneous functions DECODE, DUMP, and VSI ZE, you can
use all the functions in procedural statements.

2-28 PL/SQL User's Guide and Reference

Summary of PL/SQL Built-In Functions

Although the SQL aggregate functions (such as AVGand COUNT) and the SQL analytic
functions (such as CORR and LAG) are not built into PL/SQL, you can use them in SQL
statements (but not in procedural statements).

Fundamentals of the PL/SQL Language 2-29

Summary of PL/SQL Built-In Functions

Table 2-3 Built-In Functions

Error Number Character Conversion Date Obj Ref Misc
SQLCODE ABS ASCI | CHARTOROW D ADD_NONTHS DEREF BFI LENAME
SQLERRM ACOS ASCI | STR CONVERT CURRENT_DATE REF COALESCE
ASI N CHR HEXTORAW CURRENT_TI ME TREAT DECODE
ATAN COVPCSE RAWTOHEX CURRENT_TI MESTAMP VALUE puwp
ATAN2 CONCAT RAWIONHEX DBTI MEZONE EMPTY_BLOB
BI TAND DECOMPOSE ROW DTOCHAR EXTRACT EMPTY_CLOB
CEl L I'NI TCAP TO BI NARY_DOUBLE FROM.TZ GREATEST
cos I'NSTR TO BLOB LAST_DAY LEAST
COSH | NSTR2 TO_BI NARY_FLOAT LOCALTI MESTAMP NANVL
EXP I'NSTR4 TO CHAR MONTHS_BETVEEN NLS_CHARSET_DECL_LEN
Flor |STRB TO cLoB NEW TI NE NLS_CHARSET | D
LN I NSTRC TO DATE NEXT DAY NLS_CHARSET_NAME
LOG LENGTH TOMULTI _BYTE NUMIODSI NTERVAL NULLTF
MOD LENGTH2 TO NCHAR NUMIOYM NTERVAL NVL
LENGTH4 -
POER | \ore TO_NCLOB ROUND SYS_CONTEXT
REMAI ND LENGTHC TO_NUMBER SESSI ONTI MEZONE SYS_GU D
ER
ronp LOVER TO_SINGLE_BYTE ~ SYS_EXTRACT_UTC ub
LPAD SYSDATE USER
SI GN
LTRI M SYSTI MESTAMP USERENV
SIN
NCHR TO _DSI NTERVAL VSI ZE
SI NH
NLS | NI TCAP
SQRT TO TI ME
NLS_LONER -
TAN TO TIME_TZ
NLSSORT
TANH TO Tl MESTAMP
NLS_UPPER
TRUNC TO_TI MESTAMP_TZ
REGEXP_I NSTR
TO YM NTERVAL
REGEXP_LI KE

REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE

RPAD

RTRI M

SOUNDEX
SUBSTR
SUBSTR2
SUBSTR4
SUBSTRB
SUBSTRC
TRANSLATE

TRI M

UNI STR

UPPER

TRUNC
TZ_OFFSET

2-30 PL/SQL User's Guide and Reference

3

PL/SQL Datatypes

Like—but oh how different! ~—William Wordsworth

Every constant, variable, and parameter has a datatype (or type), which specifies a
storage format, constraints, and valid range of values. PL/SQL provides many
predefined datatypes. For instance, you can choose from integer, floating point,
character, Boolean, date, collection, reference, and large object (LOB) types. PL/SQL
also lets you define your own subtypes. This chapter covers the basic types used
frequently in PL/SQL programs. Later chapters cover the more specialized types.

This chapter contains these topics:

= Overview of Predefined PL/SQL Datatypes on page 3-1
=« Overview of PL/SQL Subtypes on page 3-16

= Converting PL/SQL Datatypes on page 3-18

Overview of Predefined PL/SQL Datatypes

A scalar type has no internal components. It holds a single value, such as a number or
character string.

A composite type has internal components that can be manipulated individually, such
as the elements of an array:.

A reference type holds values, called pointers, that designate other program items.

A LOB type holds values, called lob locators, that specify the location of large objects,
such as text blocks or graphic images, that are stored separately from other database
data.

Figure 3-1 shows the predefined PL/SQL datatypes. The scalar types fall into four
families, which store number, character, Boolean, and date/time data, respectively.

PL/SQL Datatypes 3-1

Overview of Predefined PL/SQL Datatypes

Figure 3—-1 Built-in Datatypes

Scalar Types Composite Types
RECORD
BINARY_DOUBLE CHAR TABLE
BINARY_FLOAT CHARACTER VARRAY
BINARY_INTEGER LONG
DEC LONG RAW
DECIMAL NCHAR
DOUBLE PRECISION NVARCHAR2
FLOAT RAW
INT ROWID Reference Types
INTEGER STRING REF CURSOR
NATURAL UROWID REF object_type
NATURALN VARCHAR
NUMBER VARCHAR?2
NUMERIC
PLS_INTEGER
POSITIVE
POSITIVEN | BOOLEAN LOB Types
REAL BFILE
SIGNTYPE BLOB
SMALLINT | DATE CLOB
NCLOB
PL/SQL Number Types

Number types let you store numeric data (integers, real numbers, and floating-point
numbers), represent quantities, and do calculations.

BINARY_INTEGER

You use the Bl NARY_| NTEGER datatype to store signed integers. Its magnitude range
is -2**31 .. 2**31.

Bl NARY_| NTEGER values require less storage than NUMBER values. Arithmetic
operations on Bl NARY_| NTEGER values are also faster than NUMBER arithmetic.

Bl NARY_I NTEGER and PLS_| NTEGER both have these advantages. Because PLS

| NTEGER was faster in earlier releases, you might use it instead of Bl NARY_| NTEGER
in code that will run on older databases.

BINARY_INTEGER Subtypes A base type is the datatype from which a subtype is derived.
A subtype associates a base type with a constraint and so defines a subset of values. For
your convenience, PL/SQL predefines the following Bl NARY_I NTEGER subtypes:

NATURAL
NATURALN
PCSI TI VE
PCSI TI VEN
SI GNTYPE

The subtypes NATURAL and POSI Tl VE let you restrict an integer variable to
non-negative or positive values, respectively. NATURALN and POSI Tl VEN prevent the
assigning of nulls to an integer variable. SI GNTYPE lets you restrict an integer variable
to the values -1, 0, and 1, which is useful in programming tri-state logic.

3-2 PL/SQL User's Guide and Reference

Overview of Predefined PL/SQL Datatypes

BINARY_FLOAT and BINARY_DOUBLE

Single-precision and double-precision IEEE 754-format single-precision floating-point
numbers. These types are used primarily for high-speed scientific computation. For
usage information, see "Writing Computation-Intensive Programs in PL/SQL" on
page 11-19. For information about writing math libraries that accept different numeric
types, see "Guidelines for Overloading with Numeric Types" on page 8-11.

Literals of these types end with f (for Bl NARY_FLOAT) or d (for Bl NARY_DOUBLE).
For example, 2. 07f or 3. 000094d.

Computations involving these types produce special values that you need to check for,
rather than raising exceptions. To help deal with overflow, underflow, and other
conditions that can occur with these numbers, you can use several special predefined
constants: Bl NARY_FLOAT_NAN, Bl NARY_FLOAT | NFI NI TY, Bl NARY_FLOAT_MAX_
NORVAL, Bl NARY_FLOAT_M N_NORVAL, Bl NARY_FLOAT_MAX_SUBNORMAL,

Bl NARY_FLOAT_M N_SUBNORMAL, and corresponding names starting with Bl NARY_
DOUBLE. The constants for NaN ("not a number") and infinity are also defined by SQL;
the others are PL/SQL-only.

NUMBER

You use the NUMBER datatype to store fixed-point or floating-point numbers. Its
magnitude range is 1E-130 .. 10E125. If the value of an expression falls outside this
range, you get a numeric overflow or underflow error. You can specify precision, which is
the total number of digits, and scale, which is the number of digits to the right of the
decimal point. The syntax follows:

NUMBER] (pr eci si on, scal e)]

To declare fixed-point numbers, for which you must specify scale, use the following
form:

NUMBER(pr eci si on, scal e)

To declare floating-point numbers, for which you cannot specify precision or scale
because the decimal point can "float" to any position, use the following form:

NUMBER

To declare integers, which have no decimal point, use this form:

NUMBER(preci sion) -- sanme as NUMBER(preci sion, 0)

You cannot use constants or variables to specify precision and scale; you must use
integer literals. The maximum precision of a NUMBER value is 38 decimal digits. If you
do not specify precision, it defaults to 38 or the maximum supported by your system,
whichever is less.

Scale, which can range from -84 to 127, determines where rounding occurs. For
instance, a scale of 2 rounds to the nearest hundredth (3.456 becomes 3.46). A negative
scale rounds to the left of the decimal point. For example, a scale of -3 rounds to the
nearest thousand (3456 becomes 3000). A scale of 0 rounds to the nearest whole
number. If you do not specify scale, it defaults to 0.

NUMBER Subtypes You can use the following NUMBER subtypes for compatibility with
ANSI/ISO and IBM types or when you want a more descriptive name:

DEC
DECI MAL
DOUBLE PRECI SI ON

PL/SQL Datatypes 3-3

Overview of Predefined PL/SQL Datatypes

FLOAT

I NTEGER
I NT
NUMERI C
REAL
SMALLI NT

Use the subtypes DEC, DECI MAL, and NUVMERI C to declare fixed-point numbers with a
maximum precision of 38 decimal digits.

Use the subtypes DOUBLE PRECI SI ONand FLOAT to declare floating-point numbers
with a maximum precision of 126 binary digits, which is roughly equivalent to 38
decimal digits. Or, use the subtype REAL to declare floating-point numbers with a
maximum precision of 63 binary digits, which is roughly equivalent to 18 decimal
digits.

Use the subtypes | NTEGER, | NT, and SMALLI NT to declare integers with a maximum
precision of 38 decimal digits.

PLS_INTEGER

You use the PLS_| NTEGER datatype to store signed integers. Its magnitude range is
-2**31 .. 2**31. PLS_| NTEGER values require less storage than NUMBER values. Also,
PLS_I NTEGER operations use machine arithmetic, so they are faster than NUMBER and
Bl NARY_I NTEGER operations, which use library arithmetic. For efficiency, use PLS_

I NTEGER for all calculations that fall within its magnitude range.

Although PLS_| NTEGER and Bl NARY_| NTEGER have the same magnitude range,
they are not fully compatible. When a PLS_| NTEGER calculation overflows, an
exception is raised. However, when a Bl NARY_| NTEGER calculation overflows, no
exception is raised if the result is assigned to a NUMBER variable.

Because of this small semantic difference, you might want to continue using Bl NARY_
| NTEGERin old applications for compatibility. In new applications, always use PLS_
| NTEGER for better performance.

PL/SQL Character and String Types

Character types let you store alphanumeric data, represent words and text, and
manipulate character strings.

CHAR

You use the CHAR datatype to store fixed-length character data. How the data is
represented internally depends on the database character set. The CHAR datatype takes
an optional parameter that lets you specify a maximum size up to 32767 bytes. You can
specify the size in terms of bytes or characters, where each character contains one or
more bytes, depending on the character set encoding. The syntax follows:

CHAR[(maxi mum si ze [CHAR | BYTE])]

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal in the range 1 .. 32767.

If you do not specify a maximum size, it defaults to 1. If you specify the maximum size
in bytes rather than characters, a CHAR(n) variable might be too small to hold n
multibyte characters. To avoid this possibility, use the notation CHAR(n CHAR) so that
the variable can hold n characters in the database character set, even if some of those
characters contain multiple bytes. When you specify the length in characters, the

3-4 PL/SQL User's Guide and Reference

Overview of Predefined PL/SQL Datatypes

upper limit is still 32767 bytes. So for double-byte and multibyte character sets, you
can only specify 1/2 or 1/3 as many characters as with a single-byte character set.

Although PL/SQL character variables can be relatively long, you cannot insert CHAR
values longer than 2000 bytes into a CHAR database column.

You can insert any CHAR(n) value into a LONG database column because the
maximum width of a LONG column is 2**31 bytes or two gigabytes. However, you
cannot retrieve a value longer than 32767 bytes from a LONG column into a CHAR(n)
variable.

When you do not use the CHAR or BYTE qualifiers, the default is determined by the
setting of the NLS_LENGTH_SEMANTI CS initialization parameter. When a PL/SQL
procedure is compiled, the setting of this parameter is recorded, so that the same
setting is used when the procedure is recompiled after being invalidated.

Note: Semantic differences between the CHAR and VARCHARZ base types are discussed
in Appendix B.

CHAR Subtype The CHAR subtype CHARACTER has the same range of values as its base
type. That is, CHARACTER s just another name for CHAR. You can use this subtype for
compatibility with ANSI/ISO and IBM types or when you want an identifier more
descriptive than CHAR

LONG and LONG RAW

You use the LONG datatype to store variable-length character strings. The LONG
datatype is like the VARCHAR2 datatype, except that the maximum size of a LONG
value is 32760 bytes.

You use the LONG RAWdatatype to store binary data or byte strings. LONG RAWdata is
like LONG data, except that LONG RAWdata is not interpreted by PL/SQL. The
maximum size of a LONG RAWvalue is 32760 bytes.

Starting in Oracle9i, LOB variables can be used interchangeably with LONGand LONG
RAWvariables. Oracle recommends migrating any LONGdata to the CLOB type, and
any LONG RAWdata to the BLOB type. See "PL/SQL LOB Types" on page 3-10 for more
details.

You can insert any LONGvalue into a LONG database column because the maximum
width of a LONG column is 2**31 bytes. However, you cannot retrieve a value longer
than 32760 bytes from a LONG column into a LONG variable.

Likewise, you can insert any LONG RAWvalue into a LONG RAWdatabase column
because the maximum width of a LONG RAWcolumn is 2**31 bytes. However, you
cannot retrieve a value longer than 32760 bytes from a LONG RAWcolumn into a LONG
RAWvariable.

LONG columns can store text, arrays of characters, or even short documents. You can
reference LONG columns in UPDATE, | NSERT, and (most) SELECT statements, but not
in expressions, SQL function calls, or certain SQL clauses such as WHERE, GROUP BY,
and CONNECT BY. For more information, see Oracle Database SQL Reference.

Note: In SQL statements, PL/SQL binds LONG values as VARCHAR2, not as LONG
However, if the length of the bound VARCHAR2 exceeds the maximum width of a
VARCHARZ2 column (4000 bytes), Oracle converts the bind type to LONGautomatically,
then issues an error message because you cannot pass LONGvalues to a SQL function.

PL/SQL Datatypes 3-5

Overview of Predefined PL/SQL Datatypes

RAW

You use the RAWdatatype to store binary data or byte strings. For example, a RAW
variable might store a sequence of graphics characters or a digitized picture. Raw data
is like VARCHARZ data, except that PL/SQL does not interpret raw data. Likewise,
Oracle Net does no character set conversions when you transmit raw data from one
system to another.

The RAWdatatype takes a required parameter that lets you specify a maximum size up
to 32767 bytes. The syntax follows:

RAW naxi mum si ze)

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal in the range 1 .. 32767.

You cannot insert RAWvalues longer than 2000 bytes into a RAWcolumn. You can insert
any RAWvalue into a LONGRAWAdatabase column because the maximum width of a
LONG RAWcolumn is 2**31 bytes. However, you cannot retrieve a value longer than
32767 bytes from a LONG RAWcolumn into a RAWvariable.

ROWID and UROWID

Internally, every database table has a ROW D pseudocolumn, which stores binary
values called rowids. Each rowid represents the storage address of a row. A physical
rowid identifies a row in an ordinary table. A logical rowid identifies a row in an
index-organized table. The ROW D datatype can store only physical rowids. However,
the UROW D (universal rowid) datatype can store physical, logical, or foreign
(non-Oracle) rowids.

Suggestion: Use the RON D datatype only for backward compatibility with old
applications. For new applications, use the UROW D datatype.

When you select or fetch a rowid into a ROA Dvariable, you can use the built-in
function ROA DTOCHAR, which converts the binary value into an 18-byte character
string. Conversely, the function CHARTOROW D converts a ROW D character string into
a rowid. If the conversion fails because the character string does not represent a valid
rowid, PL/SQL raises the predefined exception SYS_I NVALI D_ROW D. This also
applies to implicit conversions.

To convert between UROW Dvariables and character strings, use regular assignment
statements without any function call. The values are implicitly converted between
UROW D and character types.

Physical Rowids Physical rowids provide fast access to particular rows. As long as the
row exists, its physical rowid does not change. Efficient and stable, physical rowids are
useful for selecting a set of rows, operating on the whole set, and then updating a
subset. For example, you can compare a UROW D variable with the RON D
pseudocolumn in the WHERE clause of an UPDATE or DELETE statement to identify the
latest row fetched from a cursor. See "Fetching Across Commits" on page 6-34.

A physical rowid can have either of two formats. The 10-byte extended rowid format
supports tablespace-relative block addresses and can identify rows in partitioned and
non-partitioned tables. The 6-byte restricted rowid format is provided for backward
compatibility.

Extended rowids use a base-64 encoding of the physical address for each row selected.
For example, in SQL*Plus (which implicitly converts rowids into character strings), the
query

SQL> SELECT rowi d, ename FROM enp WHERE enpno = 7788;

3-6 PL/SQL User's Guide and Reference

Overview of Predefined PL/SQL Datatypes

might return the following row:

AAAAQC AABAAADFNAAH SCOTT

The format, OOOOOOFFFBBBBBBRRR, has four parts:

= 000000 The data object number (AAAAQC in the example above) identifies the
database segment. Schema objects in the same segment, such as a cluster of tables,
have the same data object number.

=« FFF: The file number (AAB in the example) identifies the data file that contains the
row. File numbers are unique within a database.

« BBBBBB: The block number (AAADFNin the example) identifies the data block that
contains the row. Because block numbers are relative to their data file, not their
tablespace, two rows in the same tablespace but in different data files can have the
same block number.

=« RRR The row number (AAHin the example) identifies the row in the block.

Logical Rowids Logical rowids provide the fastest access to particular rows. Oracle uses
them to construct secondary indexes on index-organized tables. Having no permanent
physical address, a logical rowid can move across data blocks when new rows are
inserted. However, if the physical location of a row changes, its logical rowid remains
valid.

A logical rowid can include a guess, which identifies the block location of a row at the
time the guess is made. Instead of doing a full key search, Oracle uses the guess to
search the block directly. However, as new rows are inserted, guesses can become stale
and slow down access to rows. To obtain fresh guesses, you can rebuild the secondary
index.

You can use the ROW D pseudocolumn to select logical rowids (which are opaque
values) from an index-organized table. Also, you can insert logical rowids into a
column of type UROW D, which has a maximum size of 4000 bytes.

The ANAL YZE statement helps you track the staleness of guesses. This is useful for
applications that store rowids with guesses in a UROA D column, then use the rowids
to fetch rows.

Note: To manipulate rowids, you can use the supplied package DBMS_ROW D. For
more information, see PL/SQL Packages and Types Reference.

VARCHAR2

You use the VARCHARZ datatype to store variable-length character data. How the data
is represented internally depends on the database character set. The VARCHAR2
datatype takes a required parameter that specifies a maximum size up to 32767 bytes.
The syntax follows:

VARCHAR2(maxi mum si ze [CHAR | BYTE])
You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal in the range 1 .. 32767.

Small VARCHARZ variables are optimized for performance, and larger ones are
optimized for efficient memory use. The cutoff point is 2000 bytes. For a VARCHAR2
that is 2000 bytes or longer, PL/SQL dynamically allocates only enough memory to
hold the actual value. For a VARCHARZ variable that is shorter than 2000 bytes,

PL/SQL Datatypes 3-7

Overview of Predefined PL/SQL Datatypes

PL/SQL preallocates the full declared length of the variable. For example, if you
assign the same 500-byte value to a VARCHAR2(2000 BYTE) variable and to a
VARCHAR2(1999 BYTE) variable, the former takes up 500 bytes and the latter takes
up 1999 bytes.

If you specify the maximum size in bytes rather than characters, a VARCHAR2(n)
variable might be too small to hold n multibyte characters. To avoid this possibility,
use the notation VARCHAR2(n CHAR) so that the variable can hold n characters in the
database character set, even if some of those characters contain multiple bytes. When
you specify the length in characters, the upper limit is still 32767 bytes. So for
double-byte and multibyte character sets, you can only specify 1/2 or 1/3 as many
characters as with a single-byte character set.

Although PL/SQL character variables can be relatively long, you cannot insert
VARCHAR?Z values longer than 4000 bytes into a VARCHARZ2 database column.

You can insert any VARCHARZ2(n) value into a LONGdatabase column because the
maximum width of a LONG column is 2**31 bytes. However, you cannot retrieve a
value longer than 32767 bytes from a LONG column into a VARCHAR2(n) variable.

When you do not use the CHAR or BYTE qualifiers, the default is determined by the
setting of the NLS_LENGTH_SEMANTI CS initialization parameter. When a PL/SQL
procedure is compiled, the setting of this parameter is recorded, so that the same
setting is used when the procedure is recompiled after being invalidated.

VARCHAR2 Subtypes The VARCHARZ subtypes below have the same range of values as
their base type. For example, VARCHAR s just another name for VARCHAR2.

STRI NG
VARCHAR
You can use these subtypes for compatibility with ANSI/ISO and IBM types.

Note: Currently, VARCHAR is synonymous with VARCHAR2. However, in future
releases of PL/SQL, to accommodate emerging SQL standards, VARCHAR might
become a separate datatype with different comparison semantics. It is a good idea to
use VARCHARZ rather than VARCHAR

PL/SQL National Character Types

The widely used one-byte ASCII and EBCDIC character sets are adequate to represent
the Roman alphabet, but some Asian languages, such as Japanese, contain thousands
of characters. These languages require two or three bytes to represent each character.
To deal with such languages, Oracle provides globalization support, which lets you
process single-byte and multibyte character data and convert between character sets. It
also lets your applications run in different language environments.

With globalization support, number and date formats adapt automatically to the
language conventions specified for a user session. Thus, users around the world can
interact with Oracle in their native languages.

PL/SQL supports two character sets called the database character set, which is used for
identifiers and source code, and the national character set, which is used for national
language data. The datatypes NCHAR and NVARCHAR? store character strings formed
from the national character set.

Note: When converting CHAR or VARCHAR2 data between databases with different
character sets, make sure the data consists of well-formed strings. For more
information, see Oracle Database Globalization Support Guide.

3-8 PL/SQL User's Guide and Reference

Overview of Predefined PL/SQL Datatypes

Comparing UTF8 and AL16UTF16 Encodings

The national character set represents data as Unicode, using either the UTF8 or
AL16UTF16 encoding.

Each character in the AL16UTF16 encoding takes up 2 bytes. This makes it simple to
calculate string lengths to avoid truncation errors when mixing different programming
languages, but requires extra storage overhead to store strings made up mostly of
ASCII characters.

Each character in the UTF8 encoding takes up 1, 2, or 3 bytes. This lets you fit more
characters into a variable or table column, but only if most characters can be
represented in a single byte. It introduces the possibility of truncation errors when
transferring the data to a buffer measured in bytes.

Oracle recommends that you use the default AL16UTF16 encoding wherever practical,
for maximum runtime reliability. If you need to determine how many bytes are
required to hold a Unicode string, use the LENGTHB function rather than LENGTH.

NCHAR

You use the NCHAR datatype to store fixed-length (blank-padded if necessary) national
character data. How the data is represented internally depends on the national
character set specified when the database was created, which might use a
variable-width encoding (UTF8) or a fixed-width encoding (AL16UTF16). Because this
type can always accommodate multibyte characters, you can use it to hold any
Unicode character data.

The NCHAR datatype takes an optional parameter that lets you specify a maximum size
in characters. The syntax follows:

NCHAR[(maxi mum si ze)]

Because the physical limit is 32767 bytes, the maximum value you can specify for the
length is 32767 /2 in the AL16UTF16 encoding, and 32767 /3 in the UTF8 encoding.

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal.

If you do not specify a maximum size, it defaults to 1. The value always represents the
number of characters, unlike CHAR which can be specified in either characters or bytes.

my_string NCHAR(100); -- nmaximumsize is 100 characters

You cannot insert NCHAR values longer than 2000 bytes into an NCHAR column.

If the NCHAR value is shorter than the defined width of the NCHAR column, Oracle
blank-pads the value to the defined width.

You can interchange CHAR and NCHAR values in statements and expressions. It is
always safe to turn a CHAR value into an NCHAR value, but turning an NCHAR value
into a CHAR value might cause data loss if the character set for the CHAR value cannot
represent all the characters in the NCHAR value. Such data loss can result in characters
that usually look like question marks (?).

NVARCHAR2

You use the NVARCHAR?Z datatype to store variable-length Unicode character data.
How the data is represented internally depends on the national character set specified
when the database was created, which might use a variable-width encoding (UTF8) or
a fixed-width encoding (AL16UTF16). Because this type can always accommodate
multibyte characters, you can use it to hold any Unicode character data.

PL/SQL Datatypes 3-9

Overview of Predefined PL/SQL Datatypes

The NVARCHAR2 datatype takes a required parameter that specifies a maximum size in
characters. The syntax follows:

NVARCHAR2(maxi num si ze)

Because the physical limit is 32767 bytes, the maximum value you can specify for the
length is 32767 /2 in the ALL6UTF16 encoding, and 32767 /3 in the UTF8 encoding.

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal.

The maximum size always represents the number of characters, unlike VARCHAR2
which can be specified in either characters or bytes.

my_string NVARCHAR2(200); -- maxinmumsize is 200 characters

The maximum width of a NVARCHAR? database column is 4000 bytes. Therefore, you
cannot insert NVARCHAR2 values longer than 4000 bytes into a NVARCHAR2 column.

You can interchange VARCHAR2 and NVARCHAR? values in statements and
expressions. It is always safe to turn a VARCHARZ value into an NVARCHAR? value, but
turning an NVARCHAR?Z value into a VARCHAR? value might cause data loss if the
character set for the VARCHAR2 value cannot represent all the characters in the
NVARCHARZ value. Such data loss can result in characters that usually look like
question marks (?).

PL/SQL LOB Types

The LOB (large object) datatypes BFI LE, BLOB, CLOB, and NCLOB let you store blocks
of unstructured data (such as text, graphic images, video clips, and sound waveforms)
up to four gigabytes in size. And, they allow efficient, random, piece-wise access to the
data.

The LOB types differ from the LONGand LONG RAWtypes in several ways. For example,
LOBs (except NCLOB) can be attributes of an object type, but LONGs cannot. The
maximum size of a LOB is four gigabytes, but the maximum size of a LONGis two
gigabytes. Also, LOBs support random access to data, but LONGs support only
sequential access.

LOB types store lob locators, which point to large objects stored in an external file, in-line
(inside the row) or out-of-line (outside the row). Database columns of type BLOB, CLOB,
NCL OB, or BFI LE store the locators. BLOB, CLOB, and NCLOB data is stored in the
database, in or outside the row. BFI LE data is stored in operating system files outside
the database.

PL/SQL operates on LOBs through the locators. For example, when you select a BLOB
column value, only a locator is returned. If you got it during a transaction, the LOB
locator includes a transaction ID, so you cannot use it to update that LOB in another
transaction. Likewise, you cannot save a LOB locator during one session, then use it in
another session.

Starting in Oracle9i, you can also convert CLOBs to CHAR and VARCHARZ types and
vice versa, or BLOBs to RAWand vice versa, which lets you use LOB types in most SQL
and PL/SQL statements and functions. To read, write, and do piecewise operations on
LOBs, you can use the supplied package DBMS_LOB. For more information, see Oracle
Database Application Developer’s Guide - Large Objects.

BFILE

You use the BFI LE datatype to store large binary objects in operating system files
outside the database. Every BFI LE variable stores a file locator, which points to a large

3-10 PL/SQL User's Guide and Reference

Overview of Predefined PL/SQL Datatypes

binary file on the server. The locator includes a directory alias, which specifies a full
path name (logical path names are not supported).

BFI LEs are read-only, so you cannot modify them. The size of a BFI LE is system
dependent but cannot exceed four gigabytes (2**32 - 1 bytes). Your DBA makes sure
that a given BFI LE exists and that Oracle has read permissions on it. The underlying
operating system maintains file integrity.

BFI LEs do not participate in transactions, are not recoverable, and cannot be
replicated. The maximum number of open BFI LEs is set by the Oracle initialization
parameter SESSI ON_MAX_OPEN_FI LES, which is system dependent.

BLOB

You use the BLOB datatype to store large binary objects in the database, in-line or
out-of-line. Every BLOB variable stores a locator, which points to a large binary object.
The size of a BLOB cannot exceed four gigabytes.

BLOBs participate fully in transactions, are recoverable, and can be replicated. Changes
made by package DBM5_L OB can be committed or rolled back. BLOB locators can span
transactions (for reads only), but they cannot span sessions.

CLOB

You use the CLOB datatype to store large blocks of character data in the database,
in-line or out-of-line. Both fixed-width and variable-width character sets are
supported. Every CLOB variable stores a locator, which points to a large block of
character data. The size of a CLOB cannot exceed four gigabytes.

CLOBs participate fully in transactions, are recoverable, and can be replicated. Changes
made by package DBM5_L OB can be committed or rolled back. CLOB locators can span
transactions (for reads only), but they cannot span sessions.

NCLOB

You use the NCLOB datatype to store large blocks of NCHAR data in the database, in-line
or out-of-line. Both fixed-width and variable-width character sets are supported. Every
NCLOB variable stores a locator, which points to a large block of NCHAR data. The size
of an NCLOB cannot exceed four gigabytes.

NCLOBs participate fully in transactions, are recoverable, and can be replicated.
Changes made by package DBMS_LOB can be committed or rolled back. NCLOB
locators can span transactions (for reads only), but they cannot span sessions.

PL/SQL Boolean Types

PL/SQL has a type for representing Boolean values (true and false). Because SQL does
not have an equivalent type, you can use BOOLEAN variables and parameters in
PL/SQL contexts but not inside SQL statements or queries.

BOOLEAN

You use the BOOLEAN datatype to store the logical values TRUE, FALSE, and NULL
(which stands for a missing, unknown, or inapplicable value). Only logic operations
are allowed on BOOLEAN variables.

The BOOLEAN datatype takes no parameters. Only the values TRUE, FALSE, and NULL
can be assigned to a BOOLEAN variable.

You cannot insert the values TRUE and FALSE into a database column. You cannot
select or fetch column values into a BOOLEAN variable. Functions called from a SQL

PL/SQL Datatypes 3-11

Overview of Predefined PL/SQL Datatypes

query cannot take any BOOLEAN parameters. Neither can built-in SQL functions such
as TO_CHAR; to represent BOOLEAN values in output, you must use | F- THEN or CASE
constructs to translate BOOLEAN values into some other type, suchas 0 or 1, 'Y' or 'N',
'true’ or 'false’, and so on.

PL/SQL Date, Time, and Interval Types

The datatypes in this section let you store and manipulate dates, times, and intervals
(periods of time). A variable that has a date/time datatype holds values called
datetimes; a variable that has an interval datatype holds values called intervals. A
datetime or interval consists of fields, which determine its value. The following list
shows the valid values for each field:

Field Name Valid Datetime Values Valid Interval Values
YEAR -4712 t0 9999 (excluding year 0) ~ Any nonzero integer
MONTH 01to 12 Oto11

DAY 01 to 31 (limited by the values of ~Any nonzero integer

MONTHand YEAR, according to the
rules of the calendar for the

locale)

HOUR 00 to 23 0to23

M NUTE 00 to 59 0to59

SECOND 00 to 59.9(n), where 9(n) is the 0 to 59.9(n), where 9(n) is the
precision of time fractional precision of interval fractional
seconds seconds

TI MEZONE_HOUR -12 to 14 (range accommodates Not applicable
daylight savings time changes)

TI MEZONE_M NUTE 00 to 59 Not applicable
TI MEZONE_REG ON Found in the view V$TI MEZONE_ Not applicable
NANMES

TI MEZONE_ABBR Found in the view V$TI MEZONE_ Not applicable
NAMES

Except for TI MESTAMP W TH LOCAL TI MEZONE, these types are all part of the
SQL92 standard. For information about datetime and interval format models, literals,
time-zone names, and SQL functions, see Oracle Database SQL Reference.

DATE

You use the DATE datatype to store fixed-length datetimes, which include the time of
day in seconds since midnight. The date portion defaults to the first day of the current
month; the time portion defaults to midnight. The date function SYSDATE returns the
current date and time.

Tips:

= To compare dates for equality, regardless of the time portion of each date, use the
function result TRUNC(dat e_vari abl e) in comparisons, GROUP BY operations,
and so on.

= To find just the time portion of a DATE variable, subtract the date portion: dat e_
variabl e - TRUNC(date_variable).

3-12 PL/SQL User's Guide and Reference

Overview of Predefined PL/SQL Datatypes

Valid dates range from January 1, 4712 BC to December 31, 9999 AD. A Julian date is
the number of days since January 1, 4712 BC. Julian dates allow continuous dating
from a common reference. You can use the date format model ' J' with the date
functions TO_DATE and TO_CHAR to convert between DATE values and their Julian
equivalents.

In date expressions, PL/SQL automatically converts character values in the default
date format to DATE values. The default date format is set by the Oracle initialization
parameter NLS_DATE_FORMAT. For example, the default might be ' DD- MON- YY" ,
which includes a two-digit number for the day of the month, an abbreviation of the
month name, and the last two digits of the year.

You can add and subtract dates. In arithmetic expressions, PL/SQL interprets integer
literals as days. For instance, SYSDATE + 1 signifies the same time tomorrow.

TIMESTAMP

The datatype TI MESTAMP, which extends the datatype DATE, stores the year, month,
day, hour, minute, and second. The syntax is:

TI MESTAMP[(preci sion)]

where the optional parameter pr eci si on specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or variable to
specify the precision; you must use an integer literal in the range 0 .. 9. The default is 6.

The default timestamp format is set by the Oracle initialization parameter NLS_
TI MESTAVP_FORNVAT.

In the following example, you declare a variable of type TI MESTAMP, then assign a
literal value to it:

DECLARE

checkout TI MESTAMP(3);
BEG N

checkout := '1999-06-22 07:48:53.275';
END;

In this example, the fractional part of the seconds field is 0. 275.

TIMESTAMP WITH TIME ZONE

The datatype TI MESTAMP W THTI ME ZONE, which extends the datatype TI MESTAMP,
includes a time-zone displacement. The time-zone displacement is the difference (in
hours and minutes) between local time and Coordinated Universal Time
(UTC)—formerly Greenwich Mean Time. The syntax is:

TI MESTAMP[(precision)] WTH TI ME ZONE
where the optional parameter pr eci si on specifies the number of digits in the

fractional part of the seconds field. You cannot use a symbolic constant or variable to
specify the precision; you must use an integer literal in the range 0 .. 9. The default is 6.

The default timestamp with time zone format is set by the Oracle initialization
parameter NLS_TI MESTAMP_TZ_FORVAT.

In the following example, you declare a variable of type TI MESTAMP W THTI ME
ZONE, then assign a literal value to it:

DECLARE
l ogof f TI MESTAMP(3) W TH TI ME ZONE;

PL/SQL Datatypes 3-13

Overview of Predefined PL/SQL Datatypes

BEG N
logoff :="1999-10-31 09:42:37.114 +02:00';

END;

In this example, the time-zone displacement is +02: 00.

You can also specify the time zone by using a symbolic name. The specification can
include a long form such as ' US/ Paci fi c', an abbreviation such as' PDT' , or a
combination. For example, the following literals all represent the same time. The third
form is most reliable because it specifies the rules to follow at the point when
switching to daylight savings time.

TI MESTAWP ' 1999- 04- 15 8:00: 00 -8: 00
TI MESTAWMP ' 1999- 04- 15 8:00: 00 US/ Paci fic'
TI MESTAMP ' 1999- 10- 31 01:30: 00 US/ Pacific PDT

You can find the available names for time zones in the TI MEZONE_REG ONand
TI MEZONE_ABBR columns of the V$TI MEZONE_NAMES data dictionary view.

Two TI MESTAMP W THTI ME ZONE values are considered identical if they represent
the same instant in UTC, regardless of their time-zone displacements. For example, the
following two values are considered identical because, in UTC, 8:00 AM Pacific
Standard Time is the same as 11:00 AM Eastern Standard Time:

' 1999-08-29 08:00: 00 -8:00'

' 1999-08-29 11:00:00 -5:00'

TIMESTAMP WITH LOCAL TIME ZONE

The datatype TI MESTAMP W TH LOCAL TI ME ZONE, which extends the datatype

TI MESTAMP, includes a time-zone displacement. The time-zone displacement is the
difference (in hours and minutes) between local time and Coordinated Universal Time
(UTC)—formerly Greenwich Mean Time. You can also use named time zones, as with
TI MESTAMP W TH TI ME ZONE.

The syntax is
TI MESTAMP] (preci si on)] W TH LOCAL TINE ZONE

where the optional parameter pr eci Si on specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or variable to
specify the precision; you must use an integer literal in the range 0 .. 9. The default is 6.

This datatype differs from TI MESTAMP W THTI ME ZONE in that when you insert a
value into a database column, the value is normalized to the database time zone, and
the time-zone displacement is not stored in the column. When you retrieve the value,
Oracle returns it in your local session time zone.

In the following example, you declare a variable of type TI MESTAMP W TH LOCAL
TI ME ZONE:

DECLARE

| ogof f TI MESTAMP(3) WTH LOCAL TI ME ZONE;
BEG N
END;

You cannot assign literal values to a variable of this type.

3-14 PL/SQL User's Guide and Reference

Overview of Predefined PL/SQL Datatypes

INTERVAL YEAR TO MONTH

You use the datatype | NTERVAL YEAR TOMONTH to store and manipulate intervals of
years and months. The syntax is:

| NTERVAL YEAR[(precision)] TO MONTH

where pr eci si on specifies the number of digits in the years field. You cannot use a
symbolic constant or variable to specify the precision; you must use an integer literal
in the range 0 .. 4. The default is 2.

In the following example, you declare a variable of type | NTERVAL YEAR TOMONTH,
then assign a value of 101 years and 3 months to it:

DECLARE
lifetime |NTERVAL YEAR(3) TO MONTH;

BEG N
lifetime := INTERVAL ' 101-3' YEAR TO MONTH, -- interval literal
lifetinme :="'101-3'; -- inplicit conversion fromcharacter type
lifetime := INTERVAL ' 101' YEAR, -- Can specify just the years
lifetime := INTERVAL '3' MONTH, -- Can specify just the nonths

END;

INTERVAL DAY TO SECOND

You use the datatype | NTERVAL DAY TO SECOND to store and manipulate intervals of
days, hours, minutes, and seconds. The syntax is:

I NTERVAL DAY] (| eadi ng_precision)] TO SECOND[(fractional _seconds_preci sion)]

where | eadi ng_preci si onandfracti onal _seconds_pr eci si on specify the
number of digits in the days field and seconds field, respectively. In both cases, you

cannot use a symbolic constant or variable to specify the precision; you must use an
integer literal in the range 0 .. 9. The defaults are 2 and 6, respectively.

In the following example, you declare a variable of type | NTERVAL DAY TO SECOND:

DECLARE
lag_time | NTERVAL DAY(3) TO SECOND(3):
BEG N
IF lag_tine > INTERVAL ' 6' DAY THEN ...

END;

Datetime and Interval Arithmetic

PL/SQL lets you construct datetime and interval expressions. The following list shows
the operators that you can use in such expressions:

Operand 1 Operator Operand 2 Result Type

datetime + interval datetime
datetime - interval datetime
interval + datetime datetime
datetime - datetime interval
interval + interval interval
interval - interval interval

PL/SQL Datatypes 3-15

Overview of PL/SQL Subtypes

Operand 1 Operator Operand 2 Result Type

interval * numeric interval
numeric * interval interval
interval / numeric interval

You can also manipulate datetime values using various functions, such as EXTRACT.
For a list of such functions, see Table 2-3, " Built-In Functions" on page 2-30.

For further information and examples of datetime arithmetic, see Oracle Database SQL
Reference and Oracle Database Application Developer’s Guide - Fundamentals.

Avoiding Truncation Problems Using Date and Time Subtypes

The default precisions for some of the date and time types are less than the maximum
precision. For example, the default for DAY TO SECONDis DAY(2) TO SECOND(6),
while the highest precision is DAY(9) TO SECOND(9) . To avoid truncation when
assigning variables and passing procedure parameters of these types, you can declare
variables and procedure parameters of the following subtypes, which use the
maximum values for precision:

TI MESTAMP_UNCONSTRAI NED

TI MESTAMP_TZ_UNCONSTRAI NED
TI MESTAMP_LTZ_UNCONSTRAI NED
YM NTERVAL_UNCONSTRAI NED
DSI NTERVAL _UNCONSTRAI NED

Overview of PL/SQL Subtypes

Each PL/SQL base type specifies a set of values and a set of operations applicable to
items of that type. Subtypes specify the same set of operations as their base type, but
only a subset of its values. A subtype does not introduce a new type; rather, it places an
optional constraint on its base type.

Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and
improve readability by indicating the intended use of constants and variables.
PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL
predefines the subtypes CHARACTER and | NTEGER as follows:

SUBTYPE CHARACTER | S CHAR;
SUBTYPE | NTEGER | S NUMBER(38,0); -- allows only whol e nunbers

The subtype CHARACTER specifies the same set of values as its base type CHAR, so
CHARACTER s an unconstrained subtype. But, the subtype | NTEGER specifies only a
subset of the values of its base type NUMBER, so | NTEGER is a constrained subtype.

Defining Subtypes

You can define your own subtypes in the declarative part of any PL/SQL block,
subprogram, or package using the syntax

SUBTYPE subtype_nane | S base_type[(constraint)] [NOT NULL];
where subt ype_nare is a type specifier used in subsequent declarations, base_t ype

is any scalar or user-defined PL/SQL datatype, and const r ai nt applies only to base
types that can specify precision and scale or a maximum size.

3-16 PL/SQL User's Guide and Reference

Overview of PL/SQL Subtypes

Some examples follow:

DECLARE
SUBTYPE BirthDate | S DATE NOT NULL; -- based on DATE type
SUBTYPE Counter |'S NATURAL; -- based on NATURAL subtype
TYPE NaneList |S TABLE OF VARCHAR2(10);
SUBTYPE Dut yRoster |S NaneList; -- based on TABLE type
TYPE Ti meRec 1S RECORD (minutes |NTEGER hours | NTECER);
SUBTYPE Fi ni shTinme |'S Ti meRec; -- based on RECORD type
SUBTYPE I D_Num | S enp. enpno%l YPE; -- based on colum type

You can use %0 YPE or “ROM YPE to specify the base type. When %' YPE provides the
datatype of a database column, the subtype inherits the size constraint (if any) of the
column. The subtype does not inherit other kinds of constraints such as NOT NULL.

Using Subtypes

Once you define a subtype, you can declare items of that type. In the example below,
you declare a variable of type Count er . Notice how the subtype name indicates the
intended use of the variable.

DECLARE
SUBTYPE Counter 1S NATURAL;
rows Counter;

You can constrain a user-defined subtype when declaring variables of that type:

DECLARE
SUBTYPE Accumul ator |'S NUMBER;
total Accunulator(7,2);

Subtypes can increase reliability by detecting out-of-range values. In the example
below, you restrict the subtype Nunmer al to storing integers in the range -9 .. 9. If your
program tries to store a number outside that range in a Nuner al variable, PL/SQL
raises an exception.

DECLARE
SUBTYPE Nuneral |S NUMBER(1,0);
Xx_axis Numeral; -- magnitude range is -9 .. 9
y_axi s Nuneral;
BEG N
x_axis := 10; -- raises VALUE_ERROR
END;

Type Compatibility
An unconstrained subtype is interchangeable with its base type. For example, given

the following declarations, the value of anpbunt can be assigned to t ot al without
conversion:

DECLARE
SUBTYPE Accunul ator 1S NUVBER,
amount NUMBER(7, 2) ;
total Accunul ator;

BEG N

total := anount;
END;

Different subtypes are interchangeable if they have the same base type:

PL/SQL Datatypes 3-17

Converting PL/SQL Datatypes

DECLARE

SUBTYPE bl IS BOOLEAN

SUBTYPE b2 |'S BOOLEAN

finished bl; -- Different subtypes,

debuggi ng b2; -- both based on BOOLEAN.
BEG N

debuggi ng : = finished; -- They can be assigned to each other.
END;

Different subtypes are also interchangeable if their base types are in the same datatype
family. For example, given the following declarations, the value of ver b can be
assigned to sent ence:

DECLARE
SUBTYPE Word | S CHAR(15);
SUBTYPE Text 1S VARCHAR2(1500);

verb VWr d; -- Different subtypes

sentence Text(150); -- of types fromthe same famly
BEG N

sentence : = verb; -- can be assigned, if not too |ong.
END;

Converting PL/SQL Datatypes

Sometimes it is necessary to convert a value from one datatype to another. For
example, to use a DATE value in a report, you must convert it to a character string.
PL/SQL supports both explicit and implicit (automatic) datatype conversion. To
ensure your program does exactly what you expect, use explicit conversions wherever
possible.

Explicit Conversion

To convert values from one datatype to another, you use built-in functions. For
example, to convert a CHAR value to a DATE or NUMBER value, you use the function
TO_DATE or TO_NUMBER, respectively. Conversely, to convert a DATE or NUMBER value
to a CHARvalue, you use the function TO_CHAR For more information about these
functions, see Oracle Database SQL Reference.

Using explicit conversions, particularly when passing parameters to subprograms, can
avoid unexpected errors or wrong results. For example, the TO_CHAR function lets you
specify the format for a DATE value, rather than relying on language settings in the
database. Including an arithmetic expression among strings being concatenated with
the | | operator can produce an error unless you put parentheses or a call to TO_CHAR
around the entire arithmetic expression.

Implicit Conversion

When it makes sense, PL/SQL can convert the datatype of a value implicitly. This lets
you use literals, variables, and parameters of one type where another type is expected.
For example, you can pass a numeric literal to a subprogram that expects a string
value, and the subprogram receives the string representation of the number.

In the following example, the CHAR variables st art _ti me and fi ni sh_t i me hold
string values representing the number of seconds past midnight. The difference
between those values must be assigned to the NUMBER variable el apsed_t i ne.
PL/SQL converts the CHAR values to NUMBER values automatically.

DECLARE
start_time CHAR(5);

3-18 PL/SQL User's Guide and Reference

Converting PL/SQL Datatypes

finish_time CHAR(S);
el apsed_ti me NUMBER(5);
BEG N
/* Get systemtime as seconds past mdnight. */
SELECT TO_CHAR(SYSDATE, ' SSSSS') I NTO start _tinme FROM sys. dual ;
- do somet hing
[* Get systemtime again. */
SELECT TO_CHAR(SYSDATE, ' SSSSS') I NTO finish_time FROM sys. dual ;
/* Compute el apsed tine in seconds. */
elapsed_tine := finish_tine - start_ting;
I NSERT INTO results VALUES (el apsed_time, ...);
END;

Before assigning a selected column value to a variable, PL/SQL will, if necessary,
convert the value from the datatype of the source column to the datatype of the
variable. This happens, for example, when you select a DATE column value into a
VARCHAR?Z variable.

Likewise, before assigning the value of a variable to a database column, PL/SQL will,
if necessary, convert the value from the datatype of the variable to the datatype of the
target column. If PL/SQL cannot determine which implicit conversion is needed, you
get a compilation error. In such cases, you must use a datatype conversion function.
Table 3-1 shows which implicit conversions PL/SQL can do.

Notes:

=« Thelabels PLS | NT and Bl N_| NT represent the types PLS_| NTEGER and
Bl NARY | NTEGER in the table. You cannot use them as abbreviations in code.

= The table lists only types that have different representations. Types that have the
same representation, such as CLOB and NCLOB, CHAR and NCHAR, and VARCHAR
and NVARCHAR?, can be substituted for each other.

= You can implicitly convert between CLOB and NCLOB, but be careful because this
can be an expensive operation. To make clear that this conversion is intended, you
can use the conversion functions TO_CLOB and TO_NCLOB.

« TI MESTAWP, TI MESTAMP W TH TI ME ZONE, TI MESTAMP W TH LOCAL TI ME
ZONE, | NTERVAL DAY TO SECOND, and | NTERVAL YEAR TO MONTHcan all be
converted using the same rules as the DATE type. However, because of their
different internal representations, these types cannot always be converted to each
other. See Oracle Database SQL Reference for details on implicit conversions
between different date and time types.

Table 3-1 Implicit Conversions

BIN_INT BLOB CHAR CLOB DATE LONG NUMBER PLS_INT RAW UROWID VARCHAR2

BIN_INT
BLOB
CHAR
CLOB
DATE
LONG
NUMBER
PLS_INT

X X X X X
X
X X X X X X X X
X X
X X X
X X X
X X X X X
X X X X X

PL/SQL Datatypes 3-19

Converting PL/SQL Datatypes

Table 3-1 (Cont.) Implicit Conversions

BIN_INT BLOB CHAR CLOB DATE LONG NUMBER PLS_INT RAW UROWID VARCHAR2

RAW X X X X
UROWID X X
VARCHA X X X X X X X X X

R2

It is your responsibility to ensure that values are convertible. For instance, PL/SQL can
convert the CHAR value ' 02- JUN- 92' to a DATE value but cannot convert the CHAR
value ' YESTERDAY" to a DATE value. Similarly, PL/SQL cannot convert a VARCHAR2
value containing alphabetic characters to a NUVBER value.

Choosing Between Implicit and Explicit Conversion

Relying on implicit datatype conversions is a poor programming practice because they
can be slower and the conversion rules might change in later software releases.
Implicit conversions are context-sensitive and not always predictable. For best
reliability and maintainability, use datatype conversion functions.

DATE Values

When you select a DATE column value into a CHAR or VARCHARZ variable, PL/SQL
must convert the internal binary value to a character value. PL/SQL calls the function
TO_CHAR, which returns a character string in the default date format. To get other
information, such as the time or Julian date, call TO_CHAR with a format mask.

A conversion is also necessary when you insert a CHAR or VARCHAR2 value into a
DATE column. PL/SQL calls the function TO_DATE, which expects the default date
format. To insert dates in other formats, call TO_DATE with a format mask.

RAW and LONG RAW Values

When you select a RAWor LONG RAWcolumn value into a CHAR or VARCHARZ variable,
PL/SQL must convert the internal binary value to a character value. In this case,
PL/SQL returns each binary byte of RAWor LONG RAWdata as a pair of characters.
Each character represents the hexadecimal equivalent of a nibble (half a byte). For
example, PL/SQL returns the binary byte 11111111 as the pair of characters' FF' . The
function RAWIOHEX does the same conversion.

A conversion is also necessary when you insert a CHAR or VARCHAR2 value into a RAW
or LONG RAWcolumn. Each pair of characters in the variable must represent the
hexadecimal equivalent of a binary byte. Otherwise, PL/SQL raises an exception.

3-20 PL/SQL User's Guide and Reference

A

Using PL/SQL Control Structures

One ship drives east and another drives west

With the selfsame winds that blow.

"Tis the set of the sails and not the gales

Which tells us the way to go. —Ella Wheeler Wilcox

This chapter shows you how to structure the flow of control through a PL/SQL
program. PL/SQL provides conditional tests, loops, and branches that let you produce
well-structured programs.

This chapter contains these topics:

=« Overview of PL/SQL Control Structures on page 4-1

= Testing Conditions: IF and CASE Statements on page 4-2

= Controlling Loop Iterations: LOOP and EXIT Statements on page 4-6
= Sequential Control: GOTO and NULL Statements on page 4-12

Overview of PL/SQL Control Structures

Procedural computer programs use the basic control structures shown in Figure 4-1.

Figure 4-1 Control Structures

Selection Iteration Sequence

Y y ’

T b3
The selection structure tests a condition, then executes one sequence of statements

instead of another, depending on whether the condition is true or false. A condition is
any variable or expression that returns a Boolean value (TRUE or FALSE). The iteration

Using PL/SQL Control Structures 4-1

Testing Conditions: IF and CASE Statements

structure executes a sequence of statements repeatedly as long as a condition holds
true. The sequence structure simply executes a sequence of statements in the order in
which they occur.

Testing Conditions: IF and CASE Statements

The | F statement executes a sequence of statements depending on the value of a
condition. There are three forms of | F statements: | F- THEN, | F- THEN- ELSE, and
| F- THEN- ELSI F.

The CASE statement is a compact way to evaluate a single condition and choose
between many alternative actions. It makes sense to use CASE when there are three or
more alternatives to choose from.

Using the IF-THEN Statement

The simplest form of | F statement associates a condition with a sequence of
statements enclosed by the keywords THENand END | F (not ENDI F):

I F condition THEN
sequence_of _statements
END I F;

The sequence of statements is executed only if the condition is true. If the condition is
false or null, the | F statement does nothing. In either case, control passes to the next
statement.

I F sales > quota THEN

conput e_bonus(enpi d) ;

UPDATE payrol | SET pay = pay + bonus WHERE enpno = enp_i d;
END | F;

You can place brief | F statements on a single line:

IF x >y THEN high := x; END I F;

Using the IF-THEN-ELSE Statement

The second form of | F statement adds the keyword ELSE followed by an alternative
sequence of statements:

|'F condition THEN
sequence_of _statementsl
ELSE
sequence_of _statenents2
END | F;

The statements in the ELSE clause are executed only if the condition is false or null.
The | F- THEN- ELSE statement ensures that one or the other sequence of statements is
executed. In the following example, the first UPDATE statement is executed when the
condition is true, and the second UPDATE statement is executed when the condition is
false or null:

IF trans_type = 'CR THEN

UPDATE accounts SET bal ance = bal ance + credit WHERE ...
ELSE

UPDATE accounts SET bal ance = bal ance - debit WHERE ...
END | F;

| F statements can be nested:

4-2 PL/SQL User's Guide and Reference

Testing Conditions: IF and CASE Statements

IF trans_type = 'CR THEN
UPDATE accounts SET bal ance = bal ance + credit WHERE ...
ELSE
| F new_bal ance >= m ni num bal ance THEN
UPDATE accounts SET bal ance = bal ance - debit WHERE ...
ELSE
RAI SE i nsufficient_funds;
END I F;
END I F;

Using the IF-THEN-ELSIF Statement

Sometimes you want to choose between several alternatives. You can use the keyword
ELSI F (not ELSEI F or ELSE | F) to introduce additional conditions:

| F conditionl THEN
sequence_of _statenentsl
ELSIF condition2 THEN
sequence_of _st at ement s2
ELSE
sequence_of _statenents3
END | F;

If the first condition is false or null, the ELSI F clause tests another condition. An | F
statement can have any number of ELSI F clauses; the final EL SE clause is optional.
Conditions are evaluated one by one from top to bottom. If any condition is true, its
associated sequence of statements is executed and control passes to the next statement.
If all conditions are false or null, the sequence in the EL SE clause is executed. Consider
the following example:

BEG N
| F sales > 50000 THEN
bonus := 1500;
ELSIF sal es > 35000 THEN
bonus : = 500;
ELSE
bonus := 100;
END | F;
I NSERT | NTO payrol | VALUES (enp_id, bonus, ...);
END;

If the value of sal es is larger than 50000, the first and second conditions are true.
Nevertheless, bonus is assigned the proper value of 1500 because the second
condition is never tested. When the first condition is true, its associated statement is
executed and control passes to the | NSERT statement.

Using the CASE Statement

Like the | F statement, the CASE statement selects one sequence of statements to
execute. However, to select the sequence, the CASE statement uses a selector rather
than multiple Boolean expressions. (Recall from Chapter 2 that a selector is an
expression whose value is used to select one of several alternatives.) To compare the
| F and CASE statements, consider the following code that outputs descriptions of
school grades:

IF grade = 'A THEN

dbns_out put. put _| i ne(' Excel lent');
ELSIF grade = "B THEN

dbns_out put . put _line(' Very Good');
ELSIF grade = 'C THEN

Using PL/SQL Control Structures 4-3

Testing Conditions: IF and CASE Statements

dbms_out put . put _I'i ne(' Good');
ELSIF grade = 'D THEN
dbns_output. put_line('Fair');
ELSIF grade = "F THEN
dbns_out put . put _l i ne(' Poor');
ELSE
dbms_out put. put _line(' No such grade');
END I F;

Notice the five Boolean expressions. In each instance, we test whether the same
variable, gr ade, is equal to one of five values:' A" ,"B'," C ," D ,or' F' . Letus
rewrite the preceding code using the CASE statement, as follows:

CASE grade
WHEN ' A" THEN dbns_out put. put _| i ne("' Excel lent');
WHEN ' B THEN dbns_out put . put _| i ne(" Very Good') ;
WHEN ' C THEN dbms_out put . put _l'i ne(' Good');
WHEN ' D' THEN dbms_out put. put _line(' Fair');
VWHEN ' F' THEN dbns_out put . put _| i ne(' Poor');
ELSE dbns_out put. put _Iine(' No such grade');

END CASE;

The CASE statement is more readable and more efficient. When possible, rewrite
lengthy | F- THEN- ELSI F statements as CASE statements.

The CASE statement begins with the keyword CASE. The keyword is followed by a
selector, which is the variable gr ade in the last example. The selector expression can
be arbitrarily complex. For example, it can contain function calls. Usually, however, it
consists of a single variable. The selector expression is evaluated only once. The value
it yields can have any PL/SQL datatype other than BLOB, BFI LE, an object type, a
PL/SQL record, an index-by-table, a varray, or a nested table.

The selector is followed by one or more WHEN clauses, which are checked sequentially.
The value of the selector determines which clause is executed. If the value of the
selector equals the value of a WHEN-clause expression, that WHEN clause is executed.
For instance, in the last example, if gr ade equals ' C , the program outputs ' Good' .
Execution never falls through; if any WHEN clause is executed, control passes to the
next statement.

The ELSE clause works similarly to the ELSE clause in an | F statement. In the last
example, if the grade is not one of the choices covered by a WHEN clause, the ELSE
clause is selected, and the phrase' No such grade' is output. The ELSE clause is
optional. However, if you omit the ELSE clause, PL/SQL adds the following implicit
EL SE clause:

ELSE RAI SE CASE_NOT_FOUND;

There is always a default action, even when you omit the EL SE clause. If the CASE
statement does not match any of the WHEN clauses and you omit the ELSE clause,
PL/SQL raises the predefined exception CASE_NOT_FOUND.

The keywords END CASE terminate the CASE statement. These two keywords must be
separated by a space. The CASE statement has the following form:

[<<l abel _name>>]

CASE sel ector
WHEN expressi onl THEN sequence_of _statenentsl;
VWHEN expression2 THEN sequence_of _st atenent s2;

VWHEN expressi onN THEN sequence_of _st at enent sN;
[ELSE sequence_of _statenent sN+1;]

4-4 PL/SQL User's Guide and Reference

Testing Conditions: IF and CASE Statements

END CASE [I abel _nane];

Like PL/SQL blocks, CASE statements can be labeled. The label, an undeclared
identifier enclosed by double angle brackets, must appear at the beginning of the CASE
statement. Optionally, the label name can also appear at the end of the CASE
statement.

Exceptions raised during the execution of a CASE statement are handled in the usual
way. That is, normal execution stops and control transfers to the exception-handling
part of your PL/SQL block or subprogram.

An alternative to the CASEstatement is the CASE expression, where each WHEN clause
is an expression. For details, see "CASE Expressions" on page 2-24.

Searched CASE Statement
PL/SQL also provides a searched CASE statement, which has the form:

[<<l abel _nanme>>]

CASE
VWHEN search_conditionl THEN sequence_of _statementsi;
VHEN search_condition2 THEN sequence_of _stat ement s2;

WHEN sear ch_condi ti onN THEN sequence_of _st at ement sN,
[ELSE sequence_of _stat ement SN+1;]
END CASE [I abel _name];

The searched CASE statement has no selector. Also, its WHEN clauses contain search
conditions that yield a Boolean value, not expressions that can yield a value of any
type. An example follows:

CASE
WHEN grade = ' A" THEN dbns_out put. put _Iine(' Excellent");
WHEN grade = 'B THEN dbns_out put. put _Iine(' Very Good');
WHEN grade = ' C THEN dbns_out put. put _| i ne(' Good');
WHEN grade = 'D THEN dbns_out put.put _line(' Fair');
WHEN grade = 'F' THEN dbns_out put. put _| i ne(' Poor');

ELSE dbns_out put. put _line(' No such grade')
END CASE;

The search conditions are evaluated sequentially. The Boolean value of each search
condition determines which WHEN clause is executed. If a search condition yields
TRUE, its WHEN clause is executed. If any WHEN clause is executed, control passes to the
next statement, so subsequent search conditions are not evaluated.

If none of the search conditions yields TRUE, the ELSE clause is executed. The ELSE
clause is optional. However, if you omit the ELSE clause, PL/SQL adds the following
implicit ELSE clause:

ELSE RAI SE CASE_NOT_FOUND;
Exceptions raised during the execution of a searched CASE statement are handled in

the usual way. That is, normal execution stops and control transfers to the
exception-handling part of your PL/SQL block or subprogram.

Guidelines for PL/SQL Conditional Statements
Avoid clumsy | F statements like those in the following example:

| F new_bal ance < nini num bal ance THEN
overdrawn : = TRUE;

Using PL/SQL Control Structures 4-5

Controlling Loop lterations: LOOP and EXIT Statements

ELSE
overdrawn : = FALSE;
END I F;

| F overdrawn = TRUE THEN
RAI SE i nsuf ficient_funds;
END | F;

The value of a Boolean expression can be assigned directly to a Boolean variable. You
can replace the first | F statement with a simple assignment:

overdrawn : = new_bal ance < nini num bal ance;

A Boolean variable is itself either true or false. You can simplify the condition in the
second | F statement:

I'F overdrawn THEN ...

When possible, use the ELSI F clause instead of nested | F statements. Your code will
be easier to read and understand. Compare the following | F statements:

I'F conditionl THEN I'F conditionl THEN

I
statement 1; | statenment 1;
ELSE | ELSI F conditi on2 THEN
| F condition2 THEN | stat enent 2;
st at enent 2; | ELSIF condition3 THEN
ELSE | st at enent 3;
| F condi ti on3 THEN | END | F;
st at ement 3; |
END | F; |
END | F; |
END | F; |

These statements are logically equivalent, but the second statement makes the logic
clearer.

To compare a single expression to multiple values, you can simplify the logic by using
a single CASE statement instead of an | F with several ELSI F clauses.

Controlling Loop lterations: LOOP and EXIT Statements

LOOP statements execute a sequence of statements multiple times. There are three
forms of LOOP statements: LOOP, WHI LE- LOOP, and FOR- LOOP.

Using the LOOP Statement

The simplest form of LOOP statement is the basic loop, which encloses a sequence of
statements between the keywords LOOP and END LOOP, as follows:

LOOP
sequence_of _statements
END LOCP,

With each iteration of the loop, the sequence of statements is executed, then control
resumes at the top of the loop. You use an EXI T statement to stop looping and prevent
an infinite loop. You can place one or more EXI T statements anywhere inside a loop,
but not outside a loop. There are two forms of EXI T statements: EXI T and

EXI T- WHEN.

4-6 PL/SQL User's Guide and Reference

Controlling Loop Iterations: LOOP and EXIT Statements

Using the EXIT Statement

The EXI T statement forces a loop to complete unconditionally. When an EXI T
statement is encountered, the loop completes immediately and control passes to the
next statement:

LOOP
IF credit_rating < 3 THEN
EXIT, -- exit loop inmediately
END | F;
END LOOP;

- control resumes here

Remember, the EXI T statement must be placed inside a loop. To complete a PL/SQL
block before its normal end is reached, you can use the RETURN statement. For more
information, see "Using the RETURN Statement" on page 8-4.

Using the EXIT-WHEN Statement

The EXI T- WHEN statement lets a loop complete conditionally. When the EXI T
statement is encountered, the condition in the WHEN clause is evaluated. If the
condition is true, the loop completes and control passes to the next statement after the
loop:

LOCP

FETCH c1 INTO ...
EXIT WHEN c19%MOTFOUND;, -- exit loop if condition is true

END LOOP;
CLCSE c1;

Until the condition is true, the loop cannot complete. A statement inside the loop must
change the value of the condition. In the previous example, if the FETCH statement
returns a row, the condition is false. When the FETCH statement fails to return a row,
the condition is true, the loop completes, and control passes to the CLOSE statement.

The EXI T- WHEN statement replaces a simple | F statement. For example, compare the
following statements:

| F count > 100 THEN | EXIT WHEN count > 100;
EXIT, |
END | F; |

These statements are logically equivalent, but the EXI T- WHEN statement is easier to
read and understand.

Labeling a PL/SQL Loop

Like PL/SQL blocks, loops can be labeled. The label, an undeclared identifier enclosed
by double angle brackets, must appear at the beginning of the LOOP statement, as
follows:

<<l abel _name>>
LooP

sequence_of _statenents
END LOOP;

Optionally, the label name can also appear at the end of the LOOP statement, as the
following example shows:

<<ny_| oop>>

Using PL/SQL Control Structures 4-7

Controlling Loop lterations: LOOP and EXIT Statements

LOOP
END LOOP ny_| oop;

When you nest labeled loops, use ending label names to improve readability.

With either form of EXI T statement, you can complete not only the current loop, but
any enclosing loop. Simply label the enclosing loop that you want to complete. Then,
use the label in an EXI T statement, as follows:

<<out er>>
LOoP

LooP

EXIT outer WHEN ... -- exit both |oops
END LOOP;

END LOCP outer;

Every enclosing loop up to and including the labeled loop is exited.

Using the WHILE-LOOP Statement

The WHI LE- LOCP statement executes the statements in the loop body as long as a
condition is true:

WHI LE condition LOOP
sequence_of _statements
END LOOP;

Before each iteration of the loop, the condition is evaluated. If it is true, the sequence of
statements is executed, then control resumes at the top of the loop. If it is false or null,
the loop is skipped and control passes to the next statement:

VWH LE total <= 25000 LOCP
SELECT sal INTO salary FROM enp WHERE ...
total :=total + salary;

END LOOP;

The number of iterations depends on the condition and is unknown until the loop
completes. The condition is tested at the top of the loop, so the sequence might execute
zero times. In the last example, if the initial value of t ot al is larger than 25000, the
condition is false and the loop is skipped.

Some languages have a LOOP UNTI L or REPEAT UNTI L structure, which tests the
condition at the bottom of the loop instead of at the top, so that the sequence of
statements is executed at least once. The equivalent in PL/SQL would be:

LOoP

sequence_of _statenents

EXIT WHEN bool ean_expr essi on;
END LOCP,

To ensure that a WHI LE loop executes at least once, use an initialized Boolean variable
in the condition, as follows:

done : = FALSE;

WHI LE NOT done LOCP
sequence_of _statements
done : = bool ean_expr essi on;

4-8 PL/SQL User's Guide and Reference

Controlling Loop Iterations: LOOP and EXIT Statements

END LOCP;

A statement inside the loop must assign a new value to the Boolean variable to avoid
an infinite loop.

Using the FOR-LOOP Statement

Simple FORloops iterate over a specified range of integers. The number of iterations is
known before the loop is entered. A double dot (. .) serves as the range operator:

FOR counter I N [REVERSE] |ower_bound. . hi gher _bound LOOP
sequence_of _statenents
END LOOP;

The range is evaluated when the FOR loop is first entered and is never re-evaluated.

As the next example shows, the sequence of statements is executed once for each
integer in the range. After each iteration, the loop counter is incremented.

FORi IN1..3 LOOP -- assign the values 1,2,3 to i
sequence_of _statenments -- executes three tines
END LOOP;

If the lower bound equals the higher bound, the loop body is executed once:

FORi IN3..3 LOOP -- assign the value 3 to i
sequence_of statements -- executes one time
END LOCP,

By default, iteration proceeds upward from the lower bound to the higher bound. If
you use the keyword REVERSE, iteration proceeds downward from the higher bound
to the lower bound. After each iteration, the loop counter is decremented. You still
write the range bounds in ascending (not descending) order.

FORi INREVERSE 1..3 LOOP -- assign the values 3,2,1to i
sequence_of _statenents -- executes three tines
END LOOP;

Inside a FOR1loop, the counter can be read but cannot be changed:

FOR ctr IN 1..10 LOOP
I F NOT finished THEN

INSERT INTO ... VALUES (ctr, ...); -- K
factor :=ctr * 2; -- K
ELSE
ctr :=10; -- not allowed
END I F;
END LOCP,

Tip: A useful variation of the FORloop uses a SQL query instead of a range of integers.
This technique lets you run a query and process all the rows of the result set with
straightforward syntax. For details, see "Querying Data with PL/SQL: Implicit Cursor
FOR Loop" on page 6-9.

How PL/SQL Loops lterate

The bounds of a loop range can be literals, variables, or expressions but must evaluate
to numbers. Otherwise, PL/SQL raises the predefined exception VALUE_ERRCR. The
lower bound need not be 1, but the loop counter increment or decrement must be 1.

i IN-5..5
k IN REVERSE first..|ast

Using PL/SQL Control Structures 4-9

Controlling Loop lterations: LOOP and EXIT Statements

step IN 0.. TRUNC(high/low) * 2

Internally, PL/SQL assigns the values of the bounds to temporary PLS | NTEGER

variables, and, if necessary, rounds the values to the nearest integer. The magnitude
range of a PLS_| NTECER s -2**31 .. 2**31. If a bound evaluates to a number outside
that range, you get a numeric overflow error when PL/SQL attempts the assignment.

Some languages provide a STEP clause, which lets you specify a different increment (5
instead of 1 for example). PL/SQL has no such structure, but you can easily build one.
Inside the FORloop, simply multiply each reference to the loop counter by the new
increment. In the following example, you assign today's date to elements 5, 10, and 15
of an index-by table:

DECLARE
TYPE Datelist 1S TABLE OF DATE | NDEX BY BI NARY_| NTEGER,
dates Datelist;

k CONSTANT INTEGER := 5; -- set new increment
BEG N
FOR|j IN1..3 LOCOP
dates(j*k) := SYSDATE;, -- nultiply loop counter by increment
END LOOP;
END;

Dynamic Ranges for Loop Bounds
PL/SQL lets you specify the loop range at run time by using variables for bounds:

SELECT COUNT(enpno) | NTO enp_count FROM enp;
FORi IN 1..enmp_count LOOP

END LCOP;

If the lower bound of a loop range evaluates to a larger integer than the upper bound,
the loop body is not executed and control passes to the next statement:

- limt becomes 1
FORIi IN2. .limt LOOP
sequence_of statements -- executes zero times
END LOCP,
- control passes here

Scope of the Loop Counter Variable

The loop counter is defined only within the loop. You cannot reference that variable
name outside the loop. After the loop exits, the loop counter is undefined:

FOR ctr IN 1..10 LOOP

END LOCP;
sum:=ctr - 1; -- not allowed

You do not need to declare the loop counter because it is implicitly declared as a local
variable of type | NTEGER It is safest not to use the name of an existing variable,
because the local declaration hides any global declaration:

DECLARE
ctr INTEGER : = 3;
BEG N

FOR ctr IN 1..25 LOOP

4-10 PL/SQL User's Guide and Reference

Controlling Loop Iterations: LOOP and EXIT Statements

IFctr >10 THEN ... -- Refers to |oop counter
END LOCP,
-- After the loop, ctr refers to the original variable with value 3.
END;

To reference the global variable in this example, you must use a label and dot notation,
as follows:

<<mai n>>
DECLARE
ctr | NTEGER

BEG N
FOR ctr IN 1..25 LOOP
IF main.ctr > 10 THEN -- refers to global variable
END I F;
END LOOP;
END nai n;

The same scope rules apply to nested FORloops. Consider the example below. Both
loop counters have the same name. To reference the outer loop counter from the inner
loop, you use a label and dot notation:

<<out er >>
FOR step IN 1..25 LOOP
FOR step IN 1..10 LOOP

| F outer.step > 15 THEN ...
END LOOP;
END LOOP outer;

Using the EXIT Statement in a FOR Loop

The EXI T statement lets a FOR loop complete early. For example, the following loop
normally executes ten times, but as soon as the FETCH statement fails to return a row,
the loop completes no matter how many times it has executed:

FOR|j IN1..10 LOCP
FETCH c1 | NTO enp_rec;
EXIT VWHEN c19%NOTFOUND;

END LOCP;

Suppose you must exit early from a nested FORloop. To complete not only the current
loop, but also any enclosing loop, label the enclosing loop and use the label in an EXI T
statement:

<<out er >>
FORi IN1..5 LOOP

FORj IN1..10 LOOP
FETCH c1 | NTO enp_rec;
EXIT outer WHEN c1%NOTFOUND; -- exit both FOR | oops

END LOOP;
END LOCP outer;
-- control passes here

Using PL/SQL Control Structures 4-11

Sequential Control: GOTO and NULL Statements

Sequential Control: GOTO and NULL Statements

Unlike the | F and LOOP statements, the GOTOand NULL statements are not crucial to
PL/SQL programming. The GOTOstatement is seldom needed. Occasionally, it can
simplify logic enough to warrant its use. The NULL statement can improve readability
by making the meaning and action of conditional statements clear.

Overuse of GOTOstatements can result in code that is hard to understand and
maintain. Use GOTOstatements sparingly. For example, to branch from a deeply nested
structure to an error-handling routine, raise an exception rather than use a GOTO
statement. PL/SQL's exception-handling mechanism is discussed in Chapter 10,
"Handling PL/SQL Errors".

Using the GOTO Statement

The GOTOstatement branches to a label unconditionally. The label must be unique
within its scope and must precede an executable statement or a PL/SQL block. When
executed, the GOTOstatement transfers control to the labeled statement or block. In the
following example, you go to an executable statement farther down in a sequence of
statements:

BEG N
GOTO i nsert _row,

<<i nsert_row>
I NSERT I NTO emp VALUES ...
END;

In the next example, you go to a PL/SQL block farther up in a sequence of statements:

DECLARE
X NUMBER : = 0;
BEG N
<<increment _x>>
BEG N
X =X + 1;
END;
IF x < 10 THEN
QOTO i ncrenent _x;
END | F,
END;

The label end_I oop in the following example is not allowed because it does not
precede an executable statement:

DECLARE
done BOOLEAN,
BEG N
FORi IN1..50 LOOP
| F done THEN
GOTO end_| oop;
END | F;
<<end_| oop>> -- not all owed
END LOOP; -- not an executabl e statenment
END;

To correct the previous example, add the NULL statement::

FORi IN1..50 LOOP
| F done THEN

4-12 PL/SQL User's Guide and Reference

Sequential Control: GOTO and NULL Statements

GOTO end_| oop;
END I F;

<<end_| oop>>
NULL; -- an executabl e statenent
END LOOP;

As the following example shows, a GOTOstatement can branch to an enclosing block
from the current block:

DECLARE
my_enane CHAR(10);
BEG N
<<get _name>>
SELECT enane | NTO ny_ename FROM enp WHERE . ..
BEG N
GOTO get _nane; -- branch to enclosing bl ock
END;
END,

The GOTOstatement branches to the first enclosing block in which the referenced label
appears.

Restrictions on the GOTO Statement

Some possible destinations of a GOTOstatement are not allowed. Specifically, a GOTO
statement cannot branch into an | F statement, CASE statement, L OOP statement, or
sub-block. For example, the following GOTOstatement is not allowed:

BEG N
GOTO update_row; -- can't branch into I F statenent
IF valid THEN
<<updat e_r ow>>
UPDATE enp SET ...
END | F;
END;

A GOTOstatement cannot branch from one | F statement clause to another, or from one
CASE statement WHEN clause to another.

A GOTOstatement cannot branch from an outer block into a sub-block (that is, an inner
BEGQ N- END block).

A GOTOstatement cannot branch out of a subprogram. To end a subprogram early, you
can use the RETURN statement or use GOTOto branch to a place right before the end of
the subprogram.

A GOTOstatement cannot branch from an exception handler back into the current
BEG N- END block. However, a GOTOstatement can branch from an exception handler
into an enclosing block.

Using the NULL Statement

The NULL statement does nothing, and passes control to the next statement. (Some
languages refer to such an instruction as a no-op.)

You can use the NULL statement to indicate that you are aware of a possibility, but no
action is necessary. In the following example, the NULL statement shows that you have
chosen not to take any action for unnamed exceptions:

EXCEPTI ON

Using PL/SQL Control Structures 4-13

Sequential Control: GOTO and NULL Statements

WHEN ZERO DI VI DE THEN
ROLLBACK;

WHEN VALUE_ERROR THEN
| NSERT INTO errors VALUES ...
COM T,

WHEN OTHERS THEN
NULL;

END;

The NULL statement is a handy way to create placeholders and stub procedures. In the
following example, the NULL statement lets you compile this procedure, then fill in the
real body later:

PROCEDURE debit _account (acct_id I NTEGER, amount REAL) IS
BEG N

NULL;
END debit_account;

4-14 PL/SQL User's Guide and Reference

D

Using PL/SQL Collections and Records

Knowledge is that area of ignorance that we arrange and classify. —Ambrose Bierce

Many programming techniques use collection types such as arrays, bags, lists, nested
tables, sets, and trees. You can model these types in database applications using the
PL/SQL datatypes TABLE and VARRAY, which allow you to declare nested tables,
associative arrays, and variable-size arrays. This chapter shows how to reference and
manipulate collections of data as local variables. You also learn how the RECORD
datatype lets you manipulate related values of different types as a logical unit.

This chapter contains these topics:

= WhatIs a Collection? on page 5-1

= Choosing Which PL/SQL Collection Types to Use on page 5-4
= Defining Collection Types on page 5-6

= Declaring PL/SQL Collection Variables on page 5-8

= Initializing and Referencing Collections on page 5-10

= Assigning Collections on page 5-13

= Comparing Collections on page 5-16

= Using PL/SQL Collections with SQL Statements on page 5-17
= Using Collection Methods on page 5-23

= Avoiding Collection Exceptions on page 5-30

= WhatIsaPL/SQL Record? on page 5-32

= Defining and Declaring Records on page 5-32

= Assigning Values to Records on page 5-34

What Is a Collection?

A collection is an ordered group of elements, all of the same type. It is a general
concept that encompasses lists, arrays, and other datatypes used in classic
programming algorithms. Each element is addressed by a unique subscript.

PL/SQL offers these collection types:

= Associative arrays, also known as index-by tables, let you look up elements using
arbitrary numbers and strings for subscript values. (They are similar to hash
tables in other programming languages.)

Using PL/SQL Collections and Records 5-1

What Is a Collection?

= Nested tables hold an arbitrary number of elements. They use sequential
numbers as subscripts. You can define equivalent SQL types, allowing nested
tables to be stored in database tables and manipulated through SQL.

= Varrays (short for variable-size arrays) hold a fixed number of elements (although
you can change the number of elements at runtime). They use sequential numbers
as subscripts. You can define equivalent SQL types, allowing varrays to be stored
in database tables. They can be stored and retrieved through SQL, but with less
flexibility than nested tables.

Although collections have only one dimension, you can model multi-dimensional
arrays by creating collections whose elements are also collections.

To use collections in an application, you define one or more PL/SQL types, then define
variables of those types. You can define collection types in a procedure, function, or
package. You can pass collection variables as parameters to stored subprograms.

To look up data that is more complex than single values, you can store PL/SQL
records or SQL object types in collections. Nested tables and varrays can also be
attributes of object types.

Understanding Nested Tables

PL/SQL nested tables represent sets of values. You can think of them as
one-dimensional arrays with no upper bound. You can model multi-dimensional
arrays by creating nested tables whose elements are also nested tables.

Within the database, nested tables are column types that hold sets of values. Oracle
stores the rows of a nested table in no particular order. When you retrieve a nested
table from the database into a PL/SQL variable, the rows are given consecutive
subscripts starting at 1. That gives you array-like access to individual rows.

Nested tables differ from arrays in two important ways:

1. Nested tables are unbounded, while arrays have a fixed upper bound (see
Figure 5-1). The size of a nested table can increase dynamically.

2. Nested tables might not have consecutive subscripts, while arrays are always
dense (have consecutive subscripts). Initially, nested tables are dense, but they can
become sparse (have nonconsecutive subscripts). You can delete elements from a
nested table using the built-in procedure DELETE. The built-in function NEXT lets
you iterate over all the subscripts of a nested table, even if the sequence has gaps.

Figure 5-1 Array versus Nested Table

Array of Integers

|321| 17 | 99 | 407 | 83 [622|105 | 19 | 67 | 278 | E‘gsgr
Bound

x(1) x(2) x@3) x@) x() x(6) x(7) x(8) x(9) x(10)

Nested Table after Deletions

| 321 - 99 | 407 - 622 | 105 | 19 - 278 | _Unbounded

x(1) xX(3) x(4) x(6) x(7) x(8) x(10) !

Understanding Varrays

Items of type VARRAY are called varrays. They let you reference individual elements for
array operations, or manipulate the collection as a whole. To reference an element, you

5-2 PL/SQL User's Guide and Reference

What Is a Collection?

use standard subscripting syntax (see Figure 5-2). For example, G- ade(3) references
the third element in varray G- ades.

Figure 5-2 Varray of Size 10

Varray Grades
lelclafafeclofs| | | |

@»m @ & @6 6 6 O

Maximum
Size =10

A varray has a maximum size, which you specify in its type definition. Its index has a
fixed lower bound of 1 and an extensible upper bound. For example, the current upper
bound for varray Gr ades is 7, but you can increase its upper bound to maximum of
10. A varray can contain a varying number of elements, from zero (when empty) to the
maximum specified in its type definition.

Understanding Associative Arrays (Index-By Tables)

Associative arrays are sets of key-value pairs, where each key is unique and is used to
locate a corresponding value in the array. The key can be an integer or a string.

Assigning a value using a key for the first time adds that key to the associative array.
Subsequent assignments using the same key update the same entry. It is important to
choose a key that is unique. For example, key values might come from the primary key
of a database table, from a numeric hash function, or from concatenating strings to
form a unique string value.

For example, here is the declaration of an associative array type, and two arrays of that
type, using keys that are strings:

DECLARE
TYPE popul ation_type |'S TABLE OF NUMBER | NDEX BY VARCHAR2(64);
country_popul ation popul ation_type;
continent _popul ati on popul ation_type;
howrany NUMBER;
whi ch VARCHAR2(64) ;

BEG N
country_popul ation(' Geenland') := 100000; -- Creates new entry
country_popul ation('lceland") := 750000; -- Creates new entry

-- Looks up value associated with a string
howrany := country_popul ation(' Greenland");

continent _popul ation(' Australia') := 30000000;
continent _popul ation(' Antarctica') := 1000; -- Creates new entry
continent _popul ation(' Antarctica') := 1001; -- Replaces previous val ue

-- Returns 'Antarctica’ as that comes first alphabetically.
whi ch : = continent_popul ati on. FI RST;
-- Returns 'Australia' as that cones last al phabetically.
whi ch : = continent_popul ati on. LAST;
-- Returns the value corresponding to the last key, in this
-- case the popul ation of Australia.
howrany : = continent_popul ati on(conti nent_popul ati on. LAST);
END;
/

Associative arrays help you represent data sets of arbitrary size, with fast lookup for

an individual element without knowing its position within the array and without
having to loop through all the array elements. It is like a simple version of a SQL table

Using PL/SQL Collections and Records 5-3

Choosing Which PL/SQL Collection Types to Use

where you can retrieve values based on the primary key. For simple temporary storage
of lookup data, associative arrays let you avoid using the disk space and network
operations required for SQL tables.

Because associative arrays are intended for temporary data rather than storing
persistent data, you cannot use them with SQL statements such as | NSERT and
SELECT | NTQ You can make them persistent for the life of a database session by
declaring the type in a package and assigning the values in a package body.

How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays

If settings for national language or globalization change during a session that uses
associative arrays with VARCHAR2 key values, the program might encounter a runtime
error. For example, changing the NLS_COWP or NLS_SORT initialization parameters
within a session might cause methods such as NEXT and PRI OR to raise exceptions. If
you need to change these settings during the session, make sure to set them back to
their original values before performing further operations with these kinds of
associative arrays.

When you declare an associative array using a string as the key, the declaration must
use a VARCHAR2, STRI NG, or LONGtype. You can use a different type, such as NCHAR
or NVARCHAR?2, as the key value to reference an associative array. You can even use a
type such as DATE, as long as it can be converted to VARCHAR2 by the TO_CHAR
function.

However, you must be careful when using other types that the values used as keys are
consistent and unique. For example, the string value of SYSDATE might change if the
NLS_DATE_FORMAT initialization parameter changes, so that ar r ay _

el ement (SYSDATE) does not produce the same result as before. Two different
NVARCHAR2 values might turn into the same VARCHARZ value (containing question
marks instead of certain national characters). In that case, array_

el ement (national _stringl) andarray_el enent (nati onal _string2)
might refer to the same element. Two different CHAR or VARCHAR2 values that differ in
terms of case, accented characters, or punctuation characters might also be considered
the same if the value of the NLS_SORT initialization parameter ends in _Cl
(case-insensitive comparisons) or _Al (accent- and case-insensitive comparisons).

When you pass an associative array as a parameter to a remote database using a
database link, the two databases can have different globalization settings. When the
remote database performs operations such as FI RST and NEXT, it uses its own
character order even if that is different from the order where the collection originated.
If character set differences mean that two keys that were unique are not unique on the
remote database, the program receives a VALUE_ERROR exception.

Choosing Which PL/SQL Collection Types to Use

If you already have code or business logic that uses some other language, you can
usually translate that language's array and set types directly to PL/SQL collection

types.

= Arrays in other languages become varrays in PL/SQL.
= Sets and bags in other languages become nested tables in PL/SQL.

= Hash tables and other kinds of unordered lookup tables in other languages
become associative arrays in PL/SQL.

5-4 PL/SQL User's Guide and Reference

Choosing Which PL/SQL Collection Types to Use

When you are writing original code or designing the business logic from the start, you
should consider the strengths of each collection type to decide which is appropriate for
each situation.

Choosing Between Nested Tables and Associative Arrays

Both nested tables and associative arrays (formerly known as index-by tables) use
similar subscript notation, but they have different characteristics when it comes to
persistence and ease of parameter passing.

Nested tables can be stored in a database column, but associative arrays cannot.
Nested tables can simplify SQL operations where you would normally join a
single-column table with a larger table.

Associative arrays are appropriate for relatively small lookup tables where the
collection can be constructed in memory each time a procedure is called or a package
is initialized. They are good for collecting information whose volume is unknown
beforehand, because there is no fixed limit on their size. Their index values are more
flexible, because associative array subscripts can be negative, can be nonsequential,
and can use string values instead of numbers.

PL/SQL automatically converts between host arrays and associative arrays that use
numeric key values. The most efficient way to pass collections to and from the
database server is to set up data values in associative arrays, then use those associative
arrays with bulk constructs (the FORALL statement or BULK COLLECT clause).

Choosing Between Nested Tables and Varrays

Varrays are a good choice when:

« The number of elements is known in advance.

= The elements are usually all accessed in sequence.

When stored in the database, varrays keep their ordering and subscripts.

Each varray is stored as a single object, either inside the table of which it is a column
(if the varray is less than 4KB) or outside the table but still in the same tablespace (if
the varray is greater than 4KB). You must update or retrieve all elements of the varray
at the same time, which is most appropriate when performing some operation on all
the elements at once. But you might find it impractical to store and retrieve large
numbers of elements this way.

Nested tables are a good choice when:

« The index values are not consecutive.

= There is no predefined upper bound for index values.

= You need to delete or update some elements, but not all the elements at once.

= You would usually create a separate lookup table, with multiple entries for each
row of the main table, and access it through join queries.

Nested tables can be sparse: you can delete arbitrary elements, rather than just
removing an item from the end.

Nested table data is stored in a separate store table, a system-generated database table
associated with the nested table. The database joins the tables for you when you access
the nested table. This makes nested tables suitable for queries and updates that only
affect some elements of the collection.

Using PL/SQL Collections and Records 5-5

Defining Collection Types

You cannot rely on the order and subscripts of a nested table remaining stable as the
nested table is stored in and retrieved from the database, because the order and
subscripts are not preserved in the database.

Defining Collection Types

To create collections, you define a collection type, then declare variables of that type.
You can define TABLE and VARRAY types in the declarative part of any PL/SQL block,
subprogram, or package.

Collections follow the same scoping and instantiation rules as other types and
variables. Collections are instantiated when you enter a block or subprogram, and
cease to exist when you exit. In a package, collections are instantiated when you first
reference the package and cease to exist when you end the database session.

Nested Tables
To define a PL/SQL type for nested tables, use the syntax:

TYPE type_nanme |S TABLE OF el enent _type [NOT NULL];

t ype_nane is a type specifier used later to declare collections. For nested tables
declared within PL/SQL, el ement _t ype is any PL/SQL datatype except:

REF CURSOR

Nested tables declared in SQL using the CREATE TYPE statement have additional
restrictions on the element type. They cannot use the following element types:

Bl NARY_I NTEGER, PLS_| NTEGER
BOOLEAN

LONG LONGRAW

NATURAL, NATURALN

PCSI TI VE, POSI Tl VEN

REF CURSCR

SI GNTYPE

STRI NG

Varrays
To define a PL/SQL type for varrays, use the syntax:

TYPE type_name |S {VARRAY | VARYING ARRAY} (size_ limt)
OF el enent _type [NOT NULL];

The meanings of t ype_narme and el ement _t ype are the same as for nested tables.

size_limt isa positive integer literal representing the maximum number of
elements in the array.

When defining a VARRAY type, you must specify its maximum size. In the following
example, you define a type that stores up to 366 dates:

DECLARE
TYPE Cal endar |S VARRAY(366) OF DATE;
BEG N
NULL;
END;
/

5-6 PL/SQL User's Guide and Reference

Defining Collection Types

Associative Arrays

Associative arrays (also known as index-by tables) let you insert elements using
arbitrary key values. The keys do not have to be consecutive. They use the syntax:

TYPE type_name |S TABLE OF el enent _type [NOT NULL]
I NDEX BY [PLS_INTEGER | BI NARY_| NTEGER | VARCHAR2(size limt)];
I NDEX BY key_type;

The key_type can be numeric, either PLS_| NTEGER or Bl NARY_| NTEGER It can
also be VARCHAR2 or one of its subtypes VARCHAR, STRI NG, or LONG You must
specify the length of a VARCHAR2-based key, except for LONGwhich is equivalent to
declaring a key type of VARCHAR2(32760) . The types RAW LONG RAW ROW D, CHAR,
and CHARACTER are not allowed as keys for an associative array.

An initialization clause is not allowed. There is no constructor notation for associative
arrays.

When you reference an element of an associative array that uses a VARCHAR2-based
key, you can use other types, such as DATE or TI MESTAMP, as long as they can be
converted to VARCHAR2 with the TO_CHAR function.

Associative arrays can store data using a primary key value as the index, where the
key values are not sequential. The example below creates a single element in an
associative array, with a subscript of 100 rather than 1:

DECLARE

TYPE EnpTabTyp |'S TABLE OF enpl oyees%RONTYPE

I NDEX BY PLS_I NTECER,

enp_tab EmpTabTyp;
BEG N

/* Retrieve enpl oyee record. */

SELECT * I NTO enp_t ab(100) FROM enpl oyees WHERE enpl oyee_id = 100;
END;
/

Defining SQL Types Equivalent to PL/SQL Collection Types

To store nested tables and varrays inside database tables, you must also declare SQL
types using the CREATE TYPE statement. The SQL types can be used as columns or as
attributes of SQL object types.

You can declare equivalent types within PL/SQL, or use the SQL type name in a
PL/SQL variable declaration.

Example 5-1 Declaring a Nested Table in SQL

The following SQL*Plus script shows how you might declare a nested table in SQL,
and use it as an attribute of an object type:

CREATE TYPE CourseList AS TABLE OF VARCHAR2(10) -- define type
/
CREATE TYPE Student AS OBJECT (-- create object
i d_num | NTEGER(4),
name VARCHAR2(25) ,
address VARCHAR2(35),
status CHAR(2),
courses CourselList); -- declare nested table as attribute
/

DROP TYPE Student;

Using PL/SQL Collections and Records 5-7

Declaring PL/SQL Collection Variables

DROP TYPE Cour seli st ;

The identifier cour ses represents an entire nested table. Each element of cour ses
stores the name of a college course such as' Mat h 1020' .

Example 5-2 Creating a Table with a Varray Column

The script below creates a database column that stores varrays. Each varray element
contains a VARCHARZ.

-- Each project has a 16-character code nane.
-- W will store up to 50 projects at a time in a database col um.
CREATE TYPE Proj ectLi st AS VARRAY(50) OF VARCHAR2(16);
/
CREATE TABLE departnent (-- create database table
dept _id NUMBER(2),
narme VARCHAR2(15) ,
budget NUMBER(11, 2),
-- Each department can have up to 50 projects.
projects ProjectList);

DROP TABLE depart nent;
DROP TYPE Proj ect Li st;

Declaring PL/SQL Collection Variables

After defining a collection type, you declare variables of that type. You use the new
type name in the declaration, the same as with predefined types such as NUVBER.

Example 5-3 Declaring Nested Tables, Varrays, and Associative Arrays

DECLARE
TYPE nested_type IS TABLE OF VARCHAR2(20);
TYPE varray_type |S VARRAY(5) OF | NTEGER;
TYPE assoc_array_numtype IS TABLE OF NUMBER | NDEX BY PLS_| NTECER;
TYPE assoc_array_str_type |'S TABLE OF VARCHAR2(32) | NDEX BY PLS_| NTECGER;
TYPE assoc_array_str_type2 IS TABLE OF VARCHAR2(32) | NDEX BY VARCHAR2(64);
vl nested_type;
v2 varray_type,;
v3 assoc_array_num type;
v4 assoc_array_str_type;
v5 assoc_array_str_type2;

BEG N
vl := nested_type(' Arbitrary', ' nunber','of','strings');
v2 := varray_type(10, 20, 40, 80, 160); -- Up to 5 integers
v3(99) := 10; -- Just start assigning to el ements.
v3(7) : 100' -- Subscripts can be any integer val ues.
v4(42) -- Just start assigning to el enents.
v4(54) := 'Hat -- Subscripts can be any integer val ues.
v5(' Canada') : = 'North America'; -- Just start assigning to elenents.
v5(' Greece') := 'Europe'; -- Subscripts can be string val ues.
END;

/

5-8 PL/SQL User's Guide and Reference

Declaring PL/SQL Collection Variables

Example 5-4 Declaring Collections with %TYPE

You can use %0 YPE to specify the datatype of a previously declared collection, so that
changing the definition of the collection automatically updates other variables that
depend on the number of elements or the element type:

DECLARE
TYPE Few _Col ors |'S VARRAY(10) OF VARCHAR2(20);
TYPE Many_Col ors |'S VARRAY(100) OF VARCHAR2(64);
sonme_col ors Few_Col ors;
-- |f we change the type of SOVE_COLORS from FEW COLORS to MANY_COLCRS,
- RAINBOW and CRAYONS wi ||l use the sane type when this block is reconpil ed.
rai nbow some_col or s YPE;
crayons some_col or Si9YPE;
BEG N
NULL;
END;
/

Example 5-5 Declaring a Procedure Parameter as a Nested Table

You can declare collections as the formal parameters of functions and procedures. That
way, you can pass collections to stored subprograms and from one subprogram to
another. The following example declares a nested table as a parameter of a packaged
procedure:

CREATE PACKAGE personnel AS
TYPE Staff_List IS TABLE OF enpl oyees. enpl oyee_i d%I'YPE;
PROCEDURE awar d_bonuses (who_gets_em IN Staff _List);
END personnel ;
/

DROP PACKAGE personnel ;

To call PERSONNEL. AWARD BONUSES from outside the package, you declare a
variable of type PERSONNEL. STAFF and pass that variable as the parameter.

You can also specify a collection type in the RETURN clause of a function specification.

Example 5-6 Specifying Collection Element Types with %TYPE and %ROWTYPE

To specify the element type, you can use %' YPE, which provides the datatype of a
variable or database column. Also, you can use “ROM YPE, which provides the
rowtype of a cursor or database table. Two examples follow:

DECLARE

-- Nested table type that can hold an arbitrary nunber of

-- enployee IDs. The element type is based on a colum from

- the EMPLOYEES table. Ve do not need to know whether the

- IDis a nunmber or a string.
TYPE EnpList IS TABLE OF enpl oyees. enpl oyee_i d%YPE;

- Array type that can hold information about 10 enpl oyees.
-- The elenent type is a record that contains all the same
- fields as the EMPLOYEES table.

TYPE Top_Sal espeopl e 1S VARRAY(10) OF enpl oyees%ROWTYPE;

- Declare a cursor to select a subset of colums.

CURSOR c1 | S SELECT first_nane, |ast_name FROM enpl oyees;
- Array type that can hold a |ist of names. The el enent type
- is arecord that contains the same fields as the cursor

Using PL/SQL Collections and Records 5-9

Initializing and Referencing Collections

-- (that is, first_name and |ast_nane).
TYPE NaneList |'S VARRAY(20) OF c1Y%ROWYPE;
BEG N
NULL;
END;
/

Example 5-7 VARRAY of Records
This example uses a RECORD type to specify the element type:

DECLARE
TYPE d ossEntry |'S RECORD (term VARCHAR2(20), meani ng VARCHAR2(200));
TYPE d ossary IS VARRAY(250) OF d ossEntry;

BEG N
NULL;

END;

/

Example 5-8 NOT NULL Constraint on Collection Elements

You can also impose a NOT NULL constraint on the element type:

DECLARE
TYPE EnpList 1S TABLE OF enpl oyees. enpl oyee_i d%'YPE NOT NULL;
my_enpl oyees EnpList := EnpList(100, 150, 160, 200);
BEG N
my_enpl oyees(3) := NULL; -- Assigning NULL raises an exception
END;
/

Initializing and Referencing Collections

Until you initialize it, a nested table or varray is atomically null: the collection itself is
null, not its elements. To initialize a nested table or varray, you use a constructor, a
system-defined function with the same name as the collection type. This function
"constructs” collections from the elements passed to it.

You must explicitly call a constructor for each varray and nested table variable.
(Associative arrays, the third kind of collection, do not use constructors.) Constructor
calls are allowed wherever function calls are allowed.

Example 5-9 Constructor for a Nested Table

The following example initializes a nested table using a constructor, which looks like a
function with the same name as the collection type:

DECLARE
TYPE Col ors |'S TABLE OF VARCHAR2(16);
rai nbow Col ors;
BEG N
rainbow := Colors('Red','Orange',' Yellow ,'Geen',"Blue','Indigo','Violet');
END;
/

Because a nested table does not have a declared maximum size, you can put as many
elements in the constructor as necessary.

5-10 PL/SQL User's Guide and Reference

Initializing and Referencing Collections

Example 5-10 Constructor for a Varray

This example initializes a varray using a constructor, which looks like a function with
the same name as the collection type:

DECLARE
-- In the varray, we put an upper linit on the nunber of elenents.
TYPE Col ors |'S VARRAY(10) OF VARCHAR2(16);
rai nbow Col ors;
BEG N
-- Since COLORS is declared as VARRAY(10), we can put up to 10
-- elements in the constructor.
rainbow : = Colors('Red",' Orange',' Yel low ,' Green',"'Blue','Indigo', Violet');
END;
/

Example 5-11 Collection Constructor Including Null Elements

Unless you impose the NOT NULL constraint in the type declaration, you can pass null
elements to a constructor:

DECLARE
TYPE Col ors 1S TABLE OF VARCHAR2(20);
my_col ors Col ors;
TYPE Col orsNoNul | s 1S TABLE OF VARCHAR2(20) NOT NULL;
BEG N
my_colors := Colors('Sienna', NULL, ' Teal ', " Unber', NULL);
-- |f MY_COLORS was of type Col orsNoNull's, we could not include
-- null values in the constructor.
END;
/

Example 5-12 Combining Collection Declaration and Constructor

You can initialize a collection in its declaration, which is a good programming practice:

DECLARE
TYPE Col ors 1S TABLE OF VARCHAR2(20);
my_colors Colors := Colors('Brown',' Gay'," Beige');
BEG N
NULL;
END;
/

Example 5-13 Empty Varray Constructor

If you call a constructor without arguments, you get an empty but non-null collection:

DECLARE
TYPE Col ors |'S VARRAY(100) OF VARCHAR2(20);
my_col ors Col ors;
BEG N
IF my_colors I'S NULL THEN
dbns_out put. put _line('Before initialization, the varray is null.");
-- Wiile the varray is null, we can't check its COUNT attribute.
-- dbms_out put.put _line(' It has ' || my_colors. COUNT || ' elenents.');
ELSE
dbns_output.put _line('Before initialization, the varray is not null.");
END | F;
my_colors := Colors(); -- initialize enpty varray

Using PL/SQL Collections and Records 5-11

Initializing and Referencing Collections

IF my_colors IS NULL THEN
dbns_out put. put _|ine(' After initialization, the varray is null.");

ELSE
dbns_output.put _line(' After initialization, the varray is not null.");
dbns_output.put_line('It has ' || my_colors. COUNT || ' elenents.');
END | F;
END;

/

In this case, you can call the collection's EXTEND method to add elements later.

Example 5-14 Nested Table Constructor Within a SQL Statement

In this example, you insert several scalar values and a Cour seLi st nested table into
the SOPHOMORES table.

BEG N
I NSERT | NTO sophonor es
VALUES (5035, 'Janet Alvarez', '122 Broad St', 'FT',
Cour selLi st (' Econ 2010', 'Acct 3401', 'Mnt 3100'));

Example 5-15 Varray Constructor Within a SQL Statement

In this example, you insert a row into database table DEPARTMENT. The varray
constructor Pr oj ect Li st () provides a value for column PROJECTS.

BEG N
I NSERT | NTO depar t ment
VALUES(60, 'Security', 750400,
Proj ect Li st (' New Badges', 'Track Conputers', 'Check Exits'));

Referencing Collection Elements

Every reference to an element includes a collection name and a subscript enclosed in
parentheses. The subscript determines which element is processed. To reference an
element, you specify its subscript using the syntax

col | ection_name(subscript)

where subscri pt is an expression that yields an integer in most cases, or a
VARCHAR? for associative arrays declared with strings as keys.

The allowed subscript ranges are:

« For nested tables, 1 .. 2**31.

« Forvarrays, 1.. si ze_| i mi t, where you specify the limit in the declaration.
= For associative arrays with a numeric key, -2**31 .. 2**31.

= For associative arrays with a string key, the length of the key and number of
possible values depends on the VARCHARZ length limit in the type declaration, and
the database character set.

Example 5-16 Referencing a Nested Table Element By Subscript

This example shows how to reference an element in the nested table NAVES:

DECLARE
TYPE Roster 1S TABLE OF VARCHAR2(15);
names Roster := Roster('J Hamil', 'D Caruso', 'R Singh');

5-12 PL/SQL User's Guide and Reference

Assigning Collections

BEG N
FOR i IN nanes. FIRST .. nanes. LAST
LOCoP
I F names(i) = 'J Hami|' THEN
NULL;
END | F;
END LOCP;
END;

/

Example 5-17 Passing a Nested Table Element as a Parameter

This example shows that you can reference the elements of a collection in subprogram

calls:
DECLARE
TYPE Roster |S TABLE OF VARCHAR2(15);
nanes Roster := Roster('J Haml', 'DPiro', 'R Singh');
i BINARY_I NTEGER : = 2;
BEG N
verify _name(nanmes(i)); -- call procedure
END;

/

Assigning Collections

One collection can be assigned to another by an | NSERT, UPDATE, FETCH, or SELECT
statement, an assignment statement, or a subprogram call.

You can assign the value of an expression to a specific element in a collection using the
syntax:

col | ecti on_name(subscript) := expression;

where expr essi on yields a value of the type specified for elements in the collection
type definition.

You can use operators such as SET, MULTI SET UNI ON, MULTI SET | NTERSECT, and
MULTI SET EXCEPT to transform nested tables as part of an assignment statement.

Example 5-18 Datatype Compatibility for Collection Assignment

This example shows that collections must have the same datatype for an assignment to
work. Having the same element type is not enough.

DECLARE
TYPE | ast _nanme_typ |'S VARRAY(3) OF VARCHAR2(64);
TYPE surnane_typ | S VARRAY(3) OF VARCHAR2(64);
- These first two variables have the same datatype.
groupl last_name_typ := last_name_typ(' Jones', ' Wng',' Marceau');
group? last_nanme_typ := last_name_typ('Klein','Patsos',"'Singh');
- This third variable has a sinmlar declaration, but is not the sane type.
group3 surnanme_typ := surname_typ(' Trevisi',' Macleod',' Marquez');
BEG N
- Al owed because they have the same datatype
groupl := group2;
- Not allowed because they have different datatypes
group3 : = groupz;
END;

Using PL/SQL Collections and Records 5-13

Assigning Collections

5-14 PL/SQL Use

Example 5-19 Assigning a Null Value to a Nested Table

If you assign an atomically null nested table or varray to a second nested table or
varray, the second collection must be reinitialized:

DECLARE
TYPE Col ors |'S TABLE OF VARCHAR2(64);
-- This nested table has sone val ues.
crayons Colors := Colors('Silver'," Gold");
-- This nested table is not initialized ("atomcally null").
enpty_set Col ors;
BEG N
-- At first, theinitialized variable is not null.
if crayons |'S NOT NULL THEN
dbns_out put.put _line('OK at first crayons is not null.");
END | F;

-- Then we assign a null nested table to it.
crayons := enpty_set;

-- Now it is null.
if crayons IS NULL THEN
dbns_out put . put _li ne(' OK, now crayons has become null.");
END I F;

-- \® nust use another constructor to give it sone val ues.
crayons := Colors('Yellow,'Geen','Blue');

END;

/

In the same way, assigning the value NULL to a collection makes it atomically null.

Example 5-20 Possible Exceptions for Collection Assignments

Assigning a value to a collection element can cause various exceptions:

= If the subscript is null or is not convertible to the right datatype, PL/SQL raises
the predefined exception VALUE_ERROR. Usually, the subscript must be an integer.
Associative arrays can also be declared to have VARCHAR2 subscripts.

= If the subscript refers to an uninitialized element, PL/SQL raises SUBSCRI PT_
BEYOND_COUNT.

= If the collection is atomically null, PL/SQL raises COLLECTI ON_| S_NULL.

DECLARE
TYPE WordList |'S TABLE OF VARCHAR2(5);
wor ds WrdLi st;
BEG N
/* Assune execution continues despite the raised exceptions. */
-- Raises COLLECTION_ IS NULL. W haven't used a constructor yet.
-- This exception applies to varrays and nested tables, but not to
-- associative arrays which don't need a constructor.
words(1) := 10;
-- After using a constructor, we can assign values to the el ements.
wor ds : = WrdLi st (10, 20, 30);
-- Any expression that returns a VARCHAR2(5) is OK
words(1l) := 'yes';
words(2) := words(1) || 'no';

r's Guide and Reference

Assigning Collections

-- Raises VALUE_ERROR because the assigned value is too |ong.
words(3) := 'longer than 5 characters';
-- Raises VALUE_ERROR because the subscript of a nested table nust
-- be an integer.
words('B') := "'dunno';
-- Rai ses SUBSCRI PT_BEYOND COUNT because we only made 3 el ements
-- in the constructor. To add new ones, we nust call the EXTEND
-- method first.
words(4) := 'mybe';
END;
/

Example 5-21 Assigning Nested Tables with Set Operators

This example shows some of the ANSI-standard operators that you can apply to
nested tables:

DECLARE
TYPE nested_typ IS TABLE OF NUMBER,
ntl nested_typ := nested_typ(1,2,3);
nt2 nested_typ := nested_typ(3,2,1);
nt3 nested_typ : = nested_typ(2,3,1,3);
nt4 nested_typ := nested_typ(1,2,4);
answer nested_typ;

-- The results might be in a different order than you expect.
-- (Renmenber, you should not rely on the order of elenents in nested tables.)
PROCEDURE print_nested_table(the_nt nested_typ) IS
out put VARCHAR2(128);
BEG N
IF the_nt 1S NULL THEN
dbms_out put. put _|ine(' Results: <NULL>');
RETURN;
END | F;
IF the_nt.COUNT = 0 THEN
dbns_out put . put _line(' Results: enpty set');

RETURN;
END | F;
FORi INthe_nt.FIRST .. the_nt.LAST
LooP
output := output || the_nt(i) || " ";
END LOOP,
dbms_out put. put _line(' Results: ' || output);
END;
BEG N

answer :=ntl MULTISET UNNON nt4; -- (1,2,3,1,2,4)
print_nested_tabl e(answer);

answer :=ntl MULTISET UNON nt3; -- (1,2,3,2,3,1,3)
print_nested_tabl e(answer);

answer := nt1l MULTISET UNTON DI STINCT nt3; -- (1,2,3)
print_nested_tabl e(answer);

answer := nt2 MULTISET | NTERSECT nt3; -- (3,2,1)
print_nested_tabl e(answer);

answer := nt2 MULTI SET | NTERSECT DI STINCT nt3; -- (3,2,1)
print_nested_tabl e(answer);

answer := SET(nt3); -- (2,3,1)
print_nested_tabl e(answer);

Using PL/SQL Collections and Records 5-15

Comparing Collections

answer := nt3 MULTI SET EXCEPT nt2; -- (3)
print_nested_tabl e(answer);

answer := nt3 MULTISET EXCEPT DISTINCT nt2; -- ()
print_nested_tabl e(answer);

END;
/

Comparing Collections

You can check whether a collection is null, and whether two collections are the same.
Comparisons such as greater than, less than, and so on are not allowed.

This restriction also applies to implicit comparisons. For example, collections cannot
appear in a DI STI NCT, GROUP BY, or ORDERBY list.

If you want to do such comparison operations, you must define your own notion of
what it means for collections to be greater than, less than, and so on, and write one or
more functions to examine the collections and their elements and return a true or false
value.

You can apply set operators (CARDI NALI TY, MEMBER OF,1 S A SET,| S EMPTY) to
check certain conditions within a nested table or between two nested tables.

Example 5-22 Checking if a Collection Is Null
Nested tables and varrays can be atomically null, so they can be tested for nullity:

DECLARE
TYPE Staff IS TABLE OF Enpl oyee;
menbers Staff;
BEG N
- Condition yields TRUE because we haven't used a constructor.
IF menbers |'S NULL THEN ...
END;

Example 5-23 Comparing Two Collections

Collections can be compared for equality or inequality. They cannot be ordered,
because there is no "greater than" or "less than" comparison.

DECLARE
TYPE Col ors |'S TABLE OF VARCHAR2(64);
primaries Colors := Colors('Blue',' Geen', ' Red');
rgb Colors := Colors('Red",' Geen',"'Blue');
traffic_light Colors := Colors('Red,'Geen','Anber');
BEG N
- W can use = or !=, but not < or >
- Notice that these 2 are equal even though the nenbers are in different order.
IF primaries = rgb THEN
dbms_out put. put _Iine(' OK, PRI MARI ES and RGB have the sane nmenbers.');
END | F;
IFrgb !'=traffic_light THEN
dbns_out put. put _Iine(' OK RGB and TRAFFI C_LI GHT have different menbers.');
END | F;
END;
/

5-16 PL/SQL User's Guide and Reference

Using PL/SQL Collections with SQL Statements

Example 5-24 Comparing Nested Tables with Set Operators

You can test certain properties of a nested table, or compare two nested tables, using
ANSI-standard set operations:

DECLARE
TYPE nested_typ IS TABLE OF NUMBER
ntl nested_typ := nested_typ(1,2,3);
nt2 nested_typ := nested_typ(3,2,1);
nt3 nested_typ : = nested_typ(2,3,1,3);
nt4 nested_typ := nested_typ(1,2,4);
answer BOOLEAN,
howrany NUMBER;
PROCEDURE testify(truth BOOLEAN DEFAULT NULL, quantity NUMBER DEFAULT NULL) IS
BEG N
IF truth 1'S NOT NULL THEN
dbns_out put . put _| i ne(CASE truth WHEN TRUE THEN ' True' WHEN FALSE THEN
"Fal se' END);
END | F;
IF quantity IS NOT NULL THEN
dbms_out put . put _l i ne(quantity);

END | F;
END;
BEG N
answer :=ntl IN(nt2,nt3,nt4); -- true, ntl matches nt2
testify(truth => answer);
answer ;= ntl SUBMULTISET OF nt3; -- true, all elements match
testify(truth => answer);
answer = nt1 NOT SUBMULTISET OF nt4; -- also true
testify(truth => answer);
howrany := CARDI NALI TY(nt3); -- nunber of elenents in nt3
testify(quantity => howrany);
howrany := CARDI NALI TY(SET(nt3)); -- nunber of distinct elements

testify(quantity => howrany);

answer := 4 MEMBER OF ntl; -- false, no elenent natches
testify(truth => answer);

answer :=nt3 IS A SET; -- false, nt3 has duplicates
testify(truth => answer);

answer :=nt3 IS NOT A SET; -- true, nt3 has duplicates
testify(truth => answer);

answer :=ntl IS EMPTY; -- false, ntl has some nenbers
testify(truth => answer);

END;
/

Using PL/SQL Collections with SQL Statements

Collections let you manipulate complex datatypes within PL/SQL. Your program can
compute subscripts to process specific elements in memory, and use SQL to store the
results in database tables.

Example 5-25 Creating a SQL Type Corresponding to a PL/SQL Nested Table

In SQL*Plus, you can create SQL types whose definitions correspond to PL/SQL
nested tables and varrays:

SQL> CREATE TYPE CourseList AS TABLE OF VARCHAR2(64);

Using PL/SQL Collections and Records 5-17

Using PL/SQL Collections with SQL Statements

You can use these SQL types as columns in database tables:

SQL> CREATE TABLE department (
2 nane VARCHAR2(20) ,
director VARCHAR2(20),
office VARCHAR2(20),
courses CourselList)
NESTED TABLE courses STORE AS courses_t ab;

o o1l w

Each item in column COURSES is a nested table that will store the courses offered by a
given department. The NESTED TABLE clause is required whenever a database table
has a nested table column. The clause identifies the nested table and names a
system-generated store table, in which Oracle stores the nested table data.

Example 5-26 Inserting a Nested Table into a Database Table

Now, you can populate the database table. The table constructor provides values that
all go into the single column COURSES:

BEG N
I NSERT | NTO depar t ment
VALUES(' English', 'Lynn Saunders', 'Breakstone Hall 205',
Cour selLi st (' Expository Witing',

"Filmand Literature',
" Modern Science Fiction',
"Discursive Witing',
"Mbdern English Gammr',
"Introduction to Shakespeare',
" Modern Drama’',
' The Short Story',
" The American Novel'));

END;

Example 5-27 Using PL/SQL Nested Tables with INSERT, UPDATE, DELETE, and
SELECT Statements

You can retrieve all the courses offered by the English department into a PL/SQL
nested table:

CREATE TYPE Col orLi st AS TABLE OF VARCHAR2(64);

/

CREATE TABLE flowers (name VARCHAR2(20), colors Col orList) NESTED TABLE col ors
STORE AS col ors_tab;

BEG N
I NSERT I NTO fl owers VALUES(' Rose', ColorList('Red ,'Yellow,h'Wite'));
I NSERT I NTO fl owers VALUES(' Tulip', ColorList('Red ,'Wite,'Yellow, 'Blue'));
I NSERT I NTO flowers VALUES('Iris', ColorList('Wite', ' Purple'));
COWM T,
END;
/

DECLARE
- This type declaration is not needed, because PL/SQ can see the SQL type.
TYPE Col orList IS TABLE OF VARCHAR2(64);
- Declare a variable that can hold a set of colors.
nmy_col ors Col orList;
- Declare a record that can hold a row fromthe table.
- One of the record fields is a set of colors.
my_flower flower sYROMYPE;

5-18 PL/SQL User's Guide and Reference

Using PL/SQL Collections with SQL Statements

new_col ors Col orLi st;
BEG N
-- Look up a nane and query just the associated col ors.
SELECT col ors INTO ny_col ors FROM f| owers WHERE nane = 'Rose';
FORi IN ny_colors.FIRST .. ny_colors. LAST
LooP
dbms_out put. put _|ine(' Rose color ="' || ny_colors(i));
END LOOP;

-- Look up a nane and query the entire row
SELECT * INTO ny_fl ower FROM flowers WHERE nane = 'Iris';

-- Now COLORS is a field in a record, so we access it with dot notation.
FORi INny_flower.colors. FIRST .. ny_flower.col ors. LAST

LOOP
-- Because we have all the table colums in the record, we can refer to NAME al so.
dbns_out put. put _line(nmy_flower.nane || ' color ="' || ny_flower.colors(i));
END LOOP;

-- W can replace a set of colors by making a new collection and using it
-- in an UPDATE statenent.

new colors := ColorList('Red,'Yellow, ' Wite', 'Pink');

UPDATE fl owers SET colors = new_col ors WHERE nane = ' Rose';

-- O we can nodify the original collection and use it in the UPDATE.

-- W'll add a new final elenent and fill in a val ue.
nmy_fl ower. col ors. EXTEND(1);
my_flower.colors(nmy_flower.colors. COUNT) :="'Yellow;

UPDATE flowers SET colors = ny_flower.col ors WHERE nane = ny_f| ower. name;

-- W can even treat the nested table colum like a real table and

-- insert, update, or delete elements.

-- The TABLE operator makes the statenment apply to the nested table produced by
the subquery.

I NSERT | NTO TABLE(SELECT col ors FROM f| owers WHERE nane
VALUES("' Bl ack');
DELETE FROM TABLE(SELECT col ors FROM fl owers WHERE name = 'Rose') WHERE col urm_
value = "'Yellow ;
UPDATE TABLE(SELECT col ors FROM flowers WHERE nane = 'Iris')
SET col um_val ue = 'Indi go' WHERE col unm_val ue = 'Purple';

' Rose')

COWM T;
END;
/

DROP TABLE fl owers;
DROP TYPE Col orLi st;

Within PL/SQL, you can manipulate the nested table by looping through its elements,
using methods such as TRI Mor EXTEND, and updating some or all of the elements.
Afterwards, you can store the updated table in the database again.

Example 5-28 Updating a Nested Table within a Database Table
You can revise the list of courses offered by the English Department:

DECLARE
new_courses CourselList :=
Cour seLi st (' Expository Witing',
"Filmand Literature',
"Discursive Witing',

Using PL/SQL Collections and Records 5-19

Using PL/SQL Collections with SQL Statements

"Mbdern English Gammar',
"Real i sm and Naturalisn,
"Introduction to Shakespeare',
"Modern Drama',
' The Short Story',
"The Anmerican Novel',
" 20t h- Century Poetry",
" Advanced Workshop in Poetry');
BEG N
UPDATE depar t nent
SET courses = new_courses WHERE name = 'English';
END;

Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements

This example shows how you can transfer varrays between PL/SQL variables and
SQL tables. You can insert table rows containing varrays, update a row to replace its
varray, and select varrays into PL/SQL variables. You cannot update or delete
individual varray elements directly with SQL; you have to select the varray from the
table, change it in PL/SQL, then update the table to include the new varray.

- By using a varray, we put an upper limt on the number of elenents
- and ensure they always come back in the same order.

CREATE TYPE Rai nbowTyp AS VARRAY(7) OF VARCHAR2(64);

/

CREATE TABLE rai nbows (I anguage VARCHAR2(64), col ors Rai nbowTyp);

BEG N
I NSERT | NTO rai nbows VALUES(' English',

Rai nbowTyp(' Red',"' Orange',' Yellow ,' Green','Blue','Indigo', " Violet'));
I NSERT | NTO rai nbows VALUES(' Francais',

Rai nbowTyp(' Rouge', ' Orange', ' Jaune',' Vert','Bleu','Indigo',' Violet'));
COWM T;

END,

/

DECLARE
new_col ors Rai nbowTyp : =
Rai nbowTyp(' Crinmson',' Orange', " Anber', ' Forest',' Azure','Indigo','Violet');
sone_col ors Rai nbowTyp;
BEG N
UPDATE rai nbows SET colors = new_col ors WHERE | anguage = 'English';
COWM T;
SELECT col ors I NTO sone_col ors FROM rai nbows WHERE | anguage = ' Francais';
FOR i IN sone_colors. FIRST .. sone_col ors. LAST
LooP
dbns_out put . put _line(' Color ="' || sonme_colors(i));
END LOOP;
END;
/

DROP TABLE r ai nbows;
DROP TYPE Rai nbowTyp;

5-20 PL/SQL User's Guide and Reference

Using Multilevel Collections

Manipulating Individual Collection Elements with SQL

By default, SQL operations store and retrieve whole collections rather than individual
elements. To manipulate the individual elements of a collection with SQL, use the
TABLE operator. The TABLE operator uses a subquery to extract the varray or nested
table, so that the | NSERT, UPDATE, or DELETE statement applies to the nested table
rather than the top-level table.

Example 5-29 Performing INSERT, UPDATE, and DELETE Operations on PL/SQL Nested
Tables

To perform DML operations on a PL/SQL nested table, use the operators TABLE and
CAST. This way, you can do set operations on nested tables using SQL notation,
without actually storing the nested tables in the database.

The operands of CAST are PL/SQL collection variable and a SQL collection type
(created by the CREATE TYPE statement). CAST converts the PL/SQL collection to the

SQL type.

DECLARE
revi sed CourseList :=
Cour seLi st (Course(1002, 'Expository Witing' , 3),
Course(2020, 'Filmand Literature', 4),
Course(4210, '20th-Century Poetry', 4),
Course(4725, ' Advanced Workshop in Poetry', 5));
num changed | NTEGER;
BEG N
SELECT COUNT(*) I NTO num changed
FROM TABLE(CAST(revi sed AS Courselist)) new,
TABLE(SELECT courses FROM depart ment
VWHERE nane = 'English') AS old
WHERE new. course_no = ol d. course_no AND
(new.title = old.title OR new credits != old.credits);
dbns_out put . put _| i ne(num changed) ;
END,

Using Multilevel Collections

In addition to collections of scalar or object types, you can also create collections
whose elements are collections. For example, you can create a nested table of varrays,
a varray of varrays, a varray of nested tables, and so on.

When creating a nested table of nested tables as a column in SQL, check the syntax of
the CREATE TABLE statement to see how to define the storage table.

Here are some examples showing the syntax and possibilities for multilevel
collections.

Example 5-30 Multilevel VARRAY

declare
type t1 is varray(10) of integer;
type ntl is varray(10) of t1; -- multilevel varray type

vatl: :=11(2,3,5);
- initialize nultilevel varray
nva ntl := ntl(va, t1(55,6,73), t1(2,4), va);
i integer;
val t1;
begin
- multilevel access

Using PL/SQL Collections and Records 5-21

Using Multilevel Collections

i t=nva(2)(3); -- i wll get value 73
dbms_out put.put _line('l =" || i);

- add a new varray element to nva
nva. ext end;

- replace inner varray el enents
nva(5) := t1(56, 32);
nva(4) := t1(45,43,67,43345);
- replace an inner integer elenent
nva(4)(4) :=1; -- replaces 43345 with 1
- add a new elenent to the 4th varray el enent
- and store integer 89 into it.
nva(4). extend,
nva(4)(5) := 89;

end;

/

Example 5-31 Multilevel Nested Table

declare

type tbl is table of varchar2(20);

type ntbl is table of thl; -- table of table elenents
type tvl is varray(10) of integer;

type ntb2 is table of tvl;, -- table of varray elenents

vtbl thl :=tbl('one', 'three');

vntbl ntbl := nthl(vtbl);

vntbh2 nth2 := nth2(tv1(3,5), tvl(5,7,3)); -- table of varray elenents
begin

vnt bl. ext end;

vntbl(2) := vntbl(1);

- delete the first element in vntbl

vnt bl. del ete(1);

- delete the first string fromthe second table in the nested table
vntbl(2).del ete(l);

end;

/

Example 5-32 Multilevel Associative Array

declare

type tbl is table of integer index by binary_integer;
- the following is index-by table of index-by tables
type ntbl is table of tbl index by binary_integer;
type val is varray(10) of varchar2(20);

- the following is index-by table of varray el ements
type ntb2 is table of val index by binary_integer;

vl val :=val('hello, "world);

v2 ntbil;

v3 ntb2;

v4 thl,

v5 thl; -- enpty table

begi n

va(1l) = 34;

v4(2) := 46456;

v4(456) = 343;

v2(23) := v4;

v3(34) := val(33, 456, 656, 343);

5-22 PL/SQL User's Guide and Reference

Using Collection Methods

- assign an enpty table to v2(35) and try again
v2(35) := vb5;
v2(35)(2) :=78; -- it works now
end;
/

Example 5-33 Multilevel Collections and Bulk SQL
create type t1 is varray(10) of integer;

/
create table tabl (cl t1);

insert into tabl values (t1(2,3,5));
insert into tabl values (t1(9345, 5634, 432453));

decl are

type t2 is table of t1;

v2 t2;

begin

select ¢1 BULK COLLECT INTO v2 fromtabl;
dbms_out put . put _line(v2.count); -- prints 2
end;

/

drop table tabl;
drop type t1,

Using Collection Methods

These collection methods make collections easier to use, and make your applications
easier to maintain:

EXISTS

COUNT

LIMIT

FIRST and LAST
PRIOR and NEXT
EXTEND

TRIM

DELETE

A collection method is a built-in function or procedure that operates on collections
and is called using dot notation.

Collection methods cannot be called from SQL statements.

EXTEND and TRI Mcannot be used with associative arrays.

EXI STS, COUNT, LI M T, FI RST, LAST, PRI OR, and NEXT are functions; EXTEND,
TRI' M and DELETE are procedures.

EXI STS, PRI OR, NEXT, TRI M EXTEND, and DELETE take parameters corresponding to
collection subscripts, which are usually integers but can also be strings for associative
arrays.

Only EXI STS can be applied to atomically null collections. If you apply another
method to such collections, PL/SQL raises COLLECTI ON_| S_NULL.

Using PL/SQL Collections and Records 5-23

Using Collection Methods

Checking If a Collection Element Exists (EXISTS Method)

EXI STS(n) returns TRUE if the nth element in a collection exists. Otherwise,

EXI STS(n) returns FALSE. By combining EXI STS with DELETE, you can work with
sparse nested tables. You can also use EXI STS to avoid referencing a nonexistent
element, which raises an exception. When passed an out-of-range subscript, EXI STS
returns FALSE instead of raising SUBSCRI PT_OUTSI DE_LI M T.

DECLARE
TYPE NunList |S TABLE OF | NTEGER;
n Numlist := NunList(1,3,5,7);
BEG N
n. DELETE(2); -- Delete the second el enent
IF n. EXISTS(1) THEN
dbns_out put. put _line(' OK element #1 exists.');
END I F;
IF n.EXISTS(2) = FALSE THEN
dbns_out put. put _line(' OK element #2 has been deleted.');
END | F;
IF n.EXISTS(99) = FALSE THEN
dbns_out put. put _line(' OK element #99 does not exist at all.');
END I F;
END;
/

Counting the Elements in a Collection (COUNT Method)

COUNT returns the number of elements that a collection currently contains:

DECLARE

TYPE Nuniist 1S TABLE OF NUMBER

n Numlist := NunList(2,4,6,8); -- Collection starts with 4 el ements.
BEG N

dbns_out put. put _line(' There are ' || n.COUNT || ' elements in N.');

n. EXTENX(3); -- Add 3 new el ements at the end.

dbns_out put. put _line(' Now there are ' || n.COUNT || ' elements in N.");

n = Numlist(86,99); -- Assign a conpletely new value with 2 el enments.

dbms_out put. put _line(' Now there are ' || n.COUNT || " elements in N.");

n.TRIM2); -- Renove the last 2 elenments, |eaving none.

dbns_out put. put _line(' Now there are ' || n.COUNT || ' elements in N.");
END;

/

COUNT is useful because the current size of a collection is not always known. For
example, you can fetch a column of Oracle data into a nested table, where the number
of elements depends on the size of the result set.

For varrays, COUNT always equals LAST. You can increase or decrease the size of a
varray using the EXTEND and TRl Mmethods, so the value of COUNT can change, up to
the value of the LI M T method.

For nested tables, COUNT normally equals LAST. But, if you delete elements from the
middle of a nested table, COUNT becomes smaller than LAST. When tallying elements,
COUNT ignores deleted elements.

Checking the Maximum Size of a Collection (LIMIT Method)

For nested tables and associative arrays, which have no maximum size, LI M T returns
NULL. For varrays, LI M T returns the maximum number of elements that a varray can

5-24 PL/SQL User's Guide and Reference

Using Collection Methods

contain/ You specify this limit in the type definition, and can change it later with the
TRI Mand EXTEND methods. For instance, if the maximum size of varray PROJECTS is
25 elements, the following | F condition is true:

DECLARE
TYPE Col ors |'S VARRAY(7) OF VARCHAR2(64);
¢ Colors := Colors('Gold,"Silver');

BEG N
dbns_output.put _line('Chas ' || ¢c.COUNT || ' elements now."');
dbns_output.put _line('C's type can hold a maximumof " || c.LIMT || '
el ements.');

dbns_out put . put _| i ne(* The maxi num nunber you can use with C EXTEND() is ' ||
(c.LIMT - ¢.COUNT));
END;
/

Finding the First or Last Collection Element (FIRST and LAST Methods)

FI RST and LAST return the first and last (smallest and largest) index numbers in a
collection that uses integer subscripts.

For an associative array with VARCHAR2 key values, the lowest and highest key values
are returned. By default, the order is based on the binary values of the characters in the
string. If the NLS_COMP initialization parameter is set to ANSI , the order is based on
the locale-specific sort order specified by the NLS_SORT initialization parameter.

If the collection is empty, FI RST and LAST return NULL.

If the collection contains only one element, FI RST and LAST return the same index
value.

The following example shows how to use FI RST and LAST to iterate through the
elements in a collection that has consecutive subscripts:

DECLARE
TYPE NunList 1S TABLE OF NUMBER;
n Numbist := Nunlist(1,3,5,7);
counter | NTEGER;

BEG N
dbms_output.put_line('N"'s first subscript is ' || n.FIRST);
dbms_out put.put _line('N's last subscript is ' || n.LAST);

- When the subscripts are consecutive starting at 1, it's sinple to loop through

them
FORi INN.FIRST .. n.LAST
LOOP
dbns_output.put _line('Elenent # || i || " =" || n(i));
END LOOP;
n. DELETE(2); -- Delete second el enent.

- Wen the subscripts have gaps or the collection night be uninitialized,
- the loop logic is nore extensive. W start at the first elenment, and
- keep looking for the next element until there are no nore.
IF n IS NOT NULL THEN
counter := n.FlRST,
VH LE counter |'S NOT NULL

LooP
dbns_out put. put _line(' Elenent # || counter || ' ="' || n(counter));
counter := n.NEXT(counter);

END LOOP;

Using PL/SQL Collections and Records 5-25

Using Collection Methods

ELSE
dbns_out put. put _line(*Nis null, nothing to do.");
END | F;
END;
/

For varrays, FI RST always returns 1 and LAST always equals COUNT.

For nested tables, normally FI RST returns 1 and LAST equals COUNT. But if you delete
elements from the beginning of a nested table, FI RST returns a number larger than 1.
If you delete elements from the middle of a nested table, LAST becomes larger than
COUNT.

When scanning elements, FI RST and LAST ignore deleted elements.

Looping Through Collection Elements (PRIOR and NEXT Methods)

PRI OR(n) returns the index number that precedes index n in a collection. NEXT(n)
returns the index number that succeeds index n. If n has no predecessor, PRI OR(n)
returns NULL. If n has no successor, NEXT(n) returns NULL.

For associative arrays with VARCHAR2 keys, these methods return the appropriate key
value; ordering is based on the binary values of the characters in the string, unless the
NLS_COMP initialization parameter is set to ANSI , in which case the ordering is based

on the locale-specific sort order specified by the NLS_SORT initialization parameter.

These methods are more reliable than looping through a fixed set of subscript values,
because elements might be inserted or deleted from the collection during the loop.
This is especially true for associative arrays, where the subscripts might not be in
consecutive order and so the sequence of subscripts might be (1,2,4,8,16) or
(AE,T,0,0).
DECLARE

TYPE NunList 1S TABLE OF NUMBER

n Nunlist := Nunlist(1966, 1971, 1984, 1989, 1999);
BEG N

dbns_out put. put _line(' The el enment after #2 is # || n.NEXT(2));

dbms_out put. put _line(' The el ement before #2 is # || n.PRIOR(2));

n. DELETE(3); -- Delete an element to show how NEXT can handl e gaps.

dbns_out put. put _line(' Now the el ement after #2 is # || n.NEXT(2));

IF n.PRIOR(n. FIRST) IS NULL THEN

dbns_output.put _line('Can''t get PRIOR of the first elenent or NEXT of the

last.');

END | F;
END;
/

You can use PRI CRor NEXT to traverse collections indexed by any series of subscripts.
The following example uses NEXT to traverse a nested table from which some elements
have been deleted:

DECLARE
TYPE NunList |S TABLE OF NUMBER;
n Numlist := NunList(1,3,5,7);
counter | NTEGER;

BEG N

n. DELETE(2); -- Delete second el enent.
- Wen the subscripts have gaps, the loop logic is nobre extensive. W start at
the

- first element, and keep looking for the next elenment until there are no nore.
counter := n.FlIRST;

5-26 PL/SQL User's Guide and Reference

Using Collection Methods

WH LE counter 1S NOT NULL

LOOP
dbns_out put. put _li ne(' Counting up: Element # || counter || " =" |[]
n(counter));
counter := n.NEXT(counter);
END LOOP;

- Run the same loop in reverse order.
counter := n.LAST,;
VH LE counter |'S NOT NULL

LoopP
dbns_out put . put _I'i ne(" Counting down: Elenment # || counter [| ' =" []
n(counter));
counter := n.PRIOR(counter);
END LOOP;
END;

/

When traversing elements, PRI ORand NEXT skip over deleted elements.

Increasing the Size of a Collection (EXTEND Method)

To increase the size of a nested table or varray, use EXTEND.

You cannot use EXTEND with index-by tables.

This procedure has three forms:

« EXTEND appends one null element to a collection.

« EXTEND(n) appends n null elements to a collection.

« EXTEND(n, i) appends n copies of the i th element to a collection.
You cannot use EXTEND to add elements to an uninitialized.

If you impose the NOT NULL constraint on a TABLE or VARRAY type, you cannot apply
the first two forms of EXTEND to collections of that type.

EXTEND operates on the internal size of a collection, which includes any deleted
elements. If EXTEND encounters deleted elements, it includes them in its tally. PL/SQL
keeps placeholders for deleted elements so that you can re-create them by assigning
new values.

DECLARE
TYPE NunList |S TABLE OF | NTEGER;
n Numbist := Nunlist(2,4,6,8);
x Numlist := Nunlist(1,3);
PROCEDURE print_numist(the_list NunList) IS
out put VARCHAR2(128);

BEG N
FORi INthe_list.FIRST .. the_list.LAST
LooP
output := output || NVL(TO CHAR(the_list(i)),"NULL") || '
END LOOP;
dbns_out put . put _I'i ne(out put);
END;
BEG N
dbns_out put. put _line(" At first, Nhas ' || n.COUNT || ' elenents.');
n. EXTENDX(5); -- Add 5 elements at the end.
dbns_out put. put _line(" Now N has ' || n.COUNT || ' elements."');

- BElenents 5, 6, 7, 8, and 9 are all NULL.
print_numist(n);

Using PL/SQL Collections and Records 5-27

Using Collection Methods

dbms_out put. put _line(" At first, X has ' || x.COUNT || " elenents.');
X. EXTEND(4,2); -- Add 4 elenments at the end.
dbns_out put. put _line(" Now X has ' || x.COUNT || ' elements."');

- Elenents 3, 4, 5, and 6 are copies of elenent #2.
print_numist(x);
END;
/

When it includes deleted elements, the internal size of a nested table differs from the
values returned by COUNT and LAST. For instance, if you initialize a nested table with
five elements, then delete elements 2 and 5, the internal size is 5, COUNT returns 3, and
LAST returns 4. All deleted elements, regardless of position, are treated alike.

Decreasing the Size of a Collection (TRIM Method)

This procedure has two forms:
» TRl Mremoves one element from the end of a collection.
« TRI M n) removes n elements from the end of a collection.

For example, this statement removes the last three elements from nested table
cour ses:

DECLARE
TYPE NunList 1S TABLE OF NUMBER
n Numbist := Nunlist(1,2,3,5,7,11);
PROCEDURE print_numist(the_list Numlist) IS
out put VARCHAR2(128);
BEG N
I'F n.COUNT = 0 THEN
dbns_out put. put _line(' No el enents in collection."');

ELSE
FORi INthe list.FIRST .. the_list.LAST
LooP
output := output || NVL(TO CHAR(the_list(i)),"NULL") || '
END LOOP;
dbns_out put . put _I'i ne(output);
END | F;
END;
BEG N
print_nunlist(n);
n.TRIM2); -- Renove last 2 el enents.
print_nunmist(n);
n.TRIM -- Renpve |ast el enent.
print_numist(n);
n. TREM n. COUNT); -- Rerove all remaining el ements.

print_nunlist(n);

-- |If too many elenents are specified, TRIMraises the exception SUBSCR PT_BEYOND_
COUNT.
BEG N
n = Nunlist(1,2,3);
n. TRIM 100);
EXCEPTI ON
WHEN SUBSCRI PT_BEYOND_COUNT THEN
dbms_out put. put _line('| guess there weren''t 100 el ements that coul d
be trimmed.");
END;

5-28 PL/SQL User's Guide and Reference

Using Collection Methods

- Wen elenents are removed by DELETE, placehol ders are |eft behind. TRIM counts
t hese
-- placeholders as it removes elenents fromthe end.

n = Nunmlist(1,2,3,4);
n. DELETE(3); -- delete elenent 3
- At this point, n contains elenents (1,2,4).
- TRIMiing the last 2 elenments renoves the 4 and the placehol der, not 4 and 2.
n. TRIM 2);
print_nunlist(n);
END;
/
END;
/

If n is too large, TRI M n) raises SUBSCRI PT_BEYOND_COUNT.

TRI Moperates on the internal size of a collection. If TRI Mencounters deleted elements,
it includes them in its tally. Consider the following example:

DECLARE
TYPE CourseList |'S TABLE OF VARCHAR2(10);
courses Courselist;

BEG N
courses := Courselist('Biol 4412', 'Psyc 3112', 'Anth 3001');
courses. DELETE(courses. LAST); -- delete element 3

[* At this point, COUNT equals 2, the nunber of valid
el ements remaining. So, you mght expect the next
statement to enpty the nested table by trimming
elements 1 and 2. Instead, it trins valid el ement 2
and del eted el enent 3 because TRIMincludes del eted
elements inits tally. */

courses. TRI M cour ses. COUNT) ;

dbns_out put. put _line(courses(1l)); ~-- prints 'Biol 4412

END;
/

In general, do not depend on the interaction between TRl Mand DELETE. It is better to
treat nested tables like fixed-size arrays and use only DELETE, or to treat them like
stacks and use only TRI Mand EXTEND.

Because PL/SQL does not keep placeholders for trimmed elements, you cannot
replace a trimmed element simply by assigning it a new value.

Deleting Collection Elements (DELETE Method)
This procedure has various forms:
= DELETEremoves all elements from a collection.

= DELETE(n) removes the nth element from an associative array with a numeric
key or a nested table. If the associative array has a string key, the element
corresponding to the key value is deleted. If n is null, DELETE(n) does nothing.

= DELETE(m n) removes all elements in the range m . n from an associative array
or nested table. If mis larger than n or if mor n is null, DELETE(m n) does
nothing.

For example:

DECLARE
TYPE NunList IS TABLE OF NUMBER

Using PL/SQL Collections and Records 5-29

Avoiding Collection Exceptions

n Numlist := Nunlist (10, 20, 30, 40, 50, 60, 70, 80, 90, 100) ;
TYPE NickList 1S TABLE OF VARCHAR2(64) | NDEX BY VARCHAR2(32);
ni cknames Ni ckLi st;

BEG N
n. DELETE(2); - deletes elenment 2
n. DELETE(3,6); -- deletes elenents 3 through 6
n. DELETE(7,7); -- deletes element 7
n. DELETE(6, 3); - does nothing since 6 > 3
n. DELETE; -- deletes all elements
ni cknanmes(' Bob') : = 'Robert';
ni cknanmes(' Buffy') := 'Esnerel da';
ni cknanes(' Chip') := 'Charles’;
ni cknanes(' Dan') .= 'Daniel';
ni cknanes(' Fluffy') := 'Ernestina';
ni cknanes(' Rob') : = 'Robert';
ni cknames. DELETE(' Chip'); -- deletes element denoted by this key
ni cknanmes. DELETE(' Buffy'," Fluffy'); -- deletes elements with keys in this
al phabetic range
END;

/

Varrays always have consecutive subscripts, so you cannot delete individual elements
except from the end (by using the TRI Mmethod).

If an element to be deleted does not exist, DELETE simply skips it; no exception is
raised. PL/SQL keeps placeholders for deleted elements, so you can replace a deleted
element by assigning it a new value.

DELETE lets you maintain sparse nested tables. You can store sparse nested tables in
the database, just like any other nested tables.

The amount of memory allocated to a nested table can increase or decrease
dynamically. As you delete elements, memory is freed page by page. If you delete the
entire table, all the memory is freed.

Applying Methods to Collection Parameters

Within a subprogram, a collection parameter assumes the properties of the argument
bound to it. You can apply the built-in collection methods (FI RST, LAST, COUNT, and
so on) to such parameters. You can create general-purpose subprograms that take
collection parameters and iterate through their elements, add or delete elements, and
so on.

Note: For varray parameters, the value of LI M T is always derived from the
parameter type definition, regardless of the parameter mode.

Avoiding Collection Exceptions

5-30

In most cases, if you reference a nonexistent collection element, PL/SQL raises a
predefined exception. Consider the following example:

DECLARE
TYPE Nuniist |'S TABLE OF NUMBER;
nuns Nunlist; -- atomically null
BEG N
/* Assune execution continues despite the raised exceptions. */
nuns(1) :=1; -- raises COLLECTION_I'S NULL (1)

PL/SQL User's Guide and Reference

Avoiding Collection Exceptions

nums = Nunlist(1,2); -- initialize nested table

nums(NULL) : = 3; -- raises VALUE _ERROR (2)

nuns(0) := 3; -- raises SUBSCRIPT QUTSIDE LIMT (3)

nuns(3) := 3; -- rai ses SUBSCRI PT_BEYOND_COUNT (4)

nuns. DELETE(1); -- delete elenment 1

IF nums(1) = 1 THEN NULL; END IF; -- raises NO_DATA FOUND (5)
END;

/

In the first case, the nested table is atomically null. In the second case, the subscript is
null. In the third case, the subscript is outside the allowed range. In the fourth case, the
subscript exceeds the number of elements in the table. In the fifth case, the subscript
designates a deleted element.

The following list shows when a given exception is raised:

Collection Exception Raised when...
COLLECTION_I'S_NULL you try to operate on an atomically null collection.
NO_DATA_FCOUND a subscript designates an element that was deleted, or a

nonexistent element of an associative array.

SUBSCRI PT_BEYOND_COUNT a subscript exceeds the number of elements in a
collection.

SUBSCRI PT_QUTSI DE_LIM T asubscript is outside the allowed range.

VALUE_ERRCR a subscript is null or not convertible to the key type. This
exception might occur if the key is defined as a PLS_
| NTEGER range, and the subscript is outside this range.

In some cases, you can pass invalid subscripts to a method without raising an
exception. For instance, when you pass a null subscript to procedure DELETE, it does
nothing. You can replace deleted elements by assigning values to them, without
raising NO_DATA_FOUND:

DECLARE
TYPE Nunlist 1S TABLE OF NUMBER
nunms Numli st := NunList(10,20,30); -- initialize table
BEG N
nuns. DELETE(-1); -- does not raise SUBSCRIPT_QUTSIDE LIMT
nuns. DELETE(3) ; -- delete 3rd el ement
dbns_out put. put _|i ne(nuns. COUNT); -- prints 2
nunms(3) := 30; -- allowed; does not raise NO DATA FOUND
dbms_out put. put _|i ne(nunms. COUNT); -- prints 3
END;

/

Packaged collection types and local collection types are never compatible. For
example, suppose you want to call the following packaged procedure:

CREATE PACKACE pkg AS
TYPE Nuniist 1S TABLE OF NUMBER
PROCEDURE print_num ist (nums Numlist);
END pkg;
/

DECLARE
TYPE Nunlist 1S TABLE OF NUMBER
nl pkg. NunList := pkg.NunList(2,4); -- Type fromthe package.
n2 Nunlist := NuniList(6,8); -- Local type.

Using PL/SQL Collections and Records 5-31

What Is a PL/SQL Record?

BEG N
pkg. print_numist(nl);
- The packaged procedure can't accept a value of the local type.
pkg. print_numist(n2); -- Causes a conpilation error.
END;
/

DROP PACKAGE pkg;

The second procedure call fails, because the packaged and local VARRAY types are
incompatible despite their identical definitions.

What Is a PL/SQL Record?

A record is a group of related data items stored in fields, each with its own name and
datatype. You can think of a record as a variable that can hold a table row, or some
columns from a table row. The fields correspond to table columns.

The MROM YPE attribute lets you declare a record that represents a row in a database
table, without listing all the columns. Your code keeps working even after columns are
added to the table. If you want to represent a subset of columns in a table, or columns
from different tables, you can define a view or declare a cursor to select the right
columns and do any necessary joins, and then apply “RON YPE to the view or cursor.

Defining and Declaring Records

5-32

To create records, you define a RECORD type, then declare records of that type. You can
also create or find a table, view, or PL/SQL cursor with the values you want, and use
the YROM YPE attribute to create a matching record.

You can define RECORD types in the declarative part of any PL/SQL block,
subprogram, or package. When you define your own RECORD type, you can specify a
NOT NULL constraint on fields, or give them default values.

DECLARE
- Declare a record type with 3 fields.
TYPE recl t |'S RECORD (fiel dl VARCHAR2(16), field2 NUMBER fiel d3 DATE);
- For any fields declared NOT NULL, we nust supply a default val ue.
TYPE rec2_t 1S RECORD (id INTEGER NOT NULL := -1, name VARCHAR2(64) NOT NULL :=
'[anonymous] ') ;

- Declare record variables of the types declared above.
recl recl_t;
rec2 rec2_t;

- Declare a record variable that can hold a row fromthe EMPLOYEES tabl e.
- The fields of the record automatically match the names and types of the
col ums.

- Don't need a TYPE declaration in this case.

rec3 enpl oyees¥RONMYPE;

- O we can mx fields that are table colums with user-defined fields.
TYPE rec4_t 1S RECORD (first_name enployees.first_naned%YPE, |ast_name
enpl oyees. | ast _nane%YPE, rating NUMBER);
recd recd_t;

BEG N

- Read and wite fields using dot notation
recl.fieldl :="'Yesterday';

PL/SQL User's Guide and Reference

Defining and Declaring Records

recl.field2 := 65;
recl.fiel d3 := TRUNC(SYSDATE-1);
- W didn't fill inthe NAME field, so it takes the default value declared above.
dbms_out put . put _l i ne(rec2. nang);
END;

/

To store a record in the database, you can specify it in an | NSERT or UPDATE
statement, if its fields match the columns in the table:

You can use %0 YPE to specify a field type corresponding to a table column type. Your
code keeps working even if the column type is changed (for example, to increase the
length of a VARCHARZ or the precision of a NUMBER). The following example defines
RECORD types to hold information about a department:

DECLARE
- Best: use YROWMYPE instead of specifying each col um.
- Using <cursor>%ROMYPE i nstead of <tabl e>¥ROMYPE since we only want sone
col ums.
- Declaring the cursor doesn't run the query, so no performance hit.

CURSOR c1 IS SELECT departnent _id, departnent_nane, |ocation_id FROM
departnments;

recl clY%ROMYPE;

- Use <col um>%IYPE in field declarations to avoid problems if the colum types
change.

TYPE DeptRec2 1S RECORD (dept _id departnents. departnent _i d9%YPE, dept_name
depart ment s. depart nent _nane%lYPE, dept | oc departments.|ocation_i d%YPE);

rec2 DeptRec?;

- Final technique, witing out each field name and specifying the type directly,
is
- clunsy and unnmaintainable for working with table data. Use only for all-PL/SQ
code.
TYPE Dept Rec3 |'S RECORD (dept _id NUMBER, dept_name VARCHAR2(14), dept_loc
VARCHAR2(13)) ;
rec3 DeptRec3;
BEG N
NULL;
END;
/

PL/SQL lets you define records that contain objects, collections, and other records
(called nested records). However, records cannot be attributes of object types.

Using Records as Procedure Parameters and Function Return Values

Records are easy to process using stored procedures because you can pass just one
parameter, instead of a separate parameter for each field. For example, you might fetch
a table row from the EMPLOYEES table into a record, then pass that row as a parameter
to a function that computed that employee's vacation allowance or some other abstract
value. The function could access all the information about that employee by referring
to the fields in the record.

The next example shows how to return a record from a function. To make the record
type visible across multiple stored functions and stored procedures, declare the record
type in a package specification.

Using PL/SQL Collections and Records 5-33

Assigning Values to Records

DECLARE
TYPE EnpRec |'S RECORD (
enp_id NUMBER(4)
| ast _name VARCHAR2(10),
dept _num NUMBER(2),
job_title VARCHAR2(9),
sal ary NUMBER(7, 2)) ;
FUNCTI ON nt h_hi ghest _sal ary (n | NTEGER) RETURN EmpRec IS ...
BEG N
NULL;
END;
/

Like scalar variables, user-defined records can be declared as the formal parameters of
procedures and functions:

DECLARE
TYPE EnpRec |'S RECORD (
enp_id enp. enpno%l YPE,
| ast _name VARCHAR2(10),
job_title VARCHAR2(9),
sal ary NUMBER(7, 2)) ;

PROCEDURE rai se_sal ary (enp_i nfo EnpRec);
BEG N

END;
/

Assigning Values to Records

To set all the fields in a record to default values, assign to it an uninitialized record of
the same type:

DECLARE

TYPE RecordTyp |'S RECORD (fieldl NUMBER, field2 VARCHAR2(32) DEFAULT
"sonething');

recl RecordTyp;

rec2 RecordTyp;

BEG N
-- At first, recl has the values we assign.
recl.fieldl := 100; recl.field2 := 'sonething else';

-- Assigning an enpty record to recl resets fields to their default val ues.
- Fieldl is NULL and field2 is 'something' (because of the DEFAULT cl ause above).
recl :=rec2;
dbns_output.put _line('Fieldl ="' || NVL(TO CHAR(recl.fieldl),'<NULL>') || ",
field2 =" || recl.field2);
END;
/

You can assign a value to a field in a record using an assignment statement with dot
notation:

enp_info.last_name := 'Fields';

Instead of assigning values separately to each field in a record, you can assign values

to all fields at once.

You can assign one user-defined record to another if they have the same datatype.
Having fields that match exactly is not enough. Consider the following example:

5-34 PL/SQL User's Guide and Reference

Assigning Values to Records

DECLARE
-- Two identical type declarations.
TYPE Dept Recl IS RECORD (dept_num NUMBER(2), dept_nanme VARCHAR2(14));
TYPE Dept Rec2 |I'S RECORD (dept_num NUMBER(2), dept_name VARCHAR2(14));
dept 1_i nfo Dept Recl;
dept 2_i nfo Dept Rec2;
dept 3_i nfo Dept Rec2;
BEG N
- Not allowed; different datatypes, even though fields are the sane.
deptl_info := dept2_info;
- This assignnent is OK because the records have the sane type.
dept2_info := dept3_info;
END;
/

You can assign a “ROM YPE record to a user-defined record if their fields match in
number and order, and corresponding fields have the same datatypes:

DECLARE

TYPE RecordTyp |'S RECORD (| ast enpl oyees. | ast_name% I YPE, id enpl oyees. enpl oyee_
i d9%TYPE) ;

CURSOR c1 | S SELECT | ast_nane, enployee_id FROM enpl oyees;

- Recl and rec2 have different types. But because rec2 is based on a “ROMYPE, we
can
- assignis torecl as long as they have the right nunber of fields and the
fields
- have the right datatypes.
recl RecordTyp;
rec2 clYRONMYPE;
BEG N
SELECT | ast_name, enployee_id INTO rec2 FROM enpl oyees WHERE ROMUM < 2;
recl :=rec2,
dbms_out put. put _| i ne(' Enpl oyee # || recl.id || ' =" || recl.last);
END;
/

You can also use the SELECT or FETCH statement to fetch column values into a record.
The columns in the select-list must appear in the same order as the fields in your
record.

DECLARE
TYPE RecordTyp | S RECORD (| ast enpl oyees. | ast_name% I YPE, id enpl oyees. enpl oyee_
i d%TYPE) ;
recl RecordTyp;
BEG N
SELECT | ast_name, enployee_id INTO recl FROM enpl oyees WHERE ROMUM < 2;
dbns_out put. put _line(' Enpl oyee # || recl.id || ' =" || recl.last);
END;
/

You cannot assign a list of values to a record using an assignment statement. There is
no constructor-like notation for records.

Comparing Records

Records cannot be tested for nullity, or compared for equality, or inequality.

Using PL/SQL Collections and Records 5-35

Assigning Values to Records

If you want to make such comparisons, write your own function that accepts two
records as parameters and does the appropriate checks or comparisons on the
corresponding fields.

Inserting PL/SQL Records into the Database

A PL/SQL-only extension of the | NSERT statement lets you insert records into
database rows, using a single variable of type RECORD or “ROM YPE in the VALUES
clause instead of a list of fields. That makes your code more readable and
maintainable.

If you issue the | NSERT through the FORALL statement, you can insert values from an
entire collection of records.

The number of fields in the record must equal the number of columns listed in the

| NTOclause, and corresponding fields and columns must have compatible datatypes.
To make sure the record is compatible with the table, you might find it most
convenient to declare the variable as the type t abl e_nane%ROWM YPE.

Example 5-34 Inserting a PL/SQL Record Using %ROWTYPE

This example declares a record variable using a “ROM YPE qualifier. You can insert
this variable without specifying a column list. The %ROATYPE declaration ensures that
the record attributes have exactly the same names and types as the table columns.

DECLARE
dept _info dept YROATYPE;
BEG N
- deptno, dnane, and loc are the table col ums.
- The record picks up these names fromthe Y%ROMYPE.
dept _i nfo.deptno := 70;
dept _i nfo.dnane : = ' PERSONNEL' ;
dept _info.loc := 'DALLAS;
- Using the YROMYPE neans we can | eave out the colum Iist
- (deptno, dname, loc) fromthe INSERT statenent.
I NSERT | NTO dept VALUES dept _info;
END;
/

Updating the Database with PL/SQL Record Values

A PL/SQL-only extension of the UPDATE statement lets you update database rows
using a single variable of type RECORD or “ROM YPE on the right side of the SET
clause, instead of a list of fields.

If you issue the UPDATE through the FORALL statement, you can update a set of rows
using values from an entire collection of records.

Also with an UPDATE statement, you can specify a record in the RETURNI NGclause to
retrieve new values into a record. If you issue the UPDATE through the FORALL
statement, you can retrieve new values from a set of updated rows into a collection of
records.

The number of fields in the record must equal the number of columns listed in the SET
clause, and corresponding fields and columns must have compatible datatypes.

Example 5-35 Updating a Row Using a Record

You can use the keyword ROWto represent an entire row:

5-36 PL/SQL User's Guide and Reference

Assigning Values to Records

DECLARE
dept _i nfo dept YROATYPE;
BEG N
dept _info. deptno := 30;
dept _info.dnane : = ' MARKETI NG ;
dept _info.loc := " ATLANTA';
- The row wi Il have values for the filled-in colums, and null
- for any other col ums.
UPDATE dept SET ROW = dept_i nfo WHERE deptno = 30;
END;
/

The keyword ROWis allowed only on the left side of a SET clause.

The argument to SET ROWmust be a real PL/SQL record, not a subquery that returns
a single row.

The record can also contain collections or objects.

Example 5-36 Using the RETURNING Clause with a Record

The | NSERT, UPDATE, and DELETE statements can include a RETURNI NGclause,
which returns column values from the affected row into a PL/SQL record variable.
This eliminates the need to SELECT the row after an insert or update, or before a
delete.

By default, you can use this clause only when operating on exactly one row. When you
use bulk SQL, you can use the form RETURNI NG BULK COLLECT | NTOto store the
results in one or more collections.

The following example updates the salary of an employee and retrieves the employee's
name, job title, and new salary into a record variable:

DECLARE

TYPE EnpRec |'S RECORD (I ast_nane enpl oyees. | ast _nane%YPE, sal ary
enpl oyees. sal ar yYdIYPE) ;

enp_i nfo EnpRec;

enp_i d NUMBER : = 100;
BEG N

UPDATE enpl oyees SET salary = salary * 1.1 WHERE enpl oyee_id = enp_id

RETURNI NG | ast _name, sal ary I NTO enp_info;

dbms_out put. put _| i ne(' Just gave a raise to ' || enmp_info.last_name ||
", who now makes ' || enp_info.salary);
ROLLBACK;
END;

/

Restrictions on Record Inserts/Updates

Currently, the following restrictions apply to record inserts/updates:
= Record variables are allowed only in the following places:
= On the right side of the SET clause in an UPDATE statement
« Inthe VALUES clause of an | NSERT statement
« Inthe | NTOsubclause of a RETURNI NGclause

Record variables are not allowed in a SELECT list, WHERE clause, GROUP BY clause,
or ORDER BY clause.

Using PL/SQL Collections and Records 5-37

Assigning Values to Records

« The keyword ROWis allowed only on the left side of a SET clause. Also, you cannot
use ROWwith a subquery.

= Inan UPDATE statement, only one SET clause is allowed if RONis used.

« If the VALUES clause of an | NSERT statement contains a record variable, no other
variable or value is allowed in the clause.

« If the | NTOsubclause of a RETURNI NGclause contains a record variable, no other
variable or value is allowed in the subclause.

= The following are not supported:
= Nested record types
= Functions that return a record

= Record inserts/updates using the EXECUTE | MVEDI ATE statement.

Querying Data into Collections of Records

You can use the BULK COLLECT clause with a SELECT | NTOor FETCH statement to
retrieve a set of rows into a collection of records.

DECLARE
TYPE Enpl oyeeSet 1S TABLE OF enpl oyees“ROMYPE;
under pai d Enpl oyeeSet; -- Holds set of rows from EMPLOYEES table.

CURSOR c1 | S SELECT first_nane, |ast_name FROM enpl oyees;
TYPE NaneSet 1S TABLE OF c1%ROWTYPE;
some_names NanmeSet; -- Holds set of partial rows from EMPLOYEES table.

BEG N
- Wth one query, we bring all the relevant data into the collection of records.
SELECT * BULK COLLECT I NTO under pai d FROM enpl oyees
WHERE sal ary < 2500 ORDER BY sal ary DESC,

- Now we can process the data by examining the collection, or passing it to
- a separate procedure, instead of witing a loop to FETCH each row.

dbns_out put. put _| i ne(underpai d. COUNT || ' people make less than 2500.');
FOR i | N underpaid. FIRST .. underpaid. LAST
LOOP
dbns_out put. put _| i ne(underpai d(i).last_name || ' makes ' ||
underpai d(i).salary);
END LOOP;

- W can also bring in just sone of the table col ums.
- Here we get the first and last names of 10 arbitrary enpl oyees.
SELECT first_name, |ast_nanme BULK COLLECT | NTO some_names FROM enpl oyees
WHERE ROMUM < 11;
FOR i IN sone_nanes. FIRST .. sone_nanes. LAST
LooP
dbns_out put . put _| i ne("' Enpl oyee =
some_nanes(i).last_name);
END LOOP;
END;
/

|| some_names(i).first_name || ' " ||

5-38 PL/SQL User's Guide and Reference

6

Performing SQL Operations from PL/SQL

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find
information upon it. —Samuel Johnson

This chapter shows how PL/SQL supports the SQL commands, functions, and
operators that let you manipulate Oracle data.

This chapter contains these topics:
= Overview of SQL Support in PL/SQL on page 6-1

« Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE) on
page 6-5

= Issuing Queries from PL/SQL on page 6-7

= Querying Data with PL/SQL on page 6-9

= Querying Data with PL/SQL: Explicit Cursor FOR Loops on page 6-9
= Using Cursor Variables (REF CURSORs) on page 6-19

= Using Cursor Expressions on page 6-27

= Overview of Transaction Processing in PL/SQL on page 6-29

= Doing Independent Units of Work with Autonomous Transactions on page 6-35

Overview of SQL Support in PL/SQL

By extending SQL, PL/SQL offers a unique combination of power and ease of use. You
can manipulate Oracle data flexibly and safely because PL/SQL fully supports all SQL
data manipulation statements (except EXPLAI N PLAN), transaction control statements,
functions, pseudocolumns, and operators. PL/SQL also supports dynamic SQL, which
enables you to execute SQL data definition, data control, and session control
statements dynamically. In addition, PL/SQL conforms to the current ANSI/ISO SQL
standard.

Data Manipulation

To manipulate Oracle data, you use the | NSERT, UPDATE, DELETE, SELECT, and LOCK
TABLE commands. | NSERT adds new rows of data to database tables; UPDATE
modifies rows; DELETE removes unwanted rows; SELECT retrieves rows that meet
your search criteria; and LOCK TABLE temporarily limits access to a table.

Performing SQL Operations from PL/SQL 6-1

Overview of SQL Support in PL/SQL

Transaction Control

Oracle is transaction oriented; that is, Oracle uses transactions to ensure data integrity.
A transaction is a series of SQL data manipulation statements that does a logical unit of
work. For example, two UPDATE statements might credit one bank account and debit
another. It is important not to allow one operation to succeed while the other fails.

At the end of a transaction that makes database changes, Oracle makes all the changes
permanent or undoes them all. If your program fails in the middle of a transaction,
Oracle detects the error and rolls back the transaction, restoring the database to its
former state.

You use the COVM T, ROLLBACK, SAVEPO NT, and SET TRANSACTI ON commands to
control transactions. COVM T makes permanent any database changes made during
the current transaction. ROLLBACK ends the current transaction and undoes any
changes made since the transaction began. SAVEPO NT marks the current point in the
processing of a transaction. Used with ROLLBACK, SAVEPO NT undoes part of a
transaction. SET TRANSACTI ON sets transaction properties such as read-write access
and isolation level.

SQL Functions

For example, the following example shows some queries that call SQL functions:

DECLARE
j ob_count NUMBER;
enmp_count NUMBER;
BEG N
SELECT COUNT(DI STINCT job_id) INTO job_count FROM enpl oyees;
SELECT COUNT(*) I NTO enp_count FROM enpl oyees;
END;
/

SQL Pseudocolumns

PL/SQL recognizes the SQL pseudocolumns: CURRVAL, LEVEL, NEXTVAL, ROW D, and
ROMNUM In PL/SQL, pseudocolumns are only allowed in SQL queries, not in | NSERT
/ UPDATE / DELETE statements, or in other PL/SQL statements such as assignments
or conditional tests.

CURRVAL and NEXTVAL

A sequence is a schema object that generates sequential numbers. When you create a
sequence, you can specify its initial value and an increment. CURRVAL returns the
current value in a specified sequence.

Before you can reference CURRVAL in a session, you must use NEXTVAL to generate a
number. A reference to NEXTVAL stores the current sequence number in CURRVAL.
NEXTVAL increments the sequence and returns the next value. To get the current or
next value in a sequence, use dot notation:

sequence_name. CURRVAL
sequence_nane. NEXTVAL

After creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. You can use CURRVAL and NEXTVAL only in a SELECT list, the
VALUES clause, and the SET clause. The following example shows how to generate a
new sequence number and refer to that same number in more than one statement:

6-2 PL/SQL User's Guide and Reference

Overview of SQL Support in PL/SQL

CREATE TABLE enpl oyees_tenp AS SELECT enpl oyee_id, first_name FROM enpl oyees;
CREATE TABLE enpl oyees_t enp2 AS SELECT enpl oyee_id, first_name FROM enpl oyees;

DECLARE
next _val ue NUMBER;

BEG N

- The NEXTVAL value is the same no matter what table you select from
SELECT enpl oyees_seq. NEXTVAL | NTO next _val ue FROM dual ;

- You usual 'y use NEXTVAL to create unique nunbers when inserting data.
I NSERT | NTO enpl oyees_tenp VALUES (enpl oyees_seq. NEXTVAL, 'value 1');
- If you need to store the same val ue sonewhere el se, you use CURRVAL.
I NSERT | NTO enpl oyees_t enp2 VALUES (enpl oyees_seq. CURRVAL, 'value 1');
- Because NEXTVAL val ues night be referenced by different users and

- applications, and some NEXTVAL val ues m ght not be stored in the

- database, there mght be gaps in the sequence.

END,

/

DROP TABLE enpl oyees_t enp;
DROP TABLE enpl oyees_t enp2;

Each time you reference the NEXTVAL value of a sequence, the sequence is
incremented immediately and permanently, whether you commit or roll back the
transaction.

LEVEL

You use LEVEL with the SELECT CONNECT BY statement to organize rows from a
database table into a tree structure. You might use sequence numbers to give each row
a unique identifier, and refer to those identifiers from other rows to set up parent-child
relationships.

LEVEL returns the level number of a node in a tree structure. The root is level 1,
children of the root are level 2, grandchildren are level 3, and so on.

In the START W THclause, you specify a condition that identifies the root of the tree.
You specify the direction in which the query traverses the tree (down from the root or
up from the branches) with the PRI OR operator.

ROWID

ROW Dreturns the rowid (binary address) of a row in a database table. You can use
variables of type UROW D to store rowids in a readable format.

When you select or fetch a physical rowid into a UROWN D variable, you can use the
function RON DTOCHAR, which converts the binary value to a character string. You can
compare the UROW D variable to the RON D pseudocolumn in the WHERE clause of an
UPDATE or DELETE statement to identify the latest row fetched from a cursor. For an
example, see "Fetching Across Commits" on page 6-34.

ROWNUM

ROMNUMreturns a number indicating the order in which a row was selected from a
table. The first row selected has a ROWNUMof 1, the second row has a ROANUMof 2, and
so on. If a SELECT statement includes an ORDER BY clause, ROANUNS are assigned to
the retrieved rows before the sort is done; use a subselect (shown in the following
example) to get the first n sorted rows.

You can use ROWNUMin an UPDATE statement to assign unique values to each row in a
table, or in the WHERE clause of a SELECT statement to limit the number of rows
retrieved:

Performing SQL Operations from PL/SQL 6-3

Overview of SQL Support in PL/SQL

CREATE TABLE enpl oyees_tenp AS SELECT * FROM enpl oyees;

DECLARE
CURSOR c1 IS SELECT enpl oyee_id, salary FROM enpl oyees_tenp
WHERE sal ary > 2000 AND ROMUM <= 10; -- 10 arbitrary rows

CURSOR c2 | S SELECT * FROM
(SELECT enpl oyee_id, salary FROM enpl oyees_tenp
VHERE sal ary > 2000 ORDER BY sal ary DESC)
VWHERE ROMNUM < 5; -- first 5 rows, in sorted order
BEG N
- Each row gets assigned a different nunber
UPDATE enpl oyees_tenp SET enpl oyee_id = ROMUM
END;
/

DROP TABLE enpl oyees_t enp;

The value of ROANUMincreases only when a row is retrieved, so the only meaningful
uses of ROANUMin a WHERE clause are

. WHERE ROMUM < const ant;
. WHERE ROMNUM <= const ant;

SQL Operators

PL/SQL lets you use all the SQL comparison, set, and row operators in SQL
statements. This section briefly describes some of these operators. For more
information, see Oracle Database SQL Reference.

Comparison Operators

Typically, you use comparison operators in the WHERE clause of a data manipulation
statement to form predicates, which compare one expression to another and yield
TRUE, FALSE, or NULL. You can use the comparison operators listed below to form
predicates. You can combine predicates using the logical operators AND, OR, and NOT.

Operator Description

ALL Compares a value to each value in a list or returned
by a subquery and yields TRUE if all of the
individual comparisons yield TRUE.

ANY, SOME Compares a value to each value in a list or returned
by a subquery and yields TRUE if any of the
individual comparisons yields TRUE.

BETWEEN Tests whether a value lies in a specified range.

EXI STS Returns TRUE if a subquery returns at least one row.
I'N Tests for set membership.

I SNULL Tests for nulls.

LI KE Tests whether a character string matches a specified
pattern, which can include wildcards.

Set Operators

Set operators combine the results of two queries into one result. | NTERSECT returns
all distinct rows selected by both queries. M NUS returns all distinct rows selected by
the first query but not by the second. UNI ONreturns all distinct rows selected by either
query. UNI ONALL returns all rows selected by either query, including all duplicates.

6-4 PL/SQL User's Guide and Reference

Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)

Row Operators

Row operators return or reference particular rows. ALL retains duplicate rows in the
result of a query or in an aggregate expression. DI STI NCT eliminates duplicate rows
from the result of a query or from an aggregate expression. PRl ORrefers to the parent
row of the current row returned by a tree-structured query.

Performing DML Operations from PL/SQL (INSERT, UPDATE, and

DELETE)

You can write | NSERT, UPDATE, and DELETE statements directly in PL/SQL
programs, without any special notation:

CREATE tabl el AS SELECT obj ect _nane, object_type FROM user_objects;

BEG N
I NSERT I NTO tabl el(col 1, col2) VALUES('valuel','value2');
UPDATE tabl el SET coll = '"another value' VWHERE col 2 | S NULL;
DELETE FROM t abl e1 WHERE col 1 = col 2;
COWM T;

END;

/

DROP t abl el;

To find out how many rows are affected by these statements, you can check the value
of SQLYROWCOUNT:

SET SERVERQUTPUT ON;

BEG N

UPDATE enpl oyees SET salary = salary * 1.05 WHERE .. .;

dbns_out put. put _line(" Updated ' || SQLUROACOUNT || ' salaries.');
END;

/

Wherever you would use literal values, or bind variables in some other programming
language, you can directly substitute PL/SQL variables:

CREATE tabl el AS SELECT obj ect _nanme, object_type FROM user_obj ects;

DECLARE
X VARCHAR2(1128) := 'valuel';
y NUMBER : = 10;

BEG N

I NSERT I NTO tabl el(col 1, col 2) VALUES(x, X);
UPDATE tabl el SET coll = x WHERE col 3 < y;
DELETE FROM tabl el WHERE col 1 = x;
COWM T,

END;

/

DROP t abl el;

With this notation, you can use variables in place of values in the WHERE clause. To use
variables in place of table names, column names, and so on, requires the EXECUTE
| MVEDI ATE statement that is explained in ...

Performing SQL Operations from PL/SQL 6-5

Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)

Overview of Implicit Cursor Attributes

Implicit cursor attributes return information about the execution of an | NSERT,
UPDATE, DELETE, or SELECT | NTOstatement. The values of the cursor attributes
always refer to the most recently executed SQL statement. Before Oracle opens the SQL
cursor, the implicit cursor attributes yield NULL.

Note: The SQL cursor has another attribute, “BULK_ROWCOUNT, designed for use with
the FORALL statement. For more information, see "Counting Rows Affected by
FORALL with the %BULK_ROWCOUNT Attribute" on page 11-12.

%FOUND Attribute: Has a DML Statement Changed Rows?

Until a SQL data manipulation statement is executed, %~OUND yields NULL. Thereafter,
%-OUND yields TRUE if an | NSERT, UPDATE, or DELETE statement affected one or
more rows, or a SELECT | NTOstatement returned one or more rows. Otherwise,
%-QUND yields FALSE. In the following example, you use %~OUND to insert a row if a
delete succeeds:

DELETE FROM enp WHERE enpno = my_enpno;
| F SQL%-OUND THEN -- del ete succeeded
I NSERT | NTO new_enp VALUES (nmy_enpno, my_enane, ...);

%ISOPEN Attribute: Always FALSE for Implicit Cursors

Oracle closes the SQL cursor automatically after executing its associated SQL
statement. As a result, %4 SOPEN always yields FALSE.

%NOTFOUND Attribute: Has a DML Statement Failed to Change Rows?
YNOTFOUND is the logical opposite of %6~OUND. ¥NOTFOUND yields TRUE if an | NSERT,

UPDATE, or DELETE statement affected no rows, or a SELECT | NTOstatement returned
no rows. Otherwise, ¥INOTFOUND yields FALSE.

%ROWCOUNT Attribute: How Many Rows Affected So Far?

YRONCOUNT yields the number of rows affected by an | NSERT, UPDATE, or DELETE
statement, or returned by a SELECT | NTOstatement. “ROWCOUNT yields O if an

I NSERT, UPDATE, or DELETE statement affected no rows, or a SELECT | NTOstatement
returned no rows. In the following example, you use “ROWNCOUNT to take action if
more than ten rows have been deleted:

DELETE FROM enp WHERE ...
| F SQLUROACOUNT > 10 THEN -- nore than 10 rows were del eted

END. I F
If a SELECT | NTOstatement returns more than one row, PL/SQL raises the predefined

exception TOO_MANY_ROWS and %RONCOUNT yields 1, not the actual number of rows
that satisfy the query.

Guidelines for Using Implicit Cursor Attributes

The values of the cursor attributes always refer to the most recently executed SQL
statement, wherever that statement is. It might be in a different scope (for example, in
a sub-block). To save an attribute value for later use, assign it to a Boolean variable
immediately. Doing other operations, such as procedure calls, might change the value
of ¥NOTFQOUND before you can test it.

The YNOTFOUND attribute is not useful in combination with the SELECT | NTO
statement:

6-6 PL/SQL User's Guide and Reference

Issuing Queries from PL/SQL

If a SELECT | NTOstatement fails to return a row, PL/SQL raises the predefined
exception NO_DATA_FOUND immediately, interrupting the flow of control before you
can check ¥8NOTFOUND.

A SELECT | NTOstatement that calls a SQL aggregate function always returns a value
or a null. After such a statement, the ¥NOTFOUND attribute is always FALSE, so
checking it is unnecessary.

Using PL/SQL Records in SQL INSERT and UPDATE Statements

Instead of listing each field of a PL/SQL record in | NSERT and UPDATE statements,
you can use PL/SQL records directly. The most convenient technique is to declare the
record using a “ROM YPE attribute, so that it has exactly the same fields as the SQL

table:
DECLARE
enmp_rec enpY%ROMYPE;
BEG N
enp_rec.eno : = 1500;
enp_rec.ename = "Steven HIIl";
enmp_rec.sal := '40000";
- A YROMYPE value can fill in all the rowfields.

| NSERT | NTO enp VALUES enp_rec;

- The fields of a Y%ROMYPE can conpletely replace the table col ums.
UPDATE enp SET ROW = enp_rec WHERE eno = 100;
END;
/

Although this technique integrates PL/SQL variables and types with SQL DML
statements, you cannot use PL/SQL records as bind variables in dynamic SQL
statements.

See Also: "WhatIs a PL/SQL Record?" on page 5-32 for more
information about PL/SQL records.

Issuing Queries from PL/SQL

PL/SQL lets you perform queries (SELECT statements in SQL) and access individual
fields or entire rows from the result set. Depending on the complexity of the
processing that you want to do on the query results, you can use various notations.

Selecting At Most One Row: SELECT INTO Statement

If you expect a query to only return one row, you can write a regular SQL SELECT
statement with an additional | NTOclause specifying the PL/SQL variable to hold the
result:

If the query might return more than one row, but you do not care about values after
the first, you can restrict any result set to a single row by comparing the ROANUMvalue:

If the query might return no rows at all, use an exception handler to specify any
actions to take when no data is found:

If you just want to check whether a condition exists in your data, you might be able to
code the query with the COUNT(*) operator, which always returns a number and
never raises the NO_DATA_FOUND exception:

Performing SQL Operations from PL/SQL 6-7

Issuing Queries from PL/SQL

Selecting Multiple Rows: BULK COLLECT Clause

If you need to bring a large quantity of data into local PL/SQL variables, rather than
looping through a result set one row at a time, you can use the BULK COLLECT clause.
When you query only certain columns, you can store all the results for each column in
a separate collection variable:

SELECT enpl oyee_id, |ast_name, salary FROM enpl oyees
BULK COLLECT INTO al | _enpl oyee_ids, all_last_names, all_salaries;

When you query all the columns of a table, you can store the entire result set in a
collection of records, which makes it convenient to loop through the results and refer
to different columns:

SELECT * FROM enpl oyees BULK COLLECT I NTO al | _enpl oyees;
FOR i IN all_enpl oyees. FIRST .. all_enpl oyees. LAST
LOOP

END LOCP;

This technique can be very fast, but also very memory-intensive. If you use it often,
you might be able to improve your code by doing more of the work in SQL.:

= If you only need to loop once through the result set, use a FORloop as described in
the following sections. This technique avoids the memory overhead of storing a
copy of the result set.

= If you are looping through the result set to scan for certain values or filter the
results into a smaller set, do this scanning or filtering in the original query instead.
You can add more WHERE clauses in simple cases, or use set operators such as
| NTERSECT and M NUS if you are comparing two or more sets of results.

= If you are looping through the result set and running another query or a DML
statement for each result row, you can probably find a more efficient technique.
For queries, look at including subqueries or EXI STS or NOT EXI STS clauses in
the original query. For DML statements, look at the FORALL statement, which is
much faster than coding these statements inside a regular loop.

Looping Through Multiple Rows: Cursor FOR Loop

Perhaps the most common case of a query is one where you issue the SELECT
statement, then immediately loop once through the rows of the result set. PL/SQL lets
you use a simple FOR loop for this kind of query:

The iterator variable for the FORloop does not need to be declared in advance. It is a
YROWI'YPE record whose field names match the column names from the query, and
that exists only during the loop. When you use expressions rather than explicit column
names, use column aliases so that you can refer to the corresponding values inside the
loop:

Performing Complicated Query Processing: Explicit Cursors

For full control over query processing, you can use explicit cursors in combination
with the OPEN, FETCH, and CL OSE statements.

You might want to specify a query in one place but retrieve the rows somewhere else,
even in another subprogram. Or you might want to choose very different query
parameters, such as ORDER BY or GROUP BY clauses, depending on the situation. Or
you might want to process some rows differently than others, and so need more than a
simple loop.

6-8 PL/SQL User's Guide and Reference

Querying Data with PL/SQL

Because explicit cursors are so flexible, you can choose from different notations
depending on your needs. The following sections describe all the query-processing
features that explicit cursors provide.

Querying Data with PL/SQL

In traditional database programming, you process query results using an internal data
structure called a cursor. In most situations, PL/SQL can manage the cursor for you,
so that code to process query results is straightforward and compact. This section
discusses how to process both simple queries where PL/SQL manages everything, and
complex queries where you interact with the cursor.

Querying Data with PL/SQL: Implicit Cursor FOR Loop

With PL/SQL, it is very simple to issue a query, retrieve each row of the result into a
YROWNTYPE record, and process each row in a loop:

= You include the text of the query directly in the FORloop.

= PL/SQL creates a record variable with fields corresponding to the columns of the
result set.

= You refer to the fields of this record variable inside the loop. You can perform tests
and calculations, display output, or store the results somewhere else.

Here is an example that you can run in SQL*Plus. It does a query to get the name and
status of every index that you can access.

BEG N
FORitemIN
(
SELECT obj ect _name, status FROM user_objects WHERE object _type = ' | NDEX
AND obj ect _name NOT LIKE ' %%

)

LooP
dbrs_out put. put _line('Index ="' || itemobject_nanme ||
", Status ="' || itemstatus);
END LOOP;
END;

/

Before each iteration of the FORloop, PL/SQL fetches into the implicitly declared
record.

The sequence of statements inside the loop is executed once for each row that satisfies
the query. When you leave the loop, the cursor is closed automatically. The cursor is
closed even if you use an EXI T or GOTOstatement to leave the loop before all rows are
fetched, or an exception is raised inside the loop.

See also: LOOP Statements on page 13-79

Querying Data with PL/SQL: Explicit Cursor FOR Loops

IIf you need to reference the same query from different parts of the same procedure,
you can declare a cursor that specifies the query, and process the results using a FOR
loop.

The following PL/SQ block runs two variations of the same query, first finding all the
tables you can access, then all the indexes you can access:

DECLARE

Performing SQL Operations from PL/SQL 6-9

Querying Data with PL/SQL

CURSOR c1 IS
SELECT obj ect _name, status FROM user_objects WHERE object _type = ' TABLE
AND obj ect _name NOT LIKE ' %% ;

BEG N
FORitemINcl LOOP
dbms_out put.put _line(' Table ="' || itemobject_name ||
", Status ="' || itemstatus);
END LOOP,
END;

/

See also: LOOP Statements on page 13-79

Defining Aliases for Expression Values in a Cursor FOR Loop

In a cursor FOR loop, PL/SQL creates a “ROWNT YPE record with fields corresponding to
columns in the result set. The fields have the same names as corresponding columns in
the SELECT list.

The select list might contain an expression, such as a column plus a constant, or two
columns concatenated together. If so, use a column alias to give unique names to the
appropriate columns.

In the following example, f ul | _nanme and dr eam sal ary are aliases for expressions
in the query:

SET SERVERQUTPUT ON;

BEG N
FOR itemIN
(
SELECT
first_name || " ' || last_nanme AS full_nane,
salary * 10 AS dream sal ary
FROM enpl oyees
VWHERE ROMUM <= 5

)

LooP
dbms_out put.put _line(itemfull _nane || ' dreans of making ' ||
itemdream sal ary);
END LOOP,
END,

/

Overview of Explicit Cursors

When you need precise control over query processing, you can explicitly declare a
cursor in the declarative part of any PL/SQL block, subprogram, or package.

You use three commands to control a cursor: OPEN, FETCH, and CLCSE. First, you
initialize the cursor with the OPEN statement, which identifies the result set. Then, you
can execute FETCHrepeatedly until all rows have been retrieved, or you can use the
BULK COLLECT clause to fetch all rows at once. When the last row has been processed,
you release the cursor with the CLOSE statement.

This technique requires more code than other techniques such as the implicit cursor
FOR loop. Its advantage is flexibility. You can:

= Process several queries in parallel by declaring and opening multiple cursors.

6-10 PL/SQL User's Guide and Reference

Querying Data with PL/SQL

= Process multiple rows in a single loop iteration, skip rows, or split the processing
into more than one loop.

Declaring a Cursor

You must declare a cursor before referencing it in other statements. You give the cursor
a name and associate it with a specific query. You can optionally declare a return type
for the cursor (such as t abl e_name%ROM YPE). You can optionally specify
parameters that you use in the WHERE clause instead of referring to local variables.
These parameters can have default values.

For example, you might declare cursors like these:

DECLARE
CURSOR c1 | S SELECT enpno, enane, job, sal FROM enp
WHERE sal > 2000;
CURSOR c2 RETURN dept 4ROMYPE | S
SELECT * FROM dept WHERE deptno = 10;

The cursor is not a PL/SQL variable: you cannot assign values to a cursor or use it in
an expression. Cursors and variables follow the same scoping rules. Naming cursors
after database tables is possible but not recommended.

A cursor can take parameters, which can appear in the associated query wherever
constants can appear. The formal parameters of a cursor must be | N parameters; they
supply values in the query, but do not return any values from the query. You cannot
impose the constraint NOT NULL on a cursor parameter.

As the example below shows, you can initialize cursor parameters to default values.
You can pass different numbers of actual parameters to a cursor, accepting or
overriding the default values as you please. Also, you can add new formal parameters
without having to change existing references to the cursor.

DECLARE
CURSCR c1 (low [INTEGER DEFAULT O,
hi gh | NTEGER DEFAULT 99) IS SELECT ...

Cursor parameters can be referenced only within the query specified in the cursor
declaration. The parameter values are used by the associated query when the cursor is
opened.

Opening a Cursor

Opening the cursor executes the query and identifies the result set, which consists of
all rows that meet the query search criteria. For cursors declared using the FOR
UPDATE clause, the OPEN statement also locks those rows. An example of the OPEN
statement follows:

DECLARE
CURSOR c1 | S SELECT enane, job FROM enp WHERE sal < 3000;

BEG N
OPEN c1;

END;

Rows in the result set are retrieved by the FETCH statement, not when the OPEN
statement is executed.

Performing SQL Operations from PL/SQL 6-11

Querying Data with PL/SQL

Fetching with a Cursor

Unless you use the BULK COLLECT clause (discussed in the next section), the FETCH
statement retrieves the rows in the result set one at a time. Each fetch retrieves the
current row and advances the cursor to the next row in the result set.

You can store each column in a separate variable, or store the entire row in a record
that has the appropriate fields (usually declared using %RONTYPE):

-- This cursor queries 3 colums.

-- Each colum is fetched into a separate variable.

FETCH c1 | NTO ny_enpno, ny_enanme, ny_deptno;

-- This cursor was declared as SELECT * FROM enpl oyees.

-- An entirerowis fetched into the ny_enpl oyees record, which
-- is declared with the type enpl oyees“RONMYPE.

FETCH c2 | NTO ny_enpl oyees;

For each column value returned by the query associated with the cursor, there must be
a corresponding, type-compatible variable in the | NTOlist. Typically, you use the
FETCH statement in the following way:

LooP
FETCH c1 I NTO ny_record,;
EXIT VHEN c19NOTFOUND;
-- process data record
END LOOP;

The query can reference PL/SQL variables within its scope. Any variables in the query
are evaluated only when the cursor is opened. In the following example, each
retrieved salary is multiplied by 2, even though f act or is incremented after every
fetch:

DECLARE
my_sal enpl oyees. sal ar y%I'YPE;
my_j ob enpl oyees. j ob_i d%TYPE;
factor | NTEGER : = 2;

CURSCR cl1 IS
SELECT factor*sal ary FROM enpl oyees WHERE job_id = ny_j ob;
BEG N
OPEN c1; -- here factor equals 2
LooP

FETCH c1 INTO ny_sal ;
EXI T WHEN c19%NOTFOUND;
factor := factor + 1, -- does not affect FETCH
END LOCP;
END;
/

To change the result set or the values of variables in the query, you must close and
reopen the cursor with the input variables set to their new values.

However, you can use a different | NTOlist on separate fetches with the same cursor.
Each fetch retrieves another row and assigns values to the target variables, as the
following example shows:

DECLARE
CURSOR c1 | S SELECT | ast_name FROM enpl oyees ORDER BY | ast _nane;
namel enpl oyees. | ast _nane%l YPE;
name2 enpl oyees. | ast _nanme%l YPE;
name3 enpl oyees. | ast _nanme% YPE;
BEG N
OPEN c1,

6-12 PL/SQL User's Guide and Reference

Using Subqueries

FETCH c1 INTO namel; -- this fetches first row
FETCH c1 INTO name2; -- this fetches second row
FETCH c1 INTO nane3; ~-- this fetches third row
CLCSE c1;

END;

/

If you fetch past the last row in the result set, the values of the target variables are
undefined.

Note: Eventually, the FETCH statement fails to return a row. When that happens, no
exception is raised. To detect the failure, use the cursor attribute %~CUND or
YNOTFOUND. For more information, see "Using Cursor Expressions” on page 6-27.

Fetching Bulk Data with a Cursor

The BULK COLLECT clause lets you fetch all rows from the result set at once (see
"Retrieving Query Results into Collections with the BULK COLLECT Clause" on
page 11-15). In the following example, you bulk-fetch from a cursor into two
collections:

DECLARE
TYPE Nunifab 1S TABLE OF enpl oyees. enpl oyee_i d9%d YPE;
TYPE NaneTab IS TABLE OF enpl oyees. | ast _nane%lYPE;
nuns Nunilab;
names NameTab;
CURSOR c1 IS
SELECT enpl oyee_id, |ast_name
FROM enpl oyees
VHERE job_id = ' ST_CLERK ;
BEG N
OPEN c1;
FETCH c1 BULK COLLECT | NTO nuns, names;
- Here is where you iterate through the elenents in the NUMS and
- NAMES col | ections.
NULL;
CLCSE c1;
END;
/

Closing a Cursor

The CLCOSE statement disables the cursor, and the result set becomes undefined. Once a
cursor is closed, you can reopen it, which runs the query again with the latest values of
any cursor parameters and variables referenced in the WHERE clause. Any other
operation on a closed cursor raises the predefined exception | NVALI D_CURSCR.

Using Subqueries

A subquery is a query (usually enclosed by parentheses) that appears within another
SQL data manipulation statement. The statement acts upon the single value or set of
values returned by the subquery. For example:

= You can use a subquery to find the MAX(), MIN(), or AVG() value for a column,
and use that single value in a comparison in a WHERE clause.

= You can use a subquery to find a set of values, and use this values in an IN or NOT
IN comparison in a WHERE clause. This technique can avoid joins.

Performing SQL Operations from PL/SQL 6-13

Using Subqueries

= You can filter a set of values with a subquery, and apply other operations like
ORDER BY and GROUP BY in the outer query.

= You can use a subquery in place of a table name, in the FROM clause of a query.
This technique lets you join a table with a small set of rows from another table,
instead of joining the entire tables.

= You can create a table or insert into a table, using a set of rows defined by a
subquery.

DECLARE

CURSCR c1 IS
-- The main query returns only rows where the salary is greater than the average
sal ary.

SELECT enpl oyee_id, |ast_name FROM enpl oyees WHERE sal ary > (SELECT
AVQE sal ary) FROM enpl oyees);

CURSCR c2 IS
-- The subquery returns all the rows in descending order of salary.
-- The main query returns just the top 10 hi ghest-paid enpl oyees.
SELECT * FROM
(SELECT | ast _name, salary FROM enpl oyees ORDER BY sal ary DESC, |ast_nane)
WHERE ROWNUM < 11;
BEG N
FOR person IN cl
LooP
dbrs_out put . put _l i ne(' Above-average salary: ' || person.last_nange);
END LOCP,
FOR person IN c2
LOOP
dbms_out put. put _l i ne(" Highest paid: ' || person.last_name || ' $' ||
person. sal ary);
END LOCP,
-- The subquery identifies a set of rows to use with CREATE TABLE or | NSERT.
EXECUTE | MVEDI ATE
' CREATE TABLE tenp AS (SELECT * FROM enpl oyees WHERE sal ary > 5000)";
EXECUTE | MMEDI ATE ' DROP TABLE tenp';
END;
/

Using a subquery in the FROMclause, the following query returns the number and
name of each department with five or more employees:

DECLARE
CURSOR c1 IS
SELECT t1.departnent _id, department_nane, staff
FROM departnents t1,
(
SELECT departnent _id, COUNT(*) as staff
FROM enpl oyees
GROUP BY departnent _id
) t2
VWHERE
t1. department _id = t2. department_id
AND staff >= 5;

BEG N
FOR dept INcl
LooP
dbrms_out put. put _|ine(' Departnent ="' || dept.departnent_nane ||
", staff ="' || dept.staff);
END LOOP;

6-14 PL/SQL User's Guide and Reference

Using Correlated Subqueries

END;

Using Correlated Subqueries

While a subquery is evaluated only once for each table, a correlated subquery is
evaluated once for each row. The following example returns the name and salary of
each employee whose salary exceeds the departmental average. For each row in the
table, the correlated subquery computes the average salary for the corresponding
epartment.

DECLARE
- For each department, we find the average sal ary.
- Then we find all the enployees in that department making
- more than that average salary.
CURSOR c1 IS
SELECT departnent _id, |ast_name, salary
FROM enpl oyees t
VWHERE
salary >
(
SELECT AV@ sal ary)
FROM enpl oyees
VHERE
t.department _id = departnent _id
)
ORDER BY departnent _id;
BEG N
FOR person IN cl
LooP
dbms_out put . put _l i ne(' Maki ng above-average salary =" ||
person. | ast _nane);
END LOOP,
END;
/

Writing Maintainable PL/SQL Queries

Instead of referring to local variables, you can declare a cursor that accepts parameters,
and pass values for those parameters when you open the cursor. If the query is usually
issued with certain values, you can make those values the defaults. You can use either
positional notation or named notation to pass the parameter values.

Example 6-1 Passing Parameters to a Cursor FOR Loop
The following example computes the total wages paid to employees in a specified
department.

DECLARE
CURSCR c1 (nane VARCHAR2, max_wage NUMBER) |S
SELECT * FROM enpl oyees WHERE | ast _name = name and sal ary < max_wage;

BEG N
FOR person IN c1('Austin', 30000)
LooP
- process data record
dbms_out put. put _line(' Name ="' || person.last_nane ||
', salary ="' || person.salary);

Performing SQL Operations from PL/SQL 6-15

Using Cursor Attributes

END LOCP,
END;

Example 6-2 Passing Parameters to Explicit Cursors

For example, here are several ways to open a cursor:

DECLARE
enp_name enpl oyees. | ast_name%YPE : = ' Austin';
enp_salary enpl oyees. sal ary%dYPE : = 30000;
my_record enpl oyees¥ROMYPE;
CURSCR c1 (nane VARCHAR2, max_wage NUMBER) |S
SELECT * FROM enpl oyees WHERE | ast _nane = nane and sal ary < max_wage;
BEG N
-- Any of the follow ng statements opens the cursor:
-- OPEN c1(' Austin', 3000);
-- OPEN c1('Austin', enp_salary);
-- OPEN cl(enp_nane, 3000);
-- OPEN cl(enp_name, enp_salary);

OPEN c1(enp_nanme, enp_sal ary);
LooP
FETCH c1 I NTO ny_record,;
EXI T WHEN ¢ 19%NOTFOUND;
-- process data record
dbrms_out put. put _line(' Name ="' || ny_record.|ast_nane ||
, salary ="' || ny_record.salary);
END LOCP,
END;
/

To avoid confusion, use different names for cursor parameters and the PL/SQL
variables that you pass into those parameters.

Formal parameters declared with a default value do not need a corresponding actual
parameter. If you omit them, they assume their default values when the OPEN
statement is executed.

Using Cursor Attributes

Every explicit cursor and cursor variable has four attributes: %4~OUND, %4 SOPEN
YNOTFCUND, and “ROWCOUNT. When appended to the cursor or cursor variable, these
attributes return useful information about the execution of a data manipulation
statement. You can use cursor attributes in procedural statements but not in SQL
statements.

Overview of Explicit Cursor Attributes

Explicit cursor attributes return information about the execution of a multi-row query.
When an explicit cursor or a cursor variable is opened, the rows that satisfy the
associated query are identified and form the result set. Rows are fetched from the
result set.

6-16 PL/SQL User's Guide and Reference

Using Cursor Attributes

%FOUND Attribute: Has a Row Been Fetched?

After a cursor or cursor variable is opened but before the first fetch, %~OUND returns
NULL. After any fetches, it returns TRUE if the last fetch returned a row, or FALSE if the
last fetch did not return a row. The following example uses %~OUND to select an action:

DECLARE
CURSOR c1 |'S SELECT | ast_nane, salary FROM enpl oyees WHERE ROMUM < 11;
my_enane enpl oyees. | ast _nane%l YPE;
nmy_sal ary enpl oyees. sal ar y9d YPE;

BEG N
OPEN c1;
LooP
FETCH c1 | NTO ny_enane, ny_sal ary;
| F c19%QOUND THEN -- fetch succeeded
dbns_output. put _line('Name =" || nmy_enane || ', salary ="' ||
ny_sal ary);
ELSE -- fetch failed, so exit |oop
EXIT,
END | F;
END LOOP;
END;

/

If a cursor or cursor variable is not open, referencing it with %~OUND raises the
predefined exception | NVALI D_CURSOR

%ISOPEN Attribute: Is the Cursor Open?

% SOPENreturns TRUE if its cursor or cursor variable is open; otherwise, % SOPEN
returns FALSE. The following example uses % SOPEN to select an action:

DECLARE
CURSOR c1 IS SELECT | ast_nane, salary FROM enpl oyees WHERE ROMNUM < 11;
the_name enpl oyees. | ast _nanme%l YPE;
the_sal ary enpl oyees. sal ar y%d YPE;

BEG N
I F c1% SOPEN = FALSE THEN -- cursor was not already open
OPEN c1,
END | F;
FETCH c1 INTO the_nane, the_sal ary;
CLOSE c1,
END;

/

%NOTFOUND Attribute: Has a Fetch Failed?

YNOTFOUND is the logical opposite of %~OUND. ¥NOTFOUND yields FALSE if the last
fetch returned a row, or TRUE if the last fetch failed to return a row. In the following
example, you use ¥NOTFOUND to exit a loop when FETCH fails to return a row:

DECLARE
CURSOR c1 |'S SELECT | ast_nane, salary FROM enpl oyees WHERE ROMUM < 11;
my_enane enpl oyees. | ast _nane% YPE;
nmy_sal ary enpl oyees. sal ar y9d YPE;
BEG N
OPEN c1;
LOoP
FETCH c1 | NTO ny_enane, ny_sal ary;
I F c19%NOTFOUND THEN -- fetch failed, so exit |oop
- A shorter formof this test is "EXIT WHEN c1%NOTFOUND; "

Performing SQL Operations from PL/SQL 6-17

Using Cursor Attributes

EXIT,
ELSE -- fetch succeeded
dbns_out put. put _line('Name ="' || ny_enane || ', salary ="' ||
my_sal ary);
END I F;
END LOOP;

END;
/

Before the first fetch, “INOTFOUND returns NULL. If FETCHnever executes successfully,
the loop is never exited, because the EXI T WHEN statement executes only if its WHEN
condition is true. To be safe, you might want to use the following EXI T statement
instead:

EXIT WHEN c19NOTFOUND OR c19NOTFOUND |'S NULL;

If a cursor or cursor variable is not open, referencing it with ¥NOTFOUND raises an
I NVALI D_CURSCR exception.

%ROWCOUNT Attribute: How Many Rows Fetched So Far?

When its cursor or cursor variable is opened, “RONCOUNT is zeroed. Before the first
fetch, “ROWCOUNT yields 0. Thereafter, it yields the number of rows fetched so far. The
number is incremented if the last fetch returned a row. The following example uses
YROVNCOUNT to test if more than ten rows have been fetched:

DECLARE
CURSOR c1 | S SELECT | ast_name FROM enpl oyees WHERE ROMUM < 11;
name enpl oyees. | ast _name%l YPE;
BEG N
OPEN c1,
LooP
FETCH c1 | NTO nane;
EXIT WHEN c19NOTFOUND;

dbns_out put. put _|i ne(c1%RONCOUNT || . " || name);
| F c19%RONCOUNT = 5 THEN
dbns_out put.put_line('--- Fetched 5th record ---');
END | F;
END LOOP;
CLCSE c1;

END;
/

If a cursor or cursor variable is not open, referencing it with “RONCOUNT raises
I NVALI D_CURSOR
Table 6-1 shows what each cursor attribute returns before and after you execute an
OPEN, FETCH, or CLCOSE statement.
Table 6-1 Cursor Attribute Values
%FOUND %ISOPEN %NOTFOUND %ROWCOUNT

OPEN before exception FALSE exception exception
after NULL TRUE NULL 0

First FETCH before NULL TRUE NULL 0
after TRUE TRUE FALSE 1

Next FETCH(es) Dbefore TRUE TRUE FALSE 1

6-18 PL/SQL User's Guide and Reference

Using Cursor Variables (REF CURSORSs)

Table 6-1 (Cont.) Cursor Attribute Values

%FOUND %ISOPEN %NOTFOUND %ROWCOUNT

after TRUE TRUE FALSE data dependent
Last FETCH before TRUE TRUE FALSE data dependent
after FALSE TRUE TRUE data dependent
CLOSE before = FALSE TRUE TRUE data dependent
after exception FALSE exception exception

Notes:

1. Referencing %-OUND, ¥NOTFOUND, or “RONCOUNT before a cursor is opened or after it
is closed raises | NVALI D_CURSOR.

2. After the first FETCH, if the result set was empty, %~OUND yields FALSE, %NOTFOUND
yields TRUE, and %ROWCOUNT yields 0.

Using Cursor Variables (REF CURSORs)

Like a cursor, a cursor variable points to the current row in the result set of a multi-row
query. A cursor variable is more flexible because it is not tied to a specific query. You
can open a cursor variable for any query that returns the right set of columns.

You pass a cursor variable as a parameter to local and stored subprograms. Opening
the cursor variable in one subprogram, and processing it in a different subprogram,
helps to centralize data retrieval. This technique is also useful for multi-language
applications, where a PL/SQL subprogram might return a result set to a subprogram
written in a different language.

Cursor variables are available to every PL/SQL client. For example, you can declare a

cursor variable in a PL/SQL host environment such as an OCI or Pro*C program, then
pass it as an input host variable (bind variable) to PL/SQL. Application development

tools such as Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use
cursor variables entirely on the client side. Or, you can pass cursor variables back and

forth between a client and the database server through remote procedure calls.

What Are Cursor Variables (REF CURSORs)?

Cursor variables are like pointers to result sets. You use them when you want to
perform a query in one subprogram, and process the results in a different subprogram
(possibly one written in a different language). A cursor variable has datatype REF
CURSOR, and you might see them referred to informally as REF CURSORSs.

Unlike an explicit cursor, which always refers to the same query work area, a cursor
variable can refer to different work areas. You cannot use a cursor variable where a
cursor is expected, or vice versa.

Why Use Cursor Variables?

You use cursor variables to pass query result sets between PL/SQL stored
subprograms and various clients. PL/SQL and its clients share a pointer to the query
work area in which the result set is stored. For example, an OCI client, Oracle Forms
application, and Oracle database server can all refer to the same work area.

A query work area remains accessible as long as any cursor variable points to it, as you
pass the value of a cursor variable from one scope to another. For example, if you pass
a host cursor variable to a PL/SQL block embedded in a Pro*C program, the work area
to which the cursor variable points remains accessible after the block completes.

Performing SQL Operations from PL/SQL 6-19

Using Cursor Variables (REF CURSORSs)

If you have a PL/SQL engine on the client side, calls from client to server impose no
restrictions. For example, you can declare a cursor variable on the client side, open and
fetch from it on the server side, then continue to fetch from it back on the client side.
You can also reduce network traffic by having a PL/SQL block open or close several
host cursor variables in a single round trip.

Declaring REF CURSOR Types and Cursor Variables

To create cursor variables, you define a REF CURSOR type, then declare cursor
variables of that type. You can define REF CURSCR types in any PL/SQL block,
subprogram, or package. In the following example, you declare a REF CURSOR type
that represents a result set from the DEPARTMENTS table:

DECLARE
TYPE Dept Cur Typ |'S REF CURSCR RETURN depart nent s%ROMYPE;

REF CURSOR types can be strong (with a return type) or weak (with no return type).

Strong REF CURSCOR types are less error prone because the PL/SQL compiler lets you
associate a strongly typed cursor variable only with queries that return the right set of
columns. Weak REF CURSOR types are more flexible because the compiler lets you
associate a weakly typed cursor variable with any query.

Because there is no type checking with a weak REF CURSOR, all such types are
interchangeable. Instead of creating a new type, you can use the predefined type
SYS_REFCURSOR

Once you define a REF CURSOR type, you can declare cursor variables of that type in
any PL/SQL block or subprogram.

DECLARE
TYPE EnmpCur Typ IS REF CURSCR RETURN emp%®ROMYPE, -- strong
TYPE GenericCurTyp IS REF CURSOR, -- weak

cursorl EnpCurTyp;
cursor2 GenericCurTyp;
my_cursor SYS REFCURSOR, -- didn't need to declare a new type above

The following example declares the cursor variable dept _cv:

DECLARE
TYPE Dept Cur Typ 1S REF CURSOR RETURN dept ¥ROATYPE;
dept _cv DeptCurTyp; -- declare cursor variable

To avoid declaring the same REF CURSOR type in each subprogram that uses it, you
can put the REF CURSOR declaration in a package spec. You can declare cursor
variables of that type in the corresponding package body, or within your own
procedure or function.

Example 6-3 Cursor Variable Returning %ROWTYPE

In the RETURN clause of a REF CURSOR type definition, you can use %4RONTYPE to refer
to a strongly typed cursor variable:

DECLARE
TYPE TrnpCur Typ |'S REF CURSOR RETURN enpl oyees%ROMYPE;
tmp_cv TnpCurTyp; -- declare cursor variable
TYPE EnpCur Typ |'S REF CURSOR RETURN t np_cv%RONTYPE;
enp_cv EnpCur Typ; -- declare cursor variable

BEG N
NULL;

END;

6-20 PL/SQL User's Guide and Reference

Using Cursor Variables (REF CURSORSs)

Example 6-4 Cursor Variable Returning %TYPE

You can also use %9 YPE to provide the datatype of a record variable:

DECLARE
dept _rec departnent SYROMYPE, -- declare record variable
TYPE Dept Cur Typ IS REF CURSOR RETURN dept _r ecY%YPE;
dept _cv DeptCurTyp; -- declare cursor variable
BEG N
NULL;
END;

/

Example 6-5 Cursor Variable Returning Record Type
This example specifies a user-defined RECORD type in the RETURN clause:

DECLARE
TYPE EnpRecTyp |'S RECORD (
enpl oyee_i d NUMBER,
| ast _name VARCHAR2(30),
salary NUMBER(7,2));
TYPE EnpCur Typ |'S REF CURSOR RETURN EnpRecTyp;
enp_cv EnpCurTyp; -- declare cursor variable
BEG N
NULL;
END;
/

Passing Cursor Variables As Parameters

You can declare cursor variables as the formal parameters of functions and procedures.
The following example defines a REF CURSOR type, then declares a cursor variable of
that type as a formal parameter:

DECLARE
TYPE EnpCur Typ |'S REF CURSOR RETURN enpl oyees%ROMYPE;
enp EnpCur Typ;

- Once we have a result set, we can process all the rows
- inside a single procedure rather than calling a procedure
- for each row
PROCEDURE process_enp_cv (enp_cv I N EnpCurTyp) IS
person enpl oyeesY%ROMYPE;

BEG N
dbns_out put. put _line('-----);
dbns_out put. put _line(' Here are the names fromthe result set:');
LooP

FETCH enp_cv | NTO person;
EXIT WHEN enp_cv9NOTFOUND;
dbns_out put. put _line(' Name ="' || person.first_name ||
|| person.last_nane);
END LOOP;
END;

BEG N
- First find 10 arbitrary enpl oyees.

Performing SQL Operations from PL/SQL 6-21

Using Cursor Variables (REF CURSORSs)

OPEN enp FOR SELECT * FROM enpl oyees WHERE ROMNUM < 11;
process_enp_cv(enp);
CLCSE enp;

-- Then find enpl oyees matching a condition.
OPEN enp FOR SELECT * FROM enpl oyees WHERE | ast _nane LIKE ' R%;
process_enp_cv(enp);
CLOSE enp;

END;

/

Note: Like all pointers, cursor variables increase the possibility of parameter aliasing.
See "Overloading Subprogram Names" on page 8-9.

Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE

You use three statements to control a cursor variable: OPEN- FOR, FETCH, and CLCSE.
First, you OPENa cursor variable FORa multi-row query. Then, you FETCHrows from
the result set. When all the rows are processed, you CLOSE the cursor variable.

Opening a Cursor Variable

The OPEN- FOR statement associates a cursor variable with a multi-row query, executes
the query, and identifies the result set.

OPEN {cursor_variable | :host_cursor_variable} FOR
{ select_statenent
| dynanic_string [USING bind_argument[, bind_argunent]...] };

The cursor variable can be declared directly in PL/SQL, or in a PL/SQL host
environment such as an OCI program.

The SELECT statement for the query can be coded directly in the statement, or can be a
string variable or string literal. When you use a string as the query, it can include
placeholders for bind variables, and you specify the corresponding values with a
USING clause.

Note: This section discusses the static SQL case, in which sel ect _st at enent is
used. For the dynamic SQL case, in which dynami c_st ri ng is used, see
"OPEN-FOR-USING Statement” on page 13-97.

Unlike cursors, cursor variables take no parameters. Instead, you can pass whole
queries (not just parameters) to a cursor variable. The query can reference host
variables and PL/SQL variables, parameters, and functions.

The example below opens a cursor variable. Notice that you can apply cursor
attributes (%-OUND, ¥8NOTFQOUND, %8 SOPEN, and “ROANCOUNT) to a cursor variable.

DECLARE
TYPE EnpCur Typ |'S REF CURSOR RETURN enpl oyees%ROMYPE;
enmp_cv EmpCur Typ;
BEG N
I F NOT enp_cv% SOPEN THEN
/* QOpen cursor variable. */
OPEN enp_cv FOR SELECT * FROM enpl oyees;
END | F;
CLOSE enp_cv;
END;
/

Other OPEN- FOR statements can open the same cursor variable for different queries.
You need not close a cursor variable before reopening it. (Recall that consecutive

6-22 PL/SQL User's Guide and Reference

Using Cursor Variables (REF CURSORSs)

OPENSs of a static cursor raise the predefined exception CURSOR_ALREADY_CPEN.)
When you reopen a cursor variable for a different query, the previous query is lost.

Example 6-6 Stored Procedure to Open a Ref Cursor

Typically, you open a cursor variable by passing it to a stored procedure that declares
an IN OUT parameter that is a cursor variable. For example, the following procedure
opens a cursor variable:

CREATE PACKAGE enp_data AS
TYPE EmpCur Typ |'S REF CURSOR RETURN enpl oyeesUROMYPE;
PROCEDURE open_enp_cv (enp_cv I N OQUT EnpCur Typ);

END enp_dat a;

/

CREATE PACKAGE BODY enp_data AS
PROCEDURE open_enp_cv (enp_cv I N OUT EnpCurTyp) IS
BEG N
OPEN enp_cv FOR SELECT * FROM enpl oyees;
END open_enp_cv;
END enp_dat a;
/

DROP PACKAGE enp_dat a;

You can also use a standalone stored procedure to open the cursor variable. Define the
REF CURSOR type in a package, then reference that type in the parameter declaration
for the stored procedure.

Example 6—7 Stored Procedure to Open Ref Cursors with Different Queries

To centralize data retrieval, you can group type-compatible queries in a stored
procedure. In the example below, the packaged procedure declares a selector as one of
its formal parameters. When called, the procedure opens the cursor variable enp_cv
for the chosen query.

CREATE PACKAGE enp_data AS

TYPE EnpCur Typ |'S REF CURSOR RETURN enp%ROWIYPE;

PROCEDURE open_enp_cv (enp_cv | N QUT EmpCur Typ, choice INT);
END enp_dat a;

CREATE PACKAGE BODY enp_data AS
PROCEDURE open_enp_cv (enp_cv I N OUT EnpCur Typ, choice INT) IS
BEG N
I F choice = 1 THEN
OPEN enp_cv FOR SELECT * FROM enp WHERE conm |'S NOT NULL;
ELSIF choice = 2 THEN
OPEN enp_cv FOR SELECT * FROM enp WHERE sal > 2500;
ELSIF choice = 3 THEN
OPEN enp_cv FOR SELECT * FROM enp WHERE deptno = 20;
END | F;
END;
END enp_dat a;

Example 6-8 Cursor Variable with Different Return Types

For more flexibility, a stored procedure can execute queries with different return types:

CREATE PACKACE admin_data AS
TYPE GenCur Typ IS REF CURSCR;

Performing SQL Operations from PL/SQL 6-23

Using Cursor Variables (REF CURSORSs)

PROCEDURE open_cv (generic_cv | N OQUT GenCurTyp, choice INT);
END adm n_dat a;

CREATE PACKAGE BODY admin_data AS
PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT) IS
BEG N
I F choice = 1 THEN
OPEN generic_cv FOR SELECT * FROM enp;
ELSIF choice = 2 THEN
OPEN generic_cv FOR SELECT * FROM dept;
ELSIF choice = 3 THEN
OPEN generic_cv FOR SELECT * FROM sal grade;
END | F;
END;
END admi n_dat a;

Using a Cursor Variable as a Host Variable

You can declare a cursor variable in a PL/SQL host environment such as an OCI or
Pro*C program. To use the cursor variable, you must pass it as a host variable to
PL/SQL. In the following Pro*C example, you pass a host cursor variable and selector
to a PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEG N DECLARE SECTI ON,

/* Declare host cursor variable. */
SQL_CURSCR generic_cv;
int choi ce;

EXEC SQL END DECLARE SECTI ON,

/* Initialize host cursor variable. */
EXEC SQL ALLOCATE : generic_cv;

/* Pass host cursor variable and selector to PL/SQ block. */
EXEC SQL EXECUTE
BEG N
IF :choice = 1 THEN
OPEN : generic_cv FOR SELECT * FROM enp;
ELSIF :choice = 2 THEN
OPEN : generic_cv FOR SELECT * FROM dept;
ELSIF : choice = 3 THEN
OPEN : generic_cv FOR SELECT * FROM sal grade;
END | F;
END;
END- EXEC,

Host cursor variables are compatible with any query return type. They behave just like
weakly typed PL/SQL cursor variables.

Fetching from a Cursor Variable

The FETCH statement retrieves rows from the result set of a multi-row query. It works
the same with cursor variables as with explicit cursors.

Example 6-9 Fetching from a Cursor Variable into a Record

The following example fetches rows one at a time from a cursor variable into a record:

DECLARE
TYPE EnpCur Typ |'S REF CURSOR RETURN enpl oyees%ROMYPE;
enp_cv EnpCur Typ;

6-24 PL/SQL User's Guide and Reference

Using Cursor Variables (REF CURSORSs)

enp_rec enpl oyeesYRONYPE;
BEG N
OPEN enp_cv FOR SELECT * FROM enpl oyees WHERE sal ary < 3000;
LooP
/* Fetch fromcursor variable. */
FETCH enp_cv | NTO enp_rec;
EXIT WHEN enp_cvINOTFOUND; -- exit when last rowis fetched
- process data record
dbns_out put. put _line('Name = ' || enp_rec.first_name || ' ' ||
enp_rec. | ast_nang);
END LOOP;
CLOSE enmp_cv;
END;
/

Example 6-10 Fetching from a Cursor Variable into Collections

Using the BULK COLLECT clause, you can bulk fetch rows from a cursor variable into
one or more collections:

DECLARE
TYPE EnpCur Typ | S REF CURSOR;
TYPE NaneList IS TABLE OF enpl oyees. | ast _nane%IYPE;
TYPE Sal List 1S TABLE OF enpl oyees. sal ar y% YPE;
emp_cv EmpCur Typ;
names NanelLi st;
sals SalList;
BEG N
OPEN enp_cv FOR SELECT | ast_nane, salary FROM enpl oyees WHERE sal ary < 3000;
FETCH enp_cv BULK COLLECT I NTO nanes, sals;
CLOSE enp_cv;
- Now | oop through the NAMES and SALS col | ecti ons.
FOR i IN nanmes. FIRST .. names.LAST
LooP
dbns_out put. put _Ii ne(' Name =
sals(i));
END LOOP;
END;
/

|| names(i) || ', salary ="' ||

Any variables in the associated query are evaluated only when the cursor variable is
opened. To change the result set or the values of variables in the query, reopen the
cursor variable with the variables set to new values. You can use a different | NTO
clause on separate fetches with the same cursor variable. Each fetch retrieves another
row from the same result set.

PL/SQL makes sure the return type of the cursor variable is compatible with the | NTO
clause of the FETCH statement. If there is a mismatch, an error occurs at compile time if
the cursor variable is strongly typed, or at run time if it is weakly typed. At run time,
PL/SQL raises the predefined exception ROMYPE_M SNMATCH before the first fetch. If
you trap the error and execute the FETCH statement using a different (compatible)

| NTOclause, no rows are lost.

When you declare a cursor variable as the formal parameter of a subprogram that
fetches from the cursor variable, you must specify the | Nor | NOUT mode. If the
subprogram also opens the cursor variable, you must specify the | NOUT mode.

If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the
predefined exception | NVALI D_CURSOR.

Performing SQL Operations from PL/SQL 6-25

Using Cursor Variables (REF CURSORSs)

Closing a Cursor Variable

The CLOSE statement disables a cursor variable and makes the associated result set
undefined. Close the cursor variable after the last row is processed.

When declaring a cursor variable as the formal parameter of a subprogram that closes
the cursor variable, you must specify the | Nor | NOUT mode.

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises
the predefined exception | NVALI D_CURSCR

Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL

When passing host cursor variables to PL/SQL, you can reduce network traffic by
grouping OPEN- FOR statements. For example, the following PL/SQL block opens
multiple cursor variables in a single round trip:

/* anonynmous PL/SQL bl ock in host environment */
BEG N
OPEN :enp_cv FOR SELECT * FROM enpl oyees;
OPEN : dept _cv FOR SELECT * FROM depart nents;
OPEN :loc_cv FOR SELECT * FROM | ocati ons;
END;

This technique might be useful in Oracle Forms, for instance, when you want to
populate a multi-block form.

When you pass host cursor variables to a PL/SQL block for opening, the query work
areas to which they point remain accessible after the block completes, so your OCI or
Pro*C program can use these work areas for ordinary cursor operations. In the
following example, you open several such work areas in a single round trip:

BEG N
OPEN :cl1 FOR SELECT 1 FROM dual;
OPEN :c2 FOR SELECT 1 FROM dual ;
OPEN :c3 FOR SELECT 1 FROM dual ;
END;

The cursors assigned to c1, c2, and ¢3 behave normally, and you can use them for any
purpose. When finished, release the cursors as follows:

BEG N
CLCSE : c1;
CLCSE :c2;
CLCSE :c3;
END;

Avoiding Errors with Cursor Variables

If both cursor variables involved in an assignment are strongly typed, they must have
exactly the same datatype (not just the same return type). If one or both cursor
variables are weakly typed, they can have different datatypes.

If you try to fetch from, close, or refer to cursor attributes of a cursor variable that does
not point to a query work area, PL/SQL raises the | NVALI D_CURSOR exception. You
can make a cursor variable (or parameter) point to a query work area in two ways:

= OPENthe cursor variable FOR the query.

= Assign to the cursor variable the value of an already OPENed host cursor variable
or PL/SQL cursor variable.

6-26 PL/SQL User's Guide and Reference

Using Cursor Expressions

If you assign an unopened cursor variable to another cursor variable, the second one
remains invalid even after you open the first one.

Be careful when passing cursor variables as parameters. At run time, PL/SQL raises
ROMYPE_M SNMATCH if the return types of the actual and formal parameters are
incompatible.

Restrictions on Cursor Variables

Currently, cursor variables are subject to the following restrictions:

= You cannot declare cursor variables in a package spec. For example, the following
declaration is not allowed:

CREATE PACKAGE enp_stuff AS
TYPE EnmpCur Typ |'S REF CURSOR RETURN enp%RONTYPE;
enp_cv EnpCur Typ; -- not allowed

END enp_stuff;

= You cannot pass cursor variables to a procedure that is called through a database
link.

= If you pass a host cursor variable to PL/SQL, you cannot fetch from it on the
server side unless you also open it there on the same server call.

= You cannot use comparison operators to test cursor variables for equality,
inequality, or nullity.

= You cannot assign nulls to a cursor variable.

« Database columns cannot store the values of cursor variables. There is no
equivalent type to use in a CREATE TABLE statement.

= You cannot store cursor variables in an associative array, nested table, or varray.

« Cursors and cursor variables are not interoperable; that is, you cannot use one
where the other is expected. For example, you cannot reference a cursor variable in
a cursor FCRloop.

Using Cursor Expressions

A cursor expression returns a nested cursor. Each row in the result set can contain
values as usual, plus cursors produced by subqueries involving the other values in the
row. A single query can return a large set of related values retrieved from multiple
tables. You can process the result set with nested loops that fetch first from the rows of
the result set, then from any nested cursors within those rows.

PL/SQL supports queries with cursor expressions as part of cursor declarations, REF
CURSOR declarations and ref cursor variables. You can also use cursor expressions in
dynamic SQL queries. Here is the syntax:

CURSOR(subquery)

A nested cursor is implicitly opened when the containing row is fetched from the
parent cursor. The nested cursor is closed only when:

= The nested cursor is explicitly closed by the user
= The parent cursor is reexecuted
= The parent cursor is closed

= The parent cursor is canceled

Performing SQL Operations from PL/SQL 6-27

Using Cursor Expressions

= Anerror arises during a fetch on one of its parent cursors. The nested cursor is
closed as part of the clean-up.

Restrictions on Cursor Expressions

= You cannot use a cursor expression with an implicit cursor.
= Cursor expressions can appear only:

« Ina SELECT statement that is not nested in any other query expression, except
when it is a subquery of the cursor expression itself.

= Asarguments to table functions, in the FROMclause of a SELECT statement.

« Cursor expressions can appear only in the outermost SELECT list of the query
specification.

« Cursor expressions cannot appear in view declarations.

= You cannot perform Bl ND and EXECUTE operations on cursor expressions.

Example of Cursor Expressions

In this example, we find a specified location ID, and a cursor from which we can fetch
all the departments in that location. As we fetch each department's name, we also get
another cursor that lets us fetch their associated employee details from another table.

DECLARE
TYPE enp_cur _typ 1S REF CURSCR,
enp_cur enp_cur_typ;
dept _nane depart nents. depart ment _nane%l YPE;
enp_name enpl oyees. | ast _name% YPE;
CURSCR cl1 IS SELECT
depar t ment _nane,
-- The 2nd itemin the result set is another result set,
-- which is represented as a ref cursor and |abelled "enpl oyees".
CURSCR
(
SELECT e. | ast_nanme FROM enpl oyees e
WHERE e. departnent _id = d.departnent_id
) enpl oyees
FROM departnents d
WHERE departnent _nane |ike 'A% ;

BEG N
OPEN c1;
LooP
FETCH c1 | NTO dept _nane, enp_cur;
EXI T WHEN ¢1%NOTFOUND;
dbns_out put . put _| i ne("' Depart nent: || dept_nane);
-- For each rowin the result set, we can process the result
-- set froma subquery. W could pass the ref cursor to a procedure
-- instead of processing it here in the Ioop.
LooP
FETCH enp_cur | NTO enp_nane;
EXIT WHEN enp_cur ¥%NOTFOUND;
dbns_out put . put _I i ne(" Enpl oyee:
END LOOP;
END LOOP;
CLOSE c1;
END;
/

|| emp_name);

6-28 PL/SQL User's Guide and Reference

Overview of Transaction Processing in PL/SQL

Constructing REF CURSORs with Cursor Subqueries

You can use cursor subqueries, also know as cursor expressions, to pass sets of rows as
parameters to functions. For example, this statement passes a parameter to the
StockPivot function consisting of a REF CURSCR that represents the rows returned by
the cursor subquery:

SELECT * FROM TABLE(St ockPi vot (CURSOR(SELECT * FROM St ockTabl €)));

Cursor subqueries are often used with table functions, which are explained in "Setting
Up Transformation Pipelines with Table Functions" on page 11-28.

Overview of Transaction Processing in PL/SQL
This section explains how to do transaction processing with PL/SQL.

You should already be familiar with the idea of transactions, and how to ensure the
consistency of a database, such as the COMM T, SAVEPO NT, and ROLLBACK
statements. These are Oracle features, available through all programming languages,
that let multiple users work on the database concurrently, and ensure that each user
sees a consistent version of data and that all changes are applied in the right order.

You usually do not need to write extra code to prevent problems with multiple users
accessing data concurrently. Oracle uses locks to control concurrent access to data, and
locks only the minimum amount of data necessary, for as little time as possible. You
can request locks on tables or rows if you really do need this level of control. You can
choose from several modes of locking such as row share and exclusive.

Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL

You can include COMM T, SAVEPQO NT, and ROLLBACK statements directly in your
PL/SQL programs.

The COVM T statement ends the current transaction, making any changes made during
that transaction permanent, and visible to other users.

The ROLLBACK statement ends the current transaction and undoes any changes made
during that transaction. If you make a mistake, such as deleting the wrong row from a
table, a rollback restores the original data. If you cannot finish a transaction because an
exception is raised or a SQL statement fails, a rollback lets you take corrective action
and perhaps start over.

SAVEPO NT names and marks the current point in the processing of a transaction.
Savepoints let you roll back part of a transaction instead of the whole transaction.

Consider a transaction that transfers money from one bank account to another. It is
important that the money come out of one account, and into the other, at exactly the
same moment. Otherwise, a problem partway through might make the money be lost
from both accounts or be duplicated in both accounts.

BEG N
UPDATE accts SET bal = ny_bal - debit
WHERE acctno = 7715;
UPDATE accts SET bal = ny_bal + credit
WHERE acctno = 7720;
COW T WORK;
END;

Performing SQL Operations from PL/SQL 6-29

Overview of Transaction Processing in PL/SQL

Transactions are not tied to PL/SQL BEG N- ENDblocks. A block can contain multiple
transactions, and a transaction can span multiple blocks.

The optional COMMENT clause lets you specify a comment to be associated with a
distributed transaction. If a network or machine fails during the commit, the state of
the distributed transaction might be unknown or in doubt. In that case, Oracle stores
the text specified by COMMVENT in the data dictionary along with the transaction ID. The
text must be a quoted literal up to 50 characters long:

COW T COWENT ' In-doubt order transaction; notify Order Entry';

PL/SQL does not support the FORCE clause of SQL, which manually commits an
in-doubt distributed transaction.

The following example inserts information about an employee into three different
database tables. If an | NSERT statement tries to store a duplicate employee number,
the predefined exception DUP_VAL_ON_| NDEX is raised. To make sure that changes to
all three tables are undone, the exception handler executes a ROLLBACK.

DECLARE
enp_id | NTECER;
BEG N
SELECT enpno, ... INTOenp_id, ... FROM new enp WHERE ...

| NSERT | NTO enp VALUES (enmp_id, ...):
I NSERT | NTO tax VALUES (enmp_id, ...):
I NSERT | NTO pay VALUES (enp_id, ...);
EXCEPTI ON
WHEN DUP_VAL_ON_I NDEX THEN
ROLLBACK;
END;

Statement-Level Rollbacks

Before executing a SQL statement, Oracle marks an implicit savepoint. Then, if the
statement fails, Oracle rolls it back automatically. For example, if an | NSERT statement
raises an exception by trying to insert a duplicate value in a unique index, the
statement is rolled back. Only work started by the failed SQL statement is lost. Work
done before that statement in the current transaction is kept.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an
error to one of the participating transactions and rolls back the current statement in
that transaction.

Before executing a SQL statement, Oracle must parse it, that is, examine it to make sure
it follows syntax rules and refers to valid schema objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

The following example marks a savepoint before doing an insert. If the | NSERT
statement tries to store a duplicate value in the enpno column, the predefined
exception DUP_VAL_ON_| NDEX is raised. In that case, you roll back to the savepoint,
undoing just the insert.

DECLARE
enp_id enp. enpno%lYPE;
BEG N
UPDATE enp SET ... WHERE enpno = enp_i d;
DELETE FROM enp WHERE ...
SAVEPQ NT do_i nsert;
I NSERT I NTO enp VALUES (enp_id, ...);

6-30 PL/SQL User's Guide and Reference

Overview of Transaction Processing in PL/SQL

EXCEPTI ON
WHEN DUP_VAL_ON | NDEX THEN
ROLLBACK TO do_i nsert;
END;

When you roll back to a savepoint, any savepoints marked after that savepoint are
erased. The savepoint to which you roll back is not erased. A simple rollback or
commit erases all savepoints.

If you mark a savepoint within a recursive subprogram, new instances of the
SAVEPQO NT statement are executed at each level in the recursive descent, but you can
only roll back to the most recently marked savepoint.

Savepoint names are undeclared identifiers. Reusing a savepoint name within a
transaction moves the savepoint from its old position to the current point in the
transaction. Thus, a rollback to the savepoint affects only the current part of your
transaction:

BEG N
SAVEPQ NT ny_poi nt;
UPDATE enp SET ... WHERE enpno = enp_id;

SAVEPOI NT ny_point; -- nove my_point to current point
I NSERT | NTO enp VALUES (enp_id, ...);
EXCEPTI ON

VWHEN OTHERS THEN
ROLLBACK TO ny_point;
END;

The number of active savepoints for each session is unlimited.

How Oracle Does Implicit Rollbacks

Before executing an | NSERT, UPDATE, or DELETE statement, Oracle marks an implicit
savepoint (unavailable to you). If the statement fails, Oracle rolls back to the savepoint.
Normally, just the failed SQL statement is rolled back, not the whole transaction. If the
statement raises an unhandled exception, the host environment determines what is
rolled back.

If you exit a stored subprogram with an unhandled exception, PL/SQL does not
assign values to OUT parameters, and does not do any rollback.

Ending Transactions

You should explicitly commit or roll back every transaction. Whether you issue the
commit or rollback in your PL/SQL program or from a client program depends on the
application logic. If you do not commit or roll back a transaction explicitly, the client
environment determines its final state.

For example, in the SQL*Plus environment, if your PL/SQL block does not include a
COWM T or ROLLBACK statement, the final state of your transaction depends on what
you do after running the block. If you execute a data definition, data control, or
COWM T statement or if you issue the EXI T, DI SCONNECT, or QUI T command, Oracle
commits the transaction. If you execute a ROLLBACK statement or abort the SQL*Plus
session, Oracle rolls back the transaction.

Oracle precompiler programs roll back the transaction unless the program explicitly
commits or rolls back work, and disconnects using the RELEASE parameter:

EXEC SQL COW T WORK RELEASE,;

Performing SQL Operations from PL/SQL 6-31

Overview of Transaction Processing in PL/SQL

Setting Transaction Properties with SET TRANSACTION

You use the SET TRANSACTI ON statement to begin a read-only or read-write
transaction, establish an isolation level, or assign your current transaction to a
specified rollback segment. Read-only transactions are useful for running multiple
queries while other users update the same tables.

During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multi-table, multi-query, read-consistent view. Other users can continue to
query or update data as usual. A commit or rollback ends the transaction. In the
example below a store manager uses a read-only transaction to gather sales figures for
the day, the past week, and the past month. The figures are unaffected by other users
updating the database during the transaction.

DECLARE
daily_sal es REAL;
weekly_sal es REAL;
mont hl y_sal es REAL;
BEG N
COWMT; -- ends previous transaction
SET TRANSACTI ON READ ONLY NAME ' Cal cul ate sales figures';
SELECT SUM ant) |NTO daily_sal es FROM sal es
VWHERE dte = SYSDATE;
SELECT SUM ant) | NTO weekly_sal es FROM sal es
VWHERE dte > SYSDATE - 7
SELECT SUM ant) | NTO nonthly_sal es FROM sal es
WHERE dte > SYSDATE - 30;
COWMT; -- ends read-only transaction
END;

The SET TRANSACTI ON statement must be the first SQL statement in a read-only
transaction and can only appear once in a transaction. If you set a transaction to READ
ONLY, subsequent queries see only changes committed before the transaction began.
The use of READ ONLY does not affect other users or transactions.

Restrictions on SET TRANSACTION

Only the SELECT | NTO, OPEN, FETCH, CLOSE, LOCK TABLE, COVM T, and ROLLBACK
statements are allowed in a read-only transaction. Queries cannot be FOR UPDATE.

Overriding Default Locking

By default, Oracle locks data structures for you automatically, which is a major
strength of the Oracle database: different applications can read and write to the same
data without harming each other's data or coordinating with each other.

You can request data locks on specific rows or entire tables if you need to override
default locking. Explicit locking lets you deny access to data for the duration of a
transaction.:

= With the LOCK TABLE statement, you can explicitly lock entire tables.

= With the SELECT FOR UPDATE statement, you can explicitly lock specific rows of a
table to make sure they do not change after you have read them. That way, you
can check which or how many rows will be affected by an UPDATE or DELETE
statement before issuing the statement, and no other application can change the
rows in the meantime.

6-32 PL/SQL User's Guide and Reference

Overview of Transaction Processing in PL/SQL

Using FOR UPDATE

When you declare a cursor that will be referenced in the CURRENT CF clause of an
UPDATE or DELETE statement, you must use the FOR UPDATE clause to acquire
exclusive row locks. An example follows:

DECLARE
CURSOR c1 | S SELECT enpno, sal FROM enp
WHERE j ob = ' SALESMAN AND comm > sal
FOR UPDATE NOWAI T;

The SELECT ... FOR UPDATE statement identifies the rows that will be updated or
deleted, then locks each row in the result set. This is useful when you want to base an
update on the existing values in a row. In that case, you must make sure the row is not
changed by another user before the update.

The optional keyword NOWAI T tells Oracle not to wait if requested rows have been
locked by another user. Control is immediately returned to your program so that it can
do other work before trying again to acquire the lock. If you omit the keyword

NOWAI T, Oracle waits until the rows are available.

All rows are locked when you open the cursor, not as they are fetched. The rows are
unlocked when you commit or roll back the transaction. Since the rows are no longer
locked, you cannot fetch from a FOR UPDATE cursor after a commit. (For a
workaround, see "Fetching Across Commits" on page 6-34.)

When querying multiple tables, you can use the FOR UPDATE clause to confine row
locking to particular tables. Rows in a table are locked only if the FOR UPDATE OF
clause refers to a column in that table. For example, the following query locks rows in
the enp table but not in the dept table:

DECLARE
CURSOR c1 | S SELECT enane, dnane FROM enp, dept
WHERE enp. deptno = dept. deptno AND job = ' MANAGER
FOR UPDATE OF sal ;

As the next example shows, you use the CURRENT OF clause in an UPDATE or DELETE
statement to refer to the latest row fetched from a cursor:

DECLARE
CURSOR c1 |'S SELECT enpno, job, sal FROM enp FOR UPDATE;
BEG N
OPEN c1;
LOoP
FETCH c1 INTO ...
UPDATE enp SET sal = new sal WHERE CURRENT OF cl;
END LOCP,

Using LOCK TABLE

You use the LOCK TABLE statement to lock entire database tables in a specified lock
mode so that you can share or deny access to them.. Row share locks allow concurrent
access to a table; they prevent other users from locking the entire table for exclusive
use. Table locks are released when your transaction issues a commit or rollback.

LOCK TABLE enp I N ROW SHARE MODE NOWMAIT;
The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one user

at a time can acquire an exclusive lock. While one user has an exclusive lock on a table,
no other users can insert, delete, or update rows in that table. For more information

Performing SQL Operations from PL/SQL 6-33

Overview of Transaction Processing in PL/SQL

about lock modes, see Oracle Database Application Developer's Guide -
Fundamentals.

A table lock never keeps other users from querying a table, and a query never acquires
a table lock. Only if two different transactions try to modify the same row will one
transaction wait for the other to complete.

Fetching Across Commits

PL/SQL raises an exception if you try to fetch from a FOR UPDATE cursor after doing a
commit. The FOR UPDATE clause locks the rows when you open the cursor, and
unlocks them when you commit.

DECLARE
CURSOR c1 |'S SELECT enane FROM enp FOR UPDATE OF sal ;
BEG N
FOR enp_rec INcl LOOP -- FETCH fails on the second iteration
I NSERT I NTO tenp VALUES ('still going');
COWMT; -- releases |ocks
END LOOP;
END;

If you want to fetch across commits, use the ROW D pseudocolumn to mimic the
CURRENT OF clause. Select the rowid of each row into a UROW D variable, then use the
rowid to identify the current row during subsequent updates and deletes:

DECLARE
CURSOR c1 | S SELECT enane, job, row d FROM enp;
ny_enane enp. enane% YPE;
ny_job enp. j ob%I'YPE;
my_rowid UROWND;
BEG N
OPEN c1;
LooP
FETCH c1 INTO ny_ename, ny_job, ny_rowid;
EXI T WHEN c¢19%NOTFOUND;
UPDATE enmp SET sal = sal * 1.05 WHERE rowid = ny_rowi d;
- this mmics WHERE CURRENT OF cl
COWM T,
END LOOP;
CLCSE c1;
END;

Because the fetched rows are not locked by a FOR UPDATE clause, other users might
unintentionally overwrite your changes. The extra space needed for read consistency
is not released until the cursor is closed, which can slow down processing for large
updates.

The next example shows that you can use the ROATYPE attribute with cursors that
reference the ROW D pseudocolumn:

DECLARE
CURSOR c1 | S SELECT enane, sal, rowi d FROM enp;
enp_rec Ccl¥RONMYPE;
BEG N
OPEN c1;
LooP
FETCH c1 | NTO enp_rec;
EXIT WHEN c19NOTFOUND;
IF ... THEN
DELETE FROM enp WHERE rowid = enp_rec. row d;

6-34 PL/SQL User's Guide and Reference

Doing Independent Units of Work with Autonomous Transactions

END I F;

END LOOP;

CLCSE c1;
END;

Doing Independent Units of Work with Autonomous Transactions

An autonomous transaction is an independent transaction started by another
transaction, the main transaction. Autonomous transactions do SQL operations and
commit or roll back, without committing or rolling back the main transaction. For
example, if you write auditing data to a log table, you want to commit the audit data
even if the operation you are auditing later fails; if something goes wrong recording
the audit data, you do not want the main operation to be rolled back.

Figure 6-1 shows how control flows from the main transaction (MT) to an
autonomous transaction (AT) and back again.

Figure 6-1 Transaction Control Flow

Main Transaction Autonomous Transaction
PROCEDURE procl IS PROCEDURE proc2 | S
enp_i d NUVBER, PRAGVA AUTON. . .
BEG N dept _id NUVBER
enp_id := 7788; BEG N MT suspends
I NSERT . .. — MT begins dept _id := 20;
SELECT ... UPDATE . .. — AT begins
procz2; > I NSERT . ..
DELETE . .. UPDATE . ..
COWM T; ———— MT ends COW T; ——— — AT ends
END; END; MT resumes

Advantages of Autonomous Transactions

Once started, an autonomous transaction is fully independent. It shares no locks,
resources, or commit-dependencies with the main transaction. You can log events,
increment retry counters, and so on, even if the main transaction rolls back.

More important, autonomous transactions help you build modular, reusable software
components. You can encapsulate autonomous transactions within stored procedures.
A calling application does not need to know whether operations done by that stored
procedure succeeded or failed.

Defining Autonomous Transactions

To define autonomous transactions, you use the pragma (compiler directive)
AUTONOMOUS_TRANSACTI ON. The pragma instructs the PL/SQL compiler to mark a
routine as autonomous (independent). In this context, the term routine includes

= Top-level (not nested) anonymous PL/SQL blocks

= Local, standalone, and packaged functions and procedures
= Methods of a SQL object type

= Database triggers

You can code the pragma anywhere in the declarative section of a routine. But, for
readability, code the pragma at the top of the section. The syntax follows:

Performing SQL Operations from PL/SQL 6-35

Doing Independent Units of Work with Autonomous Transactions

PRAGVA AUTONOMOUS_TRANSACTI ON;

In the following example, you mark a packaged function as autonomous:

CREATE PACKAGE banki ng AS

FUNCTI ON bal ance (acct_id | NTEGER) RETURN REAL;
END banki ng;

CREATE PACKACGE BCODY banki ng AS

FUNCTI ON bal ance (acct_id I NTEGER) RETURN REAL | S
PRAGVA AUTONOMOUS_TRANSACTI ON;
my_bal REAL;

BEG N

END;
END banki ng;

Restriction: You cannot use the pragma to mark all subprograms in a package (or all
methods in an object type) as autonomous. Only individual routines can be marked
autonomous.

The next example marks a standalone procedure as autonomous:

CREATE PROCEDURE cl ose_account (acct_id INTEGER, QUT bal ance) AS
PRAGVA AUTONOMOUS_TRANSACTI ON,
nmy_bal REAL;

BEG N ... END;

The following example marks a PL/SQL block as autonomous:

DECLARE
PRAGVA AUTONOMOUS_TRANSACTI ON;
my_enpno NUVBER(4);

BEG N ... END;

Restriction: You cannot mark a nested PL/SQL block as autonomous.

The example below marks a database trigger as autonomous. Unlike regular triggers,
autonomous triggers can contain transaction control statements such as COW T and
ROLLBACK.

CREATE TRI GGER parts_trigger
BEFORE | NSERT ON parts FOR EACH ROW

DECLARE
PRAGVA AUTONOMOUS_TRANSACTI ON,

BEG N
I NSERT | NTO parts_l og VALUES(: new. pnum :new. pnane);
COWMT; ~-- allowed only in autononous triggers

END;

Comparison of Autonomous Transactions and Nested Transactions

Although an autonomous transaction is started by another transaction, it is not a
nested transaction:

» It does not share transactional resources (such as locks) with the main transaction.

= It does not depend on the main transaction. For example, if the main transaction
rolls back, nested transactions roll back, but autonomous transactions do not.

6-36 PL/SQL User's Guide and Reference

Doing Independent Units of Work with Autonomous Transactions

= Its committed changes are visible to other transactions immediately. (A nested
transaction's committed changes are not visible to other transactions until the
main transaction commits.)

= Exceptions raised in an autonomous transaction cause a transaction-level rollback,
not a statement-level rollback.

Transaction Context

The main transaction shares its context with nested routines, but not with autonomous
transactions. When one autonomous routine calls another (or itself recursively), the
routines share no transaction context. When an autonomous routine calls a
non-autonomous routine, the routines share the same transaction context.

Transaction Visibility

Changes made by an autonomous transaction become visible to other transactions
when the autonomous transaction commits. These changes become visible to the main
transaction when it resumes, if its isolation level is set to READ COVMM TTED (the
default).

If you set the isolation level of the main transaction to SERI ALl ZABLE, changes made
by its autonomous transactions are not visible to the main transaction when it resumes:

SET TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE;

Controlling Autonomous Transactions

The first SQL statement in an autonomous routine begins a transaction. When one
transaction ends, the next SQL statement begins another transaction. All SQL
statements executed since the last commit or rollback make up the current transaction.
To control autonomous transactions, use the following statements, which apply only to
the current (active) transaction:

« COWM T

« ROLLBACK [TO savepoi nt _nane]
« SAVEPO NT savepoi nt _nane

« SET TRANSACTI ON

Note: Transaction properties set in the main transaction apply only to that transaction,
not to its autonomous transactions, and vice versa.

Entering and Exiting

When you enter the executable section of an autonomous routine, the main transaction
suspends. When you exit the routine, the main transaction resumes.

To exit normally, you must explicitly commit or roll back all autonomous transactions.
If the routine (or any routine called by it) has pending transactions, an exception is
raised, and the pending transactions are rolled back.

Committing and Rolling Back

COWM T and ROLLBACK end the active autonomous transaction but do not exit the
autonomous routine. When one transaction ends, the next SQL statement begins
another transaction. A single autonomous routine could contain several autonomous
transactions, if it issued several COMM T statements.

Performing SQL Operations from PL/SQL 6-37

Doing Independent Units of Work with Autonomous Transactions

Using Savepoints

The scope of a savepoint is the transaction in which it is defined. Savepoints defined in
the main transaction are unrelated to savepoints defined in its autonomous
transactions. In fact, the main transaction and an autonomous transaction can use the
same savepoint names.

You can roll back only to savepoints marked in the current transaction. In an
autonomous transaction, you cannot roll back to a savepoint marked in the main
transaction. To do so, you must resume the main transaction by exiting the
autonomous routine.

When in the main transaction, rolling back to a savepoint marked before you started
an autonomous transaction does not roll back the autonomous transaction. Remember,
autonomous transactions are fully independent of the main transaction.

Avoiding Errors with Autonomous Transactions
To avoid some common errors, keep the following points in mind:

= If an autonomous transaction attempts to access a resource held by the main
transaction, a deadlock can occur. Oracle raises an exception in the autonomous
transaction, which is rolled back if the exception goes unhandled.

= The Oracle initialization parameter TRANSACTI ONS specifies the maximum
number of concurrent transactions. That number might be exceeded because an
autonomous transaction runs concurrently with the main transaction.

= Ifyou try to exit an active autonomous transaction without committing or rolling
back, Oracle raises an exception. If the exception goes unhandled, the transaction
is rolled back.

Using Autonomous Triggers

Among other things, you can use database triggers to log events transparently.
Suppose you want to track all inserts into a table, even those that roll back. In the
example below, you use a trigger to insert duplicate rows into a shadow table. Because
it is autonomous, the trigger can commit changes to the shadow table whether or not
you commit changes to the main table.

-- create a main table and its shadow table
CREATE TABLE parts (pnum NUVBER(4), pname VARCHAR2(15));
CREATE TABLE parts_l og (pnum NUVBER(4), pnanme VARCHAR2(15));

-- create an autonomous trigger that inserts into the
-- shadow tabl e before each insert into the main table
CREATE TRI GGER parts_trig

BEFORE | NSERT ON parts FOR EACH ROW

DECLARE
PRAGVA AUTONOMOUS_TRANSACTI ON;

BEG N
I NSERT | NTO parts_l og VALUES(: new. pnum :new. pnane);
COWM T,

END;

-- insert arowinto the main table, and then commt the insert
I NSERT | NTO parts VALUES (1040, 'Head Gasket');
COWM T;

-- insert another row, but then roll back the insert
I NSERT I NTO parts VALUES (2075, 'G | Pan');

6-38 PL/SQL User's Guide and Reference

Doing Independent Units of Work with Autonomous Transactions

ROLLBACK;

- show that only conmitted inserts add rows to the nain table
SELECT * FROM parts ORDER BY pnum
PNUM PNAVE

1040 Head Gasket

- show that both conmtted and rolled-back inserts add rows
- to the shadow table
SELECT * FROM parts_| og ORDER BY pnum

PNUM PNAME

1040 Head Gasket

2075 G| Pan

Unlike regular triggers, autonomous triggers can execute DDL statements using native
dynamic SQL (discussed in Chapter 7, "Performing SQL Operations with Native
Dynamic SQL"). In the following example, trigger bonus_t ri g drops a temporary
database table after table bonus is updated:

CREATE TRI GGER bonus_trig
AFTER UPDATE ON bonus

DECLARE

PRAGVA AUTONOMOUS_TRANSACTI ON; -- enables trigger to perform DDL
BEG N

EXECUTE | MVEDI ATE ' DROP TABLE t enp_bonus' ;
END;

For more information about database triggers, see Oracle Database Application
Developer’s Guide - Fundamentals.

Calling Autonomous Functions from SQL

A function called from SQL statements must obey certain rules meant to control side
effects. (See "Controlling Side Effects of PL/SQL Subprograms” on page 8-22.) To check
for violations of the rules, you can use the pragma RESTRI CT_REFERENCES. The
pragma asserts that a function does not read or write database tables or package
variables. (For more information, See Oracle Database Application Developer's Guide -
Fundamentals.)

However, by definition, autonomous routines never violate the rules "read no database
state”" (RNDS) and "write no database state" (WNDS) no matter what they do. This can be
useful, as the example below shows. When you call the packaged function | og_nsg
from a query, it inserts a message into database table debug_out put without
violating the rule "write no database state."

- create the debug table
CREATE TABLE debug_out put (msg VARCHAR2(200));

- create the package spec
CREATE PACKAGE debuggi ng AS
FUNCTI ON | og_nsg (nmsg VARCHAR2) RETURN VARCHARZ;
PRAGVA RESTRI CT_REFERENCES(| og_nsg, WWNDS, RNDS);
END debuggi ng;

- create the package body
CREATE PACKAGE BODYq debuggi ng AS
FUNCTI ON | og_nsg (msg VARCHAR2) RETURN VARCHARZ |S
PRAGVA AUTONOMOUS TRANSACTI ON,

Performing SQL Operations from PL/SQL 6-39

Doing Independent Units of Work with Autonomous Transactions

BEG N
-- the following insert does not violate the constraint
-- VWADS because this is an autononous routine
I NSERT | NTO debug_out put VALUES (nsg);
COWM T,
RETURN nsg;

END;

END debuggi ng;

-- call the packaged function froma query
DECLARE

my_enpno NUMBER(4);

nmy_enane VARCHAR2(15);
BEG N

SELECT debuggi ng. | og_nsg(enane) | NTO ny_enane FROM enp
VWHERE enpno = ny_enpno;

-- even if you roll back in this scope, the insert

-- into 'debug_output' remains commtted because

-- it is part of an autonompus transaction

IF ... THEN
ROLLBACK;

END | F;

END;

6-40 PL/SQL User's Guide and Reference

v

Performing SQL Operations with Native
Dynamic SQL

A happy and gracious flexibility ... — Matthew Arnold

This chapter shows you how to use native dynamic SQL (dynamic SQL for short), a
PL/SQL interface that makes your programs more flexible, by building and processing
SQL statements at run time.

With dynamic SQL, you can directly execute any kind of SQL statement (even data
definition and data control statements). You can build statements where you do not
know table names, WHERE clauses, and other information in advance.

This chapter contains these topics:

=« What Is Dynamic SQL? on page 7-1

= Why Use Dynamic SQL? on page 7-2

« Using the EXECUTE IMMEDIATE Statement on page 7-2

= Building a Dynamic Query with Dynamic SQL on page 7-4
» Using Bulk Dynamic SQL on page 7-6

= Guidelines for Dynamic SQL on page 7-8

What Is Dynamic SQL?

Some programs must build and process SQL statements where some information is
not known in advance. A reporting application might build different SELECT
statements for the various reports it generates, substituting new table and column
names and ordering or grouping by different columns. Database management
applications might issue statements such as CREATE, DROP, and GRANT that cannot be
coded directly in a PL/SQL program. These statements are called dynamic SQL
statements.

Dynamic SQL statements built as character strings built at run time. The strings
contain the text of a SQL statement or PL/SQL block. They can also contain
placeholders for bind arguments. Placeholder names are prefixed by a colon, and the
names themselves do not matter. For example, PL/SQL makes no distinction between
the following strings:

' DELETE FROM enp WHERE sal > :ny_sal AND conm < :ny_commi
' DELETE FROM enp WHERE sal > :s AND coom< :¢c'

Performing SQL Operations with Native Dynamic SQL 7-1

Why Use Dynamic SQL?

To process most dynamic SQL statements, you use the EXECUTE | MVEDI ATE
statement. To process a multi-row query (SELECT statement), you use the OPEN- FOR,
FETCH, and CLOSE statements.

Why Use Dynamic SQL?

You need dynamic SQL in the following situations:

« You want to execute a SQL data definition statement (such as CREATE), a data
control statement (such as GRANT), or a session control statement (such as ALTER
SESSI ON). Unlike | NSERT, UPDATE, and DELETE statements, these statements
cannot be included directly in a PL/SQL program.

= You want more flexibility. For example, you might want to pass the name of a
schema object as a parameter to a procedure. You might want to build different
search conditions for the WHERE clause of a SELECT statement.

= You want to issue a query where you do not know the number, names, or
datatypes of the columns in advance. In this case, you use the DBM5_SQL package
rather than the OPEN- FOR statement.

If you have older code that uses the DBMS_SQL package, the techniques described in
this chapter using EXECUTE | MVEDI ATE and OPEN- FOR generally provide better
performance, more readable code, and extra features such as support for objects and
collections. (For a comparison with DBMS_SQL, see Oracle Database Application
Developer’s Guide - Fundamentals.)

Using the EXECUTE IMMEDIATE Statement

The EXECUTE | MVEDI ATE statement prepares (parses) and immediately executes a
dynamic SQL statement or an anonymous PL/SQL block.

The main argument to EXECUTE | MVEDI ATE is the string containing the SQL
statement to execute. You can build up the string using concatenation, or use a
predefined string.

Except for multi-row queries, the dynamic string can contain any SQL statement
(without the final semicolon) or any PL/SQL block (with the final semicolon). The
string can also contain placeholders, arbitrary names preceded by a colon, for bind
arguments. In this case, you specify which PL/SQL variables correspond to the
placeholders with the | NTO, USI NG and RETURNI NG | NTOclauses.

You can only use placeholders in places where you can substitute variables in the SQL
statement, such as conditional tests in WHERE clauses. You cannot use placeholders for
the names of schema objects. For the right way, see "Passing Schema Object Names As
Parameters" on page 7-9.

Used only for single-row queries, the | NTOclause specifies the variables or record into
which column values are retrieved. For each value retrieved by the query, there must
be a corresponding, type-compatible variable or field in the | NTOclause.

Used only for DML statements that have a RETURNI NG clause (without a BULK
COLLECT clause), the RETURNI NG| NTOclause specifies the variables into which
column values are returned. For each value returned by the DML statement, there
must be a corresponding, type-compatible variable in the RETURNI NG| NTOclause.

You can place all bind arguments in the USI NGclause. The default parameter mode is
I N. For DML statements that have a RETURNI NGclause, you can place OUT arguments
in the RETURNI NG| NTOclause without specifying the parameter mode. If you use

7-2 PL/SQL User's Guide and Reference

Using the EXECUTE IMMEDIATE Statement

both the USI NGclause and the RETURNI NG| NTOclause, the USI NG clause can contain
only | Narguments.

At run time, bind arguments replace corresponding placeholders in the dynamic
string. Every placeholder must be associated with a bind argument in the USI NG
clause and/or RETURNI NG| NTOclause. You can use numeric, character, and string
literals as bind arguments, but you cannot use Boolean literals (TRUE, FALSE, and
NULL). To pass nulls to the dynamic string, you must use a workaround. See "Passing
Nulls to Dynamic SQL" on page 7-10.

Dynamic SQL supports all the SQL datatypes. For example, define variables and bind
arguments can be collections, LOBs, instances of an object type, and refs.

As a rule, dynamic SQL does not support PL/SQL-specific types. For example, define
variables and bind arguments cannot be Booleans or associative arrays. The only
exception is that a PL/SQL record can appear in the | NTOclause.

You can execute a dynamic SQL statement repeatedly using new values for the bind
arguments. However, you incur some overhead because EXECUTE | MVEDI ATE
re-prepares the dynamic string before every execution.

Example 7-1 Some Examples of Dynamic SQL
The following PL/SQL block contains several examples of dynamic SQL:
DECLARE

sql _stnt VARCHAR2(200) ;
pl sql _bl ock VARCHAR2(500);
enp_id NUVBER(4) := 7566;
salary NUMBER(7, 2) ;
dept _id NUMBER(2) := 50;
dept _name VARCHAR2(14) := ' PERSONNEL';
| ocation VARCHAR2(13) := 'DALLAS ;
enp_rec emYROM YPE;
BEG N
EXECUTE | MVEDI ATE ' CREATE TABLE bonus (id NUMBER, amt NUMBER)';
sgl_stnmt := "INSERT I NTO dept VALUES (:1, :2, :3)";
EXECUTE | MVEDI ATE sql _stnt USI NG dept _i d, dept_nane, |ocation;
sql _stnt :='"SELECT * FROM enp WHERE enpno = :id’;

EXECUTE | MVEDI ATE sql _stnt INTO enp_rec USING enp_id;
pl sql _block := "BEG N enp_pkg.raise_salary(:id, :ant); END;’;
EXECUTE | MVEDI ATE pl sql _bl ock USI NG 7788, 500;
sql _stnt .= 'UPDATE enp SET sal = 2000 WHERE enpno = :1
RETURNI NG sal INTO :2';
EXECUTE | MVEDI ATE sql _stnt USI NG enp_i d RETURNI NG | NTO sal ary;
EXECUTE | MVEDI ATE ' DELETE FROM dept WHERE deptno = : numi
USI NG dept _i d;
EXECUTE | MVEDI ATE ' ALTER SESSI ON SET SQL_TRACE TRUE';
END;
/

Example 7-2 Dynamic SQL Procedure that Accepts Table Name and WHERE Clause

In the example below, a standalone procedure accepts the name of a database table
and an optional WHERE-clause condition. If you omit the condition, the procedure
deletes all rows from the table. Otherwise, the procedure deletes only those rows that
meet the condition.

CREATE OR REPLACE PROCEDURE del ete_rows (
tabl e _name |N VARCHARZ,

Performing SQL Operations with Native Dynamic SQL 7-3

Building a Dynamic Query with Dynamic SQL

condition I N VARCHAR2 DEFAULT NULL) AS

where_cl ause VARCHAR2(100) :="' VWHERE ' || conditi on;
BEG N
IF condition IS NULL THEN where_clause := NULL; END IF;
EXECUTE | MVEDI ATE ' DELETE FROM ' || table_nane || where_cl ause;
END;

/

Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings

With the USI NGclause, the mode defaults to | N, so you do not need to specify a
parameter mode for input bind arguments.

With the RETURNI NGI NTOclause, the mode is OUT, so you cannot specify a parameter
mode for output bind arguments.

You must specify the parameter mode in more complicated cases, such as this one
where you call a procedure from a dynamic PL/SQL block:

CREATE PROCEDURE create_dept (
deptno I'N QUT NUMBER,
dname | N VARCHAR2,
| oc I'N VARCHAR2) AS
BEG N
SELECT dept no_seq. NEXTVAL | NTO deptno FROM dual ;
I NSERT | NTO dept VALUES (deptno, dnane, |oc);
END;
/

To call the procedure from a dynamic PL/SQL block, you must specify the | NOUT
mode for the bind argument associated with formal parameter dept no, as follows:

DECLARE
pl sql _bl ock VARCHAR2(500);
new_dept no NUMBER(2);
new_dname VARCHAR2(14) :
new_| oc VARCHAR2(13) :
BEG N
pl sql _block := "BEGA N create_dept(:a, :b, :c); END,';
EXECUTE | MVEDI ATE pl sgl _bl ock
USING I N OUT new _deptno, new dname, new_| oc;
| F new_deptno > 90 THEN ...
END;
/

" ADVERTI SING ;
" NEW YORK' ;

Building a Dynamic Query with Dynamic SQL

You use three statements to process a dynamic multi-row query: OPEN- FOR, FETCH,
and CLOSE. First, you OPENa cursor variable FORa multi-row query. Then, you FETCH
rows from the result set one at a time. When all the rows are processed, you CLOSE the

cursor variable. (For more information about cursor variables, see "Using Cursor
Variables (REF CURSORs)" on page 6-19.)

7-4 PL/SQL User's Guide and Reference

Examples of Dynamic SQL for Records, Objects, and Collections

Examples of Dynamic SQL for Records, Objects, and Collections

Example 7-3 Dynamic SQL Fetching into a Record

As the following example shows, you can fetch rows from the result set of a dynamic
multi-row query into a record:

DECLARE
TYPE EnpCur Typ |'S REF CURSCR;
emp_cv EnpCur Typ;
emp_rec emp¥ROMYPE;
sql _stnt VARCHAR2(200);
my_job VARCHAR2(15) := 'CLERK;
BEG N
sql _stnt :="SELECT * FROM enp WHERE job = :j"';
OPEN enp_cv FOR sqgl _stnt USING ny_j ob;
LooP
FETCH enp_cv | NTO enp_rec;
EXIT WHEN enp_cv9NOTFOUND;
- process record
END LOOP;
CLOSE enp_cv;
END;
/

Example 7-4 Dynamic SQL for Object Types and Collections

The next example illustrates the use of objects and collections. Suppose you define
object type Per son and VARRAY type Hobbi es, as follows:

CREATE TYPE Person AS OBJECT (name VARCHAR2(25), age NUMBER);
CREATE TYPE Hobbi es 1S VARRAY(10) OF VARCHAR2(25);

Using dynamic SQL, you can write a package that uses these types:

CREATE OR REPLACE PACKAGE teans AS
PROCEDURE create_table (tab_name VARCHAR2);
PROCEDURE i nsert_row (tab_name VARCHAR2, p Person, h Hobbies);
PROCEDURE print_table (tab_name VARCHAR?);

END;

/

CREATE OR REPLACE PACKAGE BCDY teans AS
PROCEDURE create_table (tab_name VARCHAR2) IS
BEG N
EXECUTE | MVEDI ATE ' CREATE TABLE ' || tab_nane ||
(pers Person, hobbs Hobbies)';
END;

PROCEDURE i nsert _row (
tab_name VARCHAR?,
p Person,
h Hobbies) IS
BEG N
EXECUTE | MVEDI ATE ' INSERT INTO ' || tab_nane ||
" VALUES (:1, :2)' USING p, h;
END;

PROCEDURE print_table (tab_name VARCHAR?) |S
TYPE Ref Cur Typ IS REF CURSCR;

Performing SQL Operations with Native Dynamic SQL 7-5

Using Bulk Dynamic SQL

cv Ref Cur Typ;
p Person;
h Hobbi es;
BEG N
OPEN cv FOR ' SELECT pers, hobbs FROM' || tab_nane;
LooP
FETCH cv INTO p, h;
EXIT WHEN cv%NOTFOUND;
- print attributes of 'p' and elenents of 'h'
END LOOP;
CLOSE cv;
END;
END;
/

From an anonymous block, you might call the procedures in package TEAMS:

DECLARE

team nane VARCHAR2(15);
BEG N

team nane := 'Notables';

teans. create_tabl e(team name);
teans.insert_row(teamnane, Person('John', 31),
Hobbi es(' skiing', 'coin collecting', '"tennis'));
teans.insert_row(teamnnane, Person('Mary', 28),
Hobbi es(' gol f', "quilting', 'rock clinbing'));
teans. print_tabl e(team nane);
END;
/

Using Bulk Dynamic SQL

Bulk SQL passes entire collections back and forth, not just individual elements. This
technique improves performance by minimizing the number of context switches
between the PL/SQL and SQL engines. You can use a single statement instead of a
loop that issues a SQL statement in every iteration.

Using the following commands, clauses, and cursor attribute, your applications can
construct bulk SQL statements, then execute them dynamically at run time:

BULK FETCH statement

BULK EXECUTE | MVEDI ATE statement
FORALL statement

COLLECT I NTOclause

RETURNI NG| NTOclause

9YBULK _ROWCOUNT cursor attribute

The static versions of these statements, clauses, and cursor attribute are discussed in
"Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK
COLLECT)" on page 11-7. Refer to that section for background information.

Using Dynamic SQL with Bulk SQL

Bulk binding lets Oracle bind a variable in a SQL statement to a collection of values.
The collection type can be any PL/SQL collection type (index-by table, nested table, or
varray). The collection elements must have a SQL datatype such as CHAR, DATE, or
NUMBER. Three statements support dynamic bulk binds: EXECUTE | MVEDI ATE,
FETCH, and FORALL.

7-6 PL/SQL User's Guide and Reference

Using Bulk Dynamic SQL

EXECUTE IMMEDIATE

You can use the BULK COLLECT | NTOclause with the EXECUTE | MVEDI ATE
statement to store values from each column of a query's result set in a separate
collection.

You can use the RETURNI NG BULK COLLECT | NTOclause with the EXECUTE
| MVEDI ATE statement to store the results of an | NSERT, UPDATE, or DELETE
statement in a set of collections.

FETCH

You can use the BULK COLLECT | NTOclause with the FETCH statement to store
values from each column of a cursor in a separate collection.

FORALL

You can put an EXECUTE | MVEDI ATE statement with the RETURNI NG BULK
COLLECT | NTOinside a FORALL statement. You can store the results of all the
| NSERT, UPDATE, or DELETE statements in a set of collections.

You can pass subscripted collection elements to the EXECUTE | MVEDI ATE statement
through the USI NGclause. You cannot concatenate the subscripted elements directly
into the string argument to EXECUTE | MVEDI ATE; for example, you cannot build a
collection of table names and write a FORALL statement where each iteration applies to
a different table.

Examples of Dynamic Bulk Binds

Example 7-5 Dynamic SQL with BULK COLLECT INTO Clause

You can bind define variables in a dynamic query using the BULK COLLECT | NTO
clause. As the following example shows, you can use that clause in a bulk FETCH or
bulk EXECUTE | MVEDI ATE statement:

DECLARE
TYPE EnpCur Typ | S REF CURSCR;
TYPE Nuniist |'S TABLE OF NUMBER;
TYPE NaneList |'S TABLE OF VARCHAR2(15);
emp_cv EmpCur Typ;
enmpnos Nunli st;
enanmes NameLi st;
sals Nunlist;
BEG N
OPEN enp_cv FOR ' SELECT enpno, enanme FROM enp';
FETCH enp_cv BULK COLLECT | NTO enpnos, enanes;
CLOSE enp_cv;

EXECUTE | MVEDI ATE ' SELECT sal FROM enp'
BULK COLLECT INTO sals;
END;
/

Example 7-6 Dynamic SQL with RETURNING BULK COLLECT INTO Clause

Only | NSERT, UPDATE, and DELETE statements can have output bind variables. You
bulk-bind them with the RETURNI NGBULK COLLECT | NTOclause of EXECUTE
| MVEDI ATE:

DECLARE

Performing SQL Operations with Native Dynamic SQL 7-7

Guidelines for Dynamic SQL

TYPE NaneList |S TABLE OF VARCHAR2(15);
enanes NanelLi st ;
bonus_ant NUMBER : = 500;
sql _stnt VARCHAR(200);
BEG N
sql _stnt :='UPDATE enp SET bonus = :1 RETURNI NG enane INTO :2';
EXECUTE | MVEDI ATE sql _stnt
USI NG bonus_ant RETURNI NG BULK COLLECT | NTO enanes;
END;
/

Example 7-7 Dynamic SQL Inside FORALL Statement

To bind the input variables in a SQL statement, you can use the FORALL statement and
USI NGclause, as shown below. The SQL statement cannot be a query.

DECLARE
TYPE Nuniist 1S TABLE OF NUMBER
TYPE NaneList |S TABLE OF VARCHAR2(15);
enmpnos Nunli st;
enanes NanelLi st;
BEG N
enmpnos : = NunList(1,2,3,4,5);
FORALL i IN1..5
EXECUTE | MVEDI ATE
' UPDATE enp SET sal = sal * 1.1 WHERE enpno = :1
RETURNI NG ename | NTO : 2
USI NG enpnos(i) RETURNI NG BULK COLLECT I NTO enanes;

END;
/

Guidelines for Dynamic SQL

This section shows you how to take full advantage of dynamic SQL and how to avoid
some common pitfalls.

When to Use or Omit the Semicolon with Dynamic SQL

When building up a single SQL statement in a string, do not include any semicolon at
the end.

When building up a PL/SQL anonymous block, include the semicolon at the end of
each PL/SQL statement and at the end of the anonymous block.

For example:

BEG N

EXECUTE | MVEDI ATE ' dbns_out put. put _line('' No semcolon'')";

EXECUTE | MVEDI ATE ' BEG N dbns_out put. put _Iine(' ' semcolons''); END;';
END;

Improving Performance of Dynamic SQL with Bind Variables

When you code | NSERT, UPDATE, DELETE, and SELECT statements directly in
PL/SQL, PL/SQL turns the variables into bind variables automatically, to make the

7-8 PL/SQL User's Guide and Reference

Guidelines for Dynamic SQL

statements work efficiently with SQL. When you build up such statements in dynamic
SQL, you need to specify the bind variables yourself to get the same performance.

In the example below, Oracle opens a different cursor for each distinct value of
enp_i d. This can lead to resource contention and poor performance as each statement
is parsed and cached.

CREATE PROCEDURE fire_enpl oyee (enp_id NUMBER) AS
BEG N
EXECUTE | MVEDI ATE
' DELETE FROM enp WHERE enpno ="' || TO_CHAR(enp_id);
END;
/

You can improve performance by using a bind variable, which allows Oracle to reuse
the same cursor for different values of enp_i d:

CREATE PROCEDURE fire_enpl oyee (enp_id NUMBER) AS
BEG N
EXECUTE | MVEDI ATE
' DELETE FROM enp WHERE enpno = :numi USING enp_i d;
END;
/

Passing Schema Object Names As Parameters

Suppose you need a procedure that accepts the name of any database table, then drops
that table from your schema. You must build a string with a statement that includes
the object names, then use EXECUTE | MVEDI ATE to execute the statement:

CREATE PROCEDURE drop_table (table_name | N VARCHAR2) AS
BEG N
EXECUTE | MVEDI ATE ' DROP TABLE ' || tabl e_nane;
END;
/

Use concatenation to build the string, rather than trying to pass the table name as a
bind variable through the USI NGclause.

Using Duplicate Placeholders with Dynamic SQL

Placeholders in a dynamic SQL statement are associated with bind arguments in the
USI NGclause by position, not by name. If you specify a sequence of placeholders like
ta, :a, b, :b, youmustinclude four items in the USI NGclause. For example,
given the dynamic string

sql _stnt = "INSERT INTO payrol | VALUES (:x, :X, iy, :X)';

the fact that the name X is repeated is not significant. You can code the corresponding
USI NGclause with four different bind variables:

EXECUTE | MVEDI ATE sgl _stnt USING a, a, b, a;

If the dynamic statement represents a PL./SQL block, the rules for duplicate
placeholders are different. Each unique placeholder maps to a single item in the USI NG
clause. If the same placeholder appears two or more times, all references to that name
correspond to one bind argument in the USI NGclause. In the following example, all
references to the placeholder X are associated with the first bind argument A, and the
second unique placeholder Y is associated with the second bind argument B.

Performing SQL Operations with Native Dynamic SQL 7-9

Guidelines for Dynamic SQL

DECLARE
a NUMVBER : = 4;
b NUMBER : = 7;
BEG N

pl sqgl _block := "BEG N calc_stats(:x, :x, :y, :x); END'
EXECUTE | MVEDI ATE pl sql _bl ock USING a, b;

END;

/

Using Cursor Attributes with Dynamic SQL

The SQL cursor attributes ¥%-0OUND, %4 SOPEN, ¥NOTFOUND, and Y6RONCOUNT work
when you issue an | NSERT, UPDATE, DELETE, or single-row SELECT statement in
dynamic SQL:

EXECUTE | MVEDI ATE ' DELETE FROM enpl oyees WHERE enpl oyee_id > 1000';

rows_del eted : = SQLYRONCOUNT;

Likewise, when appended to a cursor variable name, the cursor attributes return
information about the execution of a multi-row query:

OPEN c1 FOR ' SELECT * FROM enpl oyees';
FETCH c1 BULK COLLECT INTO rec_tab;
rows_fetched : = ¢19%RONCOUNT;

For more information about cursor attributes, see "Using Cursor Expressions" on
page 6-27.

Passing Nulls to Dynamic SQL

The literal NULL is not allowed in the US| NG clause. To work around this restriction,
replace the keyword NULL with an uninitialized variable:

DECLARE

a_null CHAR(1); -- set to NULL automatically at run time
BEG N

EXECUTE | MVEDI ATE ' UPDATE enp SET conm = :x' USING a_nul | ;
END;

/

Using Database Links with Dynamic SQL

PL/SQL subprograms can execute dynamic SQL statements that use database links to
refer to objects on remote databases:

PROCEDURE del ete_dept (db_|ink VARCHAR2, dept_id INTEGER) IS
BEG N
EXECUTE | MVEDI ATE ' DELETE FROM departnents@ || db_link ||
" WHERE deptno = :numl USI NG dept _id;
END;
/

The targets of remote procedure calls (RPCs) can contain dynamic SQL statements. For
example, suppose the following standalone function, which returns the number of
rows in a table, resides on the Chicago database:

CREATE FUNCTI ON row_count (tab_name VARCHAR2) RETURN | NTEGER AS
rows | NTECER,
BEG N

7-10 PL/SQL User's Guide and Reference

Guidelines for Dynamic SQL

EXECUTE | MVEDI ATE ' SELECT COUNT(*) FROM' || tab_nanme | NTO rows;
RETURN r ows;

END;

/

From an anonymous block, you might call the function remotely, as follows:

DECLARE

enp_count | NTEGER,
BEG N

enp_count := row_count @hi cago(' enpl oyees');
END;

/

Using Invoker Rights with Dynamic SQL

Dynamic SQL lets you write schema-management procedures that can be centralized
in one schema, and can be called from other schemas and operate on the objects in
those schemas.

For example, this procedure can drop any kind of database object:

CREATE OR REPLACE PROCEDURE drop_it (kind IN VARCHAR2, nane IN
VARCHAR?)
AUTHI D CURRENT _USER
AS
BEGI N
EXECUTE | MVEDI ATE 'DROP ' || kind || ' ' || nane;
END;
/

Let's say that this procedure is part of the HR schema. Without the AUTHI D clause, the
procedure would always drop objects in the HR schema, regardless of who calls it.
Even if you pass a fully qualified object name, this procedure would not have the
privileges to make changes in other schemas.

The AUTHI D clause lifts both of these restrictions. It lets the procedure run with the
privileges of the user that invokes it, and makes unqualified references refer to objects
in that user's schema.

For details, see "Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)" on
page 8-15.

Using Pragma RESTRICT_REFERENCES with Dynamic SQL

A function called from SQL statements must obey certain rules meant to control side
effects. (See "Controlling Side Effects of PL/SQL Subprograms" on page 8-22.) To check
for violations of the rules, you can use the pragma RESTRI CT_REFERENCES. The
pragma asserts that a function does not read or write database tables or package
variables. (For more information, See Oracle Database Application Developer’s Guide -
Fundamentals.)

If the function body contains a dynamic | NSERT, UPDATE, or DELETE statement, the
function always violates the rules "write no database state" (WNDS) and "read no
database state" (RNDS). PL/SQL cannot detect those side-effects automatically, because
dynamic SQL statements are checked at run time, not at compile time. In an EXECUTE
| MVEDI ATE statement, only the | NTOclause can be checked at compile time for
violations of RNDS.

Performing SQL Operations with Native Dynamic SQL 7-11

Guidelines for Dynamic SQL

Avoiding Deadlocks with Dynamic SQL

In a few situations, executing a SQL data definition statement results in a deadlock.
For example, the procedure below causes a deadlock because it attempts to drop itself.
To avoid deadlocks, never try to ALTER or DROP a subprogram or package while you
are still using it.

CREATE OR REPLACE PROCEDURE cal ¢_bonus (enp_i d NUVBER) AS
BEGI N

EXECUTE | MMEDI ATE ' DROP PROCEDURE cal ¢_bonus'; -- deadl ock!
END;
/

Backward Compatibility of the USING Clause

When a dynamic | NSERT, UPDATE, or DELETE statement has a RETURNI NGclause,
output bind arguments can go in the RETURNI NG| NTOclause or the USI NGclause. In
new applications, use the RETURNI NG| NTOclause. In old applications, you can
continue to use the USI NGclause.

7-12 PL/SQL User's Guide and Reference

38

Using PL/SQL Subprograms

Civilization advances by extending the number of important operations that we can perform
without thinking about them. ~—Alfred North Whitehead

This chapter shows you how to turn sets of statements into reusable subprograms.
Subprograms are like building blocks for modular, maintainable applications.

This chapter contains these topics:

What Are Subprograms? on page 8-1

Advantages of PL/SQL Subprograms on page 8-2

Understanding PL/SQL Procedures on page 8-3

Understanding PL/SQL Functions on page 8-3

Declaring Nested PL/SQL Subprograms on page 8-5

Passing Parameters to PL/SQL Subprograms on page 8-6
Overloading Subprogram Names on page 8-9

How Subprogram Calls Are Resolved on page 8-12

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause) on page 8-15
Using Recursion with PL/SQL on page 8-20

Calling External Subprograms on page 8-21

Creating Dynamic Web Pages with PL/SQL Server Pages on page 8-22

What Are Subprograms?

Subprograms are named PL/SQL blocks that can be called with a set of parameters.
PL/SQL has two types of subprograms, procedures and functions. Generally, you use a
procedure to perform an action and a function to compute a value.

Like anonymous blocks, subprograms have:

A declarative part, with declarations of types, cursors, constants, variables,
exceptions, and nested subprograms. These items are local and cease to exist when
the subprogram ends.

An executable part, with statements that assign values, control execution, and
manipulate Oracle data.

An optional exception-handling part, which deals with runtime error conditions.

Using PL/SQL Subprograms 8-1

Advantages of PL/SQL Subprograms

Example 8-1 Simple PL/SQL Procedure

The following example shows a string-manipulation procedure that accepts both input
and output parameters, and handles potential errors:

CREATE OR REPLACE PROCEDURE doubl e
(

)

original IN VARCHAR2, new string OUT VARCHAR2

AS

BEG N
new string := original || original;
EXCEPTI ON

WHEN VALUE_ERROR THEN
dbns_out put . put _l i ne(' Qut put buffer not |ong enough.');
END;
/

Example 8-2 Simple PL/SQL Function

The following example shows a numeric function that declares a local variable to hold
temporary results, and returns a value when finished:

CREATE OR REPLACE FUNCTI ON square(origi nal NUVBER)

RETURN NUMBER
AS

ori gi nal _squared NUMBER;
BEG N

original _squared := original * original;
RETURN ori gi nal _squar ed,;

END;

/

Advantages of PL/SQL Subprograms

Subprograms let you extend the PL/SQL language. Procedures act like new
statements. Functions act like new expressions and operators.

Subprograms let you break a program down into manageable, well-defined modules.
You can use top-down design and the stepwise refinement approach to problem
solving.

Subprograms promote reusability. Once tested, a subprogram can be reused in any
number of applications. You can call PL/SQL subprograms from many different
environments, so that you do not have to reinvent the wheel each time you use a new
language or API to access the database.

Subprograms promote maintainability. You can change the internals of a subprogram
without changing other subprograms that call it. Subprograms play a big part in other
maintainability features, such as packages and object types.

Dummy subprograms (stubs) let you defer the definition of procedures and functions
until after testing the main program. You can design applications from the top down,
thinking abstractly, without worrying about implementation details.

When you use PL/SQL subprograms to define an API, you can make your code even
more reusable and maintainable by grouping the subprograms into a PL/SQL
package. For more information about packages, see Chapter 9, "Using PL/SQL
Packages".

8-2 PL/SQL User's Guide and Reference

Understanding PL/SQL Functions

Understanding PL/SQL Procedures

A procedure is a subprogram that performs a specific action. You write procedures
using the SQL CREATE PROCEDURE statement. You specify the name of the procedure,
its parameters, its local variables, and the BEG N- END block that contains its code and
handles any exceptions.

For each parameter, you specify:
= Itsname.

= Its parameter mode (I N, OQUT, or | N QUT). If you omit the mode, the defaultis | N.
The optional NOCOPY keyword speeds up processing of large OUT or | N QUT
parameters.

= Its datatype. You specify only the type, not any length or precision constraints.
= Optionally, its default value.

You can specify whether the procedure executes using the schema and permissions of
the user who defined it, or the user who calls it. For more information, see "Using
Invoker's Rights Versus Definer's Rights (AUTHID Clause)" on page 8-15.

You can specify whether it should be part of the current transaction, or execute in its
own transaction where it can COMM T or ROLLBACK without ending the transaction of
the caller. For more information, see "Doing Independent Units of Work with
Autonomous Transactions" on page 6-35.

Procedures created this way are stored in the database. You can execute the CREATE
PROCEDURE statement interactively from SQL*Plus, or from a program using native
dynamic SQL (see Chapter 7, "Performing SQL Operations with Native Dynamic
SQL").

A procedure has two parts: the specification (spec for short) and the body. The procedure
spec begins with the keyword PROCEDURE and ends with the procedure name or a
parameter list. Parameter declarations are optional. Procedures that take no
parameters are written without parentheses.

The procedure body begins with the keyword | S (or AS) and ends with the keyword
END followed by an optional procedure name. The procedure body has three parts: a
declarative part, an executable part, and an optional exception-handling part.

The declarative part contains local declarations. The keyword DECLARE is used for
anonymous PL/SQL blocks, but not procedures. The executable part contains
statements, which are placed between the keywords BEG Nand EXCEPTI ON (or END).
At least one statement must appear in the executable part of a procedure. You can use
the NULL statement to define a placeholder procedure or specify that the procedure
does nothing. The exception-handling part contains exception handlers, which are
placed between the keywords EXCEPTI ONand END.

A procedure is called as a PL/SQL statement. For example, you might call the
procedure r ai se_sal ary as follows:

raise_salary(enp_id, amount);

Understanding PL/SQL Functions

A function is a subprogram that computes a value. Functions and procedures are
structured alike, except that functions have a RETURN clause.

Using PL/SQL Subprograms 8-3

Understanding PL/SQL Functions

Functions have a number of optional keywords, used to declare a special class of
functions known as table functions. They are typically used for transforming large
amounts of data in data warehousing applications.

The CREATE clause lets you create standalone functions, which are stored in an Oracle
database. You can execute the CREATE FUNCTI ON statement interactively from
SQL*Plus or from a program using native dynamic SQL.

The AUTHI D clause determines whether a stored function executes with the privileges
of its owner (the default) or current user and whether its unqualified references to
schema objects are resolved in the schema of the owner or current user. You can
override the default behavior by specifying CURRENT_USER.

The PARALLEL_ENABLE option declares that a stored function can be used safely in
the slave sessions of parallel DML evaluations. The state of a main (logon) session is
never shared with slave sessions. Each slave session has its own state, which is
initialized when the session begins. The function result should not depend on the state
of session (St at i ¢) variables. Otherwise, results might vary across sessions.

The hint DETERM NI STI Chelps the optimizer avoid redundant function calls. If a
stored function was called previously with the same arguments, the optimizer can
elect to use the previous result. The function result should not depend on the state of
session variables or schema objects. Otherwise, results might vary across calls. Only
DETERM NI STI Cfunctions can be called from a function-based index or a
materialized view that has query-rewrite enabled. For more information, see Oracle
Database SQL Reference.

The pragma AUTONOMOUS_TRANSACTI ONinstructs the PL/SQL compiler to mark a
function as autonomous (independent). Autonomous transactions let you suspend the
main transaction, do SQL operations, commit or roll back those operations, then
resume the main transaction.

You cannot constrain (with NOT NULL for example) the datatype of a parameter or a
function return value. However, you can use a workaround to size-constrain them
indirectly. See "Understanding PL/SQL Procedures" on page 8-3.

Like a procedure, a function has two parts: the spec and the body. The function spec
begins with the keyword FUNCTI ON and ends with the RETURN clause, which specifies
the datatype of the return value. Parameter declarations are optional. Functions that
take no parameters are written without parentheses.

The function body begins with the keyword | S (or AS) and ends with the keyword
END followed by an optional function name. The function body has three parts: a
declarative part, an executable part, and an optional exception-handling part.

The declarative part contains local declarations, which are placed between the
keywords | Sand BEG N. The keyword DECLARE is not used. The executable part
contains statements, which are placed between the keywords BEG Nand EXCEPTI ON
(or END). One or more RETURN statements must appear in the executable part of a
function. The exception-handling part contains exception handlers, which are placed
between the keywords EXCEPTI ONand END.

A function is called as part of an expression:

I F sal _ok(new sal, new title) THEN ...

Using the RETURN Statement

The RETURN statement immediately ends the execution of a subprogram and returns
control to the caller. Execution continues with the statement following the subprogram

8-4 PL/SQL User's Guide and Reference

Declaring Nested PL/SQL Subprograms

call. (Do not confuse the RETURN statement with the RETURN clause in a function spec,
which specifies the datatype of the return value.)

A subprogram can contain several RETURN statements. The subprogram does not have
to conclude with a RETURN statement. Executing any RETURN statement completes the
subprogram immediately.

In procedures, a RETURN statement does not return a value and so cannot contain an
expression. The statement returns control to the caller before the end of the procedure.

In functions, a RETURN statement must contain an expression, which is evaluated when
the RETURN statement is executed. The resulting value is assigned to the function
identifier, which acts like a variable of the type specified in the RETURN clause.
Observe how the function bal ance returns the balance of a specified bank account:

FUNCTI ON bal ance (acct_id I NTEGER) RETURN REAL IS
acct _bal REAL;
BEG N
SELECT bal INTO acct_bal FROM accts
WHERE acct_no = acct _id;
RETURN acct _bal ;
END bal ance;
/

The following example shows that the expression in a function RETURN statement can
be arbitrarily complex:

FUNCTI ON conpound (
years NUMBER,
anount NUMBER,
rate NUMBER) RETURN NUMBER IS
BEG N
RETURN armount * POWNER((rate / 100) + 1, years);
END conpound;
/

In a function, there must be at least one execution path that leads to a RETURN
statement. Otherwise, you get a function returned without value error at run time.

Declaring Nested PL/SQL Subprograms

You can declare subprograms in any PL/SQL block, subprogram, or package. The
subprograms must go at the end of the declarative section, after all other items.

You must declare a subprogram before calling it. This requirement can make it difficult
to declare several nested subprograms that call each other.

You can declare interrelated nested subprograms using a forward declaration: a
subprogram spec terminated by a semicolon, with no body.

Although the formal parameter list appears in the forward declaration, it must also
appear in the subprogram body. You can place the subprogram body anywhere after
the forward declaration, but they must appear in the same program unit.

Example 8-3 Forward Declaration for a Nested Subprogram

DECLARE

PROCEDURE procl(arg_list); -- forward declaration

PROCEDURE proc2(arg_list); -- calls procl

PROCEDURE procl(arg_list) IS BEGN proc2; END, -- calls proc2
BEG N

Using PL/SQL Subprograms 8-5

Passing Parameters to PL/SQL Subprograms

NULL;
END;
/

Passing Parameters to PL/SQL Subprograms

This section explains how to pass information in and out of PL/SQL subprograms
using parameters:

= Actual Versus Formal Subprogram Parameters on page 8-6

« Using Positional, Named, or Mixed Notation for Subprogram Parameters on
page 8-7

= Specifying Subprogram Parameter Modes on page 8-7

= Using Default Values for Subprogram Parameters on page 8-9

Actual Versus Formal Subprogram Parameters

Subprograms pass information using parameters:

» The variables declared in a subprogram spec and referenced in the subprogram
body are formal parameters.

« The variables or expressions passed from the calling subprogram are actual
parameters.

A good programming practice is to use different names for actual and formal
parameters.

When you call a procedure, the actual parameters are evaluated and the results are
assigned to the corresponding formal parameters. If necessary, before assigning the
value of an actual parameter to a formal parameter, PL/SQL converts the datatype of
the value. For example, if you pass a number when the procedure expects a string,
PL/SQL converts the parameter so that the procedure receives a string.

The actual parameter and its corresponding formal parameter must have compatible
datatypes. For instance, PL/SQL cannot convert between the DATE and REAL
datatypes, or convert a string to a number if the string contains extra characters such
as dollar signs.

Example 8-4 Formal Parameters and Actual Parameters

The following procedure declares two formal parameters named enp_i d and anount :

PROCEDURE rai se_salary (enp_id I NTEGER anount REAL) IS
BEG N

UPDATE enp SET sal = sal + anount WHERE enpno = enp_i d;
END rai se_sal ary;
/

This procedure call specifies the actual parameters enp_numand anount :

raise_sal ary(enp_num anount);

Expressions can be used as actual parameters:

raise_salary(enp_num merit + cola);

8-6 PL/SQL User's Guide and Reference

Passing Parameters to PL/SQL Subprograms

Using Positional, Named, or Mixed Notation for Subprogram Parameters

When calling a subprogram, you can write the actual parameters using either:

= Positional notation. You specify the same parameters in the same order as they are
declared in the procedure.

This notation is compact, but if you specify the parameters (especially literals) in
the wrong order, the bug can be hard to detect. You must change your code if the
procedure's parameter list changes.

= Named notation. You specify the name of each parameter along with its value. An
arrow (=>) serves as the association operator. The order of the parameters is not
significant.

This notation is more verbose, but makes your code easier to read and maintain.
You can sometimes avoid changing your code if the procedure's parameter list
changes, for example if the parameters are reordered or a new optional parameter
is added. Named notation is a good practice to use for any code that calls someone
else's API, or defines an API for someone else to use.

= Mixed notation. You specify the first parameters with positional notation, then
switch to named notation for the last parameters.

You can use this notation to call procedures that have some required parameters,
followed by some optional parameters.

Example 8-5 Subprogram Calls Using Positional, Named, and Mixed Notation

DECLARE
acct | NTEGER : = 12345;
amt REAL := 500.00;
PROCEDURE credit_acct (acct_no | NTEGER anount REAL) IS
BEG N NULL; END;

BEG N

-- The following calls are all equivalent.
credit_acct(acct, ant); -- positional
credit_acct(amount => ant, acct_no => acct); -- named
credit_acct(acct_no => acct, anount => ant); -- named
credit_acct(acct, amount => ant); -- mxed

END;

/

Specifying Subprogram Parameter Modes

You use parameter modes to define the behavior of formal parameters. The three
parameter modes are | N (the default), QUT, and | NCQUT.

Any parameter mode can be used with any subprogram. Avoid using the OUT and | N
OUT modes with functions. To have a function return multiple values is a poor
programming practice. Also, functions should be free from side effects, which change
the values of variables not local to the subprogram.

Using the IN Mode

An | Nparameter lets you pass values to the subprogram being called. Inside the
subprogram, an | N parameter acts like a constant. It cannot be assigned a value.

You can pass a constant, literal, initialized variable, or expression as an IN parameter.

Using PL/SQL Subprograms 8-7

Passing Parameters to PL/SQL Subprograms

| Nparameters can be initialized to default values, which are used if those parameters
are omitted from the subprogram call. For more information, see "Using Default
Values for Subprogram Parameters" on page 8-9.

Using the OUT Mode

An QUT parameter returns a value to the caller of a subprogram. Inside the
subprogram, an OUT parameter acts like a variable. You can change its value, and
reference the value after assigning it:

PROCEDURE split_name

(
phrase IN VARCHAR2, first OUT VARCHAR?, |ast OUT VARCHAR?
)

IS
first := SUBSTR(phrase, 1, INSTR(phrase, ' ')-1);
| ast := SUBSTR(phrase, |NSTR(phrase, ' ')+1);
IF first = "John" THEN
DBMS_QUTPUT. PUT_LI NE(' That is a conmon first nane.');
END | F;
END;
/

You must pass a variable, not a constant or an expression, to an OUT parameter. Its
previous value is lost unless you specify the NOCOPY keyword (see "Using Default
Values for Subprogram Parameters" on page 8-9) or the subprogram exits with an
unhandled exception.

Like variables, QUT formal parameters are initialized to NULL. The datatype of an OUT
formal parameter cannot be a subtype defined as NOT NULL, such as the built-in
subtypes NATURALN and PCSI Tl VEN. Otherwise, when you call the subprogram,
PL/SQL raises VALUE_ERROR

Before exiting a subprogram, assign values to all OUT formal parameters. Otherwise,
the corresponding actual parameters will be null. If you exit successfully, PL/SQL
assigns values to the actual parameters. If you exit with an unhandled exception,
PL/SQL does not assign values to the actual parameters.

Using the IN OUT Mode

An | NQUT parameter passes initial values to a subprogram and returns updated
values to the caller. It can be assigned a value and its value can be read. Typically, an
I N OUT parameter is a string buffer or numeric accumulator, that is read inside the
subprogram and then updated.

The actual parameter that corresponds to an | N OUT formal parameter must be a
variable; it cannot be a constant or an expression.

If you exit a subprogram successfully, PL/SQL assigns values to the actual parameters.
If you exit with an unhandled exception, PL/SQL does not assign values to the actual
parameters.

Summary of Subprogram Parameter Modes
Table 8-1 summarizes all you need to know about the parameter modes.

Table 81 Parameter Modes

IN ouT IN OUT

The default Must be specified Must be specified

8-8 PL/SQL User's Guide and Reference

Overloading Subprogram Names

Table 8-1 (Cont.) Parameter Modes

IN

ouT

IN OUT

Passes values to a
subprogram

Formal parameter acts like a
constant

Formal parameter cannot be
assigned a value

Actual parameter can be a
constant, initialized variable,
literal, or expression

Actual parameter is passed
by reference (a pointer to the
value is passed in)

Returns values to the caller

Formal parameter acts like
an uninitialized variable

Formal parameter must be
assigned a value

Actual parameter must be a
variable

Actual parameter is passed
by value (a copy of the
value is passed out) unless
NOCOPY is specified

Passes initial values to a
subprogram and returns
updated values to the caller

Formal parameter acts like
an initialized variable

Formal parameter should be
assigned a value

Actual parameter must be a
variable

Actual parameter is passed
by value (a copy of the

value is passed in and out)
unless NOCOPY is specified

Using Default Values for Subprogram Parameters

By initializing | N parameters to default values, you can pass different numbers of
actual parameters to a subprogram, accepting the default values for any parameters
you omit. You can also add new formal parameters without having to change every

call to the subprogram.

Example 8-6 Procedure with Default Parameter Values

PROCEDURE create_dept (

new_dnanme VARCHAR2 DEFAULT ' TEMP',

new | oc
BEG N
NULL;
END;
/

VARCHAR2 DEFAULT ' TEMP') IS

If a parameter is omitted, the default value of its corresponding formal parameter is
used. Consider the following calls to cr eat e_dept :

create_dept;
create_dept (' SALES');

-- Sane as create_dept(' TEMP ,' TEMP');
-- Sane as create_dept (' SALES',' TEMP');
create_dept(' SALES', 'NY');

You cannot skip a formal parameter by leaving out its actual parameter. To omit the
first parameter and specify the second, use named notation:

create_dept(new_|oc => 'NEWYORK');

You cannot assign a null to an uninitialized formal parameter by leaving out its actual
parameter. You must pass the null explicitly, or you can specify a default value of

NULL in the declaration.

Overloading Subprogram Names

PL/SQL lets you overload subprogram names and type methods. You can use the
same name for several different subprograms as long as their formal parameters differ
in number, order, or datatype family.

Using PL/SQL Subprograms 8-9

Overloading Subprogram Names

Suppose you want to initialize the first n rows in two index-by tables that were
declared as follows:

DECLARE
TYPE Dat eTabTyp IS TABLE OF DATE | NDEX BY BI NARY_| NTEGER;
TYPE Real TabTyp |'S TABLE OF REAL | NDEX BY Bl NARY_| NTEGER,
hiredate_tab DateTabTyp;
sal _tab Real TabTyp;

BEG N
NULL;

END;

/

You might write a procedure to initialize one kind of collection:

PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
BEG N
FORi IN1..n LOOP
tab(i) := SYSDATE;
END LOOP;
END initialize;
/

You might also write a procedure to initialize another kind of collection:

PROCEDURE i nitialize (tab OUT Real TabTyp, n INTEGER) IS

BEG N
FORi IN1..n LOOP
tab(i) :=0.0;
END LOOP;

END initialize;
/

Because the processing in these two procedures is the same, it is logical to give them
the same name.

You can place the two overloaded i ni ti al i ze procedures in the same block,
subprogram, package, or object type. PL/SQL determines which procedure to call by
checking their formal parameters. In the following example, the version of

i nitialize that PL/SQL uses depends on whether you call the procedure with a
Dat eTabTyp or Real TabTyp parameter:

DECLARE
TYPE DateTabTyp IS TABLE OF DATE | NDEX BY Bl NARY_| NTEGER;
TYPE Real TabTyp |'S TABLE OF REAL | NDEX BY Bl NARY_| NTEGER;
hiredate_tab DateTabTyp;
comm tab Real TabTyp;
i ndx BI NARY_| NTEGER;
PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
BEG N
NULL;
END;
PROCEDURE initialize (tab OQUT Real TabTyp, n INTEGER) IS
BEG N
NULL;
END;
BEG N
indx := 50;
initialize(hiredate_tab, indx); -- calls first version
initialize(commtab, indx); -- calls second version
END;
/

8-10 PL/SQL User's Guide and Reference

Overloading Subprogram Names

Guidelines for Overloading with Numeric Types

You can overload two subprogrames if their formal parameters differ only in numeric
datatype. This technique might be useful in writing mathematical APIs, where several
versions of a function could use the same name, each accepting a different numeric
type. For example, a function accepting Bl NARY_FLQOAT might be faster, while a
function accepting Bl NARY_DOUBLE might provide more precision.

To avoid problems or unexpected results passing parameters to such overloaded
subprograms:

= Make sure to test that the expected version of a subprogram is called for each set
of expected parameters. For example, if you have overloaded functions that accept
Bl NARY_FLOAT and Bl NARY_DOUBLE, which is called if you pass a VARCHAR2
literal such as '5.0"?

= Qualify numeric literals and use conversion functions to make clear what the
intended parameter types are. For example, use literals such as 5. Of (for
Bl NARY_FLQAT), 5. 0d (for Bl NARY_DOUBLE), or conversion functions such as
TO_BI NARY_FLOAT(), TO_BI NARY_DQOUBLE() , and TO_NUVBER() .

PL/SQL looks for matching numeric parameters starting with PLS_| NTECER or

Bl NARY_| NTEGER, then NUMBER, then Bl NARY_FLQOAT, then Bl NARY_DOUBLE. The
first overloaded subprogram that matches the supplied parameters is used. A
VARCHARZ value can match a NUVBER, Bl NARY_FLQOAT, or Bl NARY _DOUBLE
parameter.

For example, consider the SQRT function, which takes a single parameter. There are
overloaded versions that accept a NUMBER, a Bl NARY_FLOAT, or a Bl NARY_DOUBLE
parameter. If you pass a PLS_| NTEGER parameter, the first matching overload (using
the order given in the preceding paragraph) is the one with a NUMBER parameter,
which is likely to be the slowest. To use one of the faster versions, use the

TO_BI NARY_FLOAT or TO_BI NARY_DOUBLE functions to convert the parameter to the
right datatype.

For another example, consider the ATAN2 function, which takes two parameters of the
same type. If you pass two parameters of the same type, you can predict which
overloaded version is used through the same rules as before. If you pass parameters of
different types, for example one PLS_| NTEGER and one Bl NARY_FLOAT, PL/SQL
tries to find a match where both parameters use the "higher" type. In this case, that is
the version of ATAN2 that takes two Bl NARY_FLOAT parameters; the PLS | NTEGER
parameter is converted "upwards".

The preference for converting "upwards" holds in more complicated situations. For
example, you might have a complex function that takes two parameters of different
types. One overloaded version might take a PLS_| NTEGER and a Bl NARY_FLOAT
parameter. Another overloaded version might take a NUMBER and a Bl NARY_DOUBLE
parameter. What happens if you call this procedure name and pass two NUVBER
parameters? PL/SQL looks "upward" first to find the overloaded version where the
second parameter is Bl NARY_FLOAT. Because this parameter is a closer match than
the Bl NARY_DQUBLE parameter in the other overload, PL/SQL then looks
"downward" and converts the first NUMBER parameter to PLS_| NTEGER.

Restrictions on Overloading

Only local or packaged subprograms, or type methods, can be overloaded. You cannot
overload standalone subprograms.

Using PL/SQL Subprograms 8-11

How Subprogram Calls Are Resolved

You cannot overload two subprograms if their formal parameters differ only in name
or parameter mode. For example, you cannot overload the following two procedures:

DECLARE
PROCEDURE reconcile (acct_no IN INTEGER) |S
BEG N NULL; END;
PROCEDURE reconcile (acct_no OUT INTEGER) |S
BEG N NULL; END;

/

You cannot overload subprograms whose parameters differ only in subtype. For
example, you cannot overload procedures where one accepts an | NTEGER parameter
and the other accepts a REAL parameter, even though | NTEGER and REAL are both
subtypes of NUMBER and so are in the same family.

You cannot overload two functions that differ only in the datatype of the return value,
even if the types are in different families. For example, you cannot overload two
functions where one returns BOOLEAN and the other returns | NTEGER

How Subprogram Calls Are Resolved

Figure 8-1 shows how the PL/SQL compiler resolves subprogram calls. When the
compiler encounters a procedure or function call, it tries to find a declaration that
matches the call. The compiler searches first in the current scope and then, if necessary,
in successive enclosing scopes. The compiler looks more closely when it finds one or
more subprogram declarations in which the subprogram name matches the name of
the called subprogram.

To resolve a call among possibly like-named subprograms at the same level of scope,
the compiler must find an exact match between the actual and formal parameters. They
must match in number, order, and datatype (unless some formal parameters were
assigned default values). If no match is found or if multiple matches are found, the
compiler generates a semantic error.

The following example calls the enclosing procedure swap from the function
reconci | e, generating an error because neither declaration of swap within the
current scope matches the procedure call:

PROCEDURE swap (nl NUMBER, n2 NUMBER) IS
numl NUMBER;
nun?2 NUMBER,
FUNCTI ON bal ance (...) RETURN REAL IS
PROCEDURE swap (dl1 DATE, d2 DATE) IS BEG N NULL; END;
PROCEDURE swap (bl BOOLEAN, b2 BOOLEAN) 1S BEG N NULL; END;
BEG N
swap(numl, nun®);
RETURN . ..
END bal ance;
BEG N NULL; END;
/

8-12 PL/SQL User's Guide and Reference

How Subprogram Calls Are Resolved

Figure 8-1 How the PL/SQL Compiler Resolves Calls

encounter
subprogram call

compare name of
called subprogram with
names of any go to enclosing scope
subprograms declared
in current scope

match(es) found? enclosing scope?

compare actual
parameter list in
subprogram call with
formal parameter list in
subprogram declaration(s)

No

match(es) found?

Yes

multiple matches?

resolve call generate semantic error

How Overloading Works with Inheritance

The overloading algorithm allows substituting a subtype value for a formal parameter
that is a supertype. This capability is known as substitutability. If more than one
instance of an overloaded procedure matches the procedure call, the following rules
apply to determine which procedure is called:

If the only difference in the signatures of the overloaded procedures is that some
parameters are object types from the same supertype-subtype hierarchy, the closest
match is used. The closest match is one where all the parameters are at least as close as
any other overloaded instance, as determined by the depth of inheritance between the
subtype and supertype, and at least one parameter is closer.

A semantic error occurs when two overloaded instances match, and some argument
types are closer in one overloaded procedure to the actual arguments than in any other
instance.

Using PL/SQL Subprograms 8-13

How Subprogram Calls Are Resolved

A semantic error also occurs if some parameters are different in their position within
the object type hierarchy, and other parameters are of different datatypes so that an
implicit conversion would be necessary.

For example, here we create a type hierarchy with 3 levels:

CREATE TYPE super _t AS obj ect
(n NUMBER) NOT final;

CREATE OR repl ace TYPE sub_t under super_t
(n2 NUMBER) NOT final;

CREATE OR replace TYPE final _t under sub_t
(n3 NUMBER) ;

We declare two overloaded instances of a function, where the only difference in
argument types is their position in this type hierarchy:

CREATE PACKAGE p IS
FUNCTI ON foo (arg super_t) RETURN NUMBER;
FUNCTI ON foo (arg sub_t) RETURN NUMBER
END;
/
CREATE PACKAGE BODY p IS
FUNCTI ON foo (arg super_t) RETURN NUMBER IS BEG N RETURN 1; END;
FUNCTI ON foo (arg sub_t) RETURN NUMBER |S BEG N RETURN 2; END;
END;
/

We declare a variable of type f i nal _t , then call the overloaded function. The instance
of the function that is executed is the one that accepts a sub_t parameter, because that
typeis closer to fi nal _t in the hierarchy than super _t is.

set serveroutput on

decl are
v final _t :=final _t(1,2,3);
begin

dbns_out put . put _l i ne(p. foo(v));
end;

/

In the previous example, the choice of which instance to call is made at compile time.
In the following example, this choice is made dynamically.

CREATE TYPE super _t2 AS obj ect
(n NUMBER, MEMBER FUNCTI ON foo RETURN NUMBER) NOT final;
/
CREATE TYPE BODY super_t2 AS
MEMBER FUNCTI ON f oo RETURN NUMBER |'S BEG N RETURN 1; END; END;
/
CREATE OR replace TYPE sub_t2 under super_t2
(n2 NUMBER,
OVERRI DI NG MEMBER FUNCTI ON f oo RETURN NUMBER) NOT final ;
/
CREATE TYPE BODY sub_t2 AS
OVERRI DI NG MEMBER FUNCTI ON foo RETURN NUMBER | S BEG N RETURN 2;
END,
END,
/
CREATE OR replace TYPE final _t2 under sub_t2
(n3 NUMBER) ;
/

8-14 PL/SQL User's Guide and Reference

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

We declare v as an instance of super _t 2, but because we assign a value of sub_t 2 to
it, the appropriate instance of the function is called. This feature is known as dynamic
dispatch.

set serveroutput on
decl are

v super_t2 := final _t2(1,2,3);
begin

dbms_out put . put _| i ne(v. foo);
end;
/

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

By default, stored procedures and SQL methods execute with the privileges of their
owner, not their current user. Such definer’s rights subprograms are bound to the
schema in which they reside, allowing you to refer to objects in the same schema
without qualifying their names. For example, if schemas SCOTT and BLAKE both have
a table called dept, a procedure owned by SCOTT can refer to dept rather than
SCOTT. DEPT. If user BLAKE calls SCOTT's procedure, the procedure still accesses the
dept table owned by SCOTT.

If you compile the same procedure in both schemas, you can define the schema name
as a variable in SQL*Plus and refer to the table like & chema. . dept . The code is
portable, but if you change it, you must recompile it in each schema.

A more maintainable way is to use the AUTHI D clause, which makes stored procedures
and SQL methods execute with the privileges and schema context of the calling user.
You can create one instance of the procedure, and many users can call it to access their
own data.

Such invoker's rights subprograms are not bound to a particular schema. The following
version of procedure cr eat e_dept executes with the privileges of the calling user
and inserts rows into that user's dept table:

CREATE PROCEDURE create_dept (
my_dept no NUMBER,
my_dnane VARCHAR?,
ny_l oc VARCHAR2) AUTHI D CURRENT_USER AS
BEG N
I NSERT | NTO dept VALUES (ny_deptno, ny_dnane, ny_loc);
END;
/

Advantages of Invoker's Rights

Invoker's rights subprograms let you reuse code and centralize application logic. They
are especially useful in applications that store data using identical tables in different
schemas. All the schemas in one instance can call procedures owned by a central
schema. You can even have schemas in different instances call centralized procedures
using a database link.

Consider a company that uses a stored procedure to analyze sales. If the company has
several schemas, each with a similar SALES table, normally it would also need several
copies of the stored procedure, one in each schema.

Using PL/SQL Subprograms 8-15

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

To solve the problem, the company installs an invoker's rights version of the stored
procedure in a central schema. Now, all the other schemas can call the same procedure,
which queries the appropriate to SALES table in each case.

You can restrict access to sensitive data by calling from an invoker's rights subprogram
to a definer's rights subprogram that queries or updates the table containing the
sensitive data. Although multiple users can call the invoker's rights subprogram, they
do not have direct access to the sensitive data.

Specifying the Privileges for a Subprogram with the AUTHID Clause

To implement invoker's rights, use the AUTHI D clause, which specifies whether a
subprogram executes with the privileges of its owner or its current user. It also
specifies whether external references (that is, references to objects outside the
subprogram) are resolved in the schema of the owner or the current user.

The AUTHI D clause is allowed only in the header of a standalone subprogram, a
package spec, or an object type spec. In the CREATE FUNCTI ON, CREATE
PROCEDURE, CREATE PACKAGE, or CREATE TYPE statement, you can include either
AUTHI D CURRENT_USER or AUTHI D DEFI NERimmediately before the | S or AS
keyword that begins the declaration section.

DEFI NERis the default option. In a package or object type, the AUTHI D clause applies
to all subprograms.

Note: Most supplied PL/SQL packages (such as DBMS_LOB, DBMS_PI PE,
DBMS_ROW D, DBMS_SQL, and UTL_REF) are invoker's rights packages.

Who Is the Current User During Subprogram Execution?

In a sequence of calls, whenever control is inside an invoker's rights subprogram, the
current user is the session user. When a definer's rights subprogram is called, the
owner of that subprogram becomes the current user. The current user might change as
new subprograms are called or as subprograms exit.

To verify who the current user is at any time, you can check the USER_USERS data
dictionary view. Inside an invoker's rights subprogram, the value from this view might
be different from the value of the USER built-in function, which always returns the
name of the session user.

How External References Are Resolved in Invoker's Rights Subprograms

If you specify AUTHI D CURRENT_USER, the privileges of the current user are checked
at run time, and external references are resolved in the schema of the current user.
However, this applies only to external references in:

= SELECT, | NSERT, UPDATE, and DELETE data manipulation statements
» The LOCK TABLE transaction control statement

« OPENand OPEN- FOR cursor control statements

= EXECUTE| MMVEDI ATE and OPEN- FOR- USI NGdynamic SQL statements
= SQL statements parsed using DBMS_SQL. PARSE()

For all other statements, the privileges of the owner are checked at compile time, and
external references are resolved in the schema of the owner. For example, the
assignment statement below refers to the packaged function bal ance. This external
reference is resolved in the schema of the owner of procedure r econci | e.

8-16 PL/SQL User's Guide and Reference

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

CREATE PROCEDURE reconcile (acc_id I N | NTEGER)
AUTH D CURRENT_USER AS

bal NUMBER
BEG N

bal := bank_ops. bal ance(acct _id);
END;

/

The Need for Template Objects in Invoker's Rights Subprograms

The PL/SQL compiler must resolve all references to tables and other objects at compile
time. The owner of an invoker's rights subprogram must have objects in the same
schema with the right names and columns, even if they do not contain any data. At
run time, the corresponding objects in the caller's schema must have matching
definitions. Otherwise, you get an error or unexpected results, such as ignoring table
columns that exist in the caller's schema but not in the schema that contains the
subprogram.

Overriding Default Name Resolution in Invoker's Rights Subprograms

Occasionally, you might want an unqualified name to refer to some particular schema,
not the schema of the caller. In the same schema as the invoker's rights subprogram,
create a public synonym for the table, procedure, function, or other object using the
CREATE SYNONYMstatement:

CREATE PUBLI C SYNONYM enp FOR hr. enpl oyees;

When the invoker's rights subprogram refers to this name, it will match the synonym
in its own schema, which resolves to the object in the specified schema. This technique
does not work if the calling schema already has a schema object or private synonym
with the same name. In that case, the invoker's rights subprogram must fully qualify
the reference.

Granting Privileges on Invoker's Rights Subprograms

To call a subprogram directly, users must have the EXECUTE privilege on that
subprogram. By granting the privilege, you allow a user to:

= Call the subprogram directly
= Compile functions and procedures that call the subprogram

For external references resolved in the current user's schema (such as those in DML
statements), the current user must have the privileges needed to access schema objects
referenced by the subprogram. For all other external references (such as function calls),
the owner's privileges are checked at compile time, and no run-time check is done.

A definer's rights subprogram operates under the security domain of its owner, no
matter who is executing it. The owner must have the privileges needed to access
schema objects referenced by the subprogram.

You can write a program consisting of multiple subprograms, some with definer's
rights and others with invoker's rights. Then, you can use the EXECUTE privilege to
restrict program entry points. That way, users of an entry-point subprogram can
execute the other subprograms indirectly but not directly.

Using PL/SQL Subprograms 8-17

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

Granting Privileges on an Invoker's Rights Subprogram: Example
Suppose user UT| L grants the EXECUTE privilege on subprogram FFT to user APP:

GRANT EXECUTE ON util.fft TO app;

Now, user APP can compile functions and procedures that call subprogram FFT. At
run time, no privilege checks on the calls are done. As Figure 8-2 shows, user UTI L
need not grant the EXECUTE privilege to every user who might call FFT indirectly.

Since subprogram uti | . fft is called directly only from invoker's rights subprogram
app. entry, user uti | must grant the EXECUTE privilege only to user APP. When
UTI L. FFT is executed, its current user could be APP, SCOTT, or BLAKE even though
SCOTT and BLAKE were not granted the EXECUTE privilege.

Figure 8-2 Indirect Calls to an Invoker's Rights Subprogram

Schema SCOTT

Schema APP Schema UTI L

(IR

emW—-—é—» fft

Using Roles with Invoker's Rights Subprograms

The use of roles in a subprogram depends on whether it executes with definer's rights
or invoker's rights. Within a definer's rights subprogram, all roles are disabled. Roles
are not used for privilege checking, and you cannot set roles.

Within an invoker's rights subprogram, roles are enabled (unless the subprogram was
called directly or indirectly by a definer's rights subprogram). Roles are used for
privilege checking, and you can use native dynamic SQL to set roles for the session.
However, you cannot use roles to grant privileges on template objects because roles
apply at run time, not at compile time.

Using Views and Database Triggers with Invoker's Rights Subprograms

For invoker's rights subprograms executed within a view expression, the schema that
created the view, not the schema that is querying the view, is considered to be the
current user.

This rule also applies to database triggers.

Using Database Links with Invoker's Rights Subprograms

You can create a database link to use invoker's rights:

8-18 PL/SQL User's Guide and Reference

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

CREATE DATABASE LINK |'ink_name CONNECT TO CURRENT_USER
USI NG connect _string;

A current-user link lets you connect to a remote database as another user, with that
user's privileges. To connect, Oracle uses the username of the current user (who must
be a global user). Suppose an invoker's rights subprogram owned by user BLAKE
references the database link below. If global user SCOTT calls the subprogram, it
connects to the Dallas database as user SCOTT, who is the current user.

CREATE DATABASE LINK dal | as CONNECT TO CURRENT_USER USING ...

If it were a definer's rights subprogram, the current user would be BLAKE, and the
subprogram would connect to the Dallas database as global user BLAKE.

Using Object Types with Invoker's Rights Subprograms

To define object types for use in any schema, specify the AUTHI D CURRENT_USER
clause. (For more information about object types, see Chapter 12, "Using PL/SQL
Object Types".) Suppose user BLAKE creates the following object type:

CREATE TYPE Num AUTH D CURRENT_USER AS OBJECT (
x NUMBER,
STATI C PROCEDURE new_num (
n NUMBER, schema_name VARCHAR2, table_name VARCHAR2)
)
/

CREATE TYPE BODY Num AS
STATI C PROCEDURE new_num (
n NUMBER, schema_nanme VARCHAR2, table_nane VARCHAR2) |S
sql _stnt VARCHAR2(200);

BEG N
sql _stnt :="INSERT INTO"' || schema_name || '.'
|| table_name || ' VALUES (bl ake.Num(:1))";
EXECUTE | MVEDI ATE sql _stnt USI NG n;
END,
END;

/

Then, user BLAKE grants the EXECUTE privilege on object type Numto user SCOTT:
GRANT EXECUTE ON Num TO scott;

Finally, user SCOTT creates an object table to store objects of type Num then calls
procedure new_numto populate the table:

CONNECT scott/tiger;

CREATE TABLE num tab OF bl ake. Num
/

BEG N
bl ake. Num new_nun(1001, 'scott', 'numtab');
bl ake. Num new_nun(1002, 'scott', 'numtab');
bl ake. Num new_nun(1003, 'scott', 'numtab');
END;

/

The calls succeed because the procedure executes with the privileges of its current user
(SCOTT), not its owner (BLAKE).

For subtypes in an object type hierarchy, the following rules apply:

Using PL/SQL Subprograms 8-19

Using Recursion with PL/SQL

= Ifasubtype does not explicitly specify an AUTHI Dclause, it inherits the AUTHI D of
its supertype.

« If a subtype does specify an AUTHI Dclause, its AUTHI D must match the AUTHI D of
its supertype. Also, if the AUTHI Dis DEFI NER, both the supertype and subtype
must have been created in the same schema.

Calling Invoker's Rights Instance Methods

An invoker's rights instance method executes with the privileges of the invoker, not
the creator of the instance. Suppose that Per son is an invoker's rights object type, and
that user SCOTT creates p1, an object of type Per son. If user BLAKE calls instance
method change_j ob to operate on object p1, the current user of the method is
BLAKE, not SCOTT. Consider the following example:

- user blake creates a definer-rights procedure
CREATE PROCEDURE reassign (p Person, new job VARCHAR2) AS
BEG N

- user blake calls method change_job, so the

- nmethod executes with the privileges of blake

p. change_j ob(new_j ob);

END;
/

- user scott passes a Person object to the procedure
DECLARE

pl Person;
BEG N

pl := Person(...);

bl ake. reassi gn(pl, 'CLERK);

END;
/

Using Recursion with PL/SQL

Recursion is a powerful technique for simplifying the design of algorithms. Basically,
recursion means self-reference. In a recursive mathematical sequence, each term is
derived by applying a formula to preceding terms. The Fibonacci sequence (0, 1,1, 2, 3,
5,8,13, 21, ...), is an example. Each term in the sequence (after the second) is the sum
of the two terms that immediately precede it.

In a recursive definition, something is defined as simpler versions of itself. Consider
the definition of n factorial (n!), the product of all integers from 1 to #:

nt=n*(n- 1!

What Is a Recursive Subprogram?

A recursive subprogram is one that calls itself. Each recursive call creates a new
instance of any items declared in the subprogram, including parameters, variables,
cursors, and exceptions. Likewise, new instances of SQL statements are created at each
level in the recursive descent.

Be careful where you place a recursive call. If you place it inside a cursor FORloop or
between OPEN and CLCOSE statements, another cursor is opened at each call, which
might exceed the limit set by the Oracle initialization parameter OPEN_CURSORS.

8-20 PL/SQL User's Guide and Reference

Calling External Subprograms

There must be at least two paths through a recursive subprogram: one that leads to the
recursive call and one that does not. At least one path must lead to a terminating
condition. Otherwise, the recursion would go on until PL/SQL runs out of memory
and raises the predefined exception STORAGE_ERRCR

Calling External Subprograms

Although PL/SQL is a powerful, flexible language, some tasks are more easily done in
another language. Low-level languages such as C are very fast. Widely used languages
such as Java have reusable libraries for common design patterns.

You can use PL/SQL call specs to invoke external subprograms written in other
languages, making their capabilities and libraries available from PL/SQL.

For example, you can call Java stored procedures from any PL/SQL block,
subprogram, or package. Suppose you store the following Java class in the database:

inport java.sql.*;
inport oracle.jdbc.driver.*;
public class Adjuster {
public static void raiseSalary (int enpNo, float percent)
throws SQLException {
Connection conn = new Oracl eDriver().defaul tConnection();
String sql = "UPDATE enp SET sal = sal * ? WHERE enpno = ?";
try {
PreparedStatement pstnt = conn. prepareStatenment (sql);
pstnt.setFloat(1l, (1 + percent / 100));
pstnt.setint(2, empNo);
pstnt. execut eUpdat e() ;
pstnt.close();
} catch (SQLException e) {Systemerr.println(e.getMssage());}
}
}

The class Adj ust er has one method, which raises the salary of an employee by a
given percentage. Because r ai seSal ary is a voi d method, you publish it as a
procedure using this call spec:

CREATE PROCEDURE rai se_sal ary (enmpno NUMBER, pct NUVBER)
AS LANGUAGE JAVA
NAME ' Adj uster.raiseSalary(int, float)';

You might call procedure r ai se_sal ary from an anonymous PL/SQL block:

DECLARE
emp_id NUMBER
percent NUMBER;
BEG N
- get values for enp_id and percent
rai se_salary(enp_id, percent); -- call external subprogram
END;
/

External C subprograms are used to interface with embedded systems, solve
engineering problems, analyze data, or control real-time devices and processes.
External C subprograms extend the functionality of the database server, and move
computation-bound programs from client to server, where they execute faster.

Using PL/SQL Subprograms 8-21

Creating Dynamic Web Pages with PL/SQL Server Pages

For more information about Java stored procedures, see Oracle Database Java
Developer’s Guide. For more information about external C subprograms, see Oracle
Database Application Developer’s Guide - Fundamentals.

Creating Dynamic Web Pages with PL/SQL Server Pages

PL/SQL Server Pages (PSPs) enable you to develop Web pages with dynamic content.
They are an alternative to coding a stored procedure that writes out the HTML code
for a web page, one line at a time.

Using special tags, you can embed PL/SQL scripts into HTML source code. The scripts
are executed when the pages are requested by Web clients such as browsers. A script
can accept parameters, query or update the database, then display a customized page
showing the results.

During development, PSPs can act like templates with a static part for page layout and
a dynamic part for content. You can design the layouts using your favorite HTML
authoring tools, leaving placeholders for the dynamic content. Then, you can write the
PL/SQL scripts that generate the content. When finished, you simply load the
resulting PSP files into the database as stored procedures.

For more information about creating and using PSPs, see Oracle Database Application
Developer’s Guide - Fundamentals.

Controlling Side Effects of PL/SQL Subprograms

To be callable from SQL statements, a stored function (and any subprograms called by
that function) must obey certain "purity" rules, which are meant to control side effects:

« When called from a SELECT statement or a parallelized | NSERT, UPDATE, or
DEL ETE statement, the function cannot modify any database tables.

« When called from an | NSERT, UPDATE, or DELETE statement, the function cannot
query or modify any database tables modified by that statement.

« When called from a SELECT, | NSERT, UPDATE, or DELETE statement, the function
cannot execute SQL transaction control statements (such as COMM T), session
control statements (such as SET ROLE), or system control statements (such as
ALTER SYSTEM. Also, it cannot execute DDL statements (such as CREATE)
because they are followed by an automatic commit.

If any SQL statement inside the function body violates a rule, you get an error at run
time (when the statement is parsed).

To check for violations of the rules, you can use the pragma (compiler directive)
RESTRI CT_REFERENCES. The pragma asserts that a function does not read or write
database tables or package variables. For example, the following pragma asserts that
packaged function cr edi t _ok writes no database state (WNDS) and reads no package
state (RNPS):

CREATE PACKAGE | oans AS

FUNCTI ON credit_ok RETURN BOOLEAN,

PRAGVA RESTRI CT_REFERENCES (credit_ok, VDS, RNPS);
END | oans;
/

Note: A static | NSERT, UPDATE, or DELETE statement always violates VWNDS. It also

violates RNDS (reads no database state) if it reads any columns. A dynamic | NSERT,
UPDATE, or DELETE statement always violates WNDS and RNDS.

8-22 PL/SQL User's Guide and Reference

Understanding Subprogram Parameter Aliasing

For full syntax details, see "RESTRICT_REFERENCES Pragma" on page 13-113. For
more information about the purity rules, see Oracle Database Application Developer’s
Guide - Fundamentals.

Understanding Subprogram Parameter Aliasing

To optimize a subprogram call, the PL/SQL compiler can choose between two
methods of parameter passing. With the by-value method, the value of an actual
parameter is passed to the subprogram. With the by-reference method, only a pointer to
the value is passed; the actual and formal parameters reference the same item.

The NOCOPY compiler hint increases the possibility of aliasing (that is, having two
different names refer to the same memory location). This can occur when a global
variable appears as an actual parameter in a subprogram call and then is referenced
within the subprogram. The result is indeterminate because it depends on the method
of parameter passing chosen by the compiler.

Example 8-7 Aliasing from Passing Global Variable with NOCOPY Hint

In the example below, procedure ADD_ENTRY refers to varray LEXI CONboth as a
parameter and as a global variable. When ADD_ENTRY is called, the identifiers
WORD_LI ST and LEXI CON point to the same varray.

DECLARE
TYPE Definition I'S RECORD (
wor d VARCHAR2(20) ,
meani ng VARCHAR2(200));
TYPE Dictionary |'S VARRAY(2000) OF Definition;
| exicon Dictionary := Dictionary();
PROCEDURE add_entry (word_|list I N OUT NOCOPY Dictionary) IS

BEG N
word_list(1).word := "aardvark';
I exicon(l).word := "aardwol f';
END;
BEG N
| exi con. EXTEND;

add_entry(lexicon);

dbns_out put. put _l'i ne(lexicon(1).word);
END;
/

The program prints aar dwol f if the compiler obeys the NOCOPY hint. The assignment
to WORD_LI ST is done immediately through a pointer, then is overwritten by the
assignment to LEXI CON.

The program prints aar dvar k if the NOCOPY hint is omitted, or if the compiler does
not obey the hint. The assignment to WORD_LI| ST uses an internal copy of the varray,
which is copied back to the actual parameter (overwriting the contents of LEXI CON)

when the procedure ends.

Example 8-8 Aliasing Passing Same Parameter Multiple Times

Aliasing can also occur when the same actual parameter appears more than once in a
subprogram call. In the example below, n2 is an | NOUT parameter, so the value of the
actual parameter is not updated until the procedure exits. That is why the first

put _I i ne prints 10 (the initial value of n) and the third put _| i ne prints 20.
However, n3 is a NOCOPY parameter, so the value of the actual parameter is updated
immediately. That is why the second put _| i ne prints 30.

Using PL/SQL Subprograms 8-23

Understanding Subprogram Parameter Aliasing

DECLARE
n NUMBER : = 10;
PROCEDURE do_sonet hing (
nl I'N NUMBER,
n2 I'N QUT NUMBER,
n3 I N OUT NOCOPY NUMBER) IS
BEG N
n2 .= 20;
dbns_out put. put _line(nl); -- prints 10
n3 := 30;
dbns_out put.put _line(nl); -- prints 30
END;
BEG N
do_sonet hing(n, n, n);
dbns_out put. put _line(n); -- prints 20
END;
/

Example 8-9 Aliasing from Assigning Cursor Variables to Same Work Area

Because they are pointers, cursor variables also increase the possibility of aliasing. In
the following example, after the assignment, enp_cv2 is an alias of enp_cv1; both
point to the same query work area. The first fetch from enp_cv2 fetches the third row,
not the first, because the first two rows were already fetched from enp_cv1. The
second fetch from enp_cv?2 fails because enp_cv1 is closed.

PROCEDURE get _enp_data (
emp_cvl IN QUT EmpCur Typ,
enmp_cv2 IN OUT EnpCur Typ) IS
enp_rec enpl oyees¥RONYPE;
BEG N
OPEN enp_cvl FOR SELECT * FROM enpl oyees;
enp_cv2 := enp_cvl;

FETCH enp_cvl INTO enp_rec; -- fetches first row

FETCH enp_cvl INTO enp_rec; -- fetches second row

FETCH enp_cv2 INTO enp_rec; -- fetches third row

CLOSE enp_cvi;

FETCH enp_cv2 INTO enp_rec; -- raises |NVALID_CURSOR
END;

/

8-24 PL/SQL User's Guide and Reference

9

Using PL/SQL Packages

Goods which are not shared are not goods. —Fernando de Rojas

This chapter shows how to bundle related PL/SQL code and data into a package. The
package might include a set of procedures that forms an API, or a pool of type
definitions and variable declarations. The package is compiled and stored in the
database, where its contents can be shared by many applications.

This chapter contains these topics:

= WhatIsaPL/SQL Package? on page 9-2

= Advantages of PL/SQL Packages on page 9-3

= Understanding The Package Specification on page 9-4

= Understanding The Package Body on page 9-6

= Some Examples of Package Features on page 9-7

= Private Versus Public Items in Packages on page 9-11

= Opverloading Packaged Subprograms on page 9-11

« How Package STANDARD Defines the PL/SQL Environment on page 9-12
= Overview of Product-Specific Packages on page 9-12

= Guidelines for Writing Packages on page 9-13

= Separating Cursor Specs and Bodies with Packages on page 9-14

Using PL/SQL Packages 9-1

What Is a PL/SQL Package?

What Is a PL/SQL Package?

A package is a schema object that groups logically related PL/SQL types, variables,
and subprograms. Packages usually have two parts, a specification and a body;
sometimes the body is unnecessary. The specification (spec for short) is the interface to
the package. It declares the types, variables, constants, exceptions, cursors, and
subprograms that can be referenced from outside the package. The body defines the
queries for the cursors and the code for the subprograms.

You can think of the spec as an interface and of the body as a "black box." You can
debug, enhance, or replace a package body without changing the package spec.

To create package specs, use the SQL statement CREATE PACKACE. If necessary, a
CREATE PACKAGE BODY statement defines the package body.

The spec holds public declarations, which are visible to stored procedures and other
code outside the package. You must declare subprograms at the end of the spec after
all other items (except pragmas that name a specific function; such pragmas must
follow the function spec).

The body holds implementation details and private declarations, which are hidden
from code outside the package. Following the declarative part of the package body is
the optional initialization part, which holds statements that initialize package variables
and do any other one-time setup steps.

The AUTHI D clause determines whether all the packaged subprograms execute with
the privileges of their definer (the default) or invoker, and whether their unqualified
references to schema objects are resolved in the schema of the definer or invoker. For
more information, see "Using Invoker's Rights Versus Definer's Rights (AUTHID
Clause)" on page 8-15.

A call spec lets you map a package subprogram to a Java method or external C
function. The call spec maps the Java or C name, parameter types, and return type to
their SQL counterparts. To learn how to write Java call specs, see Oracle Database Java
Developer’s Guide. To learn how to write C call specs, see Oracle Database Application
Developer’s Guide - Fundamentals.

What Goes In a PL/SQL Package?

= "Get" and "Set" methods for the package variables, if you want to avoid letting
other procedures read and write them directly.

= Cursor declarations with the text of SQL queries. Reusing exactly the same query
text in multiple locations is faster than retyping the same query each time with
slight differences. It is also easier to maintain if you need to change a query that is
used in many places.

= Declarations for exceptions. Typically, you need to be able to reference these from
different procedures, so that you can handle exceptions within called
subprograms.

= Declarations for procedures and functions that call each other. You do not need to
worry about compilation order for packaged procedures and functions, making
them more convenient than standalone stored procedures and functions when
they call back and forth to each other.

= Declarations for overloaded procedures and functions. You can create multiple
variations of a procedure or function, using the same names but different sets of
parameters.

9-2 PL/SQL User's Guide and Reference

Advantages of PL/SQL Packages

= Variables that you want to remain available between procedure calls in the same
session. You can treat variables in a package like global variables.

« Type declarations for PL/SQL collection types. To pass a collection as a parameter
between stored procedures or functions, you must declare the type in a package so
that both the calling and called subprogram can refer to it.

Example of a PL/SQL Package

The example below packages a record type, a cursor, and two employment
procedures. The procedure hi r e_enpl oyee uses the sequence enpno_seq and the
function SYSDATE to insert a new employee number and hire date.

CREATE OR REPLACE PACKAGE enp_actions AS -- spec
TYPE EnpRecTyp |'S RECORD (enp_id INT, salary REAL);
CURSOR desc_sal ary RETURN EnmpRecTyp;

PROCEDURE hi re_enpl oyee (
ename VARCHAR,
job VARCHAR?,

ngr NUMBER,
sal NUMBER,
comm NUMBER,

dept no NUMBER);
PROCEDURE fire_enpl oyee (enp_id NUMBER);
END enp_acti ons;
/

CREATE OR REPLACE PACKAGE BODY enp_actions AS -- body
CURSOR desc_sal ary RETURN EnpRecTyp IS
SELECT enpno, sal FROM enp ORDER BY sal DESC,
PROCEDURE hi re_enpl oyee (
ename VARCHAR2,
job VARCHARZ,

myr NUMBER,

sal NUMBER,

comm NUMBER,

deptno NUMBER) | S
BEG N

I NSERT | NTO enp VALUES (enpno_seq. NEXTVAL, enane, job,
mgr, SYSDATE, sal, conm deptno);
END hi re_enpl oyee;

PROCEDURE fire_enpl oyee (enp_id NUMBER) IS
BEG N
DELETE FROM enp WHERE ermpno = enp_i d;
END fire_enpl oyee;
END enp_acti ons;
/

Only the declarations in the package spec are visible and accessible to applications.
Implementation details in the package body are hidden and inaccessible. You can
change the body (implementation) without having to recompile calling programs.

Advantages of PL/SQL Packages

Packages have a long history in software engineering, offering important features for
reliable, maintainable, reusable code, often in team development efforts for large
systems.

Using PL/SQL Packages 9-3

Understanding The Package Specification

Modularity

Packages let you encapsulate logically related types, items, and subprograms in a
named PL/SQL module. Each package is easy to understand, and the interfaces
between packages are simple, clear, and well defined. This aids application
development.

Easier Application Design

When designing an application, all you need initially is the interface information in the
package specs. You can code and compile a spec without its body. Then, stored
subprograms that reference the package can be compiled as well. You need not define
the package bodies fully until you are ready to complete the application.

Information Hiding

With packages, you can specify which types, items, and subprograms are public
(visible and accessible) or private (hidden and inaccessible). For example, if a package
contains four subprograms, three might be public and one private. The package hides
the implementation of the private subprogram so that only the package (not your
application) is affected if the implementation changes. This simplifies maintenance
and enhancement. Also, by hiding implementation details from users, you protect the
integrity of the package.

Added Functionality

Packaged public variables and cursors persist for the duration of a session. They can
be shared by all subprograms that execute in the environment. They let you maintain
data across transactions without storing it in the database.

Better Performance

When you call a packaged subprogram for the first time, the whole package is loaded
into memory. Later calls to related subprograms in the package require no disk I/0O.

Packages stop cascading dependencies and avoid unnecessary recompiling. For
example, if you change the body of a packaged function, Oracle does not recompile
other subprograms that call the function; these subprograms only depend on the
parameters and return value that are declared in the spec, so they are only recompiled
if the spec changes.

Understanding The Package Specification

The package specification contains public declarations. The declared items are
accessible from anywhere in the package and to any other subprograms in the same
schema. Figure 9-1 illustrates the scoping.

9-4 PL/SQL User's Guide and Reference

Understanding The Package Specification

Figure 9-1 Package Scope

(
i
procedure
package spec { package body < function
procedure
.
schema { .
function
package spec { package body { function
procedure
.
\other objects

The spec lists the package resources available to applications. All the information your
application needs to use the resources is in the spec. For example, the following
declaration shows that the function named f ac takes one argument of type | NTEGER
and returns a value of type | NTEGER:

FUNCTI ON fac (n INTEGER) RETURN | NTEGER, -- returns n!

That is all the information you need to call the function. You need not consider its
underlying implementation (whether it is iterative or recursive for example).

If a spec declares only types, constants, variables, exceptions, and call specs, the
package body is unnecessary. Only subprograms and cursors have an underlying
implementation. In the following example, the package needs no body because it
declares types, exceptions, and variables, but no subprograms or cursors. Such
packages let you define global variables—usable by stored procedures and functions
and triggers—that persist throughout a session.

CREATE PACKAGE trans_data AS -- bodiless package
TYPE TineRec 1S RECORD (
m nut es SVALLI NT,
hours SMALLINT);
TYPE TransRec |'S RECORD (
cat egory VARCHAR?,
account | NT,
anmount REAL,
time_of TineRec);
m ni mum _bal ance CONSTANT REAL : = 10.00;
nunmber _processed | NT;
insufficient_funds EXCEPTI ON;
END trans_dat a;
/

Referencing Package Contents

To reference the types, items, subprograms, and call specs declared within a package
spec, use dot notation:

package_nane. t ype_nane
package_narme. i tem name
package_name. subpr ogram nane
package_name. cal | _spec_name

Using PL/SQL Packages 9-5

Understanding The Package Body

You can reference package contents from database triggers, stored subprograms, 3GL
application programs, and various Oracle tools. For example, you might call the
packaged procedure hi r e_enpl oyee from SQL*Plus, as follows:

CALL enp_actions. hire_enpl oyee(' TATE', 'CLERK', ...);

The following example calls the same procedure from an anonymous block in a Pro*C
program. The actual parameters enp_nane and j ob_t i t | e are host variables.

EXEC SQL EXECUTE
BEG N
enp_actions. hire_enpl oyee(: enp_nane, :job_title, ...);

Restrictions

You cannot reference remote packaged variables, either directly or indirectly. For
example, you cannot call the a procedure through a database link if the procedure
refers to a packaged variable.

Inside a package, you cannot reference host variables.

Understanding The Package Body

The package body contains the implementation of every cursor and subprogram
declared in the package spec. Subprograms defined in a package body are accessible
outside the package only if their specs also appear in the package spec. If a
subprogram spec is not included in the package spec, that subprogram can only be
called by other subprograms in the same package.

To match subprogram specs and bodies, PL/SQL does a token-by-token comparison of
their headers. Except for white space, the headers must match word for word.
Otherwise, PL/SQL raises an exception, as the following example shows:

CREATE PACKAGE enp_actions AS

PROCEDURE cal c_bonus (date_hired enp. hiredat e%dYPE, ...);
END enp_acti ons;
/

CREATE PACKAGE BODY enp_actions AS

PROCEDURE cal c_bonus (date_hired DATE, ...) IS
- paraneter declaration raises an exception because ' DATE
- does not match 'enp. hiredatedYPE' word for word
BEG N ... END;
END enp_acti ons;
/

The package body can also contain private declarations, which define types and items
necessary for the internal workings of the package. The scope of these declarations is
local to the package body. Therefore, the declared types and items are inaccessible
except from within the package body. Unlike a package spec, the declarative part of a
package body can contain subprogram bodies.

Following the declarative part of a package body is the optional initialization part,
which typically holds statements that initialize some of the variables previously
declared in the package.

9-6 PL/SQL User's Guide and Reference

Some Examples of Package Features

The initialization part of a package plays a minor role because, unlike subprograms, a
package cannot be called or passed parameters. As a result, the initialization part of a
package is run only once, the first time you reference the package.

Remember, if a package spec declares only types, constants, variables, exceptions, and
call specs, the package body is unnecessary. However, the body can still be used to
initialize items declared in the package spec.

Some Examples of Package Features

Consider the following package, named enp_act i ons. The package spec declares the
following types, items, and subprograms:

= Types EmpRecTyp and Dept RecTyp

« Cursordesc_sal ary

= Exceptioninval i d_sal ary

« Functions hi re_enpl oyee and nt h_hi ghest _sal ary
« Proceduresfire_enpl oyeeandrai se_sal ary

After writing the package, you can develop applications that reference its types, call its
subprograms, use its cursor, and raise its exception. When you create the package, it is
stored in an Oracle database for use by any application that has execute privilege on
the package.

CREATE PACKAGE enp_actions AS
/* Declare externally visible types, cursor, exception. */
TYPE EnpRecTyp |'S RECORD (enp_id INT, salary REAL);
TYPE Dept RecTyp |'S RECORD (dept_id INT, |ocation VARCHARZ);
CURSOR desc_sal ary RETURN EnmpRecTyp;
invalid_salary EXCEPTION;

/* Declare externally callable subprograns. */
FUNCTI ON hi re_enpl oyee (

ename VARCHARZ,

job VARCHAR,

ngr REAL,
sal REAL,
conm REAL,

deptno REAL) RETURN | NT;
PROCEDURE fire_enpl oyee (enp_id INT);
PROCEDURE rai se_salary (enp_id INT, grade INT, amount REAL);
FUNCTI ON nt h_hi ghest _salary (n I NT) RETURN EnpRecTyp;
END enp_acti ons;
/

CREATE PACKACGE BODY enp_actions AS
nunber _hired INT; -- visible only in this package

/* Fully define cursor specified in package. */
CURSOR desc_sal ary RETURN EnmpRecTyp | S
SELECT enpno, sal FROM enp ORDER BY sal DESC,

[* Fully define subprogranms specified in package. */
FUNCTI ON hi re_enpl oyee (
enane VARCHAR2,

j ob VARCHAR2,
ngr REAL,
sal REAL,

Using PL/SQL Packages 9-7

Some Examples of Package Features

comm REAL,
deptno REAL) RETURN INT IS
new_enpno | NT;
BEG N
SELECT enpno_seq. NEXTVAL | NTO new_enpno FROM dual ;
I NSERT | NTO enp VALUES (new_enpno, ename, job,
mgr, SYSDATE, sal, conm deptno);
nunber _hired := nunber _hired + 1;
RETURN new_enpno;
END hi re_enpl oyee;

PROCEDURE fire_enpl oyee (enp_id INT) IS
BEG N

DELETE FROM enp WHERE enpno = enp_i d;
END fire_enpl oyee;

/* Define local function, available only inside package. */
FUNCTI ON sal _ok (rank INT, salary REAL) RETURN BOCLEAN IS
m n_sal REAL;
max_sal REAL;
BEG N
SELECT losal, hisal INTO min_sal, max_sal FROM sal grade
WHERE grade = rank;
RETURN (salary >= min_sal) AND (salary <= max_sal);
END sal _ok;

PROCEDURE rai se_salary (enp_id INT, grade INT, amount REAL) IS
sal ary REAL;
BEG N
SELECT sal INTO salary FROM enp WHERE enpno = enp_i d;
| F sal _ok(grade, salary + ampunt) THEN
UPDATE enp SET sal = sal + amount WHERE enpno = enp_id;
ELSE
RAI SE invalid_salary;
END | F;
END rai se_sal ary;

FUNCTI ON nt h_hi ghest _sal ary (n I NT) RETURN EnpRecTyp IS
enp_rec EnpRecTyp;
BEG N
OPEN desc_sal ary;
FORi IN1..n LOOP
FETCH desc_sal ary I NTO enp_rec;
END LOOP;
CLOSE desc_sal ary;
RETURN enp_rec;
END nt h_hi ghest _sal ary;

BEGN -- initialization part starts here
I NSERT I NTO enp_audit VALUES (SYSDATE, USER, 'EMP_ACTIONS');
nunber _hired := 0;

END enp_acti ons;

/

Remember, the initialization part of a package is run just once, the first time you
reference the package. In the last example, only one row is inserted into the database
table enp_audi t, and the variable nunber _hi r ed is initialized only once.

Every time the procedure hi r e_enpl oyee is called, the variable nunber _hi red is
updated. However, the count kept by nunber _hi r ed is session specific. That is, the

9-8 PL/SQL User's Guide and Reference

Some Examples of Package Features

count reflects the number of new employees processed by one user, not the number
processed by all users.

The following example is a package that handles typical bank transactions. Assume
that debit and credit transactions are entered after business hours through automatic
teller machines, then applied to accounts the next morning.

CREATE PACKAGE bank_transactions AS
/* Declare externally visible constant. */
m ni mum bal ance CONSTANT REAL := 100. 00;
/* Declare externally callable procedures. */
PROCEDURE appl y_transactions;
PROCEDURE enter _transaction (
acct | NT,
kind CHAR
anmount REAL);
END bank_transacti ons;
/

CREATE PACKAGE BODY bank_transactions AS
/* Declare global variable to hold transaction status. */
new status VARCHAR2(70) := "'Unknown';

/* Use forward declarations because apply_transactions
calls credit_account and debit_account, which are not
yet declared when the calls are nade. */

PROCEDURE credit_account (acct INT, credit REAL);

PROCEDURE debit _account (acct |NT, debit REAL);

/* Fully define procedures specified in package. */
PROCEDURE appl y_transactions IS
/* Apply pending transactions in transactions table
to accounts table. Use cursor to fetch rows. */
CURSOR trans_cursor IS
SELECT acct _id, kind, anpunt FROM transactions
VWHERE status = ' Pending'
ORDER BY tinme_tag
FOR UPDATE OF status; -- to lock rows
BEG N
FOR trans IN trans_cursor LOOP
IF trans.kind ='D THEN
debit _account(trans.acct_id, trans.anmount);
ELSIF trans.kind = 'C THEN
credit_account(trans.acct_id, trans.amount);
ELSE
new status := 'Rejected' ;
END | F;
UPDATE transactions SET status = new status
WHERE CURRENT OF trans_cursor;
END LOOP;
END appl y_transacti ons;

PROCEDURE enter _transaction (
/* Add a transaction to transactions table. */

acct INT,

kind CHAR

amount REAL) |S
BEG N

| NSERT | NTO transactions
VALUES (acct, kind, amount, 'Pending', SYSDATE);
END enter_transacti on;

Using PL/SQL Packages 9-9

Some Examples of Package Features

/* Define |ocal procedures, available only in package.

PROCEDURE do_j ournal _entry (
/* Record transaction in journal. */

acct | NT,

ki nd CHAR,

new bal REAL) IS
BEG N

I NSERT | NTO j our nal
VALUES (acct, kind, new_ bal, sysdate);
IF kind ="'D THEN

new status := 'Debit applied ;
ELSE

new status := 'Credit applied;
END | F;

END do_j ournal _entry;

PROCEDURE credit_account (acct INT, credit REAL) IS
/* Credit account unless account nunber is bad. */
ol d_bal ance REAL;
new bal ance REAL;
BEG N
SELECT bal ance I NTO ol d_bal ance FROM accounts
VWHERE acct _id = acct
FOR UPDATE OF balance; -- to lock the row
new _bal ance := ol d_bal ance + credit;
UPDATE accounts SET bal ance = new bal ance
WHERE acct _id = acct;
do_journal _entry(acct, 'C, new_bal ance);

EXCEPTI ON
VWHEN NO DATA FOUND THEN
new status := 'Bad account nunber';

WHEN OTHERS THEN
new status := SUBSTR(SQLERRM 1, 70);
END credit_account;

PROCEDURE debit _account (acct INT, debit REAL) IS
/* Debit account unless account nunber is bad or
account has insufficient funds. */
ol d_bal ance REAL;
new_bal ance REAL;
insufficient_funds EXCEPTI ON;
BEG N
SELECT bal ance I NTO ol d_bal ance FROM account s
WHERE acct _id = acct
FOR UPDATE OF bal ance; -- to lock the row
new_bal ance : = ol d_bal ance - debit;
| F new_bal ance >= mi ni num bal ance THEN
UPDATE accounts SET bal ance = new bal ance
WHERE acct id = acct;
do_journal _entry(acct, 'D, new bal ance);
ELSE
RAI SE i nsufficient_funds;
END | F;
EXCEPTI ON
VWHEN NO_DATA FOUND THEN
new status := 'Bad account nunber';
WHEN i nsufficient_funds THEN
new status := 'Insufficient funds';
WHEN OTHERS THEN

9-10 PL/SQL User's Guide and Reference

*/

Overloading Packaged Subprograms

new status := SUBSTR(SQLERRM 1, 70);
END debit _account;
END bank_transacti ons;
/

In this package, the initialization part is not used.

Private Versus Public Items in Packages

In the package enp_act i ons, the package body declares a variable named nunber _
hi r ed, which is initialized to zero. Items declared in the body are restricted to use
within the package. PL/SQL code outside the package cannot reference the variable
nunber _hi r ed. Such items are called private.

Items declared in the spec of enp_act i ons, such as the exceptioni nval i d_sal ary,
are visible outside the package. Any PL/SQL code can reference the exception
i nval i d_sal ary. Such items are called public.

To maintain items throughout a session or across transactions, place them in the
declarative part of the package body. For example, the value of nunber _hi r ed is kept
between calls to hi r e_enpl oyee within the same session. The value is lost when the
session ends.

To make the items public, place them in the package spec. For example, the constant
m ni num_bal ance declared in the spec of the package bank_t r ansacti ons is
available for general use.

Overloading Packaged Subprograms

PL/SQL allows two or more packaged subprograms to have the same name. This
option is useful when you want a subprogram to accept similar sets of parameters that
have different datatypes. For example, the following package defines two procedures
named j our nal i ze:

CREATE PACKAGE journal _entries AS

PROCEDURE j ournal i ze (amount REAL, trans_date VARCHAR2);
PROCEDURE j ournal i ze (amount REAL, trans_date INT);

END journal _entri es;

/

CREATE PACKAGE BODY journal _entries AS

PROCEDURE j ournal i ze (amount REAL, trans_date VARCHAR2) IS
BEG N
I NSERT | NTO j our nal
VALUES (amount, TO DATE(trans_date, ' DD MON-YYYY'));
END journali ze;

PROCEDURE j ournal i ze (amount REAL, trans_date INT) IS
BEG N
I NSERT | NTO j our nal
VALUES (amount, TO DATE(trans_date, 'J'));
END journali ze;
END journal _entries;
/

The first procedure accepts t r ans_dat e as a character string, while the second
procedure accepts it as a number (the Julian day). Each procedure handles the data

Using PL/SQL Packages 9-11

How Package STANDARD Defines the PL/SQL Environment

appropriately. For the rules that apply to overloaded subprograms, see "Overloading
Subprogram Names" on page 8-9.

How Package STANDARD Defines the PL/SQL Environment

A package named STANDARD defines the PL/SQL environment. The package spec
globally declares types, exceptions, and subprograms, which are available
automatically to PL/SQL programs. For example, package STANDARD declares
function ABS, which returns the absolute value of its argument, as follows:

FUNCTI ON ABS (n NUMBER) RETURN NUMBER

The contents of package STANDARD are directly visible to applications. You do not
need to qualify references to its contents by prefixing the package name. For example,
you might call ABS from a database trigger, stored subprogram, Oracle tool, or 3GL
application, as follows:

abs_diff := ABS(x - v);

If you declare your own version of ABS, your local declaration overrides the global
declaration. You can still call the built-in function by specifying its full name:

abs_diff := STANDARD. ABS(Xx - V);

Most built-in functions are overloaded. For example, package STANDARD contains the
following declarations:

FUNCTI ON TO CHAR (right DATE) RETURN VARCHARY;

FUNCTI ON TO CHAR (I eft NUVBER) RETURN VARCHARZ;

FUNCTI ON TO CHAR (I eft DATE, right VARCHAR2) RETURN VARCHARZ:
FUNCTI ON TO CHAR (left NUMBER right VARCHAR2) RETURN VARCHARZ;

PL/SQL resolves a call to TO_CHAR by matching the number and datatypes of the
formal and actual parameters.

Overview of Product-Specific Packages

Oracle and various Oracle tools are supplied with product-specific packages that
define APIs you can call from PL/SQL, SQL, Java, or other programming
environments. Here we mention a few of the more widely used ones. For more
information, see PL/SQL Packages and Types Reference.

About the DBMS_ALERT Package

Package DBM5_ALERT lets you