
Oracle® Call Interface
Programmer's Guide

10g Release 1 (10.1)

Part No. B10779-01

December 2003

Oracle Call Interface Programmer's Guide, 10g Release 1 (10.1)

Part No. B10779-01

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.

Primary Author: Jack Melnick

Contributors: A. Ahluwalia, C. Baird, A. Bande, D. Banerjee, S. Banerjee, M. Bastawala, E. Belden, Jenny
Chai, S. Chandiramani, S. Chandrasekar, Thomas H. Chang, D. Chatterjee, D. Chiba, L. Chidambaran, D.
Frumkin, J. Greenberg, W. He, N. Ikeda, S. Kaluskar, R. Kasamsetty, H. Kelly, S. Kotsovolos, S.
Krishnaswamy, Geoff Lee, R. Leyderman, Annie Liu, K. Mohan, E. Paapanen, R. Pingte, D. Saha, H.
Slattery, Steven Sun, A. Tarachandani, R. Thammaiah, B. Thome, B. Trute, A. Tsukerman, Wei Wang,
Daniel M. Wong, Longying Zhao

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, PL/SQL, Pro*C/C++, Pro*COBOL,
Pro*FORTRAN, Oracle Store, Oracle7, and SQL*Net are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xxxv

Preface... xxxvii

Audience ... xxxviii
Organization... xxxviii
Related Documentation .. xlii
Conventions... xliv
Documentation Accessibility ... xlvii

What's New in Oracle Call Interface? ... xlix

New Features in Oracle Call Interface Release 10.1.. l
Oracle9i Release 2 (9.2) New Features in Oracle Call Interface .. lii
Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interface .. liv
Oracle9i Release 9.0.0 New Features in Oracle Call Interface .. lvi

Volume 1

Part I OCI Relational Concepts

1 Introduction and Upgrading

Overview of OCI... 1-2
Advantages of OCI ... 1-3
Building an OCI Application .. 1-3
Parts of OCI ... 1-4

iv

Procedural and Non-Procedural Elements ... 1-4
Object Support... 1-5
SQL Statements ... 1-6
Encapsulated Interfaces ... 1-11
Simplified User Authentication and Password Management.. 1-11
Extensions to Improve Application Performance and Scalability....................................... 1-12
OCI Object Support .. 1-13
Client-Side Object Cache ... 1-13
Associative and Navigational Interfaces ... 1-13
OCI Runtime Environment for Objects ... 1-14
Type Management, Mapping and Manipulation Functions .. 1-15
Object Type Translator... 1-15
OCI Support for Oracle Streams Advanced Queuing... 1-16
XA Library Support .. 1-16

Compatibility and Upgrading .. 1-16
Simplified Upgrading of Existing OCI Release 7 Applications ... 1-16
Statically-Linked and Dynamically-Linked Applications .. 1-17
Obsolete OCI Routines... 1-18
OCI Routines Not Supported.. 1-20
Compatibility Between Different Releases of OCI and Servers... 1-20
Upgrading OCI ... 1-21

OCI Instant Client... 1-22
Benefits of Instant Client.. 1-23
OCI Instant Client Installation Process.. 1-23
When to Use Instant Client ... 1-24
Patching Instant Client Shared Libraries... 1-25
Regeneration of Data Shared Library .. 1-25
Database Connection Names for OCI Instant Client... 1-25
Environment Variables for OCI Instant Client... 1-26

2 OCI Programming Basics

Overview of OCI Programming ... 2-2
OCI Program Structure .. 2-2
OCI Data Structures ... 2-4
Handles ... 2-4

v

Allocating and Freeing Handles... 2-6
Environment Handle.. 2-8
Error Handle.. 2-8
Service Context and Associated Handles.. 2-8
Statement, Bind, and Define Handles.. 2-10
Describe Handle.. 2-10
Complex Object Retrieval Handle.. 2-11
Thread Handle .. 2-11
Subscription Handle... 2-11
Direct Path Handles ... 2-11
Connection Pool Handle.. 2-12
Handle Attributes ... 2-12

OCI Descriptors .. 2-13
Snapshot Descriptor ... 2-15
LOB and BFILE Locators ... 2-15
Parameter Descriptor ... 2-16
ROWID Descriptor ... 2-16
Date, Datetime, and Interval Descriptors ... 2-17
Complex Object Descriptor ... 2-17
Advanced Queuing Descriptors... 2-17
User Memory Allocation ... 2-18

OCI Programming Steps ... 2-18
OCI Environment Initialization... 2-19

Creating the OCI Environment... 2-20
Allocating Handles and Descriptors.. 2-21
Application Initialization, Connection, and Session Creation ... 2-21
Processing SQL Statements in OCI .. 2-24

Commit or Rollback ... 2-24
Terminating the Application .. 2-25
Error Handling in OCI ... 2-26

Return and Error Codes for Data ... 2-27
Functions Returning Other Values .. 2-28

Additional Coding Guidelines .. 2-29
Parameter Types ... 2-29
Inserting Nulls into a Column .. 2-29

vi

Indicator Variables.. 2-30
Canceling Calls.. 2-32
Positioned Updates and Deletes... 2-33
Reserved Words .. 2-33

Nonblocking Mode in OCI ... 2-35
Using PL/SQL in an OCI Program... 2-37
OCI Globalization Support... 2-39

Client Character Set Control from OCI ... 2-39
Code Example for Character Set Control in OCI ... 2-39
Character Control and OCI Interfaces ... 2-40
Character Length Semantics in OCI... 2-40
Character Set Support in OCI ... 2-41
Other OCI Globalization Support Functions .. 2-41
Getting Locale Information in OCI .. 2-41
Example of Getting Locale Information in OCI ... 2-42
Manipulating Strings in OCI... 2-43
Example of Manipulating Strings in OCI.. 2-43
Example of Classifying Characters in OCI.. 2-44
Converting Character Sets in OCI .. 2-45
Example of Converting Character Sets in OCI ... 2-45
OCI Messaging Functions.. 2-46
Example of Retrieving a Message from a Text Message File ... 2-47
lmsgen Utility .. 2-47

3 Datatypes

Oracle Datatypes ... 3-2
Using External Datatype Codes.. 3-4

Internal Datatypes .. 3-4
LONG, RAW, LONG RAW, VARCHAR2 .. 3-6
Character Strings and Byte Arrays... 3-6
UROWID.. 3-6
BINARY_FLOAT and BINARY_DOUBLE ... 3-7

External Datatypes .. 3-8
VARCHAR2... 3-10
NUMBER.. 3-11

vii

INTEGER ... 3-12
FLOAT.. 3-13
STRING .. 3-13
VARNUM .. 3-14
LONG ... 3-15
VARCHAR .. 3-15
 DATE... 3-15
RAW ... 3-16
VARRAW... 3-17
LONG RAW .. 3-17
UNSIGNED ... 3-17
LONG VARCHAR.. 3-17
LONG VARRAW.. 3-18
CHAR ... 3-18
CHARZ .. 3-19
Named Datatypes: Object, VARRAY, Nested Table ... 3-20
REF.. 3-20
ROWID Descriptor ... 3-21
LOB Descriptor ... 3-21
Datetime and Interval Datatype Descriptors.. 3-24
Native Float and Native Double... 3-26
C Object-Relational Datatype Mappings .. 3-26

Data Conversions.. 3-27
Data Conversions for LOB Datatype Descriptors.. 3-29
Data Conversions for Datetime and Interval Datatypes... 3-29
Datetime and Date Upgrading Rules .. 3-31
Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI 3-31

Typecodes ... 3-33
Relationship Between SQLT and OCI_TYPECODE Values... 3-35

Definitions in oratypes.h ... 3-37

4 Using SQL Statements in OCI

Overview of SQL Statement Processing .. 4-2
Preparing Statements ... 4-4

Using Prepared Statements on Multiple Servers ... 4-5

viii

Binding Placeholders in OCI.. 4-5
Executing Statements ... 4-7

Execution Snapshots... 4-8
Execution Modes of OCIStmtExecute() ... 4-8

Describing Select-list Items .. 4-11
Implicit Describe ... 4-12
Explicit Describe of Queries .. 4-15

Defining Output Variables in OCI .. 4-16
Fetching Results .. 4-16

Fetching LOB Data.. 4-17
Setting Prefetch Count ... 4-17

Scrollable Cursors in OCI ... 4-18
Example of Access on a Scrollable Cursor .. 4-20

5 Binding and Defining in OCI

Overview of Binding in OCI .. 5-2
Named Binds and Positional Binds.. 5-3
OCI Array Interface .. 5-4
Binding Placeholders in PL/SQL ... 5-4
Steps Used in OCI Binding.. 5-6
PL/SQL Block in an OCI Program... 5-7

Advanced Bind Operations in OCI ... 5-9
Binding LOBs .. 5-10
Binding in OCI_DATA_AT_EXEC Mode ... 5-16
Binding Ref Cursor Variables ... 5-17

Overview of Defining in OCI ... 5-17
Steps Used in OCI Defining .. 5-18
Advanced OCI Defines .. 5-19

Advanced Define Operations in OCI .. 5-20
Defining LOB Output Variables ... 5-20
Defining PL/SQL Output Variables .. 5-22
Defining for a Piecewise Fetch.. 5-22

Binding and Defining Arrays of Structures in OCI ... 5-23
Skip Parameters .. 5-23
OCI Calls Used with Arrays of Structures .. 5-25

ix

Arrays of Structures and Indicator Variables... 5-25
DML with RETURNING Clause in OCI.. 5-25

Using DML with RETURNING Clause... 5-26
Binding RETURNING...INTO variables ... 5-27
OCI Error Handling ... 5-28
DML with RETURNING REF...INTO Clause in OCI.. 5-28
Additional Notes About OCI Callbacks.. 5-30
 Array Interface for DML RETURNING Statements in OCI .. 5-30

Character Conversion in OCI Binding and Defining .. 5-30
Choosing Character Set.. 5-30
Setting Client Character Sets in OCI.. 5-32
Using OCI_ATTR_MAXDATA_SIZE Attribute .. 5-33
Using OCI_ATTR_MAXCHAR_SIZE Attribute .. 5-33
Buffer Expansion During OCI Binding ... 5-34
Constraint Checking During Defining .. 5-35
General Compatibility Issues for Character Length Semantics in OCI 5-36

PL/SQL REF CURSORs and Nested Tables in OCI ... 5-39
Runtime Data Allocation and Piecewise Operations in OCI... 5-40

Valid Datatypes for Piecewise Operations ... 5-41
Types of Piecewise Operations... 5-41
Providing INSERT or UPDATE Data at Runtime.. 5-42
Piecewise Operations with PL/SQL.. 5-45
Providing FETCH Information at Runtime .. 5-45
Piecewise Binds and Defines for LOBs.. 5-47

6 Describing Schema Metadata

Using OCIDescribeAny() .. 6-2
Limitations on OCIDescribeAny() ... 6-4
Notes on Types and Attributes... 6-4

Parameter Attributes .. 6-5
Table Or View Parameters .. 6-7
Procedure, Function, Subprogram Attributes .. 6-8
Package Attributes.. 6-8
Type Attributes ... 6-8
Type Attribute Attributes.. 6-10

x

Type Method Attributes .. 6-11
Collection Attributes .. 6-12
Synonym Attributes ... 6-14
Sequence Attributes.. 6-14
Column Attributes.. 6-15
Argument and Result Attributes .. 6-17
List Attributes.. 6-19
Schema Attributes... 6-19
Database Attributes .. 6-20
Rule Attributes .. 6-21
Rule Set Attributes.. 6-21
Evaluation Context Attributes .. 6-22
Table Alias Attributes .. 6-22
Variable Type Attributes ... 6-23
Name Value Attributes .. 6-23

Character Length Semantics Support in Describing.. 6-23
Implicit Describing ... 6-24
Explicit Describing.. 6-24

Examples Using OCIDescribeAny().. 6-25
Retrieving Column Datatypes for a Table... 6-25
Describing the Stored Procedure.. 6-27
Retrieving Attributes of an Object Type.. 6-29
Retrieving the Collection Element's Datatype of a Named Collection Type 6-31
Describing with Character Length Semantics .. 6-33

7 LOB and BFILE Operations

Using OCI Functions for LOBs .. 7-2
Creating and Modifying Persistent LOBs .. 7-2
Associating a BFILE in a Table with an Operating System File .. 7-3
LOB Attributes of an Object ... 7-3

Writing to a LOB Attribute of an Object.. 7-4
Transient Objects with LOB Attributes ... 7-4

Array Interface for LOBs ... 7-4
Using LOBs of Size Greater than 4 GB ... 7-5

New Functions for the Increased LOB Sizes... 7-6

xi

Compatibility and Migration.. 7-7
LOB and BFILE Functions in OCI ... 7-10

Improving LOB Read/Write Performance ... 7-10
LOB Buffering Functions... 7-11
Functions for Opening and Closing LOBs .. 7-12
LOB Read and Write Callbacks .. 7-14

Temporary LOB Support ... 7-17
Creating and Freeing Temporary LOBs .. 7-18
Temporary LOB Durations ... 7-19
Take Care When Assigning Pointers ... 7-20
Temporary LOB Example.. 7-20

8 Managing Scalable Platforms

OCI Support for Transactions .. 8-2
Levels of Transactional Complexity .. 8-2

Simple Local Transactions... 8-3
Global Transactions.. 8-3
Transaction Examples .. 8-8
Initialization Parameters.. 8-8

Password and Session Management ... 8-10
OCI Authentication Management.. 8-10
OCI Password Management ... 8-12
OCI Session Management ... 8-12

Middle-Tier Applications in OCI .. 8-13
OCI Attributes for Middle-Tier Applications... 8-14
OCI Middle-Tier Example... 8-17
End-to-End Application Tracing .. 8-20

Externally Initialized Context in OCI... 8-21
Externally Initialized Context Attributes in OCI ... 8-22
Using OCISessionBegin() with an Externally initialized Context 8-23

9 OCI Programming Advanced Topics

Overview of OCI Multithreaded Development ... 9-2
Advantages of OCI Thread Safety ... 9-2
OCI Thread Safety and Three-Tier Architectures.. 9-3

xii

Implementing Thread Safety... 9-3
The OCIThread Package.. 9-4

Initialization and Termination .. 9-6
Passive Threading Primitives.. 9-7
Active Threading Primitives ... 9-9

Connection Pooling in OCI... 9-10
OCI Connection Pooling Concepts... 9-10
OCI Calls for Connection Pooling .. 9-12
Examples of OCI Connection Pooling ... 9-17

Session Pooling in OCI.. 9-17
Functionality of OCI Session Pooling .. 9-18
Homogeneous and Heterogeneous Session Pools ... 9-19
Using Tags in Session Pools .. 9-19
OCI Handles for Session Pooling ... 9-19
Using OCI Session Pooling.. 9-20
OCI Calls for Session Pooling ... 9-21
Example of OCI Session Pooling .. 9-23

When to Use Connection Pooling, Session Pooling, or Neither .. 9-23
Functions for Session Creation ... 9-24
Choosing Between Different Types of OCI Sessions... 9-26

Statement Caching in OCI .. 9-27
Statement Caching without Session Pooling in OCI ... 9-27
Statement Caching with Session Pooling in OCI ... 9-28
Rules for Statement Caching in OCI .. 9-29
OCI Statement Caching Code Example... 9-30

User-Defined Callback Functions in OCI .. 9-30
Registering User Callbacks in OCI... 9-31
OCI Callbacks from External Procedures.. 9-40

Application Failover Callbacks in OCI .. 9-41
Failover Callback Overview.. 9-41
Failover Callback Structure and Parameters .. 9-42
Failover Callback Registration.. 9-43
Failover Callback Example.. 9-43
Handling OCI_FO_ERROR ... 9-45

OCI and Streams Advanced Queuing... 9-48

xiii

OCI Streams Advanced Queuing Functions .. 9-48
OCI Streams Advanced Queuing Descriptors ... 9-49
Streams Advanced Queuing in OCI Versus PL/SQL ... 9-50

Publish-Subscribe Notification in OCI .. 9-54
Publish-Subscribe Registration Functions in OCI.. 9-56
Notification Callback in OCI... 9-61
Notification Procedure... 9-62
Publish-Subscribe Direct Registration Example .. 9-63
Publish-Subscribe LDAP Registration Example .. 9-69

Part II OCI Object Concepts

10 OCI Object-Relational Programming

OCI Object Overview .. 10-2
Working with Objects in OCI .. 10-3

Basic Object Program Structure.. 10-3
 Persistent Objects, Transient Objects, and Values .. 10-5

Developing an OCI Object Application... 10-7
Representing Objects in C Applications.. 10-8
Initializing Environment and Object Cache ... 10-9
Making Database Connections ... 10-10
Retrieving an Object Reference from the Server ... 10-10
Pinning an Object.. 10-11
Manipulating Object Attributes.. 10-13
Marking Objects and Flushing Changes ... 10-14
Fetching Embedded Objects.. 10-15
Object Meta-Attributes .. 10-17
Complex Object Retrieval.. 10-21
COR Prefetching ... 10-25
OCI Versus SQL Access to Objects .. 10-28
Pin Count and Unpinning ... 10-29
NULL Indicator Structure ... 10-30
Creating Objects.. 10-33
Freeing and Copying Objects.. 10-35
Object Reference and Type Reference ... 10-35

xiv

Creating Objects Based on Object Views or User-Defined OIDs....................................... 10-35
Error Handling in Object Applications ... 10-37

Type Inheritance.. 10-37
Substitutability .. 10-38
NOT INSTANTIABLE Types and Methods ... 10-39
OCI Support for Type Inheritance.. 10-39
OTT Support for Type Inheritance... 10-41

Type Evolution... 10-41

11 Object-Relational Datatypes in OCI

Overview of OCI Functions for Objects... 11-2
Mapping Oracle Datatypes to C... 11-2

OCI Type Mapping Methodology.. 11-4
Manipulating C Datatypes with OCI.. 11-4

Precision of Oracle Number Operations ... 11-6
Date (OCIDate).. 11-6

Date Example .. 11-6
Datetime and Interval (OCIDateTime, OCIInterval)... 11-8

Datetime Functions... 11-9
Datetime Example... 11-10
Interval Functions ... 11-11

Number (OCINumber) .. 11-13
Number Example.. 11-13

Fixed or Variable-Length String (OCIString) .. 11-15
String Functions .. 11-15
String Example .. 11-16

Raw (OCIRaw)... 11-16
Raw Functions... 11-16
Raw Example... 11-17

Collections (OCITable, OCIArray, OCIColl, OCIIter)... 11-17
Generic Collection Functions .. 11-18
Collection Data Manipulation Functions .. 11-18
Collection Scanning Functions.. 11-19
Varray/Collection Iterator Example.. 11-19
Nested Table Manipulation Functions .. 11-21

xv

Nested Table Locators.. 11-22
Multilevel Collection Types ... 11-22

Multilevel Collection Type Example ... 11-23
REF (OCIRef) ... 11-24

REF Manipulation Functions .. 11-24
REF Example ... 11-24

Object Type Information Storage and Access ... 11-25
Descriptor Objects .. 11-25

AnyType, AnyData and AnyDataSet Interfaces ... 11-26
Type Interfaces.. 11-27
OCIAnyData Interfaces.. 11-30
NCHAR Typecodes for OCIAnyData Functions... 11-31
OCIAnyDataSet Interfaces .. 11-32

Binding Named Datatypes.. 11-32
Named Datatype Binds.. 11-32
 Binding REFs .. 11-33
Information for Named Datatype and REF Binds ... 11-34

Defining Named Datatypes .. 11-35
Defining Named Datatype Output Variables .. 11-35
Defining REF Output Variables.. 11-35
Information for Named Datatype and REF Defines, and PL/SQL OUT Binds 11-36

Binding And Defining Oracle C Datatypes ... 11-38
Bind and Define Examples .. 11-39
Salary Update Examples.. 11-41

SQLT_NTY Bind/Define Example ... 11-44
Bind Example .. 11-44
Define Example... 11-46

12 Direct Path Loading

Direct Path Loading Overview... 12-2
Datatypes Supported for Direct Path Loading... 12-3
Direct Path Handles ... 12-4
Direct Path Interface Functions .. 12-8
Limitations and Restrictions of the Direct Path Load Interface... 12-9
Direct Path Load Example for Scalar Columns.. 12-9

xvi

Using a Date Cache in Direct Path Loading of Dates in OCI ... 12-15
Direct Path Loading of Object Types .. 12-17

Direct Path Loading of Nested Tables ... 12-17
Direct Path Loading of Column Objects.. 12-19
Direct Path Loading of SQL String Columns.. 12-22
Direct Path Loading of REF Columns.. 12-25
NOT FINAL Object and REF Columns ... 12-30
Direct Path Loading of Object Tables .. 12-32
Direct Path Loading a NOT FINAL Object Table .. 12-33

Direct Path Loading in Pieces... 12-34
Loading Object Types in Pieces .. 12-34

Direct Path Context Handles and Attributes for Object Types.. 12-35
Direct Path Context Attributes ... 12-35
Direct Path Function Context and Attributes ... 12-36
Direct Path Column Parameter Attributes.. 12-40
Direct Path Function Column Array Handle for Non-scalar Columns............................ 12-43

13 Object Advanced Topics in OCI

The Object Cache and Memory Management... 13-2
Cache Consistency and Coherency .. 13-4
Object Cache Parameters ... 13-5
Object Cache Operations ... 13-6
Loading and Removing Object Copies .. 13-7
Making Changes to Object Copies ... 13-10
Synchronizing Object Copies with Server... 13-11
Object Locking... 13-13
Commit and Rollback in Object Applications .. 13-15
Object Duration... 13-15
Memory Layout of an Instance ... 13-17

Object Navigation ... 13-18
Simple Object Navigation.. 13-18

OCI Navigational Functions ... 13-20
Pin/Unpin/Free Functions ... 13-20
Flush and Refresh Functions... 13-21
Mark and Unmark Functions.. 13-21

xvii

Object Meta-Attribute Accessor Functions ... 13-22
Other Functions .. 13-22

Type Evolution and the Object Cache .. 13-23
OCI Support for XML .. 13-23

XML Context ... 13-24
XML Data on the Server .. 13-24
Using OCI XML DB Functions ... 13-24

14 Using the Object Type Translator with OCI

OTT Overview... 14-2
What Is the Object Type Translator? ... 14-2

Creating Types in the Database.. 14-5
Invoking OTT.. 14-5

The OTT Command Line .. 14-6
OTT Command Line Invocation Example .. 14-6

The Intype File .. 14-9
OTT Datatype Mappings .. 14-10

Mapping Object Datatypes to C ... 14-12
OTT Type Mapping Example ... 14-13
Null Indicator Structs... 14-16
OTT Support for Type Inheritance... 14-17

The Outtype File ... 14-21
Using OTT with OCI Applications ... 14-22

Accessing and Manipulating Objects with OCI... 14-23
Calling the Initialization Function ... 14-24
Tasks of the Initialization Function.. 14-26

OTT Reference .. 14-26
OTT Command Line Syntax ... 14-27
OTT Parameters .. 14-28
Where OTT Parameters Can Appear... 14-33
Structure of the Intype File.. 14-34
Nested Included File Generation ... 14-36
SCHEMA_NAMES Usage... 14-38
Default Name Mapping... 14-41
OTT Restriction on File Name Comparison ... 14-42

xviii

Volume 2

Part III OCI Reference

15 OCI Relational Functions

Introduction to the Relational Functions ... 15-2
Connect, Authorize, and Initialize Functions ... 15-4

OCIConnectionPoolCreate() ... 15-5
OCIConnectionPoolDestroy() ... 15-8
OCIEnvCreate()... 15-9
OCIEnvInit() .. 15-12
OCIEnvNlsCreate()... 15-14
OCIInitialize().. 15-18
OCILogoff().. 15-21
OCILogon() .. 15-22
OCILogon2() .. 15-24
OCIServerAttach() .. 15-27
OCIServerDetach().. 15-30
OCISessionBegin() .. 15-31
OCISessionEnd() ... 15-35
OCISessionGet() .. 15-36
OCISessionPoolCreate()... 15-40
OCISessionPoolDestroy() .. 15-44
OCISessionRelease() ... 15-45
OCITerminate() ... 15-47

Handle and Descriptor Functions.. 15-48
OCIAttrGet().. 15-49
OCIAttrSet()... 15-52
OCIDescriptorAlloc() ... 15-54
OCIDescriptorFree() ... 15-57
OCIHandleAlloc()... 15-59
OCIHandleFree() .. 15-62
OCIParamGet().. 15-64
OCIParamSet() .. 15-66

Bind, Define, and Describe Functions .. 15-68

xix

OCIBindArrayOfStruct() ... 15-69
OCIBindByName() ... 15-71
OCIBindByPos().. 15-77
OCIBindDynamic()... 15-82
OCIBindObject() ... 15-87
OCIDefineArrayOfStruct() .. 15-90
OCIDefineByPos() .. 15-92
OCIDefineDynamic() ... 15-97
OCIDefineObject() .. 15-100
OCIDescribeAny() .. 15-102
OCIStmtGetBindInfo() ... 15-105

16 More OCI Relational Functions

Introduction to More Relational Functions ... 16-2
Statement Functions ... 16-4

OCIStmtExecute() ... 16-5
OCIStmtFetch() ... 16-9
OCIStmtFetch2() ... 16-11
OCIStmtGetPieceInfo() .. 16-14
OCIStmtPrepare() ... 16-16
OCIStmtPrepare2() ... 16-18
OCIStmtRelease().. 16-20
OCIStmtSetPieceInfo() ... 16-21

LOB Functions ... 16-23
OCIDurationBegin() ... 16-26
OCIDurationEnd().. 16-28
OCILobAppend().. 16-29
OCILobAssign() .. 16-31
OCILobCharSetForm()... 16-33
OCILobCharSetId() .. 16-34
OCILobClose() .. 16-35
OCILobCopy()... 16-37
OCILobCopy2()... 16-40
OCILobCreateTemporary()... 16-41
OCILobDisableBuffering() .. 16-43

xx

OCILobEnableBuffering().. 16-44
OCILobErase()... 16-45
OCILobErase2()... 16-47
OCILobFileClose() .. 16-48
OCILobFileCloseAll()... 16-49
OCILobFileExists().. 16-50
OCILobFileGetName() ... 16-51
OCILobFileIsOpen() ... 16-53
 OCILobFileOpen() ... 16-55
OCILobFileSetName() .. 16-57
OCILobFlushBuffer().. 16-59
OCILobFreeTemporary() ... 16-61
OCILobGetChunkSize() ... 16-62
OCILobGetLength().. 16-64
OCILobGetLength2().. 16-66
OCILobGetStorageLimit() ... 16-67
OCILobIsEqual() ... 16-68
OCILobIsOpen().. 16-69
OCILobIsTemporary().. 16-71
OCILobLoadFromFile() ... 16-72
OCILobLoadFromFile2() ... 16-74
OCILobLocatorAssign()... 16-75
OCILobLocatorIsInit().. 16-77
OCILobOpen()... 16-79
OCILobRead() ... 16-81
OCILobRead2() ... 16-87
OCILobTrim().. 16-92
OCILobTrim2().. 16-94
OCILobWrite()... 16-95
OCILobWrite2().. 16-101
OCILobWriteAppend() ... 16-106
OCILobWriteAppend2() ... 16-110

Streams Advanced Queuing and Publish-Subscribe Functions... 16-114
OCIAQDeq()... 16-115
OCIAQDeqArray() .. 16-118

xxi

OCIAQEnq().. 16-121
OCIAQEnqArray() ... 16-134
OCIAQListen() .. 16-136
OCISubscriptionDisable().. 16-138
OCISubscriptionEnable()... 16-140
OCISubscriptionPost() ... 16-142
OCISubscriptionRegister() .. 16-144
OCISubscriptionUnRegister() ... 16-147

Direct Path Loading Functions... 16-149
OCIDirPathAbort()... 16-150
OCIDirPathColArrayEntryGet() .. 16-151
OCIDirPathColArrayEntrySet() ... 16-153
OCIDirPathColArrayRowGet() .. 16-155
OCIDirPathColArrayReset() ... 16-157
OCIDirPathColArrayToStream() ... 16-158
OCIDirPathDataSave()... 16-160
OCIDirPathFinish() .. 16-161
OCIDirPathFlushRow() ... 16-162
OCIDirPathLoadStream().. 16-163
OCIDirPathPrepare() ... 16-165
OCIDirPathStreamReset() ... 16-167

Thread Management Functions ... 16-168
OCIThreadClose()... 16-170
OCIThreadCreate()... 16-171
OCIThreadHandleGet() ... 16-173
OCIThreadHndDestroy() .. 16-174
OCIThreadHndInit() .. 16-175
OCIThreadIdDestroy()... 16-176
OCIThreadIdGet() .. 16-177
OCIThreadIdInit() .. 16-178
OCIThreadIdNull()... 16-179
OCIThreadIdSame() ... 16-180
OCIThreadIdSet() ... 16-181
OCIThreadIdSetNull() ... 16-182
OCIThreadInit() .. 16-183

xxii

OCIThreadIsMulti()... 16-184
OCIThreadJoin()... 16-185
OCIThreadKeyDestroy()... 16-186
OCIThreadKeyGet() .. 16-187
OCIThreadKeyInit() .. 16-188
OCIThreadKeySet() ... 16-190
OCIThreadMutexAcquire() .. 16-191
OCIThreadMutexDestroy() .. 16-192
OCIThreadMutexInit() .. 16-193
OCIThreadMutexRelease()... 16-194
OCIThreadProcessInit() .. 16-195
OCIThreadTerm() .. 16-196

Transaction Functions ... 16-197
OCITransCommit().. 16-198
OCITransDetach().. 16-201
OCITransForget()... 16-203
OCITransMultiPrepare()... 16-204
OCITransPrepare() .. 16-205
OCITransRollback()... 16-206
OCITransStart() .. 16-207

Miscellaneous Functions .. 16-215
OCIBreak() .. 16-216
OCIErrorGet()... 16-217
OCILdaToSvcCtx() .. 16-220
OCIPasswordChange() ... 16-222
OCIReset()... 16-225
OCIRowidToChar() ... 16-226
OCIServerVersion() ... 16-227
OCISvcCtxToLda() .. 16-229
OCIUserCallbackGet() .. 16-231
OCIUserCallbackRegister() .. 16-234

17 OCI Navigational and Type Functions

Introduction to the Navigational and Type Functions .. 17-2
OCI Flush or Refresh Functions... 17-8

xxiii

OCICacheFlush() .. 17-9
OCICacheRefresh()... 17-11
OCIObjectFlush() .. 17-13
OCIObjectRefresh() .. 17-15

OCI Mark or Unmark Object and Cache Functions .. 17-17
OCICacheUnmark() ... 17-18
OCIObjectMarkDelete() ... 17-19
OCIObjectMarkDeleteByRef() .. 17-21
OCIObjectMarkUpdate() ... 17-22
OCIObjectUnmark() ... 17-24
OCIObjectUnmarkByRef() .. 17-25

OCI Get Object Status Functions .. 17-26
OCIObjectExists() ... 17-27
OCIObjectGetProperty() .. 17-28
OCIObjectIsDirty() ... 17-32
OCIObjectIsLocked().. 17-33

OCI Miscellaneous Object Functions ... 17-34
OCIObjectCopy() .. 17-35
OCIObjectGetAttr() .. 17-38
OCIObjectGetInd() ... 17-40
OCIObjectGetObjectRef() .. 17-41
OCIObjectGetTypeRef()... 17-42
OCIObjectLock() ... 17-43
OCIObjectLockNoWait() ... 17-44
OCIObjectNew() ... 17-46
OCIObjectSetAttr() ... 17-50

OCI Pin, Unpin, and Free Functions ... 17-52
OCICacheFree()... 17-53
OCICacheUnpin() ... 17-54
OCIObjectArrayPin() ... 17-55
OCIObjectFree() .. 17-57
OCIObjectPin() .. 17-59
OCIObjectPinCountReset() ... 17-62
OCIObjectPinTable() .. 17-64
OCIObjectUnpin() .. 17-66

xxiv

OCI Type Information Accessor Functions.. 17-68
OCITypeArrayByName() .. 17-69
OCITypeArrayByRef() ... 17-72
OCITypeByName()... 17-74
OCITypeByRef().. 17-77

Volume 3

18 OCI Datatype Mapping and Manipulation Functions

Introduction to Datatype Mapping and Manipulation Functions .. 18-2
OCI Collection and Iterator Functions ... 18-5

OCICollAppend() ... 18-6
OCICollAssign().. 18-8
OCICollAssignElem()... 18-10
OCICollGetElem()... 18-12
OCICollGetElemArray() .. 18-15
OCICollIsLocator() ... 18-17
OCICollMax() .. 18-18
OCICollSize()... 18-19
OCICollTrim() ... 18-21
OCIIterCreate().. 18-22
OCIIterDelete().. 18-24
OCIIterGetCurrent() ... 18-25
OCIIterInit() ... 18-27
OCIIterNext()... 18-29
OCIIterPrev() ... 18-31

OCI Date, Datetime, and Interval Functions ... 18-33
OCIDateAddDays() .. 18-36
OCIDateAddMonths() ... 18-37
OCIDateAssign()... 18-38
OCIDateCheck() .. 18-39
OCIDateCompare()... 18-41
OCIDateDaysBetween()... 18-42
OCIDateFromText().. 18-43
OCIDateGetDate() .. 18-45

xxv

OCIDateGetTime() ... 18-46
OCIDateLastDay() .. 18-47
OCIDateNextDay()... 18-48
OCIDateSetDate() ... 18-50
OCIDateSetTime() .. 18-51
OCIDateSysDate() .. 18-52
OCIDateToText() .. 18-53
OCIDateTimeAssign().. 18-55
OCIDateTimeCheck()... 18-57
OCIDateTimeCompare() ... 18-59
OCIDateTimeConstruct() .. 18-61
OCIDateTimeConvert() ... 18-63
OCIDateTimeFromArray().. 18-65
OCIDateTimeFromText() .. 18-67
OCIDateTimeGetDate() ... 18-69
OCIDateTimeGetTime() .. 18-71
OCIDateTimeGetTimeZoneName()... 18-73
OCIDateTimeGetTimeZoneOffset()... 18-75
OCIDateTimeIntervalAdd().. 18-77
OCIDateTimeIntervalSub() ... 18-79
OCIDateTimeSubtract() ... 18-81
OCIDateTimeSysTimeStamp() ... 18-82
OCIDateTimeToArray()... 18-83
OCIDateTimeToText() ... 18-85
OCIDateZoneToZone() .. 18-87
OCIIntervalAdd() ... 18-89
OCIIntervalAssign() ... 18-91
OCIIntervalCheck() .. 18-92
OCIIntervalCompare()... 18-94
OCIIntervalDivide() ... 18-96
OCIIntervalFromNumber()... 18-97
OCIIntervalFromText() .. 18-98
OCIIntervalFromTZ()... 18-100
OCIIntervalGetDaySecond()... 18-102
OCIIntervalGetYearMonth()... 18-104

xxvi

OCIIntervalMultiply()... 18-105
OCIIntervalSetDaySecond() ... 18-107
OCIIntervalSetYearMonth() ... 18-109
OCIIntervalSubtract().. 18-111
OCIIntervalToNumber()... 18-113
OCIIntervalToText() .. 18-114

OCI NUMBER Functions ... 18-116
OCINumberAbs() .. 18-118
OCINumberAdd() ... 18-119
OCINumberArcCos() .. 18-120
OCINumberArcSin() ... 18-121
OCINumberArcTan() .. 18-122
OCINumberArcTan2() .. 18-123
OCINumberAssign() ... 18-124
OCINumberCeil() .. 18-125
OCINumberCmp()... 18-126
OCINumberCos()... 18-127
OCINumberDec()... 18-128
OCINumberDiv()... 18-129
OCINumberExp() .. 18-130
OCINumberFloor() .. 18-131
OCINumberFromInt()... 18-132
OCINumberFromReal() .. 18-134
OCINumberFromText() .. 18-135
OCINumberHypCos()... 18-137
OCINumberHypSin().. 18-138
OCINumberHypTan()... 18-139
OCINumberInc() .. 18-140
OCINumberIntPower() ... 18-141
OCINumberIsInt() ... 18-142
OCINumberIsZero() .. 18-143
OCINumberLn()... 18-144
OCINumberLog() .. 18-145
OCINumberMod() ... 18-146
OCINumberMul() .. 18-147

xxvii

OCINumberNeg()... 18-148
OCINumberPower()... 18-149
OCINumberPrec() .. 18-150
OCINumberRound() .. 18-151
OCINumberSetPi() ... 18-152
OCINumberSetZero() .. 18-153
OCINumberShift() .. 18-154
OCINumberSign() .. 18-155
OCINumberSin()... 18-156
OCINumberSqrt() ... 18-157
OCINumberSub() ... 18-158
OCINumberTan() ... 18-159
OCINumberToInt()... 18-160
OCINumberToReal().. 18-162
OCINumberToRealArray() ... 18-163
OCINumberToText().. 18-165
OCINumberTrunc().. 18-167

OCI Raw Functions .. 18-168
OCIRawAllocSize()... 18-169
OCIRawAssignBytes() ... 18-170
OCIRawAssignRaw()... 18-171
OCIRawPtr().. 18-172
OCIRawResize().. 18-173
OCIRawSize() .. 18-175

OCI Ref Functions .. 18-176
OCIRefAssign() ... 18-177
OCIRefClear().. 18-178
OCIRefFromHex() .. 18-179
OCIRefHexSize()... 18-181
OCIRefIsEqual() .. 18-182
OCIRefIsNull() .. 18-183
OCIRefToHex() ... 18-184

OCI String Functions ... 18-186
OCIStringAllocSize() ... 18-187
OCIStringAssign() .. 18-188

xxviii

OCIStringAssignText().. 18-189
OCIStringPtr() .. 18-191
OCIStringResize() .. 18-192
OCIStringSize() .. 18-194

OCI Table Functions.. 18-195
OCITableDelete() ... 18-196
OCITableExists() ... 18-198
OCITableFirst()... 18-199
OCITableLast() ... 18-201
OCITableNext() .. 18-202
OCITablePrev() .. 18-204
OCITableSize() ... 18-206

19 OCI Cartridge Functions

Introduction to External Procedure and Cartridge Services Functions 19-2
Cartridge Services — OCI External Procedures .. 19-4

OCIExtProcAllocCallMemory().. 19-5
OCIExtProcRaiseExcp() ... 19-6
OCIExtProcRaiseExcpWithMsg() ... 19-7
OCIExtProcGetEnv() .. 19-9

Cartridge Services — Memory Services ... 19-11
OCIDurationBegin() ... 19-12
OCIDurationEnd() .. 19-14
OCIMemoryAlloc()... 19-15
OCIMemoryResize()... 19-17
OCIMemoryFree() .. 19-18

Cartridge Services — Maintaining Context ... 19-19
OCIContextSetValue().. 19-20
OCIContextGetValue()... 19-22
OCIContextClearValue() ... 19-23
OCIContextGenerateKey() .. 19-24

Cartridge Services — Parameter Manager Interface .. 19-25
OCIExtractInit()... 19-26
OCIExtractTerm() ... 19-27
OCIExtractReset() ... 19-28

xxix

OCIExtractSetNumKeys() ... 19-29
OCIExtractSetKey() .. 19-30
OCIExtractFromFile()... 19-32
OCIExtractFromStr() .. 19-33
OCIExtractToInt() ... 19-34
OCIExtractToBool() .. 19-35
OCIExtractToStr() ... 19-36
OCIExtractToOCINum() ... 19-38
OCIExtractToList() ... 19-39
OCIExtractFromList()... 19-40

Cartridge Services — File I/O Interface.. 19-42
OCIFileInit() .. 19-43
OCIFileTerm() ... 19-44
OCIFileOpen()... 19-45
OCIFileClose()... 19-47
OCIFileRead().. 19-48
OCIFileWrite()... 19-50
OCIFileSeek() .. 19-51
OCIFileExists() .. 19-53
OCIFileGetLength().. 19-54
OCIFileFlush()... 19-55

Cartridge Services — String Formatting Interface ... 19-56
OCIFormatInit() .. 19-57
OCIFormatTerm()... 19-58
OCIFormatString().. 19-59
Format Modifiers .. 19-62
Format Codes .. 19-64
Example.. 19-66

20 OCI Any Type and Data Functions

Introduction to Any Type and Data Interfaces ... 20-2
OCI Type Interface Functions .. 20-4

OCITypeAddAttr()... 20-5
OCITypeBeginCreate() .. 20-6
OCITypeEndCreate() ... 20-8

xxx

OCITypeSetBuiltin() ... 20-9
OCITypeSetCollection() ... 20-10

OCI Any Data Interface Functions .. 20-11
OCIAnyDataAccess() ... 20-12
OCIAnyDataAttrGet().. 20-14
OCIAnyDataAttrSet()... 20-17
OCIAnyDataBeginCreate().. 20-20
OCIAnyDataCollAddElem()... 20-22
OCIAnyDataCollGetElem()... 20-24
OCIAnyDataConvert()... 20-26
OCIAnyDataDestroy() ... 20-29
OCIAnyDataEndCreate() .. 20-30
OCIAnyDataGetCurrAttrNum() .. 20-31
OCIAnyDataGetType() .. 20-32
OCIAnyDataIsNull() .. 20-33
OCIAnyDataTypeCodeToSqlt() ... 20-34

OCI Any Data Set Interface Functions ... 20-35
OCIAnyDataSetAddInstance() ... 20-36
OCIAnyDataSetBeginCreate() .. 20-38
OCIAnyDataSetDestroy() .. 20-40
OCIAnyDataSetEndCreate() ... 20-41
OCIAnyDataSetGetCount()... 20-42
OCIAnyDataSetGetInstance() ... 20-43
OCIAnyDataSetGetType()... 20-44

21 OCI Globalization Support Functions

Introduction to Globalization Support in OCI ... 21-2
OCI Locale Functions ... 21-4

OCINlsCharSetIdToName().. 21-5
OCINlsCharSetNameTold() .. 21-6
OCINlsEnvironmentVariableGet()... 21-7
OCINlsGetInfo().. 21-9
OCINlsNumericInfoGet() .. 21-12

OCI Locale-Mapping Function... 21-13
OCINlsNameMap() .. 21-14

xxxi

OCI String Manipulation Functions ... 21-16
OCIMultiByteInSizeToWideChar().. 21-19
OCIMultiByteStrCaseConversion() ... 21-21
OCIMultiByteStrCat() .. 21-22
OCIMultiByteStrcmp()... 21-23
OCIMultiByteStrcpy() .. 21-25
OCIMultiByteStrlen() ... 21-26
OCIMultiByteStrncat() ... 21-27
OCIMultiByteStrncmp() .. 21-28
OCIMultiByteStrncpy().. 21-30
OCIMultiByteStrnDisplayLength().. 21-31
OCIMultiByteToWideChar() .. 21-32
OCIWideCharInSizeToMultiByte().. 21-33
OCIWideCharMultiByteLength()... 21-35
OCIWideCharStrCaseConversion() ... 21-36
OCIWideCharStrcat()... 21-38
OCIWideCharStrchr() .. 21-39
OCIWideCharStrcmp() .. 21-40
OCIWideCharStrcpy() ... 21-42
OCIWideCharStrlen() .. 21-43
OCIWideCharStrncat() .. 21-44
OCIWideCharStrncmp().. 21-45
OCIWideCharStrncpy() ... 21-47
OCIWideCharStrrchr()... 21-48
OCIWideCharToLower()... 21-49
OCIWideCharToMultiByte() .. 21-50
OCIWideCharToUpper()... 21-51

OCI Character Classification Functions ... 21-52
OCIWideCharIsAlnum() ... 21-53
OCIWideCharIsAlpha()... 21-54
OCIWideCharIsCntrl()... 21-55
OCIWideCharIsDigit()... 21-56
OCIWideCharIsGraph() .. 21-57
OCIWideCharIsLower() .. 21-58
OCIWideCharIsPrint() ... 21-59

xxxii

OCIWideCharIsPunct().. 21-60
OCIWideCharIsSingleByte() ... 21-61
OCIWideCharIsSpace().. 21-62
OCIWideCharIsUpper()... 21-63
OCIWideCharIsXdigit() ... 21-64

OCI Character Set Conversion Functions .. 21-65
OCICharSetConversionIsReplacementUsed().. 21-66
OCICharSetToUnicode().. 21-67
OCINlsCharSetConvert()... 21-69
OCIUnicodeToCharSet().. 21-71

OCI Messaging Functions ... 21-73
OCIMessageClose() .. 21-74
OCIMessageGet().. 21-75
OCIMessageOpen() .. 21-76

22 OCI XML DB Functions

Introduction to XML DB Support in OCI .. 22-2
OCI XML DB Functions... 22-4

OCIXmlDbFreeXmlCtx() ... 22-5
OCIXmlDbInitXmlCtx() ... 22-6

A Handle and Descriptor Attributes

Conventions ... A-3
Environment Handle Attributes .. A-3
Error Handle Attributes .. A-10
Service Context Handle Attributes... A-11
Server Handle Attributes.. A-13
Authentication Information Handle .. A-16
User Session Handle Attributes .. A-16
Connection Pool Handle Attributes ... A-22
Session Pool Handle Attributes .. A-24
Transaction Handle Attributes .. A-27
Statement Handle Attributes .. A-28
Bind Handle Attributes .. A-36
Define Handle Attributes ... A-39

xxxiii

Describe Handle Attributes .. A-41
Parameter Descriptor Attributes .. A-42
LOB Locator Attributes.. A-42
Complex Object Attributes ... A-43

Complex Object Retrieval Handle Attributes... A-43
Complex Object Retrieval Descriptor Attributes ... A-43

Advanced Queuing Descriptor Attributes... A-44
OCIAQEnqOptions Descriptor Attributes.. A-44
OCIAQDeqOptions Descriptor Attributes ... A-45
OCIAQMsgProperties Descriptor Attributes ... A-49
OCIAQAgent Descriptor Attributes .. A-54
OCIServerDNs Descriptor Attributes.. A-55

Subscription Handle Attributes... A-56
Direct Path Loading Handle Attributes ... A-60

Direct Path Context Handle (OCIDirPathCtx) Attributes .. A-60
Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes........................... A-67
Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes............. A-69
Direct Path Stream Handle (OCIDirPathStream) Attributes ... A-70
Direct Path Column Parameter Attributes.. A-71

Process Handle Attributes... A-77

B OCI Demonstration Programs

C OCI Function Server Round Trips

Overview of Server Round Trips ... C-2
Relational Function Round Trips .. C-2
LOB Function Round Trips ... C-3
Object and Cache Function Round Trips ... C-5
Describe Operation Round Trips... C-6
Datatype Mapping and Manipulation Function Round Trips... C-7
Any Type and Data Function Round Trips .. C-8
Other Local Functions .. C-8

xxxiv

D Getting Started with OCI for Windows

What Is Included in the OCI Package for Windows? ... D-2
Oracle Directory Structure for Windows... D-2
Sample OCI Programs for Windows .. D-3
Compiling OCI Applications for Windows.. D-3
Linking OCI Applications for Windows... D-4

oci.lib.. D-4
Client DLL Loading When Using LoadLibrary().. D-4

Running OCI Applications for Windows ... D-5
The Oracle XA Library .. D-5

Compiling and Linking an OCI Program with the Oracle XA Library D-5
Using XA Dynamic Registration ... D-6
XA and TP Monitor Information ... D-7

Using the Object Type Translator for Windows .. D-7

Index

xxxv

Send Us Your Comments

Oracle Call Interface Programmer's Guide, 10g Release 1 (10.1)

Part No. B10779-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xxxvi

xxxvii

Preface

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows applications written in C or C++ to interact with one or more Oracle
database servers. OCI gives your programs the capability to perform the full range
of database operations that are possible with an Oracle database server, including
SQL statement processing and object manipulation.

The Preface includes the following sections:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

xxxviii

Audience
This guide is intended for programmers developing new applications or converting
existing applications to run in the Oracle environment. This comprehensive
treatment of OCI will also be valuable to systems analysts, project managers, and
others interested in the development of database applications.

This guide assumes that you have a working knowledge of application
programming using C. Readers should also be familiar with the use of Structured
Query Language (SQL) to access information in relational database systems. In
addition, some sections of this guide also assume a knowledge of the basic concepts
of object-oriented programming.

Organization
A brief summary of what you will find in each chapter and appendix follows:

PART I: OCI Relational Concepts
Part I (Chapter 1 through Chapter 9) provides conceptual information about how to
program with OCI to build scalable application solutions that provide access to
relational data in an Oracle database.

Chapter 1, "Introduction and Upgrading"
This chapter introduces you to the Oracle Call Interface and describes special terms
and typographical conventions that are used in describing the interface. This
chapter also discusses features new to the current release.

See Also:

■ For information about SQL, refer to the Oracle Database SQL
Reference and the Oracle Database Administrator's Guide.

■ For information about basic Oracle concepts, see Oracle
Database Concepts.

■ For information about the differences between the Standard
Edition and the Enterprise Edition and all the features and
options that are available to you, see Oracle Database New
Features.

xxxix

Chapter 2, "OCI Programming Basics"
This chapter gives you the basic concepts needed to develop an OCI program. It
discusses the essential steps each OCI program must include, and how to retrieve
and understand error messages

Chapter 3, "Datatypes"
Understanding how data is converted between Oracle tables and variables in your
host program is essential for using OCI. This chapter discusses Oracle internal and
external datatypes, and data conversions.

Chapter 4, "Using SQL Statements in OCI"
This chapter discusses the steps involved in SQL statements using OCI.

Chapter 5, "Binding and Defining in OCI"
This chapter discusses OCI bind and define operations in detail, including a
discussion of advanced bind and define operations.

Chapter 6, "Describing Schema Metadata"
This chapter discusses how to use the OCIDescribeAny() call to obtain
information about schema objects and their associated elements.

Chapter 7, "LOB and BFILE Operations"
This chapter describes OCI support for LOB, FILE, and temporary LOB datatypes. It
also describes the support for LOBs of size 4GBytes or greater.

Chapter 8, "Managing Scalable Platforms"
This chapter describes password management, session management, and
end-to-end application tracing.

Chapter 9, "OCI Programming Advanced Topics"
This chapter covers more advanced OCI programming topics, including the OCI
thread support, connection pooling, session pooling, descriptions of user callbacks,
application failover callbacks, Streams Advanced Queuing, and publish-subscribe
notification.

PART II: OCI Object Concepts
Part II (Chapter 10 through Chapter 14) describes OCI functionality for accessing
object-relational data with OCI.

xl

Chapter 10, "OCI Object-Relational Programming"
This chapter provides an introduction to the concepts involved when using OCI to
access objects in an Oracle database server. The chapter includes a discussion of
basic object concepts and object navigational access, and the basic structure of
object-relational applications.

Chapter 11, "Object-Relational Datatypes in OCI"
This chapter outlines the object datatypes used in OCI programming. This chapter
discusses the C mappings of user-defined datatypes in an Oracle database, and the
functions that manipulate such data. Binding and defining using these C mappings
is also covered.

Chapter 12, "Direct Path Loading"
This chapter discusses loading of data (scalars, objects) from files into scalar and
object columns using the Direct Path Loading API.

Chapter 13, "Object Advanced Topics in OCI"
This chapter provides an introduction to the concepts involved when using OCI to
access objects in an Oracle database server. This chapter also discusses the Object
Cache, and the use of OCI navigational calls to manipulate objects retrieved from
the server.

Chapter 14, "Using the Object Type Translator with OCI"
This chapter discusses the use of the Object Type Translator to convert database
object definitions to C structures for use in OCI applications.

PART III: OCI Reference
Part III lists OCI function calls in the OCI library and other reference information.

Chapter 15, "OCI Relational Functions"
This chapter contains a list of the most basic OCI relational functions, including
their syntax, comments, parameter descriptions, and other useful information.

Chapter 16, "More OCI Relational Functions"
This chapter continues the OCI relational functions started in the last chapter. It
covers statement functions, as well as LOB, Streams Advanced Queuing and
Publish-Subscribe, Direct Path Loading, thread management, transaction
management and miscellaneous functions.

xli

Chapter 17, "OCI Navigational and Type Functions"
This chapter contains a list of OCI navigational functions, including syntax,
comments, parameter descriptions, and other useful information.

Chapter 18, "OCI Datatype Mapping and Manipulation Functions"
This chapter contains a list of OCI datatype mapping and manipulation functions,
including syntax, comments, parameter descriptions, and other useful information.

Chapter 19, "OCI Cartridge Functions"
This chapter discusses special OCI functions used by external procedures and
cartridge functions.

Chapter 20, "OCI Any Type and Data Functions"
This chapter describes the OCI Any Type and Data functions.

Chapter 21, "OCI Globalization Support Functions"
This chapter describes the OCI globalization support functions.

Chapter 22, "OCI XML DB Functions"
This chapter describes the XML DB functions.

Appendix A, "Handle and Descriptor Attributes"
This appendix describes the attributes of OCI application handles that can be set or
read using OCI calls.

Appendix B, "OCI Demonstration Programs"
This appendix gives the names of important OCI demonstration programs that are
included with the Oracle installation.

Appendix C, "OCI Function Server Round Trips"
This appendix includes tables which show the estimated number of server round
trips required by various OCI applications.

Appendix D, "Getting Started with OCI for Windows"
This appendix provides introductory information to help you get started with OCI
for Windows.

xlii

Where to Begin
Because of the many enhancements to OCI, both new and experienced users should
read the conceptual material in Part I.

Readers familiar with the current version of OCI and interested in its object
capabilities can skim Part 1 and then begin reading the chapters in Part II.

Readers looking for reference information, such as OCI function syntax and handle
attribute descriptions, go to Part III.

Related Documentation
Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

The Oracle Call Interface Programmer's Guide does not contain all information that
describes the features and functionality of OCI in the Standard Edition and the
Enterprise Edition products.

Oracle C++ Call Interface
For C++ programmers, the Oracle C++ Call Interface provides OCI functionality for
C++ programs and lets you manipulate database objects (of user-defined types) as
C++ objects.

Other Sources of Information about OCI
For other sources of information about OCI:

xliii

Other Sources of Information
■ Oracle Database Installation Guide for Windows

■ Oracle Database Release Notes for Windows

■ Oracle Enterprise Manager Administrator's Guide

■ Oracle Net Services Administrator's Guide

■ Oracle Database New Features

■ Oracle Database Concepts

■ Oracle Database Reference

■ Oracle Database Error Messages

See Also:

■ For information about the C++ Call interface, refer to Oracle
C++ Call Interface Programmer's Guide.

■ For information about cartridge services, and the OCI calls
pertaining to development of data cartridges, refer to Oracle
Data Cartridge Developer's Guide.

■ For information about OCI calls pertaining to National
Language and Globalization Support, see the chapter "OCI
Programming" in Oracle Database Globalization Support Guide.

■ For information about OCI calls pertaining to Advanced
Queuing, see Oracle Streams Advanced Queuing User’s Guide and
Reference.

■ For information about using OCI with the XA library, see Oracle
Database Application Developer's Guide - Fundamentals.

■ For more information about using OCI calls to manipulate
LOBs, including code examples, see Oracle Database Application
Developer's Guide - Large Objects.

■ For a more detailed explanation of object types, see Oracle
Database Application Developer's Guide - Object-Relational
Features.

xliv

Conventions
The following notational and text formatting conventions are used in this guide:

General Conventions
...

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted. In syntax, an ellipsis means that the previous item can be repeated.

monospace font

SQL and C code examples, OCI function names, datatypes, database objects,
packages, usernames, file names, and directory names are shown in monospace
font. Syntax examples are in monospace font also.

italics

Italics are used for emphasis and for the titles of documents.

monospace italic

Monospace italics are used for input OCI parameters in syntax examples.

MONOSPACE UPPERCASE

Monospace uppercase is used for SQL or PL/SQL keywords, such as SELECT or
UPDATE, and for built-in datatypes, such as NVARCHAR2.

bold

Bold is sometimes used in code examples for emphasis.

default font

OCI attributes, such as OCI_ATTR_CACHE_OPT_SIZE, are written in default font.

Conventions for Windows Operating Systems
This document describes the features of Oracle Database for Windows that apply to
the Windows NT Server, Windows 2000, Windows XP, and Windows Server 2003
operating systems.

See Also: Oracle Database SQL Reference and the PL/SQL User's
Guide and Reference to see the lists of the keywords and reserved
words for SQL and PL/SQL

xlv

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (') do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job='SALESMAN' and
sal<1600\"
C:\>imp SYSTEM/password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

xlvi

Special Conventions
This guide uses special text formatting to draw the reader's attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

ORACLE_HOME
and
ORACLE_BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory. For
Windows NT, the default location was
C:\orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\orann, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

Go to the
ORACLE_BASE\ORACLE_HOME\rdbms\admin
directory.

Note: The Note flag indicates that the reader should pay
particular attention to the information to avoid a common problem
or increase understanding of a concept.

Convention Meaning Example

xlvii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

7.x Upgrade Note: An item marked with "7.x Upgrade Note"
typically alerts the programmer to something that is done much
differently in the releases 8 and later OCI than in the 7.x OCIs.

Caution: An item marked Caution indicates something that an
OCI programmer must be careful to do or not do in order for an
application to work correctly.

See Also: Text marked See Also points you to another section of
this guide, or to other documentation, for additional information
about the topic being discussed.

xlviii

xlix

What's New in Oracle Call Interface?

The following sections describe the new features in this Oracle Call Interface
manual:

■ New Features in Oracle Call Interface Release 10.1

■ Oracle9i Release 2 (9.2) New Features in Oracle Call Interface

■ Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interface

■ Oracle9i Release 9.0.0 New Features in Oracle Call Interface

l

New Features in Oracle Call Interface Release 10.1
■ Native float and double are supported.

■ OCIDescribeAny() supports rules, rule sets, and evaluation contexts.

■ The OCI Instant Client capability simplifies OCI installation and saves disk
space for application deployment.

■ Additional information on upgrading to a new release of OCI is available.

A new discussion describes when to use session pooling or connection pooling.

■ Batch array enqueue and dequeue functions and attributes have been added.

See Also:

■ "BINARY_FLOAT and BINARY_DOUBLE" on page 3-7

■ "Native Float and Native Double" on page 3-26

See Also: "Rule Attributes" on page 6-21, and so on

See Also: "OCI Instant Client" on page 1-22

See Also: "Compatibility and Upgrading" on page 1-16

See Also: "When to Use Connection Pooling, Session Pooling, or
Neither" on page 9-23

See Also:

■ "OCI and Streams Advanced Queuing" on page 9-48

■ "Streams Advanced Queuing and Publish-Subscribe Functions"
on page 16-114

■ "Advanced Queuing Descriptor Attributes" on page A-44

li

■ LOBs can be of greater size than 4 GB. There are several new LOB functions
whose names end in "2" that handle LOBs greater and smaller than 4 GB, and
replace deprecated LOB functions without "2".

■ Database Globalization Support is now described in this manual.

■ Statement Caching has been enhanced.

■ Windows documentation is now included in this guide.

■ There is OCI support for the unified C API which is used for XMLType columns
in tables (and XML documents).

■ There are new or modified functions.

See Also:

■ "Using LOBs of Size Greater than 4 GB" on page 7-5

■ "LOB Functions" on page 16-23

See Also:

■ "OCI Globalization Support" on page 2-39

■ "OCI Globalization Support Functions" on page 21-1

See Also: "Statement Caching in OCI" on page 9-27

See Also: Appendix D, "Getting Started with OCI for Windows"

See Also:

■ "OCI Support for XML" on page 13-23

■ Chapter 22, "OCI XML DB Functions"

lii

■ New modes OCI_BIND_SOFT and OCI_DEFINE_SOFT are documented.

■ New attributes for end-to-end application tracing are described.

■ New attributes for Direct Path are described.

Oracle9i Release 2 (9.2) New Features in Oracle Call Interface
■ Session Pooling

See Also:

■ "OCICollGetElemArray()" on page 18-15

■ "OCINumberToRealArray()" on page 18-163

See Also:

■ "OCIBindByName()" on page 15-71

■ "OCIBindByPos()" on page 15-77

■ "OCIDefineByPos()" on page 15-92

See Also:

■ "End-to-End Application Tracing" on page 8-20

■ "User Session Handle Attributes" on page A-16

See Also:

■ "OCI_ATTR_DIRPATH_INDEX_MAINT_METHOD" on
page A-63

■ "OCI_ATTR_DIRPATH_SKIPINDEX_METHOD" on page A-65

liii

■ Statement Caching

■ Any Data Enhancements

■ NCHAR and Codepoint Support for Objects

Objects can have NCHAR, NCLOB, and NVARCHAR2 attributes.

■ Client Character Set Control

See Also:

■ "Session Pooling in OCI" on page 9-17

■ "Connect, Authorize, and Initialize Functions" on page 15-4

■ "Session Pool Handle Attributes" on page A-24

See Also:

■ "Statement Caching in OCI" on page 9-27

■ "Connect, Authorize, and Initialize Functions" on page 15-4

See Also:

■ "OCIAnyDataTypeCodeToSqlt()" on page 20-34

■ "NCHAR Typecodes for OCIAnyData Functions" on page 11-31

See Also:

■ "OCI Globalization Support" on page 2-39Table 14–1, "Object
Datatype Mappings for Object Type Attributes"

■ "OCI Object Overview" on page 10-2

■ Table 10–4, "Attribute Values for New Objects" on page 10-33

■ Table 14–1, "Object Datatype Mappings for Object Type
Attributes"

■ "OCIEnvNlsCreate()" on page 15-14

■ "OCINlsEnvironmentVariableGet()" on page 21-7

liv

■ Database Globalization Support

■ Direct Loading using date_cache

■ New OTT Option: URL

■ Structural changes to this document:

"Statement Functions" on page 16-4 has been moved from chapter 15 to allow
printed copies of this guide to remain in two volumes.

Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interface
■ Defining LOB Output Variables

This section has been re-written.

■ Supporting UTF-16 Unicode

This discussion has been re-written.

See Also: "Client Character Set Control from OCI" on page 2-39

See Also: "Other OCI Globalization Support Functions" on
page 2-41

See Also:

■ "Using a Date Cache in Direct Path Loading of Dates in OCI" on
page 12-15

■ "Direct Path Context Handle (OCIDirPathCtx) Attributes" on
page A-60

See Also: "URL" on page 14-33

See Also: "Defining LOB Output Variables" on page 5-20

lv

■ Advanced Queuing

Changes were made in the interfaces of publish-subscribe notification and in
the OCI function OCISubscriptionRegister(). Several subscription
handle attributes were modified and several were added. Open registration for
publish-subscribe has been added.

■ Direct Path Loading

Direct path loading of data into object columns as well as scalar columns, is
now supported. Direct path loading is moved to chapter 12, so that it now
appears after the discussion of objects and their use. Sections on binding and
defining object datatypes are now at the end of chapter 11.

See Also:

■ "OCI Globalization Support" on page 2-39

■ "Character Conversion in OCI Binding and Defining" on
page 5-30

■ "Bind Handle Attributes" on page A-36

■ "Define Handle Attributes" on page A-39

See Also:

■ "Publish-Subscribe Notification in OCI" on page 9-54

■ "Publish-Subscribe Registration Functions in OCI" on page 9-56

■ "OCISubscriptionRegister()" on page 16-144

■ "Subscription Handle Attributes" on page A-56

■ "OCIServerDNs Descriptor Attributes" on page A-55

■ "Environment Handle Attributes" on page A-3

■ "Publish-Subscribe LDAP Registration Example" on page 9-69

See Also:

■ Chapter 12, "Direct Path Loading"

■ "Direct Path Loading Handle Attributes" on page A-60

lvi

Oracle9i Release 9.0.0 New Features in Oracle Call Interface
This document has these new features. Each of these features is discussed in greater
detail in the cross-referenced sections:

■ Connection Pooling

This feature enables you to multiplex many logical connections over a single
physical connection.

■ Scrollable cursors.

Members of a result set can be accessed in non-sequential order.

■ Globalization support.

Various OCI calls support UTF-16 for SQL statements, data, metadata, objects,
and error messages.

■ Middle-tier applications.

New attributes have been added for client authentication.

■ New datatypes.

Datetime and Interval and Daylight Savings datatypes are described in the
following sections:

See Also:

■ "Connection Pooling in OCI" on page 9-10

■ "Connect, Authorize, and Initialize Functions" on page 15-4

■ "Connection Pool Handle Attributes" on page A-22

See Also:

■ "Scrollable Cursors in OCI" on page 4-18

■ "Statement Functions" on page 16-4

See Also: "OCI Globalization Support" on page 2-39

See Also: "Middle-Tier Applications in OCI" on page 8-13

lvii

■ Any Type, AnyData, AnyDataSet.

An OCIAnyData encapsulates type information as well as a data instance of
that type (that is, self descriptive data). An OCIAnyDataSet encapsulates type
information as well as a set of instances of that type.

■ Using LOB columns instead of LONG columns.

■ Subtypes of objects can be defined.

■ Type evolution.

How the attributes of types can be changed.

■ Multilevel collection types.

See Also:

■ "Datetime and Interval Datatype Descriptors" on page 3-24

■ "Datetime and Interval (OCIDateTime, OCIInterval)" on
page 11-8

■ "Data Conversions for Datetime and Interval Datatypes" on
page 3-29

■ and "OCI Date, Datetime, and Interval Functions" on
page 18-33

See Also: "AnyType, AnyData and AnyDataSet Interfaces" on
page 11-26 and the corresponding new functions in Chapter 20,
"OCI Any Type and Data Functions"

See Also: "Runtime Data Allocation and Piecewise Operations in
OCI" on page 5-40 has been rewritten with new features for support
of LOBs.

See Also:

■ "Type Inheritance" on page 10-37

■ "OTT Support for Type Inheritance" on page 14-17

See Also: "Type Evolution" on page 10-41

lviii

Collections whose elements are collections.

■ Externally initialized context.

An externally initialized context is an application context whose attributes can
be initialized from OCI.

■ Structural changes to this document:

■ Chapter 15 of release 8.1.6 has been split into chapters 15 and 16.

■ The sections in chapters 15 and 16 have been rearranged in a more logical
order.

■ Chapters 17, 18, 19 were chapters 16, 17, 18 in release 8.1.6.

■ Chapter 20 has been added.

See Also: "Multilevel Collection Types" on page 11-22

See Also:

■ "Externally Initialized Context in OCI" on page 8-21

■ "User Session Handle Attributes" on page A-16

See Also:

■ See the section "Compatibility and Upgrading" on page 1-16 for
information about new calls that supersede existing routines.

■ See the table of contents and the index for entries for the new
features.

Part I
 OCI Relational Concepts

This part contains these chapters:

■ Chapter 1, "Introduction and Upgrading", provides an introduction to the OCI
and discusses features that are new to this release.

■ Chapter 2, "OCI Programming Basics", discusses the basic concepts of OCI
programming.

■ Chapter 3, "Datatypes", describes datatypes used in OCI applications and
within the server.

■ Chapter 4, "Using SQL Statements in OCI", discusses how to process SQL
statements using OCI.

■ Chapter 5, "Binding and Defining in OCI", discusses bind and define operations
in detail.

■ Chapter 6, "Describing Schema Metadata", discusses the OCIDescribeAny()
function.

■ Chapter 7, "LOB and BFILE Operations", discusses the OCI functions that
perform operations on large objects (LOBs) in a database and external LOBs.

■ Chapter 8, "Managing Scalable Platforms", discusses password and session
management, middle-tier applications, and externally initialized context.

■ Chapter 9, "OCI Programming Advanced Topics", covers advanced topics in
OCI programming, such as threads, connection pooling, session pooling,
user-defined callbacks, advanced queuing, and publish-subscribe notification.

Introduction and Upgrading 1-1

1
Introduction and Upgrading

This chapter contains these topics:

■ Overview of OCI

■ Compatibility and Upgrading

■ OCI Instant Client

Overview of OCI

1-2 Oracle Call Interface Programmer's Guide

Overview of OCI
The Oracle Call Interface (OCI) is an application programming interface (API) that
lets you create applications that use function calls to access an Oracle database
server and control all phases of SQL statement execution. OCI supports the
datatypes, calling conventions, syntax, and semantics of C and C++.

OCI provides:

■ Improved performance and scalability through the efficient use of system
memory and network connectivity

■ Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

■ N-tier authentication

■ Comprehensive support for application development using Oracle objects

■ Access to external databases

■ Applications that support an increasing number of users and requests without
additional hardware investments

OCI lets you manipulate data and schemas in an Oracle database using C
programming language. It provides a library of standard database access and
retrieval functions in the form of a dynamic runtime library (OCI library) that can
be linked in an application at runtime.

OCI has many new features that can be categorized into several primary areas:

■ Encapsulated or opaque interfaces, whose implementation details are unknown

■ Simplified user authentication and password management

■ Extensions to improve application performance and scalability

■ Consistent interface for transaction management

■ OCI extensions to support client-side access to Oracle objects

See Also:

■ Oracle C++ Call Interface Programmer's Guide

■ "Other Sources of Information about OCI" on page xlii

Overview of OCI

Introduction and Upgrading 1-3

Advantages of OCI
OCI provides significant advantages over other methods of accessing an Oracle
database:

■ More fine-grained control over all aspects of application design

■ High degree of control over program execution

■ Use of familiar third generation language programming techniques and
application development tools, such as browsers and debuggers

■ Connection pooling, session pooling, and statement caching that enable
building of scalable applications

■ Support of dynamic SQL

■ Availability on the broadest range of operating systems of all the Oracle
programmatic interfaces

■ Dynamic binding and defining using callbacks

■ Description functionality to expose layers of server metadata

■ Asynchronous event notification for registered client applications

■ Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes

■ Ability to associate commit requests with executes to reduce round trips

■ Optimization of queries using transparent prefetch buffers to reduce round
trips

■ Thread safety which eliminates the need for mutual exclusive locks (mutexes)
on OCI handles

Building an OCI Application
You compile and link an OCI program in the same way that you compile and link a
non-database application. There is no need for a separate preprocessing or
precompilation step.

Oracle supports most popular third-party compilers. The details of linking an OCI
program vary from system to system. On some operating systems, it may be
necessary to include other libraries, in addition to the OCI library, to properly link
your OCI programs. See your Oracle system-specific documentation and the
installation guide for more information about compiling and linking an OCI
application for your operating system.

Overview of OCI

1-4 Oracle Call Interface Programmer's Guide

Parts of OCI
OCI has the following functionality:

■ APIs to design a scalable, multithreaded application that can support large
numbers of users securely

■ SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database server

■ Datatype mapping and manipulation functions, for manipulating data
attributes of Oracle types

■ Data loading functions, for loading data directly into the database without
using SQL statements

■ External procedure functions, for writing C callbacks from PL/SQL

Procedural and Non-Procedural Elements
The Oracle Call Interface (OCI) lets you develop scalable, multithreaded
applications in a multitier architecture that combines the non-procedural data
access power of Structured Query Language (SQL) with the procedural capabilities
of C and C++.

■ In a non-procedural language program, the set of data to be operated on is
specified, but what operations will be performed, or how the operations are to
be carried out is not specified. The non-procedural nature of SQL makes it an
easy language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

■ In a procedural language program, the execution of most statements depends
on previous or subsequent statements and on control structures, such as loops
or conditional branches, which are not available in SQL. The procedural nature
of these languages makes them more complex than SQL, but it also makes them
more flexible and powerful.

The combination of both non-procedural and procedural language elements in an
OCI program provides easy access to an Oracle database in a structured
programming environment.

OCI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example,

See Also: Appendix D, "Getting Started with OCI for Windows"

Overview of OCI

Introduction and Upgrading 1-5

an OCI program can run a query against an Oracle database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM employees WHERE empno = :empnumber;

In the preceding SQL statement, :empnumber is a placeholder for a value that will
be supplied by the application.

You can also take advantage of PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications
written in SQL alone. OCI also provides facilities for accessing and manipulating
objects in an Oracle database server.

Object Support
OCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object
might have attributes—first_name, last_name, and age—which represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. Using the object type as a structural definition, a
person object could be created with the attribute values 'John', 'Bonivento', and
'30'. Object types may also contain methods—programmatic functions that represent
the behavior of that object type.

OCI includes functions that extend the capabilities of OCI to handle objects in an
Oracle database server. Specifically, the following capabilities have been added to
OCI:

■ Executing SQL statements that manipulate object data and schema information

■ Passing of object references and instances as input variables in SQL statements

■ Declaring object references and instances as variables to receive the output of
SQL statements

See Also:

■ Oracle Database Concepts

■ Oracle Database Application Developer's Guide - Object-Relational
Features.

Overview of OCI

1-6 Oracle Call Interface Programmer's Guide

■ Fetching object references and instances from a database

■ Describing the properties of SQL statements that return object instances and
references

■ Describing PL/SQL procedures or functions with object parameters or results

■ Extension of commit and rollback calls in order to synchronize object and
relational functionality

Additional OCI calls are provided to support manipulation of objects after they
have been accessed by SQL statements. For a more detailed description of
enhancements and new features, refer to "Encapsulated Interfaces" on page 1-11.

SQL Statements
One of the main tasks of an OCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle
recognizes several types of SQL statements:

■ Data Definition Language (DDL)

■ Control Statements

■ Transaction Control

■ Session Control

■ System Control

■ Data Manipulation Language (DML)

■ Queries

■ PL/SQL

■ Embedded SQL

Note: Queries are often classified as DML statements, but OCI
applications process queries differently, so they are considered
separately here.

See Also: Chapter 4, "Using SQL Statements in OCI"

Overview of OCI

Introduction and Upgrading 1-7

Data Definition Language
Data definition language (DDL) statements manage schema objects in the database.
DDL statements create new tables, drop old tables, and establish other schema
objects. They also control access to schema objects.

The following is an example of creating and specifying access to a table:

CREATE TABLE employees
 (name VARCHAR2(20),
 ssn VARCHAR2(12),
 empno NUMBER(6),
 mgr NUMBER(6),
 salary NUMBER(6));

GRANT UPDATE, INSERT, DELETE ON employees TO donna;
REVOKE UPDATE ON employees FROM jamie;

DDL statements also allow you to work with objects in the Oracle database server,
as in the following series of statements which creates an object table:

CREATE TYPE person_t AS OBJECT (
 name VARCHAR2(30),
 ssn VARCHAR2(12),
 address VARCHAR2(50));

CREATE TABLE person_tab OF person_t;

Control Statements
OCI applications treat transaction control, session control, and system control
statements like DML statements.

Data Manipulation Language
Data manipulation language (DML) statements can change data in the database
tables. For example, DML statements are used to:

■ Insert new rows into a table

■ Update column values in existing rows

■ Delete rows from a table

See Also: Oracle Database SQL Reference for information about
these types of statements

Overview of OCI

1-8 Oracle Call Interface Programmer's Guide

■ Lock a table in the database

■ Explain the execution plan for a SQL statement

■ Require an application to supply data to the database using input (bind)
variables

DML statements also allow you to work with objects in the Oracle database server,
as in the following example, which inserts an instance of type person_t into the
object table person_tab:

INSERT INTO person_tab
 VALUES (person_t('Steve May','123-45-6789','146 Winfield Street'));

Queries
Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in
the following example:

SELECT dname FROM dept
 WHERE deptno = 42;

Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name
 FROM employees
 WHERE empno = :empnumber;

In the preceding SQL statement, :empnumber is a placeholder for a value that will
be supplied by the application.

■ When processing a query, an OCI application also needs to define output
variables to receive the returned results. In the preceding statement, you would
need to define an output variable to receive any name values returned from the
query.

See Also: "Binding Placeholders in OCI" on page 4-5 for more
information about input bind variables

Overview of OCI

Introduction and Upgrading 1-9

PL/SQL
PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows a number of constructs to be grouped into a
single block and executed as a unit. Among these are:

■ One or more SQL statements

■ Variable declarations

■ Assignment statements

■ Procedural control statements (IF...THEN...ELSE statements and loops)

■ Exception handling

You can use PL/SQL blocks in your OCI program to:

■ Call Oracle stored procedures and stored functions

■ Combine procedural control statements with several SQL statements, so that
they are executed as a single unit

■ Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

■ Use cursor variables

■ Access and manipulate objects in an Oracle database server

The following PL/SQL example issues a SQL statement to retrieve values from a
table of employees, given a particular employee number. This example also
demonstrates the use of placeholders in PL/SQL statements.

BEGIN
 SELECT ename, sal, comm INTO :emp_name, :salary, :commission
 FROM emp

See Also:

■ "Overview of Binding in OCI" on page 5-2 for more information
about input bind variables. See the section "Overview of
Defining in OCI" on page 5-17 for information about defining
output variables.

■ Chapter 4, "Using SQL Statements in OCI", for detailed
information about how SQL statements are processed in an
OCI program.

Overview of OCI

1-10 Oracle Call Interface Programmer's Guide

 WHERE empno = :emp_number;
END;

Note that the placeholders in this statement are not PL/SQL variables. They
represent input values passed to Oracle when the statement is processed. These
placeholders need to be bound to C language variables in your program.

Embedded SQL
OCI processes SQL statements as text strings that an application passes to Oracle on
execution. The Oracle precompilers (Pro*C/C++, Pro*COBOL, Pro*FORTRAN)
allow you to embed SQL statements directly into your application code. A separate
precompilation step is then necessary to generate an executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program.

Special OCI/SQL Terms
This guide uses special terms to refer to the different parts of a SQL statement. For
example, a SQL statement such as

SELECT customer, address
FROM customers
WHERE bus_type = 'SOFTWARE'
AND sales_volume = :sales;

contains the following parts:

■ A SQL command - SELECT

■ Two select-list items - customer and address

■ A table name in the FROM clause - customers

■ Two column names in the WHERE clause - bus_type and sales_volume

■ A literal input value in the WHERE clause - 'SOFTWARE'

See Also:

■ PL/SQL User's Guide and Reference for information about coding
PL/SQL blocks.

■ "Binding Placeholders in PL/SQL" on page 5-4 for information
about working with placeholders in PL/SQL.

See Also: Pro*C/C++ Programmer's Guide

Overview of OCI

Introduction and Upgrading 1-11

■ A placeholder for an input variable in the WHERE clause - :sales

When you develop your OCI application, you call routines that specify to the Oracle
database server the address (location) of input and output variables of your
program. In this guide, specifying the address of a placeholder variable for data
input is called a bind operation. Specifying the address of a variable to receive
select-list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations. These
terms and operations are described in Chapter 4, "Using SQL Statements in OCI".

Encapsulated Interfaces
All the data structures that are used by OCI calls are encapsulated in the form of
opaque interfaces that are called handles. A handle is an opaque pointer to a storage
area allocated by the OCI library that stores context information, connection
information, error information, or bind information about a SQL or PL/SQL
statement. A client allocates a certain types of handles, populates one or more of
those handles through well-defined interfaces, and sends requests to the server
using those handles. In turn, applications can access the specific information
contained in the handle by using accessor functions.

The OCI library manages a hierarchy of handles. Encapsulating the OCI interfaces
by means of these handles has several benefits to the application developer,
including:

■ Reduction in the amount of server side state information that needs to be
retained, thereby reducing server-side memory usage

■ Improvement of productivity by eliminating the need for global variables,
making error reporting easier, and providing consistency in the way OCI
variables are accessed and used

■ Encapsulation of OCI structures in the form of handles makes them opaque,
allowing changes to be made to the underlying structure without affecting
applications

Simplified User Authentication and Password Management
OCI provides application developers with simplified user authentication and
password management in several ways:

■ Allows a single OCI application to authenticate and maintain multiple users

Overview of OCI

1-12 Oracle Call Interface Programmer's Guide

■ Allows the application to update a user's password, which is particularly
helpful if an expired password message is returned by an authentication
attempt

OCI supports two types of login sessions:

■ A simplified login function for sessions by which a single user connects to the
database using a login name and password

■ A mechanism by which a single OCI application authenticates and maintains
multiple sessions by separating the login session, which is the session created
when a user logs into an Oracle database, from the user sessions, which are all
other sessions created by a user

Extensions to Improve Application Performance and Scalability
OCI has several enhancements to improve application performance and scalability.
Application performance has been improved by reducing the number of client to
server round trips required and scalability improvements have been made by
reducing the amount of state information that needs to be retained on the server
side. Some of these features include:

■ Increased client-side processing, and reduced server-side requirements on
queries

■ Implicit prefetching of SELECT statement result sets to eliminate the describe
round trip, reduce round trips, and reduce memory usage

■ Elimination of open and closed cursor round trips

■ Improved support for multithreaded environments

■ Session multiplexing over connections

■ Consistent support for a variety of configurations, including standard two-tier
client/server configurations, server-to-server transaction coordination, and
three-tier TP-monitor configurations

■ Consistent support for local and global transactions including support for the
XA interface's TM_JOIN operation

■ Improved scalability by providing the ability to concentrate connections,
processes, and sessions across users on connections and eliminating the need
for separate sessions to be created for each branch of a global transaction

■ Allowing applications to authenticate multiple users and allow transactions to
be started on their behalf

Overview of OCI

Introduction and Upgrading 1-13

OCI Object Support
OCI provides a comprehensive application programming interface for
programmers seeking to use the Oracle server's object capabilities. These features
can be divided into five major categories:

■ Client-Side Object Caching

■ Associative and navigational interfaces to access and manipulate objects

■ Runtime environment for objects

■ Type management functions to access information about object types in an
Oracle database

■ Type mapping and manipulation functions for controlling data attributes of
Oracle types

■ Object Type Translator utility, for mapping internal Oracle schema information
to client-side language bind variables

Client-Side Object Cache
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks object instances that have been
fetched by an OCI application from the server to the client side. The object cache is
created when the OCI environment is initialized. Multiple applications running
against the same server will each have their own object cache. The cache tracks the
objects which are currently in memory, maintains references to objects, manages
automatic object swapping and tracks the meta-attributes or type information about
objects. The object cache provides the following to OCI applications:

■ Improved application performance by reducing the number of client/server
round trips required to fetch and operate on objects

■ Enhanced scalability by supporting object swapping from the client-side cache

■ Improved concurrency by supporting object-level locking

Associative and Navigational Interfaces
Applications using OCI can access objects in the Oracle server through several types
of interfaces:

■ Using SQL SELECT, INSERT, and UPDATE statements

Overview of OCI

1-14 Oracle Call Interface Programmer's Guide

■ Using a C-style pointer chasing scheme to access objects in the client-side cache
by traversing the corresponding smart pointers or REFs

OCI provides a set of functions with extensions to support object manipulation
using SQL SELECT, INSERT, and UPDATE statements. To access Oracle objects these
SQL statements use a consistent set of steps as if they were accessing relational
tables. OCI provides the following sets of functions required to access objects:

■ Binding and defining object type instances and references as input and output
variables of SQL statements

■ Executing SQL statements that contain object type instances and references

■ Fetching object type instances and references

■ Describing select-list items of an Oracle object type

OCI also provides a set of functions using a C-style pointer chasing scheme to
access objects once they have been fetched into the client-side cache by traversing
the corresponding smart pointers or REFs. This navigational interface provides
functions for:

■ Instantiating a copy of a referenceable persistent object, that is, of a persistent
object with object ID in the client-side cache by pinning its smart pointer or REF

■ Traversing a sequence of objects that are connected to each other by traversing
the REFs that point from one to the other

■ Dynamically getting and setting values of an object's attributes

OCI Runtime Environment for Objects
OCI provides functions for objects that manages how Oracle objects are used on the
client-side. These functions provide for:

■ Connecting to an Oracle server in order to access its object functionality,
including initializing a session, logging on to a database server, and registering
a connection

■ Setting up the client-side object cache and tuning its parameters

■ Getting errors and warning messages

■ Controlling transactions that access objects in the server

■ Associatively accessing objects through SQL

■ Describing a PL/SQL procedure or function whose parameters or result are
Oracle types

Overview of OCI

Introduction and Upgrading 1-15

Type Management, Mapping and Manipulation Functions
OCI provides two sets of functions to work with Oracle objects:

■ Type Mapping functions allow applications to map attributes of an Oracle
schema represented in the server as internal Oracle datatypes to their
corresponding host language types.

■ Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle schema such as setting and getting their
values and flushing their values to the server.

Additionally, the OCIDescribeAny() function provides information about objects
stored in the database.

Object Type Translator
The Object Type Translator (OTT) utility translates schema information about
Oracle object types into client-side language bindings of host language variables,
such as structures. The OTT takes as input an intype file which contains metadata
information about Oracle schema objects. It generates an outtype file and the
necessary header and implementation files that must be included in a C application
that runs against the object schema. Both OCI applications and Pro*C/C++
precompiler applications may include code generated by the OTT. The OTT has
many benefits including:

■ Improves application developer productivity: OTT eliminates the need for you
to code the host language variables that correspond to schema objects.

■ Maintains SQL as the data-definition language of choice: By providing the
ability to automatically map Oracle schema objects that are created using SQL
to host language variables, OTT facilitates the use of SQL as the data-definition
language of choice. This in turn allows Oracle to support a consistent model of
data.

■ Facilitates schema evolution of object types: OTT regenerates included header
files when the schema is changed, allowing Oracle applications to support
schema evolution.

OTT is typically invoked from the command line by specifying the intype file, the
outtype file and the specific database connection. With Oracle, OTT can only
generate C structures which can either be used with OCI programs or with the
Pro*C/C++ precompiler programs.

Compatibility and Upgrading

1-16 Oracle Call Interface Programmer's Guide

OCI Support for Oracle Streams Advanced Queuing
OCI provides an interface to Oracle's Streams Advanced Queuing (Streams AQ)
feature. Streams AQ provides message queuing as an integrated part of the Oracle
server. Streams AQ provides this functionality by integrating the queuing system
with the database, thereby creating a message-enabled database. By providing an
integrated solution Streams AQ frees you to devote your efforts to your specific
business logic rather than having to construct a messaging infrastructure.

XA Library Support
OCI supports the Oracle XA library.

Compatibility and Upgrading
The following sections discuss issues concerning compatibility between different
versions of OCI client and server, changes in the OCI library routines, and
upgrading an application from the release 7.x OCI to this release of OCI.

Simplified Upgrading of Existing OCI Release 7 Applications
OCI has been significantly improved with many features. Applications written to
work with OCI release 7 have a smooth migration path to this OCI release because
of the interoperability of OCI release 7 clients with this release of the server, and of
clients of this release with an Oracle database version 7 server.

Specifically:

■ Applications that use the OCI release 7.3 API will work unchanged against this
release of the server. They do need to be linked with the current client library.

■ OCI release 7 and the OCI calls of this release can be mixed in the same
application and in the same transaction provided they are not mixed within the
same statement execution.

As a result, when migrating an existing OCI version 7 application you have the
following two alternatives:

See Also: "OCI and Streams Advanced Queuing" on page 9-48.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for information about support for the Oracle XA
library.

Compatibility and Upgrading

Introduction and Upgrading 1-17

■ Upgrade to the current OCI client but do not modify application: If you choose
to upgrade from an Oracle release 7 OCI client to the current release OCI client,
you need only link the new version of the OCI library and need not recompile
your application. The re-linked Oracle release 7 OCI applications work
unchanged against a current server.

■ Upgrade to current OCI client and modify application: To use the performance
and scalability benefits provided by the new OCI, however, you will need to
modify your existing applications to use the new OCI programming paradigm,
re-link them with the new OCI library, and run them against the current release
of the server.

If you need to use any of the object capabilities of the current server release, you
will need to upgrade your client to this release of OCI.

Statically-Linked and Dynamically-Linked Applications
Here are the rules for re-linking for a new release.

■ Statically-linked applications:

Statically-linked applications need to be re-linked for both major and minor
version releases, because the linked Oracle client-side library code may be
incompatible with the error messages in the upgraded ORACLE_HOME. For
example, if an error message was updated with additional parameters then it
will not be compatible with the statically-linked code.

■ Dynamically-linked applications:

Dynamically-linked applications need to be re-linked for major version releases
only. OCI applications which are dynamically linked have a hard reference to
the libclntsh.so.n, where n is the major release number (such as 9.0).For
minor releases like 9.2 where a new client-side library, libclntsh.so.9.2, is
created, OCI has a symbolic link called libclntsh.so.9.0 which points to
libclntsh.so.9.2.

Applications with a hard link to libclntsh.so.9.0 will continue to work in
a 9.2 ORACLE_HOME. For a major release OCI does not create all the earlier
version symbolic links. In 10.1 there is no libclnsth.so.9.0 which points to
libclnsth.so.10.1. The application with a hard reference to
libclnsh.so.9.0 cannot run in 10.1 ORACLE_HOME unless it is re-linked.

Compatibility and Upgrading

1-18 Oracle Call Interface Programmer's Guide

Obsolete OCI Routines
Release 8.0 of the OCI introduced an entirely new set of functions which were not
available in release 7.3. Oracle continues to support these release 7.3 functions.
Many of the earlier 7.x calls are available, but Oracle strongly recommends that new
applications use the new calls to improve performance and provide increased
functionality.

Table 1–1, "Obsolescent OCI Routines" lists the 7.x OCI calls with their later
equivalents. For more information about the OCI calls, see the function descriptions
in Part III of this guide. For more information about the 7.x calls, see the
Programmer's Guide to the Oracle Call Interface, Release 7.3. These 7.x calls are
obsoleted, meaning that OCI has replaced them with newer calls. While the
obsoleted calls are supported at this time, they may not be supported in all future
versions of OCI.

See Also:

■ Oracle Database Upgrade Guide for the most recently updated
information about compatibility and upgrading

■ The server versions supported currently are found on Oracle
iSupport in note 207303.1. See the URL
http://metalink.oracle.com/

Note: In many cases the new OCI routines do not map directly
onto the 7.x routines, so it may not be possible to simply replace
one function call and parameter list with another. Additional
program logic may be required before or after the new call is made.
See the remaining chapters of this guide for more information.

Table 1–1 Obsolescent OCI Routines

7.x OCI Routine Equivalent or Similar Later OCI Routine

obindps(), obndra(),
obndrn(), obndrv()

OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some datatypes)

obreak() OCIBreak()

ocan() none

oclose() Note: cursors are not used in release 8.x or later

Compatibility and Upgrading

Introduction and Upgrading 1-19

ocof(), ocon() OCIStmtExecute() with OCI_COMMIT_ON_SUCCESS
mode

ocom() OCITransCommit()

odefin(), odefinps() OCIDefineByPos() (Note: additional define calls may be
necessary for some datatypes)

odescr() Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, will most often be done by
calling OCIAttrGet() on the statement handle after SQL
statement execution.

odessp() OCIDescribeAny()

oerhms() OCIErrorGet()

oexec(), oexn() OCIStmtExecute()

oexfet() OCIStmtExecute(), OCIStmtFetch() (Note: result set
rows can be implicitly prefetched)

ofen(), ofetch() OCIStmtFetch()

oflng() none

ogetpi() OCIStmtGetPieceInfo()

olog() OCILogon()

ologof() OCILogoff()

onbclr(), onbset(),
onbtst()

Note: nonblocking mode can be set or checked by calling
OCIAttrSet() or OCIAttrGet() on the server context
handle or service context handle

oopen() Note: cursors are not used in release 8.x or later

oopt() none

oparse() OCIStmtPrepare(); however, it is all local

opinit() OCIEnvCreate()

orol() OCITransRollback()

osetpi() OCIStmtSetPieceInfo()

sqlld2() SQLSvcCtxGet or SQLEnvGet

sqllda() SQLSvcCtxGet or SQLEnvGet

Table 1–1 Obsolescent OCI Routines (Cont.)

7.x OCI Routine Equivalent or Similar Later OCI Routine

Compatibility and Upgrading

1-20 Oracle Call Interface Programmer's Guide

OCI Routines Not Supported
Some OCI routines that were available in previous versions of OCI are not
supported in later releases. They are listed in Table 1–2, "OCI Routines Not
Supported":

Compatibility Between Different Releases of OCI and Servers

odsc() Note: see odescr() preceding

oermsg() OCIErrorGet()

olon() OCILogon()

orlon() OCILogon()

oname() Note: see odescr() preceding

osql3() Note: see oparse() preceding

See Also: For information about the additional functionality
provided by new functions not listed here, see the remaining
chapters of this guide.

Table 1–2 OCI Routines Not Supported

OCI Routine Equivalent or Similar Later OCI Routine

obind() OCIBindByName(), OCIBindByPos() (Note:
additional bind calls may be necessary for some
datatypes)

obindn() OCIBindByName(), OCIBindByPos() (Note:
additional bind calls may be necessary for some
datatypes)

odfinn() OCIDefineByPos() (Note: additional define calls may
be necessary for some datatypes)

odsrbn() Note: see odescr() in Table 1–1

ologon() OCILogon()

osql() Note: see oparse() Table 1–1

Table 1–1 Obsolescent OCI Routines (Cont.)

7.x OCI Routine Equivalent or Similar Later OCI Routine

Compatibility and Upgrading

Introduction and Upgrading 1-21

This section addresses compatibility between different releases of OCI and Oracle
server.

Existing 7.x applications with no new post-release 7.x calls have to be re-linked with
the new client-side library.

The application will not be able to use the object features of Oracle8i or later, and
will not get any of the performance or scalability benefits provided by those OCI
releases.

Upgrading OCI
Programmers who wish to incorporate release post-release 7.x functionality into
existing OCI applications have two options:

■ Completely rewrite the application to use only new OCI calls (recommended).

■ Incorporate new OCI post-release 7.x calls into the application, while still using
7.x calls for some operations.

This manual should provide the information necessary to rewrite an existing
application to use only new OCI calls.

Adding Post-release 7.x OCI Calls to 7.x Applications
The following guidelines apply to programmers who want to incorporate new
Oracle datatypes and features by using new OCI calls, while keeping 7.x calls for
some operations:

■ Change the existing logon to use OCILogon() instead of olog() (or other
logon call). The service context handle can be used with new OCI calls or can be
converted into an Lda_Def to be used with 7.x OCI calls.

■ After the server context handle has been initialized, it can be used with OCI
post-release 7.x calls.

■ To use release 7 OCI calls, convert the server context handle to an Lda_Def
using OCISvcCtxToLda(), and pass the resulting Lda_Def to the 7.x calls.

See Also: See the description of OCIServerAttach() on
page 16-115 and the description of OCISessionBegin() on
page 16-115 for information about the logon calls necessary for
applications which are maintaining multiple sessions.

OCI Instant Client

1-22 Oracle Call Interface Programmer's Guide

■ To begin using post-release 7.x OCI calls again, the application must convert the
Lda_Def back to a server context handle using OCILdaToSvcCtx().

■ The application may toggle between the Lda_Def and server context as often
as necessary in the application.

This approach allows an application to use a single connection, but two different
APIs, to accomplish different tasks.

You can mix OCI 7.x and post-release 7.x calls within a transaction, but not within a
statement. This lets you execute one SQL or PL/SQL statement with OCI 7.x calls
and the next SQL or PL/SQL statement within that transaction with post-release 7.x
OCI calls.

OCI Instant Client
The Instant Client feature makes it extremely easy to deploy OCI, OCCI, ODBC,
and JDBC-OCI based customer applications by eliminating the need for an
ORACLE_HOME. The storage space requirement of an OCI application running in
Instant Client mode is significantly reduced compared to the same application
running in a full client side installation. The Instant Client shared libraries only
occupy about one-fourth the disk space of a full client installation.

Table 1–3 shows the Oracle client side files required to deploy an OCI application:

Note: If there are multiple service contexts that share the same
server handle, only one can be in Oracle version 7 mode at any one
time.

Caution: You cannot open a cursor, parse with OCI 7.x calls and
then execute the statement with post-release 7.x calls.

Table 1–3 OCI Instant Client Shared Libraries

UNIX Windows Description

libclnstsh.so.10.1 oci.dll Client Code Library

libociei.so oraociei10.dll OCI Instant Client Data Shared
Library

libnnz10.so orannzsbb10.dll Security Library

OCI Instant Client

Introduction and Upgrading 1-23

Release 10.1 library names are used in the table. The number part of library names
will change in future releases to agree with the release.

To use the Microsoft ODBC and OLEDB driver, ociw32.dll must also be copied
from ORACLE_HOME\bin.

Benefits of Instant Client
The benefits of Instant Client are:

■ Installation involves copying a small number of files.

■ The Oracle client-side number of required files and the total disk storage are
significantly reduced.

■ There is no loss of functionality or performance for applications deployed in
Instant Client mode.

■ It is simple for independent software vendors to package applications.

OCI Instant Client Installation Process
The Instant Client libraries can also be installed by choosing the Instant Client
option from the Oracle Universal Installer. The Instant Client libraries can also be
downloaded from the Oracle Technology Network (otn.oracle.com) Web site.
The installation process is as simple as:

1. Downloading and installing the Instant Client shared libraries to a directory
such as instantclient.

2. Setting the OS shared library path environment variable to the directory from
step 1. For example, on UNIX, set the LD_LIBRARY_PATH to
instantclient. On Windows, set PATH to locate the instantclient
directory.

After completing the above two steps you are ready to run the OCI application.

The OCI application operates in Instant Client mode when the three OCI shared
libraries are accessible through the OS Library Path variable. In this mode, there is
no dependency on ORACLE_HOME and none of the other code and data files
provided in ORACLE_HOME are needed by OCI (except for the tnsnames.ora file
described later).

If you have done a complete client installation (by choosing the Admin option) the
Instant Client shared libraries are also installed. The location of the Instant Client
shared libraries in a full client installation is:

OCI Instant Client

1-24 Oracle Call Interface Programmer's Guide

On UNIX:

libociei.so library is in $ORACLE_HOME/instantclient

libclnstsh.so.10.1 and libnnz10.so are in $ORACLE_HOME/lib

On Windows:

oraociei10.dll library is in ORACLE_HOME\instantclient

oci.dll, ociw32.dll, orannzsbb10.dll are in ORACLE_HOME\bin

By copying the above libraries to a different directory and setting the OS shared
library path to locate this directory you can enable running the OCI application in
Instant Client mode.

To enable other capabilities such as OCCI and JDBC-OCI, a few other files need to
be copied over as well. In particular, for the JDBC OCI driver, in addition to the
three OCI shared libraries, you must also download OCI JDBC Library (for example
libocijdbc10.so on UNIX and oraocijdbc10.dll on Windows) and
ojdbcXY.jar (where XY is the version number, for example, ojdbc14.jar). All
libraries must be able to be loaded from the library path and ojdbcXY.jar must
be able to be loaded from CLASSPATH.

For OCCI, the OCCI Library (libocci.so.10.1 on UNIX and oraocci10.dll
on Windows) must also be installed in a directory on the OS Library Path variable.

When to Use Instant Client
Instant Client is a deployment feature and should be used for running production
applications. For development, a full installation is necessary to access OCI header
files, Makefiles, demonstration programs, and so on. In general, all OCI

Note: All the libraries must be copied from the same
ORACLE_HOME and must be placed in the same directory.

Note: On hybrid platforms, such as Sparc64, if the JDBC OCI
driver needs to be operated in the Instant Client mode, the
libociei.so library must be copied from the
ORACLE_HOME/instantclient32 directory. All other Sparc64
libraries needed for the JDBC OCI Instant Client must be copied
from the ORACLE_HOME/lib32 directory.

OCI Instant Client

Introduction and Upgrading 1-25

functionality is available to an application being run in the Instant Client mode,
except that the Instant Client mode is for client-side operation only. Therefore,
server-side external procedures cannot operate in the Instant Client mode.

Patching Instant Client Shared Libraries
Because Instant Client is a deployment feature, the emphasis has been on reducing
the number and size of files (client footprint) required to run an OCI application.
Hence all files needed to patch Instant Client shared libraries are not available in an
Instant Client deployment. An ORACLE_HOME based full client installation is
needed to patch the Instant Client shared libraries. The opatch utility will take care
of patching the Instant Client shared libraries.

After patching the Instant Client shared libraries Oracle recommends generating the
patch inventory information by executing the following command from the
ORACLE_HOME/OPatch directory:

opatch lsinventory > opatchinv.out

The opatchinv.out file should be copied along with the patched Instant Client
libraries to the deployment directory. The information in opatchinv.out will
indicate all the patches that have been applied.

The opatch inventory information for Instant Client libraries is not needed on the
Windows platform, so this step can be skipped on Windows.

Regeneration of Data Shared Library
The OCI Instant Client Data Shared Library (libociei.so) can be regenerated by
performing the following steps in an Administrator Install of ORACLE_HOME:

cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk ilibociei

A new version of libociei.so based on the current files in the ORACLE_HOME is
then placed in the ORACLE_HOME/instantclient directory.

Regeneration of data shared library is not available on Windows platforms.

Database Connection Names for OCI Instant Client
All Oracle net naming methods that do not require use of ORACLE_HOME or
TNS_ADMIN (to locate configuration files such as tnsnames.ora or sqlnet.ora)

OCI Instant Client

1-26 Oracle Call Interface Programmer's Guide

work in the Instant Client mode. In particular, the connect string in the
OCIServerAttach() call can be specified in the following formats:

■ A SQL Connect URL string of the form:

//host:[port][/service name]

such as:

//dlsun242:5521/bjava21

■ As an Oracle Net keyword-value pair. For example:

"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=dlsun242) (PORT=5521))
(CONNECT_DATA=(SERVICE_NAME=bjava21)))"

Naming methods that require TNS_ADMIN to locate configuration files continue to
work if the TNS_ADMIN environment variable is set.

If the TNS_ADMIN environment variable is not set, and TNSNAMES entries such as
inst1, and so on, are used, then the ORACLE_HOME variable must be set, and the
configuration files are expected to be in the $ORACLE_HOME/network/admin
directory.

Please note that the ORACLE_HOME variable in this case is only used for locating
Oracle Net configuration files, and no other component of Client Code Library
(OCI, NLS, and so on) uses the value of ORACLE_HOME.

The bequeath adapter or the empty connect strings are not supported. However, an
alternate way to use the empty connect string is to set the TWO_TASK environment
variable on UNIX, or the LOCAL variable on Windows, to either a tnsnames.ora
entry or an Oracle Net keyword-value pair. If TWO_TASK or LOCAL is set to a
tnsnames.ora entry, then the tnsnames.ora file must be able to be loaded by
TNS_ADMIN or ORACLE_HOME setting.

Environment Variables for OCI Instant Client
The ORACLE_HOME environment variable no longer determines the location of NLS,
CORE, and error message files. An OCI-only application should not require
ORACLE_HOME to be set. However, if it is set, it does not have an impact on OCI's
operation. OCI will always obtain its data from the Data Shared Library. If the Data
Shared Library is not available, only then is ORACLE_HOME used and a full client
installation is assumed. Even though ORACLE_HOME is not required to be set, if it is
set, then it must be set to a valid operating system path name that identifies a
directory.

OCI Instant Client

Introduction and Upgrading 1-27

If Dynamic User callback libraries are to be loaded, then as this guide specifies, the
callback package has to reside in ORACLE_HOME/lib (ORACLE_HOME\bin on
Windows). Therefore, ORACLE_HOME should be set in this case.

Environment variables ORA_NLS33, ORA_NLS32, and ORA_NLS are ignored in the
Instant Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the smaller,
default, timezone.dat file from the Data Shared Library is used. If the larger
timezlrg.dat file is to be used from the Data Shared Library, then set the
ORA_TZFILE environment variable to the name of the file without any absolute or
relative path names. That is, on UNIX:

setenv ORA_TZFILE timezlrg.dat

On Windows:

set ORA_TZFILE timezlrg.dat

If OCI is not operating in the Instant Client mode (because the Data Shared Library
is not available), then ORA_TZFILE variable, if set, names a complete path name as
it does in previous Oracle releases.

If TNSNAMES entries are used, then, as mentioned earlier, TNS_ADMIN directory
must contain the TNSNAMES configuration files, and if TNS_ADMIN is not set, then
the ORACLE_HOME/network/admin directory must contain Oracle Net Services
configuration files.

OCI Instant Client

1-28 Oracle Call Interface Programmer's Guide

OCI Programming Basics 2-1

2
OCI Programming Basics

This chapter introduces you to the basic concepts involved in programming with
the OCI.

This chapter contains these topics:

■ Overview of OCI Programming

■ OCI Program Structure

■ OCI Data Structures

■ Handles

■ OCI Descriptors

■ OCI Programming Steps

■ OCI Environment Initialization

■ Commit or Rollback

■ Terminating the Application

■ Error Handling in OCI

■ Additional Coding Guidelines

■ Nonblocking Mode in OCI

■ Using PL/SQL in an OCI Program

■ OCI Globalization Support

Overview of OCI Programming

2-2 Oracle Call Interface Programmer's Guide

Overview of OCI Programming
This chapter provides an introduction to the concepts and procedures involved in
developing an OCI application. After reading this chapter, you should have most of
the tools necessary to understand and create a basic OCI application.

This chapter is broken down into the following major sections:

■ OCI Program Structure - covers the basic structure of, and the major steps
involved in creating an OCI application.

■ OCI Data Structures - discusses handles and descriptors.

■ OCI Programming Steps - discusses in detail each of the steps involved in
coding an OCI application.

■ Error Handling in OCI - covers error handling in OCI applications.

■ Additional Coding Guidelines - provides useful information for coding an OCI
application.

■ Nonblocking Mode in OCI - covers the use of nonblocking mode to connect to
an Oracle database server.

■ Using PL/SQL in an OCI Program - discusses important points for working
with PL/SQL in an OCI application.

New users should pay particular attention to the information presented in this
chapter, because it forms the basis for the rest of the material presented in this
guide. The information in this chapter is supplemented by information in later
chapters.

OCI Program Structure
The general goal of an OCI application is to operate on behalf of multiple users. In
an n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that
include exchanging data and performing data processing.

See Also:

■ For a discussion of the OCI functions that apply to a
multilingual environment, see the Oracle Database Globalization
Support Guide

■ For a discussion of the OCI functions that apply to cartridge
services, see the Oracle Data Cartridge Developer's Guide.

OCI Program Structure

OCI Programming Basics 2-3

OCI uses the following basic program structure:

1. Initialize the OCI programming environment and threads.

2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the
server, and perform necessary application data processing.

4. Execute prepared statements, or prepare a new statement for execution.

5. Terminate user sessions and server connections.

6. Free handles.

Figure 2–1, "Basic OCI Program Flow" illustrates the flow of steps in an OCI
application. Each step is described in more detail in the section "OCI Programming
Steps" on page 2-18.

Figure 2–1 Basic OCI Program Flow

Keep in mind that the diagram and the list of steps present a simple generalization
of OCI programming steps. Variations are possible, depending on the functionality
of the program. OCI applications that include more sophisticated functionality, such
as managing multiple sessions and transactions and using objects, require
additional steps.

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Create
Environment

OCI Data Structures

2-4 Oracle Call Interface Programmer's Guide

All OCI function calls are executed in the context of an environment. There can be
multiple environments within an OCI process. If an environment requires any
process-level initialization, then it is performed automatically.

OCI Data Structures
Handles and descriptors are opaque data structures which are defined in OCI
applications. They can be allocated directly, through specific allocate calls, or they
can be implicitly allocated by OCI functions.

Handles and descriptors store information pertaining to data, connections, or
application behavior. Handles are defined in more detail in the next section:

Handles
Almost all OCI calls include in their parameter list one or more handles. A handle is
an opaque pointer to a storage area allocated by the OCI library. You use a handle to
store context or connection information, (for example, an environment or service
context handle), or it may store information about OCI functions or data (for
example, an error or describe handle). Handles can make programming easier,
because the library, rather than the application, maintains this data.

Most OCI applications need to access the information stored in handles. The get
and set attribute OCI calls, OCIAttrGet() and OCIAttrSet(), access and set this
information.

Note: It is possible to have more than one active connection and
statement in an OCI application.

See Also: For information about accessing and manipulating
objects, see Chapter 10, "OCI Object-Relational Programming" and
the subsequent chapters

7.x Upgrade Note: Programmers who have previously written 7.x
OCI applications need to become familiar with these new data
structures which are used by most OCI calls.

See Also: Descriptors are discussed in the section "OCI
Descriptors" on page 2-13

Handles

OCI Programming Basics 2-5

Table 2–1 lists the handles defined for the OCI. For each handle type, the C datatype
and handle type constant used to identify the handle type in OCI calls are listed.

See Also: "Handle Attributes" on page 2-12

Table 2–1 OCI Handle Types

Description C Datatype Handle Type

OCI environment handle OCIEnv OCI_HTYPE_ENV

OCI error handle OCIError OCI_HTYPE_ERROR

OCI service context handle OCISvcCtx OCI_HTYPE_SVCCTX

OCI statement handle OCIStmt OCI_HTYPE_STMT

OCI bind handle OCIBind OCI_HTYPE_BIND

OCI define handle OCIDefine OCI_HTYPE_DEFINE

OCI describe handle OCIDescribe OCI_HTYPE_DESCRIBE

OCI server handle OCIServer OCI_HTYPE_SERVER

OCI user session handle OCISession OCI_HTYPE_SESSION

OCI authentication information
handle

OCIAuthInfo OCI_HTYPE_AUTHINFO

OCI connection pool handle OCICPool OCI_HTYPE_CPOOL

OCI session pool handle OCISPool OCI_HTYPE_SPOOL

OCI transaction handle OCITrans OCI_HTYPE_TRANS

OCI complex object retrieval (COR)
handle

OCIComplexObject OCI_HTYPE_COMPLEXOBJECT

OCI thread handle OCIThreadHandle N/A

OCI subscription handle OCISubscription OCI_HTYPE_SUBSCRIPTION

OCI direct path context handle OCIDirPathCtx OCI_HTYPE_DIRPATH_CTX

OCI direct path function context
handle

OCIDirPathFuncCtx OCI_HTYPE_DIRPATH_FN_CTX

OCI direct path column array handle OCIDirPathColArray OCI_HTYPE_DIRPATH_COLUMN_ARRAY

OCI direct path stream handle OCIDirPathStream OCI_HTYPE_DIRPATH_STREAM

OCI process handle OCIProcess OCI_HTYPE_PROCESS

Handles

2-6 Oracle Call Interface Programmer's Guide

Allocating and Freeing Handles
Your application allocates all handles (except the bind, define, and thread handles)
with respect to a particular environment handle. You pass the environment handle
as one of the parameters to the handle allocation call. The allocated handle is then
specific to that particular environment.

The bind and define handles are allocated with respect to a statement handle, and
contain information about the statement represented by that handle.

Figure 2–2, "Hierarchy of Handles" illustrates the various types of handles.

Note: The bind and define handles are implicitly allocated by the
OCI library, and do not require user allocation.

Handles

OCI Programming Basics 2-7

Figure 2–2 Hierarchy of Handles

The environment handle is allocated and initialized with a call to
OCIEnvCreate() or to OCIEnvNlsCreate(), one of which is required by all OCI
applications.

All user-allocated handles are initialized using the OCI handle allocation call,
OCIHandleAlloc().

The thread handle is allocated with the OCIThreadHndInit() call.

An application must free all handles when they are no longer needed. The
OCIHandleFree() function frees all handles.

Subscription
Handle

COR
Handle

Thread
Handle

Direct Path
Context Handle

Session
Handle

Connection Pool
Handle

Error
Handle

Statement
Handle

Describe
Handle

Service Context
Handle

Server
Handle

Environment
Handle

Handles

2-8 Oracle Call Interface Programmer's Guide

Handles lessen the need for global variables. Handles also make error reporting
easier. An error handle is used to return errors and diagnostic information.

Environment Handle
The environment handle defines a context in which all OCI functions are invoked.
Each environment handle contains a memory cache, which enables fast memory
access. All memory allocation under the environment handle is done from this
cache. Access to the cache is serialized if multiple threads try to allocate memory
under the same environment handle. When multiple threads share a single
environment handle, they may block on access to the cache.

The environment handle is passed as the parent parameter to the
OCIHandleAlloc() call to allocate all other handle types. Bind and define
handles are allocated implicitly.

Error Handle
The error handle is passed as a parameter to most OCI calls. The error handle
maintains information about errors that occur during an OCI operation. If an error
occurs in a call, the error handle can be passed to OCIErrorGet() to obtain
additional information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because
most OCI calls require an error handle as one of its parameters.

Service Context and Associated Handles
A service context handle defines attributes that determine the operational context for
OCI calls to a server. The service context contains three handles as its attributes, that
represent a server connection, a user session, and a transaction. These attributes are
illustrated in Figure 2–3, "Components of a Service Context":

Note: When a parent handle is freed, all child handles associated
with it are also freed, and can no longer be used. For example,
when a statement handle is freed, any bind and define handles
associated with it are also freed.

See Also: For sample code demonstrating the allocation and use
of OCI handles, see the example programs listed in Appendix B,
"OCI Demonstration Programs"

Handles

OCI Programming Basics 2-9

Figure 2–3 Components of a Service Context

■ A server handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

■ A user session handle defines a user's roles and privileges (also known as the
user's security domain), and the operational context in which the calls execute.

■ A transaction handle defines the transaction in which the SQL operations are
performed. The transaction context includes user session state information,
including any fetch state and package instantiation.

Breaking the service context down in this way provides scalability and enables
programmers to create sophisticated multitiered applications and transaction
processing (TP) monitors for execute requests on behalf of multiple users on
multiple application servers and different transaction contexts.

You must allocate and initialize the service context handle with
OCIHandleAlloc() or OCILogon() before you can use it. The service context
handle is allocated explicitly by OCIHandleAlloc(). It can be initialized using
OCIAttrSet() with the server, session, and transaction handle. If the service
context handle is allocated implicitly using OCILogon(), it is already initialized.

Applications maintaining only a single user session for each database connection at
any time can call OCILogon() to get an initialized service context handle.

In applications requiring more complex session management, the service context
must be explicitly allocated, and the server and user session handles must be
explicitly set into the service context. OCIServerAttach() and
OCISessionBegin() calls initialize the server and user session handle
respectively.

An application will only define a transaction explicitly if it is a global transaction or
there are multiple transactions active for sessions. It will be able to work correctly
with the implicit transaction created automatically by OCI when the application
makes changes to the database.

Server
Handle

Transaction
Handle

Service Context
Handle

User Session
Handle

Handles

2-10 Oracle Call Interface Programmer's Guide

Statement, Bind, and Define Handles
A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes.

Figure 2–4 Statement Handles

Information about input and output bind variables is stored in bind handles. The OCI
library allocates a bind handle for each placeholder bound with the
OCIBindByName() or OCIBindByPos() function. The user does not need to
allocate bind handles. They are implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved
according to the specifications of the define handles. The OCI library allocates a
define handle for each output variable defined with OCIDefineByPos(). The user
does not need to allocate define handles. They are implicitly allocated by the define
call.

Bind and define handles are freed when the statement handle is freed or when a
new statement is prepared on the statement handle.

Describe Handle
The describe handle is used by the OCI describe call, OCIDescribeAny(). This call
obtains information about schema objects in a database (for example, functions,
procedures). The call takes a describe handle as one of its parameters, along with

See Also:

■ "OCI Support for Transactions" on page 8-2

■ For more information about establishing a server connection
and user session, see the sections "OCI Environment
Initialization" on page 2-19, and "Password and Session
Management" on page 8-10

Define
Handle

Bind
Handle

Statement
Handle

Handles

OCI Programming Basics 2-11

information about the object being described. When the call completes, the describe
handle is populated with information about the object. The OCI application can
then obtain describe information through the attributes of parameter descriptors.

Complex Object Retrieval Handle
The complex object retrieval (COR) handle is used by some OCI applications that work
with objects in an Oracle database server. This handle contains COR descriptors,
which provide instructions for retrieving objects referenced by another object.

Thread Handle
For information about the thread handle, which is used in multithreaded
applications:

Subscription Handle
The subscription handle is used by an OCI client application that registers and
subscribes to receive notifications of database events or events in the AQ
namespace. The subscription handle encapsulates all information related to a
registration from a client.

Direct Path Handles
The direct path handles are necessary for an OCI application that uses the direct
path load engine in the Oracle database server. The direct path load interface
enables the application to access the direct block formatter of the Oracle server.

See Also: Chapter 6, "Describing Schema Metadata", for more
information about using the OCIDescribeAny() function

See Also : "Complex Object Retrieval" on page 10-21

See Also: "The OCIThread Package" on page 9-4

See Also: "Publish-Subscribe Notification in OCI" on page 9-54

Handles

2-12 Oracle Call Interface Programmer's Guide

Figure 2–5 Direct Path Handles

Connection Pool Handle
The connection pool handle is used for applications that pool physical connections
into virtual connections by calling specific OCI functions.
.

Handle Attributes
All OCI handles have attributes that represent data stored in that handle. You can
read handle attributes using the attribute get call, OCIAttrGet(), and you can
change them with the attribute set call, OCIAttrSet().

For example, the following statements set the user name in the session handle by
writing to the OCI_ATTR_USERNAME attribute:

text username[] = "hr";
err = OCIAttrSet ((dvoid*) mysessp, OCI_HTYPE_SESSION, (dvoid*)username,
 (ub4) strlen((char *)username), OCI_ATTR_USERNAME, (OCIError *) myerrhp);

Some OCI functions require that particular handle attributes be set before the
function is called. For example, when OCISessionBegin() is called to establish a
user's login session, the user name and password must be set in the user session
handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the
function completes. For example, when OCIStmtExecute() is called to execute a

See Also:

■ "Direct Path Loading Overview" on page 12-2

■ "Direct Path Loading Handle Attributes" on page A-60

See Also: "Connection Pooling in OCI" on page 9-10

Direct Path
Column Array

Handle

Direct Path
Stream
Handle

Direct Path
Function Context

Handle

Direct Path
Context Handle

OCI Descriptors

OCI Programming Basics 2-13

SQL query, describe information relating to the select-list items is returned in the
statement handle.

ub4 parmcnt;
/* get the number of columns in the select list */
err = OCIAttrGet ((dvoid *)stmhp, (ub4)OCI_HTYPE_STMT, (dvoid *)
 &parmcnt, (ub4 *) 0, (ub4)OCI_ATTR_PARAM_COUNT, errhp);

OCI Descriptors
OCI descriptors and locators are opaque data structures that maintain data-specific
information. Table 2–2 lists them, along with their C datatype, and the OCI type
constant that allocates a descriptor of that type in a call to
OCIDescriptorAlloc(). The OCIDescriptorFree() function frees
descriptors and locators.

See Also:

■ The description of OCIAttrGet() on page 15-49 for an
example showing the user name and password handle
attributes being set

■ Appendix A, "Handle and Descriptor Attributes"

Table 2–2 Descriptor Types

Description C Datatype OCI Type Constant

snapshot descriptor OCISnapshot OCI_DTYPE_SNAP

LOB datatype locator OCILobLocator OCI_DTYPE_LOB

FILE datatype locator OCILobLocator OCI_DTYPE_FILE

read-only parameter descriptor OCIParam OCI_DTYPE_PARAM

ROWID descriptor OCIRowid OCI_DTYPE_ROWID

ANSI DATE descriptor OCIDateTime OCI_DTYPE_DATE

TIMESTAMP descriptor OCIDateTime OCI_DTYPE_TIMESTAMP

TIMESTAMP WITH TIME ZONE
descriptor

OCIDateTime OCI_DTYPE_TIMESTAMP_TZ

TIMESTAMP WITH LOCAL TIME ZONE
descriptor

OCIDateTime OCI_DTYPE_TIMESTAMP_LTZ

INTERVAL YEAR TO MONTH descriptor OCIInterval OCI_DTYPE_INTERVAL_YM

OCI Descriptors

2-14 Oracle Call Interface Programmer's Guide

The main purpose of each descriptor type is listed here, and each descriptor type is
described in the following sections:

■ OCISnapshot - used in statement execution

■ OCILOBLocator - used for LOB (OCI_DTYPE_LOB) or FILE
(OCI_DTYPE_FILE) calls

■ OCIParam - used in describe calls

■ OCIRowid - used for binding or defining ROWID values

■ OCIDateTime and OCIInterval - used for datetime and interval datatypes

■ OCIComplexObjectComp - used for complex object retrieval

■ OCIAQEnqOptions, OCIAQDeqOptions, OCIAQMsgProperties,
OCIAQAgent - used for Advanced Queuing

■ OCIAQNotify - used for publish-subscribe notification

■ OCIServerDNs - used for LDAP-based publish-subscribe notification

INTERVAL DAY TO SECOND descriptor OCIInterval OCI_DTYPE_INTERVAL_DS

complex object descriptor OCIComplexObjectComp OCI_DTYPE_COMPLEXOBJECTCOMP

advanced queuing enqueue options OCIAQEnqOptions OCI_DTYPE_AQENQ_OPTIONS

advanced queuing dequeue options OCIAQDeqOptions OCI_DTYPE_AQDEQ_OPTIONS

advanced queuing message properties OCIAQMsgProperties OCI_DTYPE_AQMSG_PROPERTIES

advanced queuing agent OCIAQAgent OCI_DTYPE_AQAGENT

advanced queuing notification OCIAQNotify OCI_DTYPE_AQNFY

the distinguished names of the database
servers in a registration request

OCIServerDNs OCI_DTYPE_SRVDN

Note: Although there is a single C type for OCILobLocator, this
locator is allocated with a different OCI type constant for internal
and external LOBs. The section below on LOB locators discusses
this difference.

Table 2–2 Descriptor Types (Cont.)

Description C Datatype OCI Type Constant

OCI Descriptors

OCI Programming Basics 2-15

Snapshot Descriptor
The snapshot descriptor is an optional parameter to the execute call,
OCIStmtExecute(). It indicates that a query is being executed against a particular
database snapshot which represents the state of a database at a particular point in
time.

Allocate a snapshot descriptor with a call to OCIDescriptorAlloc(), by passing
OCI_DTYPE_SNAP as the type parameter.

LOB and BFILE Locators
A large object (LOB) is an Oracle datatype that can hold binary (BLOB) or character
(CLOB) data. In the database, an opaque data structure called a LOB locator is stored
in a LOB column of a database row, or in the place of a LOB attribute of an object.
The locator serves as a pointer to the actual LOB value, which is stored in a separate
location.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or
CLOB) or FILE (BFILE). OCILobXXX functions take a LOB locator parameter
instead of the LOB value. OCI LOB functions do not use actual LOB data as
parameters. They use the LOB locators as parameters and operate on the LOB data
referenced by them.

The LOB locator is allocated with a call to OCIDescriptorAlloc(), by passing
OCI_DTYPE_LOB as the type parameter for BLOBs or CLOBs, and
OCI_DTYPE_FILE for BFILEs.

See Also: For more information about OCIStmtExecute() and
database snapshots, see the section "Execution Snapshots" on
page 4-8

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAW data for BLOB
columns.

See Also:

■ "Binding LOB Data" on page 5-11

■ "Defining LOB Data" on page 5-21

OCI Descriptors

2-16 Oracle Call Interface Programmer's Guide

An OCI application can retrieve a LOB locator from the server by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In
this case, the application would first allocate the LOB locator and then use it to
define an output variable. Similarly, a LOB locator can be used as part of a bind
operation to create an association between a LOB and a placeholder in a SQL
statement.

Parameter Descriptor
OCI applications use parameter descriptors to obtain information about select-list
columns or schema objects. This information is obtained through a describe
operation.

The parameter descriptor is the only descriptor type that is not allocated using
OCIDescriptorAlloc(). You can obtain it only as an attribute of a describe
handle, statement handle, or through a complex object retrieval handle by
specifying the position of the parameter using an OCIParamGet() call.

ROWID Descriptor
The ROWID descriptor, OCIRowid, is used by applications that need to retrieve and
use Oracle ROWIDs. To work with a ROWID using OCI release 8 or later, an
application can define a ROWID descriptor for a rowid position in a SQL select-list,

Caution: The two LOB locator types are not interchangeable.
When binding or defining a BLOB or CLOB, the application must
take care that the locator is properly allocated using
OCI_DTYPE_LOB. Similarly, when binding or defining a BFILE,
the application must be sure to allocate the locator using
OCI_DTYPE_FILE.

See Also:

■ Chapter 7, "LOB and BFILE Operations"

■ "Binding LOB Data" on page 5-11

■ "Defining LOB Data" on page 5-21

See Also: Chapter 6, "Describing Schema Metadata", and
"Describing Select-list Items" on page 4-11 for more information
about obtaining and using parameter descriptors

OCI Descriptors

OCI Programming Basics 2-17

and retrieve a ROWID into the descriptor. This same descriptor can later be bound to
an input variable in an INSERT statement or WHERE clause.

ROWIDs are also redirected into descriptors using OCIAttrGet() on the statement
handle following an execute.

Date, Datetime, and Interval Descriptors
These descriptors are used by applications which use the date, datetime, or interval
datatypes (OCIDate, OCIDateTime, and OCIInterval). These descriptors can be
used for binding and defining, and are passed as parameters to the functions
OCIDescAlloc() and OCIDescFree() to allocate and free memory.

Complex Object Descriptor
Application performance when dealing with objects may be increased through the
use of complex object retrieval (COR).

Advanced Queuing Descriptors
 Oracle AQ provides message queuing as an integrated part of the Oracle server.

See Also:

■ For more information about these datatypes refer to Chapter 3,
"Datatypes".

■ The functions which operate on these datatypes are described
in Chapter 18, "OCI Datatype Mapping and Manipulation
Functions"

See Also: For information about the complex object descriptor
and its use, refer to "Complex Object Retrieval" on page 10-21.

See Also:

■ "OCI and Streams Advanced Queuing" on page 9-48

■ "Publish-Subscribe Registration Functions in OCI" on page 9-56

OCI Programming Steps

2-18 Oracle Call Interface Programmer's Guide

User Memory Allocation
The OCIDescriptorAlloc() call has an xtramem_sz parameter in its parameter
list. This parameter is used to specify an amount of user memory which should be
allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure
maybe used for application bookkeeping or storing context information.

Using the xtramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each descriptor or locator is allocated
and deallocated. The memory is allocated along with the descriptor or locator, and
freeing the descriptor or locator (with OCIDescriptorFree()) frees the user's
data structures as well.

The OCIHandleAlloc() call has a similar parameter for allocating user memory
which has the same lifetime as the handle.

The OCIEnvCreate() and OCIEnvInit() calls have a similar parameter for
allocating user memory which has the same lifetime as the environment handle.

OCI Programming Steps
Each of the steps in developing an OCI application is described in detail in the
following sections. Some of the steps are optional. For example, you do not need to
describe or define select-list items if the statement is not a query.

OCI Environment Initialization

OCI Programming Basics 2-19

The following sections describe the steps that are required of an OCI application:

■ OCI Environment Initialization

■ Processing SQL Statements in OCI

■ Commit or Rollback

■ Terminating the Application

■ Error Handling in OCI

Application-specific processing will also occur in between any and all of the OCI
function steps.

OCI Environment Initialization
This section describes how to initialize the OCI environment, establish a connection
to a server, and authorize a user to perform actions against the database.

First, the three main steps in initializing the OCI environment are described in the
following sections:

See Also:

■ Appendix B, "OCI Demonstration Programs" for an example
showing the use of OCI calls for processing SQL statements.
See the first sample program.

■ The special case of dynamically providing data at run time is
described in detail in the section "Runtime Data Allocation and
Piecewise Operations in OCI" on page 5-40.

■ Special considerations for operations involving arrays of
structures are described in the section "Binding and Defining
Arrays of Structures in OCI" on page 5-23.

■ Refer to the section "Error Handling in OCI" on page 2-26 for an
outline of the steps involved in processing a SQL statement
within an OCI program.

■ For information on using the OCI to write multithreaded
applications, refer to "Overview of OCI Multithreaded
Development" on page 9-2.

■ For more information about types of SQL statements, refer to
the section "SQL Statements" on page 1-6.

OCI Environment Initialization

2-20 Oracle Call Interface Programmer's Guide

■ "Creating the OCI Environment" on page 2-20

■ "Allocating Handles and Descriptors" on page 2-21

■ "Application Initialization, Connection, and Session Creation" on page 2-21

Creating the OCI Environment
Each OCI function call is executed in the context of an environment that is created
with the OCIEnvCreate() call. This call must be invoked before any other OCI
call is executed. The only exception is the setting of a process-level attribute for the
OCI shared mode.

The mode parameter of OCIEnvCreate() specifies whether the application calling
the OCI library functions will:

■ Run in a threaded environment (mode = OCI_THREADED).

■ Use objects (mode = OCI_OBJECT).

■ Use subscriptions (mode = OCI_EVENTS).

The mode can be set independently in each environment.

It is necessary to initialize in object mode if the application binds and defines
objects, or if it uses the OCI's object navigation calls. The program may also choose
to use none of these features (mode = OCI_DEFAULT) or some combination of
them, separating the options with a vertical bar. For example if mode =
(OCI_THREADED | OCI_OBJECT), then the application runs in a threaded
environment and uses objects.

You can specify user-defined memory management functions for each OCI
environment.

See Also:

■ OCIEnvCreate() on page 15-9 and OCIInitialize() on
page 15-18 for more information about the initialization calls.

■ "Overview of OCI Multithreaded Development" on page 9-2.

■ Chapter 10, "OCI Object-Relational Programming" and the
chapters that follow it.

■ "Publish-Subscribe Notification in OCI" on page 9-54.

OCI Environment Initialization

OCI Programming Basics 2-21

Allocating Handles and Descriptors
Oracle provides OCI functions to allocate and deallocate handles and descriptors.
You must allocate handles using OCIHandleAlloc() before passing them into an
OCI call, unless the OCI call, such as OCIBindByPos(), allocates the handles for
you.

You can allocate the types of handles listed in Table 2–1, "OCI Handle Types"with
OCIHandleAlloc() Depending on the functionality of your application, it needs
to allocate some or all of these handles.

Application Initialization, Connection, and Session Creation
An application must call OCIEnvCreate() to initialize the OCI environment
handle.

Following this step, the application has two options for establishing a server
connection and beginning a user session: Single User, Single Connection; or
Multiple Sessions or Connections.

Option 1: Single User, Single Connection
This option is the simplified logon method, which can be used if an application
maintains only a single user session for each database connection at any time.

When an application calls OCILogon(), the OCI library initializes the service
context handle that is passed to it, and creates a connection to the specified server
for the user making the request.

The following is an example of what a call to OCILogon() might look like:

OCILogon(envhp, errhp, &svchp, (text *)"hr", nameLen, (text *)"hr",
 passwdLen, (text *)"oracledb", dbnameLen);

The parameters to this call include the service context handle (which are initialized),
the user name, the user's password, and the name of the database that are used to
establish the connection. The server and user session handles are implicitly
allocated by this function.

Note: OCIEnvCreate() should be used instead of the
OCIInitialize() and OCIEnvInit() calls.
OCIInitialize() and OCIEnvInit() calls are supported for
backward compatibility.

OCI Environment Initialization

2-22 Oracle Call Interface Programmer's Guide

If an application uses this logon method, the service context, server, and user
session handles will all be read-only; the application cannot switch session or
transaction by changing the appropriate attributes of the service context handle by
means of an OCIAttrSet() call.

An application that initializes its session and authorization using OCILogon()
must terminate them using OCILogoff().

Option 2: Multiple Sessions or Connections
This option uses explicit attach and begin session calls to maintain multiple user
sessions and connections on a database connection.Specific calls to attach to the
server and begin sessions are:

■ OCIServerAttach()- creates an access path to the data server for OCI
operations.

■ OCISessionBegin()- establishes a session for a user against a particular
server. This call is required for the user to execute operations on the server.

A subsequent call to OCISessionBegin() using different service context and
session context handles logs off the previous user and causes an error, To run two
simultaneous non-migratable sessions, a second OCISessionBegin() call must be
made with the same service context handle and a new session context handle.

These calls set up an operational environment that enables you to execute SQL and
PL/SQL statements against a database.

Example of Creating and Initializing an OCI Environment
The following example demonstrates the use of creating and initializing an OCI
environment.

■ A server context is created and set in the service handle.

See Also:

■ "Nonblocking Mode in OCI" on page 2-35 for information
about specifying a blocking or nonblocking connection in the
OCIServerAttach() call.

■ "Connect, Authorize, and Initialize Functions" on page 15-4.

■ Chapter 9, "OCI Programming Advanced Topics", for more
information about maintaining multiple sessions, transactions,
and connections.

OCI Environment Initialization

OCI Programming Basics 2-23

■ Then a user session handle is created and initialized using a database user name
and password.

■ For the sake of simplicity, error checking is not included.

#include <oci.h>
...
main()
{
...
OCIEnv *myenvhp; /* the environment handle */
OCIServer *mysrvhp; /* the server handle */
OCIError *myerrhp; /* the error handle */
OCISession *myusrhp; /* user session handle */
OCISvcCtx *mysvchp; /* the service handle */
..
/* initialize the mode to be the threaded and object environment */
(void) OCIEnvCreate(&myenvhp, OCI_THREADED|OCI_OBJECT, (dvoid *)0,
 0, 0, 0, (size_t) 0, (dvoid **)0);

 /* allocate a server handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&mysrvhp,
 OCI_HTYPE_SERVER, 0, (dvoid **) 0);

 /* allocate an error handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&myerrhp,
 OCI_HTYPE_ERROR, 0, (dvoid **) 0);

 /* create a server context */
(void) OCIServerAttach (mysrvhp, myerrhp, (text *)"inst1_alias",
 strlen ("inst1_alias"), OCI_DEFAULT);

 /* allocate a service handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&mysvchp,
 OCI_HTYPE_SVCCTX, 0, (dvoid **) 0);

 /* set the server attribute in the service context handle*/
(void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
 (dvoid *)mysrvhp, (ub4) 0, OCI_ATTR_SERVER, myerrhp);

 /* allocate a user session handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&myusrhp,
 OCI_HTYPE_SESSION, 0, (dvoid **) 0);

 /* set user name attribute in user session handle */

Commit or Rollback

2-24 Oracle Call Interface Programmer's Guide

 (void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE_SESSION,
 (dvoid *)"hr", (ub4)strlen("hr"),
 OCI_ATTR_USERNAME, myerrhp);

 /* set password attribute in user session handle */
 (void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE_SESSION,
 (dvoid *)"hr", (ub4)strlen("hr"),
 OCI_ATTR_PASSWORD, myerrhp);

 (void) OCISessionBegin ((dvoid *) mysvchp, myerrhp, myusrhp,
 OCI_CRED_RDBMS, OCI_DEFAULT);

 /* set the user session attribute in the service context handle*/
 (void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
 (dvoid *)myusrhp, (ub4) 0, OCI_ATTR_SESSION, myerrhp);
...
}

The demonstration program cdemo81.c in the demo directory illustrates this
process, with error-checking.

Processing SQL Statements in OCI
A chapter of this manual outlines the specific steps involved in processing SQL
statements in OCI.

Commit or Rollback
An application commits changes to the database by calling OCITransCommit().
This call uses a service context as one of its parameters. The transaction is associated
with the service context whose changes are committed. This transaction can be
explicitly created by the application or implicitly created when the application
modifies the database.

See Also: Chapter 4, "Using SQL Statements in OCI"

Note: Using the OCI_COMMIT_ON_SUCCESS mode of the
OCIExecute() call, the application can selectively commit
transactions at the end of each statement execution, saving an extra
round trip.

Terminating the Application

OCI Programming Basics 2-25

To roll back a transaction, use the OCITransRollback() call.

If an application disconnects from Oracle in some way other than a normal logoff,
such as losing a network connection, and OCITransCommit() has not been called,
all active transactions are rolled back automatically.

Terminating the Application
An OCI application should perform the following three steps before it terminates:

1. Delete the user session by calling OCISessionEnd() for each session.

2. Delete access to the data source(s) by calling OCIServerDetach() for each
source.

3. Explicitly deallocate all handles by calling OCIHandleFree() for each handle.

4. Delete the environment handle, which deallocates all other handles associated
with it.

The calls to OCIServerDetach() and OCISessionEnd() are not mandatory, but
are recommended. If the application terminates, and OCITransCommit()
(transaction commit) has not been called, any pending transactions are
automatically rolled back

See Also:

■ "Service Context and Associated Handles" on page 2-8, and

■ "OCI Support for Transactions" on page 8-2

Note: When a parent OCI handle is freed, any child handles
associated with it are freed automatically

See Also: For an example showing handles being freed at the end
of an application, refer to the first sample program in Appendix B,
"OCI Demonstration Programs"

Error Handling in OCI

2-26 Oracle Call Interface Programmer's Guide

Error Handling in OCI
OCI function calls have a set of return codes, listed in Table 2–3, "OCI Return
Codes", which indicate the success or failure of the call, such as OCI_SUCCESS or
OCI_ERROR, or provide other information that may be required by the application,
such as OCI_NEED_DATA or OCI_STILL_EXECUTING. Most OCI calls return one
of these codes.

To verify that the connection to the server is not terminated by the OCI_ERROR, an
application can check the value of the attribute OCI_ATTR_SERVER_STATUS in the
server handle. If the value of the attribute is OCI_SERVER_NOT_CONNECTED,
then the connection to the server and the user session must be re-established.

Note: If the application uses the simplified logon method of
OCILogon(), then a call to OCILogoff() terminates the session,
disconnects from the server, and frees the service context and
associated handles. The application is still responsible for freeing
other handles it allocated.

See Also:

■ For exceptions, see "Functions Returning Other Values" on
page 2-28

■ For complete details and an example of usage, see
"OCIErrorGet()" on page 16-217

■ "OCI_ATTR_SERVER_STATUS" on page A-15

Table 2–3 OCI Return Codes

OCI Return Code Description

OCI_SUCCESS The function completed successfully.

OCI_SUCCESS_WITH_INFO The function completed successfully; a call to OCIErrorGet() returns
additional diagnostic information. This may include warnings.

OCI_NO_DATA The function completed, and there is no further data.

OCI_ERROR The function failed; a call to OCIErrorGet() returns additional
information.

OCI_INVALID_HANDLE An invalid handle was passed as a parameter or a user callback is passed an
invalid handle or invalid context. No further diagnostics are available.

Error Handling in OCI

OCI Programming Basics 2-27

If the return code indicates that an error has occurred, the application can retrieve
Oracle-specific error codes and messages by calling OCIErrorGet(). One of the
parameters to OCIErrorGet() is the error handle passed to the call that caused
the error.

Return and Error Codes for Data
In Table 2–4, the OCI return code, error number, indicator variable, and column
return code are specified when the data fetched is normal, null, or truncated.

OCI_NEED_DATA The application must provide runtime data.

OCI_STILL_EXECUTING The service context was established in nonblocking mode, and the current
operation could not be completed immediately. The operation must be called
again to complete. OCIErrorGet() returns ORA-03123 as the error code.

OCI_CONTINUE This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

Note: Multiple diagnostic records can be retrieved by calling
OCIErrorGet() repeatedly until there are no more records
(OCI_NO_DATA is returned). OCIErrorGet() returns at most a
single diagnostic record.

See Also: "Indicator Variables" on page 2-30 for a discussion of
indicator variables.

Table 2–4 Return and Error Codes

State of Data Return Code
Indicator - not
provided Indicator - provided

not null or truncated not provided OCI_SUCCESS

error = 0

OCI_SUCCESS

error = 0

indicator = 0

Table 2–3 OCI Return Codes (Cont.)

OCI Return Code Description

Error Handling in OCI

2-28 Oracle Call Interface Programmer's Guide

For truncated data, data_len is the actual length of the data that has been
truncated if this length is less than or equal to SB2MAXVAL. Otherwise, the indicator
is set to -2.

Functions Returning Other Values
Some functions return values other than the OCI error codes listed in Table 2–3.
When using these function be aware that they return values directly from the
function call, rather than through an OUT parameter. More detailed information
about each function and its return values is listed in the reference chapters.

not null or truncated provided OCI_SUCCESS

error = 0

return code = 0

OCI_SUCCESS

error = 0

indicator = 0

return code = 0

null data not provided OCI_ERROR

error = 1405

OCI_SUCCESS

error = 0

indicator = -1

null data provided OCI_ERROR

error = 1405

return code = 1405

OCI_SUCCESS

error = 0

indicator = -1

return code = 1405

truncated data not provided OCI_ERROR

error = 1406

OCI_ERROR

error = 1406

indicator = data_len

truncated data provided OCI_SUCCESS_WI
TH_INFO

error = 24345

return code = 1405

OCI_SUCCESS_WITH_INFO

error = 24345

indicator = data_len

return code = 1406

Table 2–4 Return and Error Codes (Cont.)

State of Data Return Code
Indicator - not
provided Indicator - provided

Additional Coding Guidelines

OCI Programming Basics 2-29

Additional Coding Guidelines
This section explains some additional issues when coding OCI applications.

Parameter Types
OCI functions take a variety of different types of parameters, including integers,
handles, and character strings. Special considerations must be taken into account
for some types of parameters, as described in the following sections.

Address Parameters
Address parameters are used to pass the address of the variable to Oracle. You
should be careful when developing in C, since it normally passes scalar parameters
by value.

Integer Parameters
Binary integer and short binary integer parameters are numbers whose size is
system-dependent. See your Oracle system-specific documentation for the size of
these integers on your system.

Character String Parameters
Character strings are a special type of address parameter. Each OCI routine that
enables a character string to be passed as a parameter also has a string length
parameter. The length parameter should be set to the length of the string.

Inserting Nulls into a Column
You can insert a null into a database column in several ways.

1. One method is to use a literal NULL in the text of an INSERT or UPDATE
statement. For example, the SQL statement

 INSERT INTO emp1 (ename, empno, deptno)

See Also: "Connect, Authorize, and Initialize Functions" on
page 15-4 for more information about parameter datatypes and
parameter passing conventions.

7.x Upgrade Note: Unlike earlier versions of the OCI, you do not
pass -1 for the string length parameter of a null-terminated string.

Additional Coding Guidelines

2-30 Oracle Call Interface Programmer's Guide

 VALUES (NULL, 8010, 20)

makes the ENAME column null.

2. Use indicator variables in the OCI bind call.

3. Insert a NULL is to set the buffer length and maximum length parameters both
to zero on a bind call.

Indicator Variables
Each bind and define OCI call has a parameter that associates an indicator variable,
or an array of indicator variables, with a DML statement, a PL/SQL statement, or a
query.

The C language does not have the concept of null values; therefore you associate
indicator variables with input variables to specify whether the associated
placeholder is a NULL. When data is passed to Oracle, the values of these indicator
variables determine whether or not a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned
from Oracle is a NULL or a truncated value. In the case of a NULL fetch in an
OCIStmtFetch() call, or a truncation in an OCIStmtExecute() call, the OCI call
returns OCI_SUCCESS. The output indicator variable is set. If the application
returns a code variable in the subsequent OCIDefineByPos() call, the OCI assigns
a value of ORA-01405 (for NULL fetch) or ORA-01406 (for truncation) to the return
code variable.

The datatype of indicator variables is sb2. In the case of arrays of indicator
variables, the individual array elements should be of type sb2.

Input
For input host variables, the OCI application can assign the following values to an
indicator variable:

See Also: "Indicator Variables" on page 2-30

Note: Following SQL92 requirements, Oracle returns an error if an
attempt is made to fetch a null select-list item into a variable that
does not have an associated indicator variable specified in the
define call.

Additional Coding Guidelines

OCI Programming Basics 2-31

Table 2–5 Input Indicator Values

Output
On output, Oracle can assign the following values to an indicator variable:

Table 2–6 Output Indicator Values

Indicator Variables for Named Data Types and REFs
Indicator variables for most datatypes introduced after release 8.0 behave as
described earlier. The only exception is SQLT_NTY (a named datatype). For data of
type SQLT_NTY, the indicator variable must be a pointer to an indicator structure.
Data of type SQLT_REF uses a standard scalar indicator, just like other variable
types.

When database types are translated into C struct representations using the Object
Type Translator (OTT), a null indicator structure is generated for each object type.
This structure includes an atomic null indicator, plus indicators for each object
attribute.

Input Indicator Value Action Taken by Oracle

-1 Oracle assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle assigns the value of the input variable to the column.

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output
variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.

Additional Coding Guidelines

2-32 Oracle Call Interface Programmer's Guide

Canceling Calls
On most operating systems, you can cancel long-running or repeated OCI calls, by
entering the operating system's interrupt character (usually CTRL-C) from the
keyboard.

When you cancel the long-running or repeated call using the operating system
interrupt, the error code ORA-01013 ("user requested cancel of current operation") is
returned.

Given a particular service context pointer or server context pointer, the
OCIBreak() function performs an immediate (asynchronous) stop of any currently
executing OCI function associated with the server. It is normally used to stop a
long-running OCI call being processed on the server. The OCIReset() function is
necessary to perform a protocol synchronization on a nonblocking connection after
an OCI application stops a function with OCIBreak().

The status of potentially long-running calls can be monitored through the use of
nonblocking calls.

See Also:

■ Documentation for the OTT in Chapter 14, "Using the Object
Type Translator with OCI", and section "NULL Indicator
Structure" on page 10-30 of this manual for information about
null indicator structures

■ Descriptions of OCIBindByName() and OCIBindByPos()
in"Bind, Define, and Describe Functions" on page 15-68, and
the sections "Information for Named Datatype and REF Binds"
on page 11-34, and "Information for Named Datatype and REF
Defines, and PL/SQL OUT Binds" on page 11-36, for more
information about setting indicator parameters for named
datatypes and REFs

Note: This is not to be confused with cancelling a cursor, which is
accomplished by calling OCIStmtFetch() with the nrows
parameter set to zero.

Note: OCIBreak() is not supported if the server is an NT system.

Additional Coding Guidelines

OCI Programming Basics 2-33

Positioned Updates and Deletes
You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement in a
later UPDATE or DELETE statement. The ROWID is retrieved by calling
OCIAttrGet() on the statement handle to retrieve the handle's
OCI_ATTR_ROWID attribute.

For example, for a SQL statement such as

SELECT ename FROM emp1 WHERE empno = 7499 FOR UPDATE OF sal

when the fetch is performed, the ROWID attribute in the handle contains the row
identifier of the selected row. You can retrieve the ROWID into a buffer in your
program by calling OCIAttrGet() as follows:

OCIRowid *rowid; /* the rowid in opaque format */
/* allocate descriptor with OCIDescriptorAlloc() */
status = OCIDescriptorAlloc ((dvoid *) envhp, (dvoid **) &rowid,
 (ub4) OCI_DTYPE_ROWID, (size_t) 0, (dvoid **) 0);
status = OCIAttrGet ((dvoid*) mystmtp, OCI_HTYPE_STMT,
 (dvoid*) rowid, (ub4 *) 0, OCI_ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For example,
if rowid is the buffer in which the row identifier has been saved, you can later
process a SQL statement such as

UPDATE emp1 SET sal = :1 WHERE rowid = :2

by binding the new salary to the :1 placeholder and rowid to the :2 placeholder.
Be sure to use datatype code 104 (ROWID descriptor) when binding rowid to :2.

Using prefetching, an array of ROWIDs can be selected for use in subsequent batch
updates.

Reserved Words
Some words are reserved by Oracle. That is, they have a special meaning to Oracle
and cannot be redefined. For this reason, you cannot use them to name database
objects such as columns, tables, or indexes.

See Also: "Nonblocking Mode in OCI" on page 2-35

See Also: For more information on ROWIDs, see "UROWID" on
page 3-6 and "DATE" on page 3-15.

Additional Coding Guidelines

2-34 Oracle Call Interface Programmer's Guide

Oracle Reserved Namespaces
Table 2–7, "Oracle Reserved Namespaces" contains a list of namespaces that are
reserved by Oracle. The initial characters of function names in Oracle libraries are
restricted to the character strings in this list. Because of potential name conflicts, do
not use function names that begin with these characters.

See Also: To view the lists of the Oracle keywords or reserved
words for SQL and PL/SQL, see the Oracle Database SQL Reference
and the PL/SQL User's Guide and Reference

Table 2–7 Oracle Reserved Namespaces

Namespace Library

XA external functions for XA applications only

SQ external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

O, OCI external OCI functions internal OCI functions

UPI, KP function names from the Oracle UPI layer

NA

NC

ND

NL

NM

NR

NS

NT

NZ

OS

TTC

Oracle Net Native Services Product

 Oracle Net Rpc Project

 Oracle Net Directory

 Oracle Net Network Library Layer

 Oracle Net Management Project

 Oracle Net Interchange

 Oracle Net Transparent Network Service

 Oracle Net Drivers

 Oracle Net Security Service

 SQL*Net V1

 Oracle Net Two Task

GEN, L, ORA Core library functions

LI, LM, LX function names from the Oracle Globalization Support layer

S function names from system-dependent libraries

KO Kernel Objects

Nonblocking Mode in OCI

OCI Programming Basics 2-35

For a complete list of functions within a particular namespace, refer to the
document that corresponds to the appropriate Oracle library.

Nonblocking Mode in OCI
The OCI provides the ability to establish a server connection in blocking mode or
nonblocking mode. When a connection is made in blocking mode, an OCI call returns
control to an OCI client application only when the call completes, either
successfully or in error. With the nonblocking mode, control is immediately
returned to the OCI program if the call could not complete, and the call returns a
value of OCI_STILL_EXECUTING.

In nonblocking mode, an application must test the return code of each OCI function
to see if it returns OCI_STILL_EXECUTING. If it does, the OCI client can continue
to process program logic while waiting to retry the OCI call to the server. This
mode is particularly useful in Graphical User Interface (GUI) applications, real-time
applications, and in distributed environments.

The nonblocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application has to check whether the
pending call is finished at the server by executing the call again with the exact same
parameters.

Setting Blocking Modes
You can modify or check an application's blocking status by calling OCIAttrSet()
to set the status, or OCIAttrGet() to read the status on the server context handle
with the attrtype parameter set to OCI_ATTR_NONBLOCKING_MODE.

Note: While waiting to retry nonblocking OCI call, the application
may not issue any other OCI calls, or an ORA-03124 error will occur.
The only exceptions to this rule are OCIBreak() and
OCIReset().

See Also: OCI_ATTR_NONBLOCKING_MODE on page A-15.

Note: Only functions that have server context or a service context
handle as a parameter may return OCI_STILL_EXECUTING.

Nonblocking Mode in OCI

2-36 Oracle Call Interface Programmer's Guide

Cancelling a Nonblocking Call
You can cancel a long-running OCI call by using the OCIBreak() function while
the OCI call is in progress. You must then issue an OCIReset() call to reset the
asynchronous operation and protocol.

Nonblocking Example
The following code is an example of nonblocking mode.

int main (int argc, char **argv)
{
 sword retval;

 if (retval = InitOCIHandles()) /* initialize all handles */
 {
 printf ("Unable to allocate handles..\n");
 exit (EXIT_FAILURE);
 }

 if (retval = logon()) /* log on */
 {
 printf ("Unable to log on...\n");
 exit (EXIT_FAILURE);
 }
 if (retval = AllocStmtHandle ()) /* allocate statement handle */
 {
 printf ("Unable to allocate statement handle...\n");
 exit (EXIT_FAILURE);
 }
/* set non-blocking on */
 if (retval = OCIAttrSet ((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_NONBLOCKING_MODE, errhp))
 {
 printf ("Unable to set non-blocking mode...\n");
 exit (EXIT_FAILURE);
 }

 while ((retval = OCIStmtExecute (svchp, stmhp, errhp, (ub4)0, (ub4)0,
 (OCISnapshot *) 0, (OCISnapshot *)0,
 OCI_DEFAULT)) == OCI_STILL_EXECUTING)
 printf (".");
 printf ("\n");

 if (retval != OCI_SUCCESS || retval != OCI_SUCCESS_WITH_INFO)

Using PL/SQL in an OCI Program

OCI Programming Basics 2-37

 {
 printf("Error in OCIStmtExecute...\n");
 exit (EXIT_FAILURE);
 }

 if (retval = logoff ()) /* log out */
 {
 printf ("Unable to logout ...\n");
 exit (EXIT_FAILURE);
 }

 cleanup();
 return (int)OCI_SUCCESS;
}
...

Using PL/SQL in an OCI Program
PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL supports
tasks that are more complicated than simple queries and SQL data manipulation
language (DML) statements. PL/SQL lets you group a number of constructs into a
single block and execute it as a unit. These constructs include:

■ One or more SQL statements

■ Variable declarations

■ Assignment statements

■ Procedural control statements such as IF...THEN...ELSE statements and
loops

■ Exception handling

You can use PL/SQL blocks in your OCI program to perform the following
operations:

■ Call Oracle stored procedures and stored functions

■ Combine procedural control statements with several SQL statements, to be
executed as a single unit

■ Access special PL/SQL features such as records, tables, CURSOR FOR loops,
and exception handling

■ Use cursor variables

Using PL/SQL in an OCI Program

2-38 Oracle Call Interface Programmer's Guide

■ Operate on objects in a server

Note:

■ While the OCI can only directly process anonymous blocks,
and not named packages or procedures, you can always put the
package or procedure call within an anonymous block and
process that block.

■ Note that all OUT variables have to be initialized to NULL
(through an indicator of -1, or an actual length of 0) prior to
executing a PL/SQL begin-end block in OCI.

■ OCI does not support the PL/SQL RECORD datatype.

■ When binding a PL/SQL VARCHAR2 variable in OCI, the
maximum size of the bind variable is 32512 bytes, because of
the overhead of control structures.

Caution: When writing PL/SQL code, it is important to keep in
mind that the parser treats everything that starts with "--" to a
carriage return as a comment. So if comments are indicated on each
line by "--", the C compiler can concatenate all lines in a PL/SQL
block into a single line without putting a carriage return "\n" for
each line. In this particular case, the parser fails to extract the
PL/SQL code of a line if the previous line ends with a comment. To
avoid the problem, the programmer should put "\n" after each "--"
comment to make sure the comment ends there.

See Also: PL/SQL User's Guide and Reference for information about
coding PL/SQL blocks

OCI Globalization Support

OCI Programming Basics 2-39

OCI Globalization Support
The following sections introduce OCI functions that can be used for globalization
purposes, such as deriving locale information, manipulating strings, character set
conversion, and OCI messaging. These functions are also described in detail in
other chapters of this guide because they have multiple purposes and functionality.

Client Character Set Control from OCI
The function OCIEnvNlsCreate() enables you to set character set information in
applications, independently from NLS_LANG and NLS_NCHAR settings. One
application can have several environment handles initialized within the same
system environment using different client side character set IDs and national
character set IDs.

OCIEnvNlsCreate(OCIEnv **envhp, ..., csid, ncsid);

where csid is the value for character set ID, and ncsid is the value for national
character set ID. Either can be 0 or OCI_UTF16ID. If both are 0, this is equivalent to
using OCIEnvCreate() instead. The other arguments are the same as for the
OCIEnvCreate() call.

OCIEnvNlsCreate() is an enhancement for programmatic control of character
sets, because it validates OCI_UTF16ID.

When character set IDs are set through the function OCIEnvNlsCreate(), they
will replace the settings in NLS_LANG and NLS_NCHAR. In addition to all
character sets supported by NLSRTL, OCI_UTF16ID is also allowed as a character
set ID in the OCIEnvNlsCreate() function, although this ID is not valid in
NLS_LANG or NLS_NCHAR.

Any Oracle character set ID, except AL16UTF16, can be specified through the
OCIEnvNlsCreate() function to specify the encoding of metadata, SQL CHAR
data, and SQL NCHAR data.

You can retrieve character sets in NLS_LANG and NLS_NCHAR through another
function, OCINlsEnvironmentVariableGet().

Code Example for Character Set Control in OCI
For a pseudocode fragment that illustrates a sample usage of these calls:

See Also: "OCIEnvNlsCreate()" on page 15-14

OCI Globalization Support

2-40 Oracle Call Interface Programmer's Guide

Character Control and OCI Interfaces
OCINlsGetInfo() returns information about OCI_UTF16ID if this value has been
used in OCIEnvNlsCreate().

OCIAttrGet() returns the character set ID and national character set ID that were
passed into OCIEnvNlsCreate(). This is used to get
OCI_ATTR_ENV_CHARSET_ID and OCI_ATTR_ENV_NCHARSET_ID. This
includes the value OCI_UTF16ID.

If both charset and ncharset parameters were set to NULL by
OCIEnvNlsCreate(), the character set IDs in NLS_LANG and NLS_NCHAR will
be returned.

OCIAttrSet() sets character IDs as the defaults if OCI_ATTR_CHARSET_FORM is
reset through this function. The eligible character set IDs include OCI_UTF16ID if
OCIEnvNlsCreate() has it passed as charset or ncharset.

OCIBindByName() and OCIBindByPos() bind variables with default character
set in the OCIEnvNlsCreate() call, including OCI_UTF16ID. The actual length
and the returned length are always in bytes if OCIEnvNlsCreate() is used.

OCIDefineByPos() defines variables with the value of charset in
OCIEnvNlsCreate(), including OCI_UTF16ID, as the default. The actual length
and returned length are always in bytes if OCIEnvNlsCreate() is used. This
behavior for bind and define handles is different from that when OCIEnvCreate()
is used and OCI_UTF16ID is the character set ID for the bind and define handles.

Character Length Semantics in OCI
OCI works as a translator between server and client, and passes around character
information for constraint checking.

There are two kinds of character sets, variable-width and fixed-width, as a single
byte character set is just a special case of a fixed-width character set where each byte
stands for one character.

For fixed-width character sets, constraint checking is easier as number of bytes is
simply equal to a multiple of number of characters. Therefore, no scanning of the
entire string is needed to determine the number of characters for fixed-width
character sets. However, for variable-width ones, complete scanning is needed to
determine the number of characters.

See Also: "Setting Client Character Sets in OCI" on page 5-32

OCI Globalization Support

OCI Programming Basics 2-41

Character Set Support in OCI
See "Character Length Semantics Support in Describing" on page 6-23 and
"Character Conversion in OCI Binding and Defining" on page 5-30 for a complete
discussion.

Other OCI Globalization Support Functions
Many globalization support functions accept either the environment handle or the
user session handle. The OCI environment handle is associated with the client NLS
environment variables. This environment does not change when ALTER SESSION
statements are issued to the server. The character set associated with the
environment handle is the client character set. The OCI session handle (returned by
OCISessionBegin()) is associated with the server session environment. The NLS
settings change when the session environment is modified with an ALTER SESSION
statement. The character set associated with the session handle is the database
character set.

Note that the OCI session handle does not have NLS settings associated with it until
the first transaction begins in the session. SELECT statements do not begin a
transaction.

For complete details and discussions of the functions that follow:

Getting Locale Information in OCI
An Oracle locale consists of language, territory, and character set definitions. The
locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application follows a user's locale
setting and cultural conventions. For example, when the locale is set to German,
users expect to see day and month names in German.

You can retrieve the following information with the OCINlsGetInfo() function:

See Also:

■ Chapter 21, "OCI Globalization Support Functions"

■ Oracle Database Globalization Support Guide

See Also:

■ "OCI Locale Functions" on page 21-4

■ "OCI Locale-Mapping Function" on page 21-13

OCI Globalization Support

2-42 Oracle Call Interface Programmer's Guide

■ Days of the week (translated)

■ Abbreviated days of the week (translated)

■ Month names (translated)

■ Abbreviated month names (translated)

■ Yes/no (translated)

■ AM/PM (translated)

■ AD/BC (translated)

■ Numeric format

■ Debit/credit

■ Date format

■ Currency formats

■ Default language

■ Default territory

■ Default character set

■ Default linguistic sort

■ Default calendar

Example of Getting Locale Information in OCI
This example code retrieves information and checks for errors.

sword MyPrintLinguisticName(envhp, errhp)
OCIEnv *envhp;
OCIError *errhp;
{
 OraText infoBuf[OCI_NLS_MAXBUFSZ];
 sword ret;

 ret = OCINlsGetInfo(envhp, /* environment handle */
 errhp, /* error handle */
 infoBuf, /* destination buffer */
 (size_t) OCI_NLS_MAXBUFSZ, /* buffer size */
 (ub2) OCI_NLS_LINGUISTIC_NAME); /* item */

 if (ret != OCI_SUCCESS)

OCI Globalization Support

OCI Programming Basics 2-43

 {
 checkerr(errhp, ret, OCI_HTYPE_ERROR);
 ret = OCI_ERROR;
 }
 else
 {
 printf("NLS linguistic: %s\n", infoBuf);
 }
 return(ret);
}

Manipulating Strings in OCI
Multibyte strings and wide character strings are supported for string manipulation:

Multibyte strings are encoded in native Oracle character sets. Functions that operate
on multibyte strings take the string as a whole unit with the length of the string
calculated in bytes. Wide character string (wchar) functions provide more
flexibility in string manipulation. They support character-based and string-based
operations where the length the string calculated in characters.

The wide character datatype is Oracle-specific and should not be confused with the
wchar_t datatype defined by the ANSI/ISO C standard. The Oracle wide character
datatype is always 4 bytes in all operating systems, while the size of wchar_t
depends on the implementation and the operating system. The Oracle wide
character datatype normalizes multibyte characters so that they have a uniform
fixed width for easy processing. This guarantees no data loss for round trip
conversion between the Oracle wide character set and the native character set.

String manipulation can be classified into the following categories:

■ Conversion of strings between multibyte and wide character

■ Character classifications

■ Case conversion

■ Calculations of display length

■ General string manipulation, such as comparison, concatenation, and searching

Example of Manipulating Strings in OCI
The following example shows a simple case of manipulating strings.

See Also: "OCI String Manipulation Functions" on page 21-16

OCI Globalization Support

2-44 Oracle Call Interface Programmer's Guide

size_t MyConvertMultiByteToWideChar(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIWchar *dstBuf;
size_t dstSize;
OraText *srcStr; /* null terminated source string */
{
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCIMultiByteInSizeToWideChar(envhp, /* environment handle */
 dstBuf, /* destination buffer */
 dstSize, /* destination buffer size */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

Example of Classifying Characters in OCI
The OCI character classification functions are described in detail.

The following example shows how to classify characters in OCI.

boolean MyIsNumberWideCharString(envhp, srcStr)
OCIEnv *envhp;
OCIWchar *srcStr; /* wide char source string */
{
 OCIWchar *pstr = srcStr; /* define and init pointer */
 boolean status = TRUE; /* define and initialize status variable */

 /* Check input */
 if (pstr == (OCIWchar*) NULL)
 return(FALSE);

See Also: "OCI Character Classification Functions" on page 21-52

OCI Globalization Support

OCI Programming Basics 2-45

 if (*pstr == (OCIWchar) NULL)
 return(FALSE);

 /* check each character for digit */
 do
 {
 if (OCIWideCharIsDigit(envhp, *pstr) != TRUE)
 {
 status = FALSE;
 break; /* non-decimal digit character */
 }
 } while (*++pstr != (OCIWchar) NULL);

 return(status);
}

Converting Character Sets in OCI
Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to
the original character set is not always possible without data loss.

Example of Converting Character Sets in OCI
The following example shows a simple conversion into Unicode.

/* Example of Converting Character Sets in OCI
--*/

size_t MyConvertMultiByteToUnicode(envhp, errhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIError *errhp;
ub2 *dstBuf;
size_t dstSize;
OraText *srcStr;
{
 size_t dstLen = 0;
 size_t srcLen = 0;

See Also: "OCI Character Set Conversion Functions" on
page 21-65

OCI Globalization Support

2-46 Oracle Call Interface Programmer's Guide

 OraText tb[OCI_NLS_MAXBUFSZ]; /* NLS info buffer */
 ub2 cid; /* OCIEnv character set id */

 /* get OCIEnv character set */
 checkerr(errhp, OCINlsGetInfo(envhp, errhp, tb, sizeof(tb),
 OCI_NLS_CHARACTER_SET));
 cid = OCINlsCharSetNameToId(envhp, tb);

 if (cid == OCI_UTF16ID)
 {
 ub2 *srcStrUb2 = (ub2*)srcStr;
 while (*srcStrUb2++) ++srcLen;
 srcLen *= sizeof(ub2);
 }
 else
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 checkerr(errhp,
 OCINlsCharSetConvert(
 envhp, /* environment handle */
 errhp, /* error handle */
 OCI_UTF16ID, /* Unicode character set id */
 dstBuf, /* destination buffer */
 dstSize, /* size of destination buffer */
 cid, /* OCIEnv character set id */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen)); /* pointer to destination length */

 return dstLen/sizeof(ub2);
}

OCI Messaging Functions
The user message API provides a simple interface for cartridge developers to
retrieve their own messages and Oracle messages.

See Also:

■ Oracle Data Cartridge Developer's Guide

■ "OCI Messaging Functions" on page 21-73

OCI Globalization Support

OCI Programming Basics 2-47

Example of Retrieving a Message from a Text Message File
This example creates a message handle, initializes it to retrieve messages from
impus.msg, retrieves message number 128, and closes the message handle. It
assumes that OCI environment handles, OCI session handles, product, facility, and
cache size have been initialized properly.

OCIMsg msghnd; /* message handle */
 /* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen(hndl,errhp, &msghnd, prod,fac,OCI_DURATION_SESSION);
if (err != OCI_SUCCESS)
 /* error handling */
...
 /* retrieve the message with message number = 128 */
msgptr = OCIMessageGet(msghnd, 128, msgbuf, sizeof(msgbuf));
 /* do something with the message, such as display it */
...
 /* close the message handle when there are no more messages to retrieve */
OCIMessageClose(hndl, errhp, msghnd);

lmsgen Utility
The lmsgen utility converts text-based message files (.msg) into binary format
(.msb) so that Oracle messages and OCI messages provided by the user can be
returned to OCI functions in the desired language.

The BNF Syntax of lmsgen is:
lmsgen text_file product facility [language]

where:

■ text_file is a message text file.

■ product is the name of the product.

■ facility is the name of the facility.

■ language is the optional message language corresponding to the language
specified in the NLS_LANG parameter. The language parameter is required if the
message file is not tagged properly with language.

Text message files must follow these guidelines:
■ Lines that start with "/" and "//" are treated as internal comments and are

ignored.

OCI Globalization Support

2-48 Oracle Call Interface Programmer's Guide

■ To tag the message file with a specific language, include a line similar to the
following:

CHARACTER_SET_NAME= Japanese_Japan.JA16EUC

■ Each message contains 3 fields:

message_number, warning_level, message_text

■ The message number must be unique within a message file.

■ The warning level is not currently used. Set to 0.

■ The message text cannot be longer than 76 bytes.

The following is an example of an Oracle message text file:

/ Copyright (c) 2001 by the Oracle Corporation. All rights reserved.
/ This is a test us7ascii message file
CHARACTER_SET_NAME= american_america.us7ascii
/
00000, 00000, "Export terminated unsuccessfully\n"
00003, 00000, "no storage definition found for segment(%lu, %lu)"

Example: Creating a Binary Message File from a Text Message File
The following table contains sample values for the lmsgen parameters:

The text message file is found in the following location:

$HOME/myApp/mesg/impus.msg

One of the lines in the text message file is:

00128,2, "Duplicate entry %s found in %s"

The lmsgen utility converts the text message file (impus.msg) into binary format,
resulting in a file called impus.msb:

Parameter Value

product $HOME/myApplication

facility imp

language AMERICAN

text_file impus.msg

OCI Globalization Support

OCI Programming Basics 2-49

% lmsgen impus.msg $HOME/myApplication imp AMERICAN

The following output results:

Generating message file impus.msg -->
/home/scott/myApplication/mesg/impus.msb

NLS Binary Message File Generation Utility: Version 9.2.0.0.0 -Production

Copyright (c) Oracle Corporation 1979, 2001. All rights reserved.

CORE 9.2.0.0.0 Production

OCI Globalization Support

2-50 Oracle Call Interface Programmer's Guide

Datatypes 3-1

3
Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI
applications. It also discusses Oracle datatypes and the conversions between
internal and external representations that occur when you transfer data between
your program and Oracle.

This chapter contains these topics:

■ Oracle Datatypes

■ Internal Datatypes

■ External Datatypes

■ Data Conversions

■ Typecodes

■ Definitions in oratypes.h

See Also: For detailed information about Oracle internal
datatypes, see the Oracle Database SQL Reference

Oracle Datatypes

3-2 Oracle Call Interface Programmer's Guide

Oracle Datatypes
One of the main functions of an OCI program is to communicate with a database
through an Oracle server. The OCI application may retrieve data from database
tables through SQL SELECT queries, or it may modify existing data in tables
through INSERT, UPDATE, or DELETE statements.

Inside a database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats known as internal datatypes. Examples of
internal datatypes include NUMBER, CHAR, and DATE.

In general, OCI applications do not work with internal datatype representations of
data, but with host language datatypes which are predefined by the language in
which they are written. When data is transferred between an OCI client application
and a database table, the OCI libraries convert the data between internal datatypes
and external datatypes.

External datatypes are host language types that have been defined in the OCI
header files. When an OCI application binds input variables, one of the bind
parameters is an indication of the external datatype code (or SQLT code) of the
variable. Similarly, when output variables are specified in a define call, the external
representation of the retrieved data must be specified.

In some cases, external datatypes are similar to internal types. External types
provide a convenience for the programmer by making it possible to work with host
language types instead of proprietary data formats.

The OCI is capable of performing a wide range of datatype conversions when
transferring data between Oracle and an OCI application. There are more OCI
external datatypes than Oracle internal datatypes. In some cases a single external
type maps to an internal type; in other cases multiple external types map to an
single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI
programmer. For example, if you are processing the SQL statement

SELECT sal FROM emp WHERE empno = :employee_number

Note: Even though some external types are similar to internal
types, an OCI application never binds to internal datatypes. They
are discussed here because it can be useful to understand how
internal types can map to external types.

Oracle Datatypes

Datatypes 3-3

and you want the salary to be returned as character data, instead of a binary
floating-point format, specify an Oracle external string datatype, such as VARCHAR2
(code = 1) or CHAR (code = 96) for the dty parameter in the OCIDefineByPos()
call for the sal column. You also need to declare a string variable in your program
and specify its address in the valuep parameter.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external datatype. You also need to define a
variable of the appropriate type for the valuep parameter.

Oracle performs most data conversions transparently. The ability to specify almost
any external datatype provides a lot of power for performing specialized tasks. For
example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external datatype. See the
description of the DATE external datatype on page 3-15 for more information.

To control data conversion, you must use the appropriate external datatype codes in
the bind and define routines. You must tell Oracle where the input or output
variables are in your OCI program and their datatypes and lengths.

OCI also supports an additional set of OCI typecodes which are used by Oracle's
type management system to represent datatypes of object type attributes. There is a
set of predefined constants which can be used to represent these typecodes. The
constants each contain the prefix OCI_TYPECODE.

In summary, the OCI programmer must be aware of the following different
datatypes or data representations:

■ Internal Oracle datatypes, which are used by table columns in an Oracle
database. These also include datatypes used by PL/SQL which are not used by
Oracle columns (for example, indexed table, boolean, record).

■ External OCI datatypes, which are used to specify host language
representations of Oracle data.

■ OCI_TYPECODE values, which are used to Oracle to represent type
information for object type attributes.

See Also: "Internal Datatypes" on page 3-4

See Also: "External Datatypes" on page 3-8, and "Using External
Datatype Codes" on page 3-4

Internal Datatypes

3-4 Oracle Call Interface Programmer's Guide

Information about a column's internal datatype is conveyed to your application in
the form of an internal datatype code. Once your application knows what type of
data will be returned, it can make appropriate decisions about how to convert and
format the output data. The Oracle internal datatype codes are listed in the section
"Internal Datatypes" on page 3-4.

Using External Datatype Codes
An external datatype code indicates to Oracle how a host variable represents data in
your program. This determines how the data is converted when returned to output
variables in your program, or how it is converted from input (bind) variables to
Oracle column values. For example, if you want to convert a NUMBER in an Oracle
column to a variable-length character array, you specify the VARCHAR2 external
datatype code in the OCIDefineByPos() call that defines the output variable.

To convert a bind variable to a value in an Oracle column, specify the external
datatype code that corresponds to the type of the bind variable. For example, if you
want to input a character string such as 02-FEB-65 to a DATE column, specify the
datatype as a character string and set the length parameter to nine.

It is always the programmer's responsibility to make sure that values are
convertible. If you try to insert the string "MY BIRTHDAY" into a DATE column,
you will get an error when you execute the statement.

Internal Datatypes
Table 3–1 lists the Oracle internal (also known as built-in) datatypes, along with each
type's maximum internal length and datatype code.

See Also: "Typecodes" on page 3-33, and "Relationship Between
SQLT and OCI_TYPECODE Values" on page 3-35

See Also:

■ For detailed information about Oracle internal datatypes, see
the Oracle Database SQL Reference.

■ For information about describing select-list items in a query,
see the section "Describing Select-list Items" on page 4-11.

See Also: For a complete list of the external datatypes and
datatype codes, see Table 3–2, "External Datatypes and Codes"

Internal Datatypes

Datatypes 3-5

Table 3–1 Internal Oracle Datatypes

Internal Oracle Datatype Maximum Internal Length
Datatype
Code

VARCHAR2, NVARCHAR2 4000 bytes 1

NUMBER 21 bytes 2

LONG 2^31-1 bytes (2 gigabytes) 8

DATE 7 bytes 12

RAW 2000 bytes 23

LONG RAW 2^31-1 bytes 24

ROWID 10 bytes 69

CHAR, NCHAR 2000 bytes 96

BINARY_FLOAT 4 bytes 100

BINARY_DOUBLE 8 bytes 101

User-defined type (object type, VARRAY,
Nested Table)

N/A 108

REF N/A 111

CLOB, NCLOB 128 terabytes 112

BLOB 128 terabytes 113

BFILE maximum operating system
file size

114

TIMESTAMP 11 bytes 180

TIMESTAMP WITH TIME ZONE 13 bytes 181

INTERVAL YEAR TO MONTH 5 bytes 182

INTERVAL DAY TO SECOND 11 bytes 183

UROWID 3950 bytes 208

TIMESTAMP WITH LOCAL TIME ZONE 11 bytes 231

See Also: For more information about these built-in datatypes,
see the Oracle Database SQL Reference.

Internal Datatypes

3-6 Oracle Call Interface Programmer's Guide

LONG, RAW, LONG RAW, VARCHAR2
You can use the piecewise capabilities provided by OCIBindByName(),
OCIBindByPos(), OCIDefineByPos(), OCIStmtGetPieceInfo() and
OCIStmtSetPieceInfo() to perform inserts, updates or fetches involving
column data of these types.

Character Strings and Byte Arrays
You can use five Oracle internal datatypes to specify columns that contain
characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG
RAW hold bytes that are not interpreted as characters, for example, pixel values in a
bit-mapped graphic image. Character data can be transformed when passed
through a gateway between networks. Character data passed between machines
using different languages, where single characters may be represented by differing
numbers of bytes, can be significantly changed in length. Raw data is never
converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle
internal datatype for each column in the table. The OCI programmer must be aware
of the many possible ways that character and byte-array data can be represented
and converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

UROWID
The Universal ROWID (UROWID) is a datatype that can store both logical and
physical rowids of Oracle tables. Logical rowids are primary key-based logical
identifiers for the rows of Index-Organized Tables (IOTs).

To use columns of the UROWID datatype, the value of the COMPATIBLE initialization
parameter must be set to 8.1 or higher.

Note: LOBs can contain characters and FILEs can contain binary
data. They are handled differently than other types, so they are not
included in this discussion. See Chapter 7, "LOB and BFILE
Operations", for more information about these datatypes.

Internal Datatypes

Datatypes 3-7

The following host variables can be bound to Universal ROWIDs:

■ SQLT_CHR (VARCHAR2)

■ SQLT_VCS (VARCHAR)

■ SQLT_STR (NULL-terminated string)

■ SQLT_LVC (LONG VARCHAR)

■ SLQT_AFC (CHAR)

■ SQLT_AVC (CHARZ)

■ SQLT_VST (OCI String)

■ SQLT_RDD (ROWID descriptor)

BINARY_FLOAT and BINARY_DOUBLE
The BINARY_FLOAT and BINARY_DOUBLE datatypes represent single-precision
and double-precision floating point values that mostly conform to the IEEE754
standard for Floating Point Arithmetic.

Prior to the addition of these datatypes, all numeric values in an Oracle database
were stored in the Oracle NUMBER format. These new binary floating point types
will not replace Oracle NUMBER. Rather, they are alternatives to Oracle NUMBER that
provide the advantage of using less disk storage.

These internal types are represented by the following codes:

■ SQLT_IBFLOAT for BINARY_FLOAT.

■ SQLT_IBDOUBLE for BINARY_DOUBLE.

All the following host variables can be bound to BINARY_FLOAT and
BINARY_DOUBLE datatypes:

■ SQLT_BFLOAT (native float)

■ SQLT_BDOUBLE (native double)

■ SQLT_INT (integer)

■ SQLT_FLT (float)

■ SQLT_NUM (Oracle NUMBER)

■ SQLT_UIN (unsigned)

■ SQLT_VNU (VARNUM)

External Datatypes

3-8 Oracle Call Interface Programmer's Guide

■ SQLT_CHR (VARCHAR2)

■ SQLT_VCS (VARCHAR)

■ SQLT_STR (NULL-terminated String)

■ SQLT_LVC (LONG VARCHAR)

■ SQLT_AFC (CHAR)

■ SQLT_AVC (CHARZ)

■ SQLT_VST (OCIString)

For best performance, you are advised to use external types SQLT_BFLOAT and
SQLT_BDOUBLE in conjunction with the BINARY_FLOAT and BINARY_DOUBLE
datatypes.

External Datatypes
Table 3–2 lists datatype codes for external datatypes. For each datatype, the table
lists the program variable types for C from or to which Oracle internal data is
normally converted.

Table 3–2 External Datatypes and Codes

EXTERNAL DATATYPE CODE PROGRAM VARIABLE OCI DEFINED CONSTANT

VARCHAR2 1 char[n] SQLT_CHR

NUMBER 2 unsigned char[21] SQLT_NUM

8-bit signed INTEGER 3 signed char SQLT_INT

16-bit signed INTEGER 3 signed short, signed int SQLT_INT

32-bit signed INTEGER 3 signed int, signed long SQLT_INT

FLOAT 4 float, double SQLT_FLT

NULL-terminated STRING 5 char[n+1] SQLT_STR

VARNUM 6 char[22] SQLT_VNU

LONG 8 char[n] SQLT_LNG

VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS

DATE 12 char[7] SQLT_DAT

VARRAW 15 unsigned
char[n+sizeof(short integer)]

SQLT_VBI

External Datatypes

Datatypes 3-9

native float 21 float SQLT_BFLOAT

native double 22 double SQLT_BDOUBLE

RAW 23 unsigned char[n] SQLT_BIN

LONG RAW 24 unsigned char[n] SQLT_LBI

UNSIGNED INT 68 unsigned SQLT_UIN

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

LONG VARRAW 95 unsigned
char[n+sizeof(integer)]

SQLT_LVB

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROWID descriptor 104 OCIRowid * SQLT_RDD

NAMED DATATYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF

Character LOB descriptor 112 OCILobLocator (see note 2) SQLT_CLOB

Binary LOB descriptor 113 OCILobLocator (see note 2) SQLT_BLOB

Binary FILE descriptor 114 OCILobLocator SQLT_FILE

OCI STRING type 155 OCIString SQLT_VST (see note 1)

OCI DATE type 156 OCIDate * SQLT_ODT (see note 1)

ANSI DATE descriptor 184 OCIDateTime * SQLT_DATE

TIMESTAMP descriptor 187 OCIDateTime * SQLT_TIMESTAMP

TIMESTAMP WITH TIME ZONE
descriptor

188 OCIDateTime * SQLT_TIMESTAMP_TZ

INTERVAL YEAR TO MONTH
descriptor

189 OCIInterval * SQLT_INTERVAL_YM

INTERVAL DAY TO SECOND
descriptor

190 OCIInterval * SQLT_INTERVAL_DS

TIMESTAMP WITH LOCAL TIME
ZONE descriptor

232 OCIDateTime * SQLT_TIMESTAMP_LTZ

Table 3–2 External Datatypes and Codes (Cont.)

EXTERNAL DATATYPE CODE PROGRAM VARIABLE OCI DEFINED CONSTANT

External Datatypes

3-10 Oracle Call Interface Programmer's Guide

The following three types are internal to PL/SQL and cannot be returned as values
by OCI:

■ Boolean, SQLT_BOL

■ Indexed Table, SQLT_TAB

■ Record, SQLT_REC

VARCHAR2
The VARCHAR2 datatype is a variable-length string of characters with a maximum
length of 4000 bytes.

Input
The value_sz parameter determines the length in the OCIBindByName() or
OCIBindByPos() call.

If the value_sz parameter is greater than zero, Oracle obtains the bind variable
value by reading exactly that many bytes, starting at the buffer address in your
program. Trailing blanks are stripped, and the resulting value is used in the SQL
statement or PL/SQL block. If, in the case of an INSERT statement, the resulting
value is longer than the defined length of the database column, the INSERT fails,
and an error is returned.

Note: Where the length is shown as n, it is a variable, and
depends on the requirements of the program (or of the operating
system in the case of ROWID).

■ For more information on the use of these datatypes, refer to
Chapter 11, "Object-Relational Datatypes in OCI".

■ In applications using datatype mappings generated by OTT,
CLOBs may be mapped as OCIClobLocator, and BLOBs may be
mapped as OCIBlobLocator. For more information, refer to
Chapter 14, "Using the Object Type Translator with OCI".

Note: If you are using Oracle objects, you can work with a special
OCIString external datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes in OCI"
for more information about this datatype.

External Datatypes

Datatypes 3-11

If the value_sz parameter is zero, Oracle treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that
has a NOT NULL integrity constraint, Oracle issues an error, and the row is not
inserted.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the VARCHAR2 string
contains an illegal conversion character, Oracle returns an error and the value is not
inserted into the database.

Output
Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() call, or the value_sz parameter of OCIBindByName() or
OCIBindByPos() for PL/SQL blocks. If zero is specified for the length, no data is
returned.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are
blank-padded to the buffer length, and NULLs are returned as a string of blank
characters. If rlenp is included, returned values are not blank-padded. Instead,
their actual lengths are returned in the rlenp parameter.

To check if a NULL is returned or if character truncation has occurred, include an
indicator parameter in the OCIDefineByPos() call. Oracle sets the indicator
parameter to -1 when a NULL is fetched and to the original column length when the
returned value is truncated. Otherwise, it is set to zero. If you do not specify an
indicator parameter and a NULL is selected, the fetch call returns the error code
OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will
return ORA-1405.

NUMBER
You should not need to use NUMBER as an external datatype. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and will expect this
format on input. The following discussion is included for completeness only.

Note: A trailing NULL is not stripped. Variables should be
blank-padded but not NULL-terminated.

See Also: "Indicator Variables" on page 2-30

External Datatypes

3-12 Oracle Call Interface Programmer's Guide

Oracle stores values of the NUMBER datatype in a variable-length format. The first
byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of
the exponent byte is the sign bit; it is set for positive numbers and it is cleared for
negative numbers. The lower 7 bits represent the exponent, which is a base-100 digit
with an offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e) -128 - 65 = 0xc1 -128 -65 = 193 -128 -65
= 0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is 96 (101 - 5). Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa
bytes do not have the trailing 102 byte. Because the mantissa digits are stored in
base 100, each byte can represent 2 decimal digits. The mantissa is normalized;
leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER.

If you specify the datatype code 2 in the dty parameter of an OCIDefineByPos()
call, your program receives numeric data in this Oracle internal format. The output
variable should be a 21-byte array to accommodate the largest possible number.
Note that only the bytes that represent the number are returned. There is no blank
padding or NULL termination. If you need to know the number of bytes returned,
use the VARNUM external datatype instead of NUMBER. See the description of
VARNUM on page 3-14 for examples of the Oracle internal number format.

INTEGER
The INTEGER datatype converts numbers. An external integer is a signed binary
number; the size in bytes is system dependent. The host system architecture

Note: If you are using objects in an Oracle database server, you
can work with a special OCINumber datatype using a set of
predefined OCI functions. Refer to Chapter 11, "Object-Relational
Datatypes in OCI" for more information about this datatype.

External Datatypes

Datatypes 3-13

determines the order of the bytes in the variable. A length specification is required
for input and output. If the number being returned from Oracle is not an integer, the
fractional part is discarded, and no error or other indication is returned. If the
number to be returned exceeds the capacity of a signed integer for the system,
Oracle returns an "overflow on conversion" error.

FLOAT
The FLOAT datatype processes numbers that have fractional parts or that exceed the
capacity of an integer. The number is represented in the host system's floating-point
format. Normally the length is either four or eight bytes. The length specification is
required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore Oracle can represent numbers with greater
precision than floating-point representations.

STRING
The NULL-terminated STRING format behaves like the VARCHAR2 format, except
that the string must contain a NULL terminator character. This datatype is most
useful for C language programs.

Input
The string length supplied in the OCIBindByName() or OCIBindByPos() call
limits the scan for the NULL terminator. If the NULL terminator is not found within
the length specified, Oracle issues the error

ORA-01480: trailing NULL missing from STR bind value

If the length is not specified in the bind call, the OCI uses an implied maximum
string length of 4000.

The minimum string length is two bytes. If the first character is a NULL terminator
and the length is specified as two, a NULL is inserted in the column, if permitted.

Note: You may receive a round-off error when converting
between FLOAT and NUMBER. Using a FLOAT as a bind variable in a
query may return an ORA-1403 error. You can avoid this situation
by converting the FLOAT into a STRING and then using VARCHAR2
or a NULL-terminated string for the operation.

External Datatypes

3-14 Oracle Call Interface Programmer's Guide

Unlike types VARCHAR2 and CHAR, a string containing all blanks is not treated as a
NULL on input; it is inserted as is.

Output
A NULL terminator is placed after the last character returned. If the string exceeds
the field length specified, it is truncated and the last character position of the output
variable contains the NULL terminator.

A NULL select-list item returns a NULL terminator character in the first character
position. An ORA-01405 error is possible, as well.

VARNUM
The VARNUM datatype is like the external NUMBER datatype, except that the first byte
contains the length of the number representation. This length does not include the
length byte itself. Reserve 22 bytes to receive the longest possible VARNUM. Set the
length byte when you send a VARNUM value to Oracle.

Table 3–3 shows several examples of the VARNUM values returned for numbers in an
Oracle table.

Note: Unlike earlier versions of the OCI, in release 8.0 or later,
you cannot pass -1 for the string length parameter of a
NULL-terminated string

Table 3–3 VARNUM Examples

Decimal
Value Length Byte

Exponent
Byte

Mantissa
Bytes

Terminator
Byte

0 1 128 n/a n/a

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74, 34 102

100000 2 195 11 n/a

1234567 5 196 2, 24, 46, 68 n/a

External Datatypes

Datatypes 3-15

LONG
The LONG datatype stores character strings longer than 4000 bytes. You can store up
to two gigabytes (2^31-1 bytes) in a LONG column. Columns of this type are used
only for storage and retrieval of long strings. They cannot be used in functions,
expressions, or WHERE clauses. LONG column values are generally converted to and
from character strings.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, or BLOB)
instead. LONG columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONG columns to LOB columns.
LOB columns are subject to far fewer restrictions than LONG columns. Furthermore,
LOB functionality is enhanced in every release, but LONG functionality has been
static for several releases.

VARCHAR
The VARCHAR datatype stores character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
string. The specified length of the string in a bind or a define call must include the
two length bytes, so the largest VARCHAR string that can be received or sent is 65533
bytes long, not 65535.

 DATE
The DATE datatype can update, insert, or retrieve a date value using the Oracle
internal date binary format. A date in binary format contains seven bytes, as shown
in Table 3–4.

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte
stores the value of the year, which is 1992, as an integer, divided by 100, giving 119
in excess-100 notation. The second byte stores year modulo 100, giving 192. Dates
Before Common Era (BCE) are less than 100. The era begins on 01-JAN-4712 BCE,
which is Julian day 1. For this date, the century byte is 53, and the year byte is 88.

Table 3–4 Format of the DATE Datatype

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example (for
30-NOV-1992, 3:17 PM)

119 192 11 30 16 18 1

External Datatypes

3-16 Oracle Call Interface Programmer's Guide

The hour, minute, and second bytes are in excess-1 notation. The hour byte ranges
from 1 to 24, the minute and second bytes from 1 to 60. If no time was specified
when the date was created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external datatype, the
database does not do consistency or range checking. All data in this format must be
carefully validated before input.

When a DATE column is converted to a character string in your program, it is
returned using the default format mask for your session, or as specified in the
INIT.ORA file.

RAW
The RAW datatype is used for binary data or byte strings that are not to be
interpreted by Oracle, for example, to store graphics character sequences. The
maximum length of a RAW column is 2000 bytes.

When RAW data in an Oracle table is converted to a character string in a program,
the data is represented in hexadecimal character code. Each byte of the RAW data is
returned as two characters that indicate the value of the byte, from '00' to 'FF'. If you
want to input a character string in your program to a RAW column in an Oracle
table, you must code the data in the character string using this hexadecimal code.

Note: There is little need to use the Oracle external DATE datatype
in ordinary database operations. It is much more convenient to
convert DATE into character format, because the program usually
deals with data in a character format, such as DD-MON-YY.

See Also: If you are using objects in an Oracle database, you can
work with a special OCIDate datatype using a set of predefined
OCI functions.

■ Refer to Chapter 11, "Object-Relational Datatypes in OCI" for
more information about this datatype.

■ For information about DATETIME and INTERVAL datatypes,
refer to "Datetime and Interval Datatype Descriptors" on
page 3-24.

See Also: Oracle Database SQL Reference.

External Datatypes

Datatypes 3-17

You can use the piecewise capabilities provided by OCIDefineByPos(),
OCIBindByName(), OCIBindByPos(), OCIStmtGetPieceInfo(), and
OCIStmtSetPieceInfo() to perform inserts, updates, or fetches involving RAW
(or LONG RAW) columns.

VARRAW
The VARRAW datatype is similar to the RAW datatype. However, the first two bytes
contain the length of the data. The specified length of the string in a bind or a define
call must include the two length bytes, so the largest VARRAW string that can be
received or sent is 65533 bytes, not 65535. For converting longer strings, use the
LONG VARRAW external datatype.

LONG RAW
The LONG RAW datatype is similar to the RAW datatype, except that it stores raw data
with a length up to two gigabytes (2^31-1 bytes).

UNSIGNED
The UNSIGNED datatype is used for unsigned binary integers. The size in bytes is
system dependent. The host system architecture determines the order of the bytes in
a word. A length specification is required for input and output. If the number being
output from Oracle is not an integer, the fractional part is discarded, and no error or
other indication is returned. If the number to be returned exceeds the capacity of an
unsigned integer for the system, Oracle returns an "overflow on conversion" error.

LONG VARCHAR
The LONG VARCHAR datatype stores data from and into an Oracle LONG column. The
first four bytes of a LONG VARCHAR contain the length of the item. So, the maximum
length of a stored item is 2^31-5 bytes.

See Also: If you are using objects in an Oracle database, you can
work with a special OCIRaw datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes in OCI"
for more information about this datatype.

External Datatypes

3-18 Oracle Call Interface Programmer's Guide

LONG VARRAW
The LONG VARRAW datatype is used to store data from and into an Oracle LONG RAW
column. The length is contained in the first four bytes. The maximum length is
2^31-5 bytes.

CHAR
The CHAR datatype is a string of characters, with a maximum length of 2000. CHAR
strings are compared using blank-padded comparison semantics.

Input
The length is determined by the value_sz parameter in the OCIBindByName() or
OCIBindByPos() call.

If the value_sz parameter is zero, Oracle treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that
has a NOT NULL integrity constraint, Oracle issues an error and does not insert the
row.

Negative values for the value_sz parameter are not allowed for CHARs.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the CHAR string
contains an illegal conversion character, Oracle returns an error and does not insert
the value. Number conversion follows the conventions established by Globalization
Support settings for your system. For example, your system might be configured to
recognize a comma (,) rather than a period (.) as the decimal point.

Output
Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() call. If zero is specified for the length, no data is returned.

See Also: Oracle Database SQL Reference

Note: The entire contents of the buffer (value_sz chars) is
passed to the database, including any trailing blanks or NULLs

External Datatypes

Datatypes 3-19

If you omit the rlenp parameter of OCIDefineByPos(), returned values are
blank padded to the buffer length, and NULLs are returned as a string of blank
characters. If rlenp is included, returned values are not blank padded. Instead,
their actual lengths are returned in the rlenp parameter.

To check whether a NULL is returned or if character truncation has occurred,
include an indicator parameter or array of indicator parameters in the
OCIDefineByPos() call. An indicator parameter is set to -1 when a NULL is
fetched and to the original column length when the returned value is truncated.
Otherwise, it is set to zero. If you do not specify an indicator parameter and a NULL
is selected, the fetch call returns an ORA-01405 error.

You can also request output to a character string from an internal NUMBER datatype.
Number conversion follows the conventions established by the Globalization
Support settings for your system. For example, your system might use a comma (,)
rather than a period (.) as the decimal point.

CHARZ
The CHARZ external datatype is similar to the CHAR datatype, except that the string
must be NULL-terminated on input, and Oracle places a NULL-terminator character
at the end of the string on output. The NULL terminator serves only to delimit the
string on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the NULL
terminator. For example, if an array in C is declared as

char my_num[] = "123.45";

then the length parameter when you bind my_num must be seven. Any other value
would return an error for this example.

The following new external datatypes were introduced with or after release 8.0.
These datatypes are not supported when you connect to an Oracle release 7 server.

See Also: "Indicator Variables" on page 2-30

External Datatypes

3-20 Oracle Call Interface Programmer's Guide

Named Datatypes: Object, VARRAY, Nested Table
Named datatypes are user-defined types which are specified with the CREATE TYPE
command in SQL. Examples include object types, varrays, and nested tables. In the
OCI, named datatype refers to a host language representation of the type. The
SQLT_NTY datatype code is used when binding or defining named datatypes.

In a C application, named datatypes are represented as C structs. These structs can
be generated from types stored in the database by using the Object Type Translator.
These types correspond to OCI_TYPECODE_OBJECT.

REF
This is a reference to a named datatype. The C language representation of a REF is a
variable declared to be of type OCIRef *. The SQLT_REF datatype code is used
when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in
object mode. When REFs are retrieved from the server, they are stored in the
client-side object cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call OCIObjectNew(), passing OCI_TYPECODE_REF
as the typecode parameter.

Note: Both internal and external datatypes have Oracle-defined
constant values, such as SQLT_NTY, SQLT_REF, corresponding to
their datatype codes. Although the constants are not listed for all of
the types in this chapter, they are used in this section when
discussing new Oracle datatypes. The datatype constants are also
used in other chapters of this guide when referring to these new
types.

See Also:

■ For more information about working with named datatypes in
the OCI, refer to Part II of this guide.

■ For information about how named datatypes are represented as
C structs, refer to Chapter 14, "Using the Object Type Translator
with OCI".

External Datatypes

Datatypes 3-21

ROWID Descriptor
The ROWID datatype identifies a particular row in a database table. ROWID can be a
select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned. This
ROWID can be read into a user-allocated ROWID descriptor using OCIAttrGet() on
the statement handle and used in a subsequent UPDATE statement. The prefetch
operation fetches all ROWIDs on a SELECT for UPDATE; use prefetching and then a
single row fetch.

You access rowids through the use of a ROWID descriptor, which you can use as a
bind or define variable.

LOB Descriptor
A LOB (Large Object) stores binary or character data up to 128 terabytes in length.
Binary data is stored in a BLOB (Binary LOB), and character data is stored in a CLOB
(Character LOB) or NCLOB (National Character LOB).

LOB values may or may not be stored inline with other row data in the database. In
either case, LOBs have the full transactional support of the database server. A
database table stores a LOB locator that points to the LOB value, which may be in a
different storage space.

When an OCI application issues a SQL query which includes a LOB column or
attribute in its select-list, fetching the result(s) of the query returns the locator,
rather than the actual LOB value. In OCI, the LOB locator maps to a variable of type
OCILobLocator.

See Also: For more information about working with REFs in the
OCI, refer to Part II of this guide

See Also: "OCI Descriptors" on page 2-13 and "Positioned
Updates and Deletes" on page 2-33 for more information about the
use of the ROWID descriptor

External Datatypes

3-22 Oracle Call Interface Programmer's Guide

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI
functions assume that the locator has already been created, whether or not the LOB
to which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated
with the OCIDescriptorAlloc() function.

The locator is always fetched first using SQL or OCIObjectPin(), and then
operations are performed using the locator. The OCI functions never take the actual
LOB value as a parameter.

The datatype codes available for binding or defining LOBs are:

■ SQLT_BLOB - a binary LOB datatype.

■ SQLT_CLOB - a character LOB datatype.

The NCLOB is a special type of CLOB with the following requirements:

■ To write into or read from an NCLOB, the user must set the character set form
(csfrm) parameter to be SQLCS_NCHAR.

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAW data for BLOB
columns.

See Also:

■ For more information about descriptors, including the LOB
locator, see the section "OCI Descriptors" on page 2-13

■ For more information about LOBs refer to the Oracle Database
SQL Reference and the Oracle Database Application Developer's
Guide - Large Objects.

■ "Binding LOB Data" on page 5-11

■ "Defining LOB Data" on page 5-21

See Also: For more information about OCI LOB functions, see
Chapter 7, "LOB and BFILE Operations"

External Datatypes

Datatypes 3-23

■ The amount (amtp) parameter in calls involving CLOBs and NCLOBs is always
interpreted in terms of characters, rather than bytes, for fixed-width character
sets.

BFILE
Oracle supports access to binary files, or BFILEs. The BFILE datatype provides
access to LOBs that are stored in file systems outside an Oracle database.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server's file system. The locator maintains the directory alias and
the filename.

Binary file LOBs do not participate in transactions. Rather, the underlying operating
system provides file integrity and durability.

The database administrator must ensure that the file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files; you cannot
modify a file through Oracle. Oracle provides APIs to access file data.

The datatype code available for binding or defining BFILEs is:

■ SQLT_BFILE - a binary FILE LOB datatype

BLOB
The BLOB datatype stores unstructured binary large objects. BLOBs can be thought
of as bitstreams with no character set semantics. BLOBs can store up to 128 terabytes
of binary data.

BLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. The BLOB value manipulations can be committed or rolled
back. You cannot save a BLOB locator in a variable in one transaction and then use it
in another transaction or session.

CLOB
The CLOB datatype stores fixed- or variable-width character data. CLOBs can store
up to 128 terabytes of character data.

See Also: "LOB and BFILE Functions in OCI" on page 7-10

See Also: For more information about directory aliases, refer to
the Oracle Database Application Developer's Guide - Large Objects

External Datatypes

3-24 Oracle Call Interface Programmer's Guide

CLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. The CLOB value manipulations can be committed or rolled
back. You cannot save a CLOB locator in a variable in one transaction and then use it
in another transaction or session.

NCLOB
An NCLOB is a national character version of a CLOB. It stores fixed-width,
single-byte or multibyte national character set (NCHAR) data, or variable-width
character set data. NCLOBs can store up to 128 terabytes of character text data.

NCLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. NCLOB value manipulations can be committed or rolled
back. You cannot save a NCLOB locator in a variable in one transaction and then use
it in another transaction or session.

Datetime and Interval Datatype Descriptors
The datetime and interval datatype descriptors are briefly summarized here.

ANSI DATE
The ANSI DATE is based on the DATE, but contains no time portion. It also has no
time zone. ANSI DATE follows the ANSI specification for the DATE datatype. When
assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of the
Oracle DATE and the timestamp are set to zero. When assigning a DATE or a
timestamp to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TIMESTAMP datatype which contains both
date and time.

TIMESTAMP
The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus the hour, minute, and second values. It
has no time zone. The TIMESTAMP datatype has the form:

TIMESTAMP(fractional_seconds_precision)

where the optional fractional_seconds_precision specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

See Also: Oracle Database SQL Reference

External Datatypes

Datatypes 3-25

TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an
explicit time zone displacement in its value. The time zone displacement is the
difference in hours and minutes between local time and UTC (Coordinated
Universal Time—formerly Greenwich Mean Time). The TIMESTAMP WITH TIME
ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECOND datetime field, and can be a number in
the range 0 to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent
the same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP
that includes a time zone displacement in its value. Storage is in the same format as
for TIMESTAMP. This type differs from TIMESTAMP WITH TIME ZONE in that data
stored in the database is normalized to the database time zone, and the time zone
displacement is not stored as part of the column data. When retrieving the data,
Oracle returns it in your local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TIMESTAMP WITH LOCAL TIME ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

INTERVAL YEAR TO MONTH
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. The INTERVAL YEAR TO MONTH datatype has the form:

INTERVAL YEAR(year_precision) TO MONTH

where the optional year_precision is the number of digits in the YEAR datetime
field. The default value of year_precision is 2.

External Datatypes

3-26 Oracle Call Interface Programmer's Guide

INTERVAL DAY TO SECOND
INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. The INTERVAL DAY TO SECOND datatype has the form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

where:

■ day_precision is the optional number of digits in the DAY datetime field. It is
optional. Accepted values are 0 to 9. The default is 2.

fractional_seconds_precision is the number of digits in the fractional part
of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

Avoiding Unexpected Results Using Datetime

Native Float and Native Double
The native float (SQLT_BFLOAT) and native double (SQLT_BDOUBLE) datatypes
represent the single-precision and double-precision floating point values. They are
represented natively, that is, in the host system's floating point format.

Note that these new external types were added to externally represent the
BINARY_FLOAT and BINARY_DOUBLE internal datatypes. Thus, performance for
the new internal types will be best when used in conjunction with external types
native float and native double respectively. This draws a clear distinction between
the existing representation of floating point values (SQLT_FLT) and these new
types.

C Object-Relational Datatype Mappings
OCI supports Oracle-defined C datatypes for mapping user-defined datatypes to C
representations (for example, OCINumber, OCIArray). OCI provides a set of calls

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

Data Conversions

Datatypes 3-27

to operate on these datatypes, and to use these datatypes in bind and define
operations, in conjunction with OCI external datatypes.

Data Conversions
Table 3–5 show the supported conversions from internal datatypes to external
datatypes, and from external datatypes into internal column representations, for all
datatypes available through release 7.3. Information about data conversions for
datatypes newer than release 7.3 is listed here:

■ REFs stored in the database are converted to SQLT_REF on output.

■ SQLT_REF is converted to the internal representation of REFs on input.

■ Named datatypes stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

■ SQLT_NTY (represented by a C struct in an application) is converted to the
internal representation of the corresponding type on input.

LOBs are shown in Table 3–6, because of the width limitation.

See Also: For information on using these Oracle-defined C
datatypes, refer to Chapter 11, "Object-Relational Datatypes in OCI"

See Also: For information about OCIString, OCINumber, and
other new datatypes, refer to Chapter 11, "Object-Relational
Datatypes in OCI"

Table 3–5 Data Conversions

EXTERNAL

DATATYPES

INTERNAL DATATYPES

VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW
LONG
RAW CHAR

VARCHAR I/O I/O I/O I/O(1) I/O(1) I/O(2) I/O(3) I/O(3) -

NUMBER I/O(4) I/O I - - - - - I/O(4)

INTEGER I/O(4) I/O I - - - - - I/O(4)

FLOAT I/O(4) I/O I - - - - - I/O(4)

STRING I/O I/O I/O I/O(1) I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

VARNUM I/O(4) I/O I - - - - - I/O(4)

Data Conversions

3-28 Oracle Call Interface Programmer's Guide

Legend:

I = Conversion valid for input only

O = Conversion valid for output only

I/O = Conversion valid for input or output

Notes:

(1) For input, host string must be in Oracle ROWID/UROWID format.

 On output, column value is returned in Oracle ROWID/UROWID format.

(2) For input, host string must be in the Oracle DATE character format.

 On output, column value is returned in Oracle DATE format.

(3) For input, host string must be in hex format.

DECIMAL I/O(4) I/O I - - - - - I/O(4)

LONG I/O I/O I/O I/O(1) I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

VARCHAR I/O I/O I/O I/O(1) I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

DATE I/O - I - - I/O - - I/O

VARRAW I/O(6) - I(5, 6) - - - I/O I/O I/O(6)

RAW I/O(6) - I(5, 6) - - - I/O I/O I/O(6)

LONG RAW O(6) - I(5, 6) - - - I/O I/O O(6)

UNSIGNED I/O(4) I/O I - - - - - I/O(4)

LONG
VARCHAR

I/O I/O I/O I/O(1) I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O

LONG VARRAW I/O(6) - I(5, 6) - - - I/O I/O I/O(6)

CHAR I/O I/O I/O I/O(1) I/O(1) I/O(2) I/O(3) I(3) I/O

CHARZ I/O I/O I/O I/O(1) I/O(1) I/O(2) I/O(3) I(3) I/O

ROWID
descriptor

I(1) - - I/O I/O - - - I(1)

Table 3–5 Data Conversions (Cont.)

EXTERNAL

DATATYPES

INTERNAL DATATYPES

VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW
LONG
RAW CHAR

Data Conversions

Datatypes 3-29

 On output, column value is returned in hex format.

(4) For output, column value must represent a valid number.

(5) Length must be less than or equal to 2000.

(6) On input, column value is stored in hex format.

 On output, column value must be in hex format.

Data Conversions for LOB Datatype Descriptors

Data Conversions for Datetime and Interval Datatypes
You can also use one of the character datatypes for the host variable used in a fetch
or insert operation from or to a datetime or interval column. Oracle will do the
conversion between the character datatype and datetime/interval datatype for you.

Table 3–6 Data Conversions for LOBs

EXTERNAL DATATYPES INTERNAL CLOB INTERNAL BLOB

VARCHAR I/O

CHAR I/O

LONG I/O

LONG VARCHAR I/O

RAW I/O

VARRAW I/O

LONG RAW I/O

LONG VARRAW I/O

Table 3–7 Data Conversion for Datetime and Interval Types

External Types/Internal
Types

VARCHAR,
CHAR DATE TS TSTZ TSLTZ

INTERVAL
YEAR TO
MONTH

INTERVAL
DAY TO
SECOND

VARCHAR2, CHAR I/O I/O I/O I/O I/O I/O I/O

DATE I/O I/O I/O I/O I/O - -

OCI DATE I/O I/O I/O I/O I/O - -

ANSI DATE I/O I/O I/O I/O I/O - -

Data Conversions

3-30 Oracle Call Interface Programmer's Guide

Assignment Notes
When assigning a source with time zone to a target without a time zone, the time
zone portion of the source is ignored. On assigning a source without a time zone to
a target with a time zone, the time zone of the target is set to the session's default
time zone

When assigning an Oracle DATE to a TIMESTAMP, the TIME portion of the DATE is
copied over to the TIMESTAMP. When assigning a TIMESTAMP to Oracle DATE, the
TIME portion of the result DATE is set to zero. This is done to encourage upgrading
of Oracle DATE to ANSI compliant DATETIME datatypes

When assigning an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME
portion of the Oracle DATE and the TIMESTAMP are set to zero. When assigning an
Oracle DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored

When assigning a DATETIME to a character string, the DATETIME is converted using
the session's default DATETIME format. When assigning a character string to a
DATETIME, the string must contain a valid DATETIME value based on the session's
default DATETIME format

When assigning a character string to an INTERVAL, the character string must be a valid
INTERVAL character format.

Data Conversion Notes for Datetime and Interval Types
(1) When converting from TSLTZ to CHAR, DATE, TIMESTAMP, and TSTZ, the
value will be adjusted to the session time zone.

TIMESTAMP (TS) I/O I/O I/O I/O I/O - -

TIMESTAMP WITH TIME
ZONE (TSTZ)

I/O I/O I/O I/O I/O - -

TIMESTAMP WITH LOCAL
TIME ZONE (TSLTZ)

I/O I/O I/O I/O I/O - -

INTERVAL YEAR TO
MONTH

I/O - - - - I/O -

INTERVAL DAY TO
SECOND

I/O - - - - - I/O

Table 3–7 Data Conversion for Datetime and Interval Types (Cont.)

External Types/Internal
Types

VARCHAR,
CHAR DATE TS TSTZ TSLTZ

INTERVAL
YEAR TO
MONTH

INTERVAL
DAY TO
SECOND

Data Conversions

Datatypes 3-31

(2) When converting from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time
zone will be stored in memory.

(3) When assigning TSLTZ to ANSI DATE, the time portion will be zero.

(4) When converting from TSTZ, the time zone which the time stamp is in will be
stored in memory.

(5) When assigning a character string to an interval, the character string must be a
valid interval character format.

Datetime and Date Upgrading Rules
OCI has full forward and backward compatibility between a client application and
the database server as far as the datetime and date columns are concerned.

Pre-9.0 Client with 9.0 or Later Server
The only datetime datatype available to a pre-9.0 application is the DATE datatype,
SQLT_DAT. When a pre-9.0 client that defined a buffer as SQLT_DAT, tries to obtain
data from a TSLTZ column, then only the date portion of the value will be returned
to the client.

Pre-9.0 Server with 9.0 or Later Client
In this case the new client can have a bind or define buffer of type
SQLT_TIMESTAMP_LTZ. The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT_TIMESTAMP_LTZ (or any of the new
datetime datatypes) into a DATE column, an error will be issued since there is
potential data loss in this situation.

When a client has an OUT bind or a define buffer that is of datatype
SQLT_TIMESTAMP_LTZ and the underlying server side SQL buffer or column is of
DATE type, then the session time zone is assigned.

Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI
Table 3–8 shows the supported conversions between internal numerical datatypes
and all relevant external types. An (I) implies that the conversion is valid for input
only (binds), and (O) implies that the conversion is valid for output only (defines),
while an (I/O) implies that the conversion is valid for input as well as output (binds
and defines).

Data Conversions

3-32 Oracle Call Interface Programmer's Guide

Table 3–9 shows the supported conversions between all relevant internal types and
numerical external types. An (I) implies that the conversion is valid for input only
(only for binds), and (O) implies that the conversion is valid for output only (only
for defines), while an (I/O) implies that the conversion is valid for input as well as
output (binds and defines).

Table 3–8 Data Conversion for External Datatypes to Internal Numerical Datatypes

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE

VARCHAR I/O I/O

VARCHAR2 I/O I/O

NUMBER I/O I/O

INTEGER I/O I/O

FLOAT I/O I/O

STRING I/O I/O

VARNUM I/O I/O

LONG I/O I/O

UNSIGNED INT I/O I/O

LONG VARCHAR I/O I/O

CHAR I/O I/O

BINARY_FLOAT I/O I/O

BINARY_DOUBLE I/O I/O

Table 3–9 Data Conversions for Internal to External Numerical Datatypes

Internal Types/External Types Native Float Native Double

VARCHAR2 I/O I/O

NUMBER I/O I/O

LONG I I

CHAR I/O I/O

BINARY_FLOAT I/O I/O

BINARY_DOUBLE I/O I/O

Typecodes

Datatypes 3-33

Typecodes
There is a unique typecode associated with each Oracle type, whether scalar,
collection, reference, or object type. This typecode identifies the type, and is used by
Oracle to manage information about object type attributes. This typecode system is
designed to be generic and extensible, and is not tied to a direct one-to-one
mapping to Oracle datatypes. Consider the following SQL statements:

CREATE TYPE my_type AS OBJECT
(attr1 NUMBER,
 attr2 INTEGER,
 attr3 SMALLINT);

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created,
my_table will have three columns, all of which are of Oracle NUMBER type,
because SMALLINT and INTEGER map internally to NUMBER. The internal
representation of the attributes of my_type, however, maintains the distinction
between the datatypes of the three attributes: attr1 is
OCI_TYPECODE_NUMBER, attr2 is OCI_TYPECODE_INTEGER, and attr3 is
OCI_TYPECODE_SMALLINT. If an application describes my_type, these
typecodes are returned.

OCITypeCode is the C datatype of the typecode. The typecode is used by some OCI
functions, like OCIObjectNew(), where it helps determine what type of object is
created. It is also returned as the value of some attributes when an object is
described; for example, querying the OCI_ATTR_TYPECODE attribute of a type
returns an OCITypeCode value.

Table 3–10 lists the possible values for an OCITypeCode. There is a value
corresponding to each Oracle datatype.

Table 3–10 OCITypeCode Values and Datatypes

Value Datatype

OCI_TYPECODE_REF REF

OCI_TYPECODE_DATE DATE

OCI_TYPECODE_TIMESTAMP TIMESTAMP

OCI_TYPECODE_TIMESTAMP_TZ TIMESTAMP WITH TIME ZONE

Typecodes

3-34 Oracle Call Interface Programmer's Guide

OCI_TYPECODE_TIMESTAMP_LTZ TIMESTAMP WITH LOCAL TIME ZONE

OCI_TYPECODE_INTERVAL_YM INTERVAL YEAR TO MONTH

OCI_TYPECODE_INTERVAL_DS INTERVAL DAY TO SECOND

OCI_TYPECODE_REAL single-precision real

OCI_TYPECODE_DOUBLE double-precision real

OCI_TYPECODE_FLOAT floating-point

OCI_TYPECODE_NUMBER Oracle NUMBER

OCI_TYPECODE_BFLOAT BINARY_FLOAT

OCI_TYPECODE_BDOUBLE BINARY_DOUBLE

OCI_TYPECODE_DECIMAL decimal

OCI_TYPECODE_OCTET octet

OCI_TYPECODE_INTEGER integer

OCI_TYPECODE_SMALLINT smallint

OCI_TYPECODE_RAW RAW

OCI_TYPECODE_VARCHAR2 variable string ANSI SQL, that is, VARCHAR2

OCI_TYPECODE_VARCHAR variable string Oracle SQL, that is, VARCHAR

OCI_TYPECODE_CHAR fixed-length string inside SQL, that is SQL
CHAR

OCI_TYPECODE_VARRAY variable-length array (varray)

OCI_TYPECODE_TABLE multiset

OCI_TYPECODE_CLOB character large object (CLOB)

OCI_TYPECODE_BLOB binary large object (BLOB)

OCI_TYPECODE_BFILE binary large object file (BFILE)

OCI_TYPECODE_OBJECT named object type, or SYS.XMLType

OCI_TYPECODE_NAMEDCOLLECTION Domain (named primitive type)

Table 3–10 OCITypeCode Values and Datatypes(Cont.)

Value Datatype

Typecodes

Datatypes 3-35

Relationship Between SQLT and OCI_TYPECODE Values
Oracle recognizes two different sets of datatype code values. One set is
distinguished by the SQLT_ prefix, the other by the OCI_TYPECODE_ prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define
operation, enabling you to control data conversions between Oracle and OCI client
applications. The OCI_TYPECODE types are used by Oracle's type system to
reference or describe predefined types when manipulating or creating user-defined
types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE
values. In other cases, however, there is not a direct one-to-one mapping. For
example OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32,
OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and
OCI_TYPECODE_SMALLINT are all mapped to the SQLT_INT type.

Table 3–11 illustrates the mappings between SQLT and OCI_TYPECODE types.

Table 3–11 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

BFILE OCI_TYPECODE_BFILE SQLT_BFILE

BLOB OCI_TYPECODE_BLOB SQLT_BLOB

CHAR OCI_TYPECODE_CHAR (n) SQLT_AFC(n) [note 1]

CLOB OCI_TYPECODE_CLOB SQLT_CLOB

COLLECTION OCI_TYPECODE_NAMEDCOLLECTION SQLT_NCO

DATE OCI_TYPECODE_DATE SQLT_DAT

TIMESTAMP OCI_TYPECODE_TIMESTAMP SQLT_TIMESTAMP

TIMESTAMP WITH TIME ZONE OCI_TYPECODE_TIMESTAMP_TZ SQLT_TIMESTAMP_TZ

TIMESTAMP WITH LOCAL TIME
ZONE

OCI_TYPECODE_TIMESTAMP_LTZ SQLT_TIMESTAMP_LTZ

INTERVAL YEAR TO MONTH OCI_TYPECODE_INTERVAL_YM SQLT_INTERVAL_YM

INTERVAL DAY TO SECOND OCI_TYPECODE_INTERVAL_DS SQLT_INTERVAL_DS

FLOAT OCI_TYPECODE_FLOAT (b) SQLT_FLT (8) [note 2]

DECIMAL OCI_TYPECODE_DECIMAL (p) SQLT_NUM (p, 0) [note 3]

DOUBLE OCI_TYPECODE_DOUBLE SQLT_FLT (8)

Typecodes

3-36 Oracle Call Interface Programmer's Guide

Notes:

1. n is the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits.
b is the precision of the number in binary digits.

3. This is equivalent to a NUMBER with no decimal places.

BINARY_FLOAT OCI_TYPECODE_BFLOAT SQLT_BFLOAT

BINARY_DOUBLE OCI_TYPECODE_BDOUBLE SQLT_BDOUBLE

INTEGER OCI_TYPECODE_INTEGER SQLT_INT (i) [note 4]

NUMBER OCI_TYPECODE_NUMBER (p, s) SQLT_NUM (p, s) [note 5]

OCTET OCI_TYPECODE_OCTET SQLT_INT (1)

POINTER OCI_TYPECODE_PTR <NONE>

RAW OCI_TYPECODE_RAW SQLT_LVB

REAL OCI_TYPECODE_REAL SQLT_FLT (4)

REF OCI_TYPECODE_REF SQLT_REF

OBJECT or SYS.XMLType OCI_TYPECODE_OBJECT SQLT_NTY

SIGNED(8) OCI_TYPECODE_SIGNED8 SQLT_INT (1)

SIGNED(16) OCI_TYPECODE_SIGNED16 SQLT_INT (2)

SIGNED(32) OCI_TYPECODE_SIGNED32 SQLT_INT (4)

SMALLINT OCI_TYPECODE_SMALLINT SQLT_INT (i) [note 4]

TABLE [note 6] OCI_TYPECODE_TABLE <NONE>

TABLE (Indexed table) OCI_TYPECODE_ITABLE SQLT_TAB

UNSIGNED(8) OCI_TYPECODE_UNSIGNED8 SQLT_UIN (1)

UNSIGNED(16) OCI_TYPECODE_UNSIGNED16 SQLT_UIN (2)

UNSIGNED(32) OCI_TYPECODE_UNSIGNED32 SQLT_UIN (4)

VARRAY [note 6] OCI_TYPECODE_VARRAY <NONE>

VARCHAR OCI_TYPECODE_VARCHAR (n) SQLT_CHR (n) [note 1]

VARCHAR2 OCI_TYPECODE_VARCHAR2 (n) SQLT_VCS (n) [note 1]

Table 3–11 OCI_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

Definitions in oratypes.h

Datatypes 3-37

4. i is the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in
decimal digits.

6. Can only be part of a named collection type.

Definitions in oratypes.h
Throughout this guide you will see references to datatypes like ub2 or sb4, or to
constants like UB4MAXVAL. These types are defined in the oratypes.h header file,
which is found in the public directory. The exact contents may vary according to
the operating system you are using.

Note: The use of the datatypes in oratypes.h is the only
supported means of supplying parameters to the OCI.

Definitions in oratypes.h

3-38 Oracle Call Interface Programmer's Guide

Using SQL Statements in OCI 4-1

4
Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL
statements with the Oracle Call Interface.

This chapter contains these topics:

■ Overview of SQL Statement Processing

■ Preparing Statements

■ Binding Placeholders in OCI

■ Executing Statements

■ Describing Select-list Items

■ Defining Output Variables in OCI

■ Fetching Results

■ Scrollable Cursors in OCI

Overview of SQL Statement Processing

4-2 Oracle Call Interface Programmer's Guide

Overview of SQL Statement Processing
Chapter 2, "OCI Programming Basics" discussed the basic steps involved in any
OCI application. This chapter presents a more detailed look at the specific tasks
involved in processing SQL statements in an OCI program.

One of the most common tasks of an OCI program is to accept and process SQL
statements. This section outlines the specific steps involved in this processing.

Once you have allocated the necessary handles and connected to a server, follow the
steps illustrated in Figure 4–1, "Steps In Processing SQL Statements":

Figure 4–1 Steps In Processing SQL Statements

1. Prepare statement. Define an application request using OCIStmtPrepare() or
OCIStmtPrepare2().

2. Bind placeholders, if necessary.. For DML statements and queries with input
variables, perform one or more bind calls using

■ OCIBindByPos()

Bind
Placeholders*

Execute
Statement

Describe
Select-list Items*

Define
Output Variables*

Fetch and
Process Data*

Prepare
Statement

* These steps performed
if necessary

OCIStmtPrepare() or OCIStmtPrepare2()

OCIStmtExecute()

OCIStmtFetch()

OCIDefineByPos()
OCIDefineObject()
OCIDefineArrayOfStruct()
OCIDefineDynamic()

OCIParamGet()
OCIAttrGet()

OCIBindByName() or OCIBindByPos()
OCIBindObject()
OCIBindArrayOfStruct()
OCIBindDynamic()

Overview of SQL Statement Processing

Using SQL Statements in OCI 4-3

■ OCIBindByName()

■ OCIBindObject()

■ OCIBindDynamic()

■ OCIBindArrayOfStruct()

to bind the address of each input variable (or PL/SQL output variable) or array
to each placeholder in the statement.

3. A statement can also be prepared for execution with OCIStmtPrepare2(), an
enhanced version of OCIStmtPrepare() introduced to support statement
caching.

4. Execute. Call OCIStmtExecute() to execute the statement. For DDL
statements, no further steps are necessary.

5. Describe, if necessary. Describe the select-list items, if necessary, using
OCIParamGet() and OCIAttrGet(). This is an optional step; it is not
required if the number of select-list items and the attributes of each item (such
as its length and datatype) are known at compile time.

6. Define, if necessary. For queries, perform one or more define calls to
OCIDefineByPos(), OCIDefineObject(), OCIDefineDynamic(), or
OCIDefineArrayOfStruct() to define an output variable for each select-list
item in the SQL statement. Note that you do not use a define call to define the
output variables in an anonymous PL/SQL block. You have done this when
you have bound the data.

7. Fetch, if necessary. For queries, call OCIStmtFetch() to fetch the results of the
query.

Following these steps, the application can free allocated handles and then detach
from the server, or it may process additional statements.

For each of the steps in the diagram, the corresponding OCI function calls are listed.
In some cases multiple calls may be required.

Each step is described in detail in the following sections.

7.x Upgrade Note: OCI programs no longer require an explicit
parse step. If a statement must be parsed, that step takes place upon
execution. This means that 8.0 or later applications must issue an
execute command for both DML and DDL statements.

Preparing Statements

4-4 Oracle Call Interface Programmer's Guide

Additional steps beyond those listed above may be required if your application
needs to do any of the following:

■ initiate and manage multiple transactions

■ manage multiple threads of execution

■ perform piecewise inserts, updates, or fetches

Preparing Statements
SQL and PL/SQL statements are prepared for execution by using the statement
prepare call and any necessary bind calls. In this phase, the application specifies a
SQL or PL/SQL statement and binds associated placeholders in the statement to
data for execution. The client-side library allocates storage to maintain the
statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCIStmtPrepare() call and passes to it a previously allocated
statement handle. This is a completely local call, requiring no round trip to the
server. No association is made between the statement and a particular server at this
point.

Following the request call, an application can call OCIAttrGet() on the statement
handle, passing OCI_ATTR_STMT_TYPE to the attrtype parameter, to determine
what type of SQL statement was prepared. The possible attribute values and
corresponding statement types are listed in Table 4–1.

Note: Some variation in the order of steps is possible. For
example, it is possible to do the define step before the execute if the
datatypes and lengths of returned values are known at compile
time.

See Also: "Statement Caching in OCI" on page 9-27

Table 4–1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type

OCI_STMT_SELECT SELECT statement

OCI_STMT_UPDATE UPDATE statement

OCI_STMT_DELETE DELETE statement

Binding Placeholders in OCI

Using SQL Statements in OCI 4-5

Using Prepared Statements on Multiple Servers
A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for
the servers. All information about the current service context and statement handle
association is lost when a new association is made.

For example, consider an application such as a network manager, which manages
multiple servers. In many cases, it is likely that the same SELECT statement will
need to be executed against multiple servers to retrieve information for display. The
OCI allows the network manager application to prepare a SELECT statement once
and execute it against multiple servers. It must fetch all of the required rows from
each server prior to reassociating the prepared statement with the next server.

Binding Placeholders in OCI
Most DML statements, and some queries (such as those with a WHERE clause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
This data can be constant or literal, known when your program is compiled. For

OCI_STMT_INSERT INSERT statement

OCI_STMT_CREATE CREATE statement

OCI_STMT_DROP DROP statement

OCI_STMT_ALTER ALTER statement

OCI_STMT_BEGIN BEGIN... (PL/SQL)

OCI_STMT_DECLARE DECLARE... (PL/SQL)

See Also:

■ "Using PL/SQL in an OCI Program" on page 2-37

■ See the OCIStmtPrepare() call

Note: If a prepared statement must be reexecuted frequently on
the same server, it is more efficient to prepare a new statement for
another service context.

Table 4–1 OCI_ATTR_STMT_TYPE Values and Statement Types (Cont.)

Attribute Value Statement Type

Binding Placeholders in OCI

4-6 Oracle Call Interface Programmer's Guide

example, the following SQL statement, which adds an employee to a database
contains several literals, such as 'BESTRY' and 2365:

INSERT INTO emp VALUES
 (2365, 'BESTRY', 'PROGRAMMER', 2000, 20)

Coding a statement like this into an application would severely limit its usefulness.
You would need to change the statement and recompile the program each time you
add a new employee to the database. To make the program more flexible, you can
write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (:ename), that show where input
data must be supplied by the program.

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or
UPDATE statement, or a PL/SQL block, in any position in the statement where you
can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For
example, the following is not a valid use of the emp placeholder:

INSERT INTO :emp VALUES
 (12345, 'OERTEL', 'WRITER', 50000, 30)

For each placeholder in a SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to that placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement.

Binding is used for both input and output variables in non-query operations. In the
following example,

empno_out, ename_out, job_out, sal_out, and deptno_out

should be bound. These are outbinds (as opposed to regular inbinds).

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

Executing Statements

Using SQL Statements in OCI 4-7

 RETURNING
 (empno, ename, job, sal, deptno)
 INTO
 (:empno_out, :ename_out, :job_out, :sal_out, :deptno_out)

Executing Statements
An OCI application executes prepared statements individually using
OCIStmtExecute().

When an OCI application executes a query, it receives data from Oracle that
matches the query specifications. Within the database, the data is stored in
Oracle-defined formats. When the results are returned, the OCI application can
request that data be converted to a particular host language format, and stored in a
particular output variable or buffer.

For each item in the select-list of a query, the OCI application must define an output
variable to receive the results of the query. The define step indicates the address of
the buffer and the type of the data to be retrieved.

For non-queries, the number of times the statement is executed during array
operations is equal to iters - rowoff, where rowoff is the offset in the bound
array, and is also a parameter of the OCIStmtExecute() call.

For example, if an array of 10 items is bound to a placeholder for an INSERT
statement, and iters is set to 10, all 10 items will be inserted in a single execute
call when rowoff is zero. If rowoff is set to 2, only 8 items will be inserted.

See Also: For detailed information about implementing bind
operations, refer to Chapter 5, "Binding and Defining in OCI"

Note: If output variables are defined for a SELECT statement
before a call to OCIStmtExecute(), the number of rows specified
by the iters parameter are fetched directly into the defined
output buffers and additional rows equivalent to the prefetch count
are prefetched. If there are no additional rows, then the fetch is
complete without calling OCIStmtFetch().

See Also: "Defining Output Variables in OCI" on page 4-16 for
more information about defining output variables

Executing Statements

4-8 Oracle Call Interface Programmer's Guide

Execution Snapshots
The OCIStmtExecute() call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database's committed data.
This is achieved by taking the contents of the snap_out parameter of one
OCIStmtExecute() call and passing that value as the snap_in parameter of the
next OCIStmtExecute() call.

The datatype of both the snap_out and snap_in parameter is OCISnapshot, an
OCI snapshot descriptor that is allocated with the OCIDescAlloc() function.

It is not necessary to specify a snapshot when calling OCIStmtExecute(). The
following sample code shows a basic execution in which the snapshot parameters
are passed as NULL.

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

Execution Modes of OCIStmtExecute()
You can specify several modes for the OCIStmtExecute()call.

Batch Error Mode
OCI provides the ability to perform array DML operations. For example, an
application can process an array of INSERT, UPDATE, or DELETE statements with a
single statement execution. If one of the operations fails due to an error from the
server, such as a unique constraint violation, the array operation aborts and OCI

Note: Uncommitted data in one service context is not visible to
another context, even when using the same snapshot.

See Also: "OCI Descriptors" on page 2-13

Note: The checkerr() function, which is user-developed,
evaluates the return code from an OCI application.

See Also: OCIStmtExecute() on page 16-5 for the values of the
parameter mode

Executing Statements

Using SQL Statements in OCI 4-9

returns an error. Any rows remaining in the array are ignored. The application must
then reexecute the remainder of the array, and go through the whole process again
if it encounters more errors, which makes additional round trips.

To facilitate processing of array DML operations, OCI provides the batch error mode
(also called the enhanced DML array feature). This mode, which is specified in the
OCIStmtExecute() call, simplifies DML array processing in the event of one or
more errors. In this mode, OCI attempts to INSERT, UPDATE, or DELETE all rows,
and collects information about any errors that occurred. The application can then
retrieve error information and reexecute any DML operations which failed during
the first call.In this way, all DML operations in the array are attempted in the first
call, and any failed operations can be reissued in a second call.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the mode parameter of the
OCIStmtExecute() call.

2. After performing an array DML operation with OCIStmtExecute(), the
application can retrieve the number of errors encountered during the operation
by calling OCIAttrGet() on the statement handle to retrieve the
OCI_ATTR_NUM_DML_ERRORS attribute. For example:

ub4 num_errs;
OCIAttrGet(stmtp, OCI_HTYPE_STMT, &num_errs, 0, OCI_ATTR_NUM_DML_ERRORS,
 errhp);

3. The application extracts each error using OCIParamGet(), along with its row
information, from the error handle that was passed to the OCIStmtExecute()
call. In order to retrieve the information, the application must allocate an
additional new error handle for the OCIParamGet() call, populating the new
error handle with batched error information. The application obtains the syntax
of each error with OCIErrorGet(), and the row offset into the DML array at
which the error occurred, by calling OCIAttrGet() on the new error handle.

For example, once the num_errs amount has been retrieved, the application
can issue the following calls:

Note: This feature is only available to applications linked with the
8.1 or later OCI libraries running against a release 8.1 or later
server. Applications must also be recoded to account for the new
program logic described in this section.

Executing Statements

4-10 Oracle Call Interface Programmer's Guide

OCIError errhndl, errhp2;
for (i=0; i<num_errs; i++)
{
 OCIParamGet(errhp, OCI_HTYPE_ERROR, errhp2, (dvoid **)&errhndl, i);
 OCIAttrGet(errhndl, OCI_HTYPE_ERROR, &row_offset, 0,
 OCI_ATTR_DML_ROW_OFFSET, errhp2);
 OCIErrorGet(..., errhndl, ...);

Following this, the application can correct the bind information for the
appropriate entry in the array using the diagnostic information retrieved from
the batched error. Once the appropriate bind buffers are corrected or updated,
the application can reexecute the associated DML statements.

Since it cannot be determined at compile time which rows in the first execution
will cause errors, the binds for the subsequent DML should be done
dynamically by passing in the appropriate buffers at runtime. The bind buffers
used in the array binds done on the first DML operation can be reused.

Example of Batch Error Mode
The following code shows an example of how this execution mode might be used.
In this example assume that we have an application which inserts five rows (with
two columns, of types NUMBER and CHAR) into a table. Furthermore, let us assume
only two rows (say, 1 and 3) are successfully inserted in the initial DML operation.
The user then proceeds to correct the data (wrong data was being inserted the first
time) and to issue an update with the corrected data. The user uses statement
handles stmtp1 and stmtp2 to issue the INSERT and UPDATE respectively.

OCIBind *bindp1[2], *bindp2[2];
ub4 num_errs, row_off[MAXROWS], number[MAXROWS] = {1,2,3,4,5};
char grade[MAXROWS] = {'A','B','C','D','E'};
OCIError *errhp2;
OCIError *errhndl[MAXROWS];
...
/* Array bind all the positions */
OCIBindByPos (stmtp1,&bindp1[0],errhp,1,(dvoid *)&number[0],
 sizeof(number[0]),SQLT_INT,(dvoid *)0, (ub2 *)0,(ub2 *)0,
 0,(ub4 *)0,OCI_DEFAULT);
OCIBindByPos (stmtp1,&bindp1[1],errhp,2,(dvoid *)&grade[0],
 sizeof(grade[0]),SQLT_CHR,(dvoid *)0, (ub2 *)0,(ub2 *)0,0,
 (ub4 *)0,OCI_DEFAULT);
/* execute the array INSERT */
OCIStmtExecute (svchp,stmtp1,errhp,5,0,0,0,OCI_BATCH_ERRORS);
/* get the number of errors, a different error handler errhp2 is used so that
 * the state of errhp is not changed */

Describing Select-list Items

Using SQL Statements in OCI 4-11

OCIAttrGet (stmtp1, OCI_HTYPE_STMT, &num_errs, 0,
 OCI_ATTR_NUM_DML_ERRORS, errhp2);
if (num_errs) {
 /* The user can do one of two things: 1) Allocate as many */
 /* error handles as number of errors and free all handles */
 /* at a later time; or 2) Allocate one err handle and reuse */
 /* the same handle for all the errors */
 for (i = 0; i < num_errs; i++) {
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&errhndl[i],
 (ub4) OCI_HTYPE_ERROR, 0, (dvoid *) 0);
 OCIParamGet(errhp, OCI_HTYPE_ERROR, errhp2, &errhndl[i], i);
 OCIAttrGet (errhndl[i], OCI_HTYPE_ERROR, &row_off[i], 0,
 OCI_ATTR_DML_ROW_OFFSET, errhp2);
 /* get server diagnostics */
 OCIErrorGet (..., errhndl[i], ...);
 }
 }
/* make corrections to bind data */
OCIBindByPos (stmtp2,&bindp2[0],errhp,1,(dvoid *)0,sizeof(grade[0]),SQLT_INT,
 (dvoid *)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,OCI_DATA_AT_EXEC);
OCIBindByPos (stmtp2,&bindp2[1],errhp,2,(dvoid *)0,sizeof(number[0]),SQLT_DAT,
 (dvoid *)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,OCI_DATA_AT_EXEC);
/* register the callback for each bind handle, row_off and position
 * information can be passed to call back function by means of context
 * pointers.
 */
OCIBindDynamic (bindp2[0],errhp,ctxp1,my_callback,0,0);
OCIBindDynamic (bindp2[1],errhp,ctxp2,my_callback,0,0);
/* execute the UPDATE statement */
OCIStmtExecute (svchp,stmtp2,errhp,num_errs,0,0,0,OCI_BATCH_ERRORS);
...

In this example, OCIBindDynamic() is used with a callback because the user does
not know at compile time what rows will return with errors. With a callback, you
can simply pass the erroneous row numbers, stored in row_off, through the
callback context and send only those rows that need to be updated or corrected. The
same bind buffers can be shared between the INSERT and the UPDATE executes.

Describing Select-list Items
If your OCI application is processing a query, you may need to obtain more
information about the items in the select-list. This is particularly true for dynamic
queries whose contents are not known until run time. In this case, the program may

Describing Select-list Items

4-12 Oracle Call Interface Programmer's Guide

need to obtain information about the datatypes and column lengths of the select-list
items. This information is necessary to define output variables that will receive
query results.

For example, consider a query where the program has no prior information about
the columns in the employees table:

SELECT * FROM employees

There are two types of describes available: implicit and explicit.

An implicit describe is one that does not require any special calls to retrieve describe
information from the server, although special calls are necessary to access the
information. An implicit describe allows an application to obtain select-list
information as an attribute of the statement handle after a statement has been executed
without making a specific describe call. It is called implicit, because no describe call
is required. The describe information comes free with the execute.

An explicit describe is one which requires the application to call a particular function
to bring the describe information from the server. An application may describe a
select-list (query) either implicitly or explicitly. Other schema elements must be
described explicitly.

You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(), which does not
execute the statement, but returns the select-list description. For performance
reasons it is recommended that applications take advantage of the implicit describe
that comes free with a standard statement execution.

An explicit describe with the OCIDescribeAny() call obtains information about
schema objects rather than select-lists.

In all cases, the specific information about columns and datatypes is retrieved by
reading handle attributes.

Implicit Describe
After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about multiple select-list items, an application can call
OCIParamGet() with the pos parameter set to 1 the first time, and then iterate the

See Also: For information about using OCIDescribeAny() to
obtain metadata pertaining to schema objects, refer to Chapter 6,
"Describing Schema Metadata"

Describing Select-list Items

Using SQL Statements in OCI 4-13

value of pos and repeat the OCIParamGet() call until OCI_ERROR with
ORA-24334 is returned. An application could also specify any position n to get a
column at random.

Once a parameter descriptor has been allocated for a position in the select-list, the
application can retrieve specific information by calling OCIAttrGet() on the
parameter descriptor. Information available from the parameter descriptor includes
the datatype and maximum size of the parameter.

The following sample code shows a loop that retrieves the column names and
datatypes corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare().

...
OCIParam *mypard = (OCIParam *) 0;
ub2 dtype;
text *col_name;
ub4 counter, col_name_len, char_semantics;
ub2 col_width;
sb4 parm_status;

text *sqlstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select-list */
counter = 1;
parm_status = OCIParamGet((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,
 (dvoid **)&mypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
 current position, starting at 1 */

while (parm_status == OCI_SUCCESS) {
 /* Retrieve the datatype attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &dtype,(ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));

 /* Retrieve the column name attribute */

Describing Select-list Items

4-14 Oracle Call Interface Programmer's Guide

 col_name_len = 0;
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid**) &col_name, (ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
 (OCIError *) errhp));

 /* Retrieve the length semantics for the column */
 char_semantics = 0;
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &char_semantics,(ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
 (OCIError *) errhp));
 col_width = 0;
 if (char_semantics)
 /* Retrieve the column width in characters */
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
 (OCIError *) errhp));
 else
 /* Retrieve the column width in bytes */
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &col_width,(ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));

 /* increment counter and get next descriptor, if there is one */
 counter++;
 parm_status = OCIParamGet((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,
 (dvoid **)&mypard, (ub4) counter);
} /* while */
...

The checkerr() function is used for error handling. The complete listing can be
found in the first sample application in Appendix B, "OCI Demonstration
Programs".

The calls to OCIAttrGet() and OCIParamGet() are local calls that do not require
a network round trip, because all of the select-list information is cached on the
client side after the statement is executed.

See Also:

■ Descriptions of OCIParamGet() and OCIAttrGet().

■ "Parameter Attributes" on page 6-5 for a list of the specific
attributes of the parameter descriptor which may be read by
OCIAttrGet().

Describing Select-list Items

Using SQL Statements in OCI 4-15

Explicit Describe of Queries
You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(); this does not execute
the statement, but returns the select-list description.

The following code demonstrates the use of explicit describe in a select-list to return
information about columns.

...
int i = 0;
ub4 numcols = 0;
ub2 type = 0;
OCIParam *colhd = (OCIParam *) 0; /* column handle */

text *sqlstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

/* initialize svchp, stmhp, errhp, rowoff, iters, snap_in, snap_out */
/* set the execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0,
 (OCISnapshot *) 0, (OCISnapshot *) 0, OCI_DESCRIBE_ONLY));

/* Get the number of columns in the query */
checkerr(errhp, OCIAttrGet((dvoid *)stmthp, OCI_HTYPE_STMT, (dvoid *)&numcols,
 (ub4 *)0, OCI_ATTR_PARAM_COUNT, errhp));

/* go through the column list and retrieve the datatype of each column. We
start from pos = 1 */
for (i = 1; i <= numcols; i++)
{
 /* get parameter for column i */
 checkerr(errhp, OCIParamGet((dvoid *)stmthp, OCI_HTYPE_STMT, errhp, (dvoid

Note: To maximize performance, it is recommended that
applications execute the statement in default mode and use the
implicit describe that accompanies the execution.

Defining Output Variables in OCI

4-16 Oracle Call Interface Programmer's Guide

**)&colhd, i));

 /* get data-type of column i */
 type = 0;
 checkerr(errhp, OCIAttrGet((dvoid *)colhd, OCI_DTYPE_PARAM,
 (dvoid *)&type, (ub4 *)0, OCI_ATTR_DATA_TYPE, errhp));
}
...

Defining Output Variables in OCI
Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list that you want to retrieve data from. The
define step creates an association that determines where returned results are stored,
and in what format.

For example, to process the following statement you would normally need to define
two output variables, one to receive the value returned from the name column, and
one to receive the value returned from the ssn column:

SELECT name, ssn FROM employees
 WHERE empno = :empnum

Fetching Results
If an OCI application has processed a query, it is typically necessary to fetch the
results with OCIStmtFetch() or with OCIStmtFetch2() after the statement has
completed execution. Oracle encourages the use of OCIStmtFetch2(), which
supports scrollable cursors.

Fetched data is retrieved into output variables that have been specified by define
operations.

See Also: Chapter 5, "Binding and Defining in OCI"

See Also: "Scrollable Cursors in OCI" on page 4-18

Fetching Results

Using SQL Statements in OCI 4-17

Fetching LOB Data
If LOB columns or attributes are part of a select-list, they can be returned as LOB
locators or actual LOB values, depending on how you define them. If LOB locators
are fetched, then the application can perform further operations on these locators
through the OCILobXXX interfaces.

Setting Prefetch Count
In order to minimize server round trips and optimize the performance, the OCI can
prefetch result set rows when executing a query. You can customize this prefetching
by setting either the OCI_ATTR_PREFETCH_ROWS or
OCI_ATTR_PREFETCH_MEMORY attribute of the statement handle using the
OCIAttrSet() function. These attributes are used as follows:

■ OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched. If it is
not set, then the default value is 1. If the iters parameter of
OCIStmtExecute() is 0 and prefetching is enabled, the rows are buffered
during calls to OCIStmtFetch2(). The prefetch value can be altered after
execution and between fetches.

Note: If output variables are defined for a SELECT statement
before a call to OCIStmtExecute(), the number of rows specified
by the iters parameter is fetched directly into the defined output
buffers

See Also:

■ These statements fetch data associated with the sample code in
the section "Steps Used in OCI Defining" on page 5-18. Refer to
that example for more information.

■ For information about defining output variables, see the section
"Overview of Defining in OCI" on page 5-17.

See Also:

■ Chapter 7, "LOB and BFILE Operations", for more information
about working with LOB locators in the OCI.

■ "Defining LOB Output Variables" on page 5-20 for usage and
examples of selecting LOB data without the use of locators.

Scrollable Cursors in OCI

4-18 Oracle Call Interface Programmer's Guide

■ OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be
prefetched. The application then fetches as many rows as will fit into that much
memory.

When both of these attributes are set, the OCI prefetches rows up to the
OCI_ATTR_PREFETCH_ROWS limit unless the OCI_ATTR_PREFETCH_MEMORY
limit is reached, in which case the OCI returns as many rows as will fit in a buffer of
size OCI_ATTR_PREFETCH_MEMORY.

By default, prefetching is turned on, and the OCI fetches an extra row all the time.
To turn prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and
OCI_ATTR_PREFETCH_MEMORY attributes to zero.

Scrollable Cursors in OCI
A cursor is a current position in a result set. Execution of a cursor puts the results of
the query into a set of rows called the result set that can be fetched either
sequentially or non-sequentially. In the latter case the cursor is known as a scrollable
cursor.

A scrollable cursor provides support for forward and backward access into the
result set from a given position, using either absolute or relative row number offsets
into the result set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch
previously-fetched rows, the n-th row in the result set, or the n-th row from the
current position. Client-side caching of either the partial or entire result set
improves performance by limiting calls to the server.

Oracle does not support DML operations on scrollable cursors. A cursor cannot be
made scrollable if the LONG datatype is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at
execution time. The size of the client cache can be controlled by the existing OCI
attributes OCI_ATTR_PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY.

Note: Prefetching is not in effect if LONG columns are part of the
query. Queries containing LOB columns can be prefetched, because
the LOB locator, not the data, is returned by the query.

See Also: "Statement Handle Attributes" on page A-28.

Scrollable Cursors in OCI

Using SQL Statements in OCI 4-19

The OCIStmtExecute() call has an execution mode for scrollable cursors,
OCI_STMT_SCROLLABLE_READONLY. The default for statement handles is
non-scrollable, forward sequential access only, where the mode is
OCI_FETCH_NEXT. You must set this execution mode each time the statement
handle is executed.

The statement handle attribute OCI_ATTR_CURRENT_POSITION can be retrieved
using OCIAttrGet() only. This attribute cannot be set by the application; it
indicates the current position in the result set.

For non-scrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows
fetched into user buffers with the OCIStmtFetch2() calls since this statement
handle was executed. Since non-scrollable cursors are forward sequential only,
OCI_ATTR_ROW_COUNT also represents the highest row number seen by the
application.

For scrollable cursors, OCI_ATTR_ROW_COUNT will represent the maximum
(absolute) row number fetched into the user buffers. Since the application can
arbitrarily position the fetches, this does not have to be the total number of rows
fetched into the your buffers since the (scrollable) statement was executed.

The attribute OCI_ATTR_ROWS_FETCHED on the statement handle, represents the
number of rows that were successfully fetched into the user's buffers in the last
fetch call or execute. It works for both scrollable and non-scrollable cursors.

Use the OCIStmtFetch2()call, instead of the OCIStmtFetch() call, which is
retained for backward compatibility. You are encouraged to use
OCIStmtFetch2(), for all new applications, even those not using scrollable
cursors. This call also works for non-scrollable cursors, but can raise an error if any
other orientation besides OCI_DEFAULT or OCI_FETCH_NEXT is passed.

Note: Do not use scrollable cursors unless you require the
functionality, because they use more server resources and can have
greater response times than non-scrollable cursors.

Note: If you call OCIStmtFetch2() with the nrows parameter
set to 0, the cursor is cancelled.

Scrollable Cursors in OCI

4-20 Oracle Call Interface Programmer's Guide

Increasing Scrollable Cursor Performance
Response time is improved if you use OCI client-side prefetch buffers. After calling
OCIStmtExecute() for a scrollable cursor, call OCIStmtFetch2() using
OCI_FETCH_LAST to obtain the size of the result set. Then set
OCI_ATTR_PREFETCH_ROWS to about 20% of that size, and set
OCI_PREFETCH_MEMORY if the result set uses a large amount of memory.

Limitations on the Use of Scrollable Cursors
■ Failover does not work with scrollable cursors.

■ Remote mapped queries cannot be used with scrollable cursors.

Example of Access on a Scrollable Cursor
Assume that a result set is returned by the SQL query:

SELECT empno, ename FROM emp

and that the table EMP has 14 rows. One use of scrollable cursors is:

...
/* execute the scrollable cursor in the scrollable mode */
OCIStmtExecute(svchp, stmthp, errhp, (ub4)0, (ub4)0, (CONST OCISnapshot *)NULL,
 (OCISnapshot *) NULL, OCI_STMT_SCROLLABLE_READONLY);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
 OCI_ATTR_CURRENT_POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 3,
 OCI_FETCH_ABSOLUTE, (sb4) 6, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 6, 7, 8. After this call,
 OCI_ATTR_CURRENT_POSITION = 8, OCI_ATTR_ROW_COUNT = 8 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 3,
 OCI_FETCH_RELATIVE, (sb4) -2, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 14. After this call,
 OCI_ATTR_CURRENT_POSITION = 14, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1,
 OCI_FETCH_LAST, (sb4) 0, OCI_DEFAULT);

See Also:

■ OCIStmtFetch2() on page 16-11

■ "Setting Prefetch Count" on page 4-17

Scrollable Cursors in OCI

Using SQL Statements in OCI 4-21

/* Fetches rows with absolute row number 1. After this call,
 OCI_ATTR_CURRENT_POSITION = 1, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 1,
 OCI_FETCH_FIRST, (sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 2, 3, 4. After this call,
 OCI_ATTR_CURRENT_POSITION = 4, OCI_ATTR_ROW_COUNT = 14 */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 3,
 OCI_FETCH_NEXT, (sb4) 0, OCI_DEFAULT);

/* Fetches rows with absolute row numbers 3,4,5,6,7. After this call,
 OCI_ATTR_CURRENT_POSITION = 7, OCI_ATTR_ROW_COUNT = 14. It is assumed
the user's define memory is allocated. */
checkprint(errhp, OCIStmtFetch2(stmthp, errhp, (ub4) 5,
 OCI_FETCH_PRIOR, (sb4) 0, OCI_DEFAULT);
...
}
checkprint (errhp, status)
{
 ub4 rows_fetched;
/* This checks for any OCI errors before printing the results of the fetch call
 in the define buffers */
 checkerr (errhp, status);
 checkerr(errhp, OCIAttrGet((CONST void *) stmthp, OCI_HTYPE_STMT,
 (void *) &rows_fetched, (uint *) 0, OCI_ATTR_ROWS_FETCHED, errhp));
}
...

Scrollable Cursors in OCI

4-22 Oracle Call Interface Programmer's Guide

Binding and Defining in OCI 5-1

5
Binding and Defining in OCI

This chapter contains these topics:

■ Overview of Binding in OCI

■ Advanced Bind Operations in OCI

■ Overview of Defining in OCI

■ Advanced Define Operations in OCI

■ Binding and Defining Arrays of Structures in OCI

■ DML with RETURNING Clause in OCI

■ Character Conversion in OCI Binding and Defining

■ PL/SQL REF CURSORs and Nested Tables in OCI

■ Runtime Data Allocation and Piecewise Operations in OCI

Overview of Binding in OCI

5-2 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI
This chapter expands on the basic concepts of binding and defining, and provides
more detailed information about the different types of binds and defines you can
use in OCI applications. Additionally, this chapter discusses the use of arrays of
structures, as well as other issues involved in binding, defining, and character
conversions.

For example, given the INSERT statement

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

and the following variable declarations

text *ename, *job;
sword empno, sal, deptno;

the bind step makes an association between the placeholder name and the address
of the program variables. The bind also indicates the datatype and length of the
program variables, as illustrated in Figure 5–1.

Figure 5–1 Using OCIBindByName() to Associate Placeholders with Program Variables

If you change only the value of a bind variable, it is not necessary to rebind it in
order to execute the statement again. Because the bind is by reference, as long as the
address of the variable and handle remain valid, you can reexecute a statement that
references the variable without rebinding.

See Also: The code that implements this example is found in the
section "Steps Used in OCI Binding" on page 5-6.

INSERT INTO emp

OCIBindByName ()

(empno, ename, job, sal, deptno)

VALUES (:empno, :ename, :job, :sal, :deptno)

Address &empno ename job &sal &deptno

Data Type integer string string integer integer

Length sizeof(empno) strlen(ename)+1 strlen(job)+1 sizeof(sal) sizeof(deptno)

Overview of Binding in OCI

Binding and Defining in OCI 5-3

In the Oracle server, new datatypes have been implemented for named datatypes,
REFs and LOBs, and they may be bound as placeholders in a SQL statement.

Named Binds and Positional Binds
The SQL statement in the previous section is an example of a named bind. Each
placeholder in the statement has a name associated with it, such as 'ename' or 'sal'.
When this statement is prepared and the placeholders are associated with values in
the application, the association is made by the name of the placeholder using the
OCIBindByName() call with the name of the placeholder passed in the placeholder
parameter.

A second type of bind is known as a positional bind. In a positional bind, the
placeholders are referred to by their position in the statement rather than their
names. For binding purposes, an association is made between an input value and
the position of the placeholder, using the OCIBindByPos() call.

Using the previous example for a positional bind:

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

The five placeholders are then each bound by calling OCIBindByPos() and
passing the position number of the placeholder in the position parameter. For
example, the :empno placeholder would be bound by calling OCIBindByPos()
with a position of 1, :ename with a position of 2, and so on.

In the case of a duplicate bind, only a single bind call may be necessary. Consider
the following SQL statement, which queries the database for employees whose
commission and salary are both greater than a given amount:

Note: At the interface level, all bind variables are considered at
least IN and must be properly initialized. If the variable is a pure
OUT bind variable, you can set the variable to 0. You can also
provide a NULL indicator and set that indicator to -1 (NULL).

Note: For opaque datatypes (descriptors or locators) whose sizes
are not known, pass the address of the descriptor or locator pointer.
Set the size parameter to the size of the appropriate data structure,
(sizeof(structure))

Overview of Binding in OCI

5-4 Oracle Call Interface Programmer's Guide

SELECT empno FROM emp
 WHERE sal > :some_value
 AND comm > :some_value

An OCI application could complete the binds for this statement with a single call to
OCIBindByName() to bind the :some_value placeholder by name. In this case,
the second placeholder inherits the bind information from the first placeholder.

OCI Array Interface
You can pass data to Oracle in various ways.

You can execute a SQL statement repeatedly using the OCIStmtExecute()
routine and supply different input values on each iteration.

You can use the Oracle array interface and input many values with a single
statement and a single call to OCIStmtExecute(). In this case you bind an array
to an input placeholder, and the entire array can be passed at the same time, under
the control of the iters parameter.

The array interface significantly reduces round trips to the database when you are
updating or inserting a large volume of data. This reduction can lead to
considerable performance gains in a busy client/server environment. For example,
consider an application that needs to insert 10 rows into the database. Calling
OCIStmtExecute() ten times with single values results in ten network round
trips to insert all the data. The same result is possible with a single call to
OCIStmtExecute() using an input array, which involves only one network round
trip.

Binding Placeholders in PL/SQL
You process a PL/SQL block by placing the block in a string variable, binding any
variables, and then executing the statement containing the block, just as you would
with a single SQL statement.

Note: When using the OCI array interface to perform inserts, row
triggers in the database are fired as each row is inserted.

The maximum number of rows allowed in an array DML statement
is 4 gigabytes -1.

Overview of Binding in OCI

Binding and Defining in OCI 5-5

When you bind placeholders in a PL/SQL block to program variables, you must
use OCIBindByName() or OCIBindByPos() to perform the basic binds for host
variables that are either scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN
parameters to a procedure that updates an employee's salary, given the employee
number and the new salary amount:

char plsql_statement[] = "BEGIN\
 RAISE_SALARY(:emp_number, :new_sal);\
 END;" ;

These placeholders can be bound to input variables in the same way as placeholders
in a SQL statement.

When processing PL/SQL statements, output variables are also associated with
program variables using bind calls.

For example, in a PL/SQL block such as

BEGIN
 SELECT ename,sal,comm INTO :emp_name, :salary, :commission
 FROM emp
 WHERE empno = :emp_number;
END;

you would use OCIBindByName() to bind variables in place of the :emp_name,
:salary, and :commission output placeholders, and in place of the input
placeholder :emp_number.

7.x Upgrade Note: In the Oracle7 OCI, it was sufficient for
applications to initialize only IN bind buffers. In later releases, all
buffers, even pure OUT buffers, must be initialized by setting the
buffer length to zero in the bind call, or by setting the
corresponding indicator to -1.

See Also: "Information for Named Datatype and REF Binds" on
page 11-34 for more information about binding PL/SQL
placeholders

Overview of Binding in OCI

5-6 Oracle Call Interface Programmer's Guide

Steps Used in OCI Binding
Placeholders are bound in several steps. For a simple scalar or array bind, it is only
necessary to specify an association between the placeholder and the data, by using
OCIBindByName() or OCIBindByPos().

Once the bind is complete, the OCI library knows where to find the input data or
where to put PL/SQL output data when the SQL statement is executed. Program
input data does not need to be in the program variable when it is bound to the
placeholder, but the data must be there when the statement is executed.

The following code example shows handle allocation and binding for each
placeholder in a SQL statement.

...
/* The SQL statement, associated with stmthp (the statement handle)
by calling OCIStmtPrepare() */
text *insert = (text *) "INSERT INTO emp(empno, ename, job, sal, deptno)\
 VALUES (:empno, :ename, :job, :sal, :deptno)";
...

/* Bind the placeholders in the SQL statement, one per bind handle. */
checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":ENAME",
 strlen(":ENAME"), (ub1 *) ename, enamelen+1, SOLT_STR, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":JOB",
 strlen(":JOB"), (ub1 *) job, joblen+1, SQLT_STR, (dvoid *)
 &job_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":SAL",
 strlen(":SAL"), (ub1 *) &sal, (sword) sizeof(sal), SQLT_INT,
 (dvoid *) &sal_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
 strlen(":DEPTNO"), (ub1 *) &deptno,(sword) sizeof(deptno), SQLT_INT,
 (dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));
checkerr(errhp, OCIBindByName(stmthp, &bnd5p, errhp, (text *) ":EMPNO",
 strlen(":EMPNO"), (ub1 *) &empno, (sword) sizeof(empno), SQLT_INT,
 (dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,OCI_DEFAULT));

Note: The checkerr() function evaluates the return code from
an OCI application. The code for the function is listed in the section
"Error Handling in OCI" on page 2-26.

Overview of Binding in OCI

Binding and Defining in OCI 5-7

PL/SQL Block in an OCI Program
Perhaps the most common use for PL/SQL blocks in OCI is to call stored
procedures or stored functions. Assume that there is a procedure named
RAISE_SALARY stored in the database, and you embed a call to that procedure in
an anonymous PL/SQL block, and then process the PL/SQL block.

The following program fragment shows how to embed a stored procedure call in an
OCI application. The program passes an employee number and a salary increase as
inputs to a stored procedure called raise_salary:

raise_salary (employee_num IN, sal_increase IN, new_salary OUT);

This procedure raises a given employee's salary by a given amount. The increased
salary which results is returned in the stored procedure's variable, new_salary,
and the program displays this value.

Note that the PL/SQL procedure argument, new_salary, although a PL/SQL OUT
variable, must be bound, not defined. This is further explained in the section on
OCI defines.

/* Define PL/SQL statement to be used in program. */
text *give_raise = (text *) "BEGIN\
 RAISE_SALARY(:emp_number,:sal_increase, :new_salary);\
 END;";
OCIBind *bnd1p = NULL; /* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
OCIBind *bnd3p = NULL; /* the third bind handle */

static void checkerr();
sb4 status;

main()
{
 sword empno, raise, new_sal;
 dvoid *tmp;
 OCISession *usrhp = (OCISession *)NULL;
...
/* attach to database server, and perform necessary initializations
and authorizations */
...
 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, 100, (dvoid **) &tmp));

 /* prepare the statement request, passing the PL/SQL text

Overview of Binding in OCI

5-8 Oracle Call Interface Programmer's Guide

 block as the statement to be prepared */
checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) give_raise, (ub4)
 strlen(give_raise), OCI_NTV_SYNTAX, OCI_DEFAULT));

 /* bind each of the placeholders to a program variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":emp_number",
 -1, (ub1 *) &empno,
 (sword) sizeof(empno), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":sal_increase",
 -1, (ub1 *) &raise,
 (sword) sizeof(raise), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* remember that PL/SQL OUT variable are bound, not defined */

checkerr(errhp, OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":new_salary",
 -1, (ub1 *) &new_sal,
 (sword) sizeof(new_sal), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* prompt the user for input values */
printf("Enter the employee number: ");
scanf("%d", &empno);
 /* flush the input buffer */
myfflush();

printf("Enter employee's raise: ");
scanf("%d", &raise);
 /* flush the input buffer */
myfflush();

 /* execute PL/SQL block*/
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

 /* display the new salary, following the raise */
printf("The new salary is %d\n", new_sal);
}

This example demonstrates how to perform a simple scalar bind where only a
single bind call is necessary. In some cases, additional bind calls are needed to
define attributes for specific bind datatypes or execution modes.

Advanced Bind Operations in OCI

Binding and Defining in OCI 5-9

Advanced Bind Operations in OCI
The section "Binding Placeholders in OCI" on page 4-5 discussed how a basic bind
operation is performed to create an association between a placeholder in a SQL
statement and a program variable using OCIBindByName() or OCIBindByPos().
This section covers more advanced bind operations, including multi-step binds, and
binds of named datatypes and REFs.

In some cases, additional bind calls are necessary to define specific attributes for
certain bind datatypes or certain execution modes.

The following sections describe these special cases, and the information about
binding is summarized in Table 5–1.
.

Table 5–1 Information Summary for Bind Types

Type of Bind Bind Datatype Notes

Scalar any scalar datatype Bind a single scalar using OCIBindByName() or
OCIBindByPos().

Array of Scalars any scalar datatype Bind an array of scalars using OCIBindByName() or
OCIBindByPos().

Named Datatype SQLT_NTY Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindObject()

REF SQLT_REF Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindObject()

LOB

BFILE

SQLT_BLOB

SQLT_CLOB

Allocate the LOB locator using OCIDescriptorAlloc(),
and then bind its address, OCILobLocator **, with
OCIBindByName() or OCIBindByPos(), using one of the
LOB datatypes.

Advanced Bind Operations in OCI

5-10 Oracle Call Interface Programmer's Guide

Binding LOBs
There are two ways of binding LOBs:

■ Bind the LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

■ Bind the LOB value directly, without using the LOB locator.

Binding LOB Locators
Either a single locator or an array of locators can be bound in a single bind call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, if an application has prepared a SQL statement:

INSERT INTO some_table VALUES (:one_lob)

where one_lob is a bind variable corresponding to a LOB column, and has made
the following declaration:

OCILobLocator * one_lob;

Then the following calls would be used to bind the placeholder and execute the
statement:

Array of Structures

 or Static Arrays

varies Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindArrayOfStruct()

Piecewise Insert varies OCIBindByName() or OCIBindByPos() is required. The
application may also need to call OCIBindDynamic() to
register piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCIStmt, and then bind its
address, OCIStmt **, using the SQLT_RSET datatype.

See Also:

■ "Named Datatype Binds" on page 11-32 For information on
binding named datatypes (objects)

■ "Binding REFs" on page 11-33 for information on binding REFs

Table 5–1 Information Summary for Bind Types (Cont.)

Type of Bind Bind Datatype Notes

Advanced Bind Operations in OCI

Binding and Defining in OCI 5-11

/* initialize single locator */
one_lob = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
...
/* pass the address of the locator */
OCIBindByName(...,(dvoid *) &one_lob,... SQLT_CLOB, ...);
OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

You can also insert an array using the same SQL INSERT statement. In this case, the
application would include the following code:

OCILobLocator * lob_array[10];
...
for (i=0; i<10, i++)
 lob_array[i] = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
 /* initialize array of locators */
...
OCIBindByName(...,(dvoid *) lob_array,...);
OCIBindArrayOfStruct(...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

You must allocate descriptors with the OCIDescriptorAlloc() routine before
they can be used. In the case of an array of locators, you must initialize each array
element using OCIDescriptorAlloc(). Use OCI_DTYPE_LOB as the type
parameter when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE
when allocating BFILEs.

Restrictions on Binding LOB Locators
■ Piecewise and callback INSERT or UPDATE operations are not supported.

■ When using a FILE locator as a bind variable for an INSERT or UPDATE
statement, you must first initialize the locator with a directory alias and
filename, using OCILobFileSetName() before issuing the INSERT or UPDATE
statement.

Binding LOB Data
Oracle allows nonzero binds for INSERTs and UPDATEs of any size LOB. So you can
bind data into a LOB column using OCIBindByPos(), OCIBindByName(), and
PL/SQL binds.

See Also: Chapter 7, "LOB and BFILE Operations" for more
information about the OCI LOB functions

Advanced Bind Operations in OCI

5-12 Oracle Call Interface Programmer's Guide

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Make sure that your temporary tablespace is big enough to
hold at least the amount of data equal to the sum of all the bind lengths for LOBs. If
your temporary tablespace is extendable, it will be extended automatically after the
existing space is fully consumed. Use the following command to create an
extendable temporary tablespace:

CREATE TABLESPACE ... AUTOEXTENT ON ... TEMPORARY ...;

Restrictions on Binding LOB Data
■ If a table has both LONG and LOB columns, then you can have binds of greater

than 4 kilobytes for either the LONG column or the LOB columns, but not both in
the same statement.

■ You cannot bind data of any size to LOB attributes in object-relational
datatypes. For LOB attributes, you need to insert an empty LOB locator and
then modify the contents of the LOB using OCI LOB functions.

■ In an INSERT AS SELECT operation, Oracle does not allow binding of any
length data to LOB columns.

■ Oracle does not do implicit conversions, such as HEX to RAW or RAW to HEX, for
data of size more than 4000 bytes. The following PL/SQL code illustrates this:

create table t (c1 clob, c2 blob);
declare
 text varchar(32767);
 binbuf raw(32767);
begin
 text := lpad ('a', 12000, 'a');
 binbuf := utl_raw.cast_to_raw(text);

 -- The following works:
 insert into t values (text, binbuf);

 -- The following won't work because Oracle won't do implicit
 -- hex to raw conversion.
 insert into t (c2) values (text);

 -- The following won't work because Oracle won't do implicit
 -- raw to hex conversion.
 insert into t (c1) values (binbuf);

 -- The following won't work because we can't combine the
 -- utl_raw.cast_to_raw() operator with the >4k bind.

Advanced Bind Operations in OCI

Binding and Defining in OCI 5-13

 insert into t (c2) values (utl_raw.cast_to_raw(text));

end;
/

■ If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data is
filtered by a SQL operator, then Oracle will limit the size of the result to at most
4000 bytes.

For example:

create table t (c1 clob, c2 blob);
-- The following command inserts only 4000 bytes because the result of
-- LPAD is limited to 4000 bytes
insert into t(c1) values (lpad('a', 5000, 'a'));

-- The following command inserts only 2000 bytes because the result of
-- LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
-- converts it to 2000 bytes of RAW data.
insert into t(c2) values (lpad('a', 5000, 'a'));

Examples of Binding LOB Data
Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE foo (a INTEGER);
CREATE TYPE lob_typ AS OBJECT (A1 CLOB);
CREATE TABLE lob_long_tab (C1 CLOB, C2 CLOB, CT3 lob_typ, L LONG);

Example1: Binding LOBs

void insert() /* A function in an OCI program */
{
 /* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = (text *) "INSERT INTO lob_long_tab (C1, C2, L) \
 VALUES (:1, :2, :3)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,

Advanced Bind Operations in OCI

5-14 Oracle Call Interface Programmer's Guide

 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example2: Binding LOBs

void insert()
{
 /* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = (text *) "INSERT INTO lob_long_tab (C1, L) \
 VALUES (:1, :2)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example3: Binding LOBs

void update()
{
 /* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *update_sql = (text *)"UPDATE lob_long_tab SET \
 C1 = :1, C2=:2, L=:3";
 OCIStmtPrepare(stmthp, errhp, update_sql, strlen((char*)update_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example4: Binding LOBs

void update()

Advanced Bind Operations in OCI

Binding and Defining in OCI 5-15

{
 /* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *update_sql = (text *)"UPDATE lob_long_tab SET \
 C1 = :1, C2=:2, L=:3";
 OCIStmtPrepare(stmthp, errhp, update_sql, strlen((char*)update_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example5: Binding LOBs

void insert()
{
 /* Piecewise, callback and array insert/update operations similar to
 * the allowed regular insert/update operations are also allowed */
}

Example6: Binding LOBs

void insert()
{
 /* The following is NOT allowed because we try to insert >4000 bytes
 * into both LOB and LONG columns */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO lob_long_tab (C1, L) \
 VALUES (:1, :2)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example7: Binding LOBs

Advanced Bind Operations in OCI

5-16 Oracle Call Interface Programmer's Guide

void insert()
{
 /* The following is NOT allowed because we try to insert data into
 * LOB attributes */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO lob_long_tab (CT3) \
 VALUES (lob_typ(:1))";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Example8: Binding LOBs

void insert()
{
 /* The following is NOT allowed because we try to do insert as
 * select character data into LOB column */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO lob_long_tab (C1) SELECT \
 :1 from FOO";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *) NULL,
 (OCISnapshot *) NULL, OCI_DEFAULT);
}

Binding in OCI_DATA_AT_EXEC Mode
If the mode parameter in a call to OCIBindByName() or OCIBindByPos() is set to
OCI_DATA_AT_EXEC, an additional call to OCIBindDynamic() is necessary if
the application will use the callback method for providing data at runtime. The call
to OCIBindDynamic() sets up the callback routines, if necessary, for indicating
the data or piece provided. If the OCI_DATA_AT_EXEC mode is chosen, but the
standard OCI piecewise polling method will be used instead of callbacks, the call to
OCIBindDynamic() is not necessary.

When binding RETURN clause variables, an application must use
OCI_DATA_AT_EXEC mode, and it must provide callbacks.

Overview of Defining in OCI

Binding and Defining in OCI 5-17

Binding Ref Cursor Variables
REF Cursors are bound to a statement handle with a bind datatype of SQLT_RSET.

Overview of Defining in OCI
Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list for retrieving data. The define step creates
an association that determines where returned results are stored, and in what
format.

For example, if your program processes the following statement you would
normally need to define two output variables, one to receive the value returned
from the name column, and one to receive the value returned from the ssn column:

SELECT name, ssn FROM employees
 WHERE empno = :empnum

If you were only interested in retrieving values from the name column, you would
not need to define an output variable for ssn. If the SELECT statement being
processed returns more than a single row for a query, the output variables you
define can be arrays instead of scalar values.

Depending on the application, the define step can take place before or after an
execute. If you know the datatypes of select-list items at compile time, the define
can take place before the statement is executed. If your application is processing
dynamic SQL statements entered by you at runtime or statements that do not have
a clearly defined select-list, the application must execute the statement to retrieve
describe information. After the describe information is retrieved, the type
information for each select-list item is available for use in defining output variables.

The OCI processes the define call locally on the client side. In addition to indicating
the location of buffers where results should be stored, the define step determines
what data conversions must take place when data is returned to the application.

See Also: "Runtime Data Allocation and Piecewise Operations in
OCI" on page 5-40 for more information about piecewise operations

See Also: "PL/SQL REF CURSORs and Nested Tables in OCI" on
page 5-39

Overview of Defining in OCI

5-18 Oracle Call Interface Programmer's Guide

The dty parameter of the OCIDefineByPos() call specifies the datatype of the
output variable. The OCI is capable of a wide range of data conversions when data
is fetched into the output variable. For example, internal data in Oracle DATE
format can be automatically converted to a String datatype on output.

Steps Used in OCI Defining
A basic define is done with a position call, OCIDefineByPos(). This step creates
an association between a select-list item and an output variable. Additional define
calls may be necessary for certain datatypes or fetch modes. Once the define step is
complete, the OCI library determines where to put retrieved data. You can make
your define calls again to redefine the output variables without having to
re-prepare or reexecute the SQL statement.

The following example shows a scalar output variable being defined following an
execute and a describe.

SELECT department_name FROM departments WHERE department_id = :dept_input

 /* The input placeholder was bound earlier, and the data comes from the
 user input below */

 printf("Enter employee dept: ");
 scanf("%d", &deptno);

 /* Execute the statement. If OCIStmtExecute() returns OCI_NO_DATA, meaning that
 no data matches the query, then the department number is invalid. */

 if ((status = OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *) 0,
(OCISnapshot *) 0,
 OCI_DEFAULT))
 && (status != OCI_NO_DATA))
 {
 checkerr(errhp, status);

Note: Output buffers must be 2-byte aligned.

See Also:

■ Chapter 3, "Datatypes" For more information about datatypes
and conversions

■ "Describing Select-list Items" on page 4-11 for more information

Overview of Defining in OCI

Binding and Defining in OCI 5-19

 return OCI_ERROR;
 }
 if (status == OCI_NO_DATA) {
 printf("The dept you entered doesn't exist.\n");
 return 0;
 }

 /* The next two statements describe the select-list item, dname, and
 return its length */
 checkerr(errhp, OCIParamGet((dvoid *)stmthp, (ub4) OCI_HTYPE_STMT, errhp,
(dvoid **)&parmdp, (ub4) 1));
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &deptlen, (ub4 *) &sizelen, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));

 /* Use the retrieved length of dname to allocate an output buffer, and
 then define the output variable. If the define call returns an error,
 exit the application */
 dept = (text *) malloc((int) deptlen + 1);
 if (status = OCIDefineByPos(stmthp, &defnp, errhp,
 1, (dvoid *) dept, (sb4) deptlen+1,
 SQLT_STR, (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, OCI_DEFAULT))
 {
 checkerr(errhp, status);
 return OCI_ERROR;
 }

Advanced OCI Defines
In some cases the define step requires more than just a call to OCIDefineByPos().
There are additional calls that define the attributes of an array fetch,
OCIDefineArrayOfStruct(), or a named datatype fetch,
OCIDefineObject(). For example, to fetch multiple rows with a column of
named datatypes, all three calls must be invoked for the column; but to fetch
multiple rows of scalar columns, OCIDefineArrayOfStruct() and
OCIDefineByPos() are sufficient.

Oracle also provides pre-defined C datatypes that map object type attributes.

See Also: "Describing Select-list Items" on page 4-11 for an
explanation of the describe step

Advanced Define Operations in OCI

5-20 Oracle Call Interface Programmer's Guide

Advanced Define Operations in OCI
This section covers advanced defined operations, including multi-step defines, and
defines of named datatypes and REFs.

In some cases the define step requires additional calls that define the attributes of an
array fetch, OCIDefineArrayOfStruct(), or a named datatype fetch,
OCIDefineObject(). For example, to fetch multiple rows with a column of
named datatypes, all the three calls must be invoked for the column. To fetch
multiple rows of scalar columns only OCIDefineArrayOfStruct() and
OCIDefineByPos() are sufficient.

Defining LOB Output Variables
There are two ways of defining LOBs:

■ Define as a LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

■ Define as a LOB value directly, without using the LOB locator.

Defining LOB Locators
Either a single locator or an array of locators can be defined in a single define call. In
each case, the application must pass the address of a LOB locator and not the
locator itself. For example, if an application has prepared a SQL statement like:

SELECT lob1 FROM some_table;

where lob1 is the LOB column and one_lob is a define variable corresponding to
a LOB column with the following declaration:

OCILobLocator * one_lob;

The following sequence of steps bind the placeholder, and execute the statement:

/* initialize single locator */
one_lob = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
...
/* pass the address of the locator */

See Also:

■ Chapter 11, "Object-Relational Datatypes in OCI"

■ "Advanced Define Operations in OCI" on page 5-20

Advanced Define Operations in OCI

Binding and Defining in OCI 5-21

OCIDefineByPos(... 1, ...,(dvoid *) &one_lob,... SQLT_CLOB, ...);
OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

You can also do an array select using the same SQL SELECT statement. In this case,
the application would include the following steps:

OCILobLocator * lob_array[10];
...
for (i=0; i<10, i++)
 lob_array[i] = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
 /* initialize array of locators */
...
OCIDefineByPos(...,1, (dvoid *) lob_array,... SQLT_CLOB, ...);
OCIDefineArrayOfStruct(...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc() routine
before they can be used. In the case of an array of locators, you must initialize each
array element using OCIDescriptorAlloc(). Use OCI_DTYPE_LOB as the type
parameter when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE
when allocating BFILEs.

Defining LOB Data
Oracle allows nonzero defines for SELECTs of any size LOB. So you can select up to
the maximum allowed size of data from a LOB column using OCIDefineByPos(),
and PL/SQL defines. Because there can be multiple LOBs in a row, you can select
the maximum size of data from each one of those LOBs in the same SELECT
statement.

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE lob_tab (C1 CLOB, C2 CLOB);

Example1: Defining LOBs Before Execution
void select_define_before_execute() /* A function in an OCI program */
{
 /* The following is allowed */
 ub1 buffer1[8000];
 ub1 buffer2[8000];
 text *select_sql = (text *)"SELECT c1, c2 FROM lob_tab";

 OCIStmtPrepare(stmthp, errhp, select_sql, (ub4)strlen((char*)select_sql),

Advanced Define Operations in OCI

5-22 Oracle Call Interface Programmer's Guide

 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[0], errhp, 1, (dvoid *)buffer1, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[1], errhp, 2, (dvoid *)buffer2, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);
}

Example2: Defining LOBs after Execution
void select_execute_before_define()
{
 /* The following is allowed */
 ub1 buffer1[8000];
 ub1 buffer2[8000];
 text *select_sql = (text *)"SELECT c1, c2 FROM lob_tab";

 OCIStmtPrepare(stmthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[0], errhp, 1, (dvoid *)buffer1, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp[1], errhp, 2, (dvoid *)buffer2, 8000,
 SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI_DEFAULT);
 OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);
}

Defining PL/SQL Output Variables
Do not use the define calls to define output variables for select-list items in a SQL
SELECT statement inside a PL/SQL block. Use OCI bind calls instead.

Defining for a Piecewise Fetch
A piecewise fetch requires an initial call to OCIDefineByPos(). An additional call
to OCIDefineDynamic() is necessary if the application will use callbacks rather
than the standard polling mechanism.

See Also: "Information for Named Datatype and REF Defines,
and PL/SQL OUT Binds" on page 11-36 for more information about
defining PL/SQL output variables.

Binding and Defining Arrays of Structures in OCI

Binding and Defining in OCI 5-23

Binding and Defining Arrays of Structures in OCI
Defining arrays of structures requires an initial call to OCIDefineByPos(). An
additional call to OCIDefineArrayOfStruct() is necessary to set up each
additional parameter, including the skip parameter necessary for arrays of
structures operations.

Using arrays of structures can simplify the processing of multi-row, multi-column
operations. You can create a structure of related scalar data items, and then fetch
values from the database into an array of these structures, or insert values into the
database from an array of these structures.

For example, an application may need to fetch multiple rows of data from columns
NAME, AGE, and SALARY. The application can include the definition of a structure
containing separate fields to hold the NAME, AGE and SALARY data from one row in
the database table. The application would then fetch data into an array of these
structures.

In order to perform a multi-row, multi-column operation using an array of
structures, associate each column involved in the operation with a field in a
structure. This association, which is part of OCIDefineArrayOfStruct() and
OCIBindArrayOfStruct() calls, specifies where data is stored.

Skip Parameters
When you split column data across an array of structures, it is no longer stored
contiguously in the database. The single array of structures stores data as though it
were composed of several arrays of scalars. For this reason, you must specify a skip
parameter for each field you are binding or defining. This skip parameter is the
number of bytes that need to be skipped in the array of structures before the same
field is encountered again. In general, this will be equivalent to the byte size of one
structure.

Figure 5–2 shows how a skip parameter is determined. In this case the skip
parameter is the sum of the sizes of the fields field1, field2, and field3,
which is 8 bytes. This equals the size of one structure.

Binding and Defining Arrays of Structures in OCI

5-24 Oracle Call Interface Programmer's Guide

Figure 5–2 Determining Skip Parameters

On some operating systems it may be necessary to set the skip parameter to
sizeof(one_array_element) rather than sizeof(struct), because some
compilers insert extra bytes into a structure.

Consider an array of C structures consisting of two fields, a ub4 and a ub1:

struct demo {
 ub4 field1;
 ub1 field2;
};
struct demo demo_array[MAXSIZE];

Some compilers insert three bytes of padding after the ub1 so that the ub4 which
begins the next structure in the array is properly aligned. In this case, the following
statement may return an incorrect value:

skip_parameter = sizeof(struct demo);

On some operating systems this will produce a proper skip parameter of eight. On
other systems, skip_parameter will be set to five bytes by this statement. In this
case, use the following statement to get the correct value for the skip parameter:

skip_parameter = sizeof(demo_array[0]);

Skip Parameters for Standard Arrays
Arrays of structures are an extension of binding and defining arrays of single
variables. When specifying a single-variable array operation, the related skip will be
equal to the size of the datatype of the array under consideration. For example, for
an array declared as:

text emp_names[4][20];

the skip parameter for the bind or define operation will be 20. Each data element in
the array is then recognized as a separate unit, rather than being part of a structure.

2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes

Array of Structures

. ..field 1 field 2 field 3 field 1 field 3 field 1 field 3 field 2 field 2

skip 8 bytes skip 8 bytes

DML with RETURNING Clause in OCI

Binding and Defining in OCI 5-25

OCI Calls Used with Arrays of Structures
Two OCI calls must be used when performing operations involving arrays of
structures:

■ OCIBindArrayOfStruct() for binding fields in arrays of structures for input
variables

■ OCIDefineArrayOfStruct() for defining arrays of structures for output
variables.

Arrays of Structures and Indicator Variables
The implementation of arrays of structures also supports the use of indicator
variables and return codes. You can declare parallel arrays of column-level
indicator variables and return codes that correspond to the arrays of information
being fetched, inserted, or updated. These arrays can have their own skip
parameters, which are specified during OCIBindArrayOfStruct() or
OCIDefineArrayOfStruct() calls.

You can set up arrays of structures of program values and indicator variables in
many ways. Consider an application that fetches data from three database columns
into an array of structures containing three fields. You can set up a corresponding
array of indicator variable structures of three fields, each of which is a column-level
indicator variable for one of the columns being fetched from the database. A
one-to-one relationship between the fields in an indicator struct and the number of
select-list items is not necessary.

DML with RETURNING Clause in OCI
OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE, and
DELETE statements. This section outlines the rules for correctly implementing DML
statements with the RETURNING clause.

Note: When binding or defining for arrays of structures, multiple
calls are required. A call to OCIBindByName() or
OCIBindByPos() must precede a call to
OCIBindArrayOfStruct(), and a call to OCIDefineByPos()
must precede a call to OCIDefineArrayOfStruct().

See Also: "Indicator Variables" on page 2-30 for more information
about indicator variables.

DML with RETURNING Clause in OCI

5-26 Oracle Call Interface Programmer's Guide

Using DML with RETURNING Clause
Using the RETURNING clause with a DML statement enables you to combine two
SQL statements into one, possibly saving you a server round trip. This is
accomplished by adding an extra clause to the traditional UPDATE, INSERT, and
DELETE statements. The extra clause effectively adds a query to the DML statement.

In OCI, values are returned to the application as OUT bind variables. In the
following examples, the bind variables are indicated by a preceding colon, ":". These
examples assume the existence of table1, a table that contains columns col1,
col2, and col3.

The following statement inserts new values into the database and then retrieves the
column values of the affected row from the database, for manipulating inserted
rows.

INSERT INTO table1 VALUES (:1, :2, :3)
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

The next example updates the values of all columns where the value of col1 falls
within a given range, and then returns the affected rows which were modified.

UPDATE table1 SET col1 = col1 + :1, col2 = :2, col3 = :3
 WHERE col1 >= :low AND col1 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

The DELETE statement deletes the rows where col1 value falls within a given
range, and then returns the data from those rows.

DELETE FROM table1 WHERE col1 >= :low AND col2 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

See Also:

■ For a complete examples, see the demonstration programs
included with your Oracle installation. For additional
information, refer to Appendix B, "OCI Demonstration
Programs"

■ Oracle Database SQL Reference. or more information about the
use of the RETURNING clause with INSERT, UPDATE, or
DELETE statements

DML with RETURNING Clause in OCI

Binding and Defining in OCI 5-27

Binding RETURNING...INTO variables
Because both the UPDATE and DELETE statements can affect multiple rows in the
table, and a DML statement can be executed multiple times in a single
OCIExecute() call, how much data will be returned may not be known at
runtime. As a result, the variables corresponding to the RETURNING...INTO
placeholders must be bound in OCI_DATA_AT_EXEC mode. An application must
define its own dynamic data handling callbacks rather than using a polling
mechanism.

The returning clause can be particularly useful when working with LOBs.
Normally, an application must insert an empty LOB locator into the database, and
then SELECT it back out again to operate on it. Using the RETURNING clause, the
application can combine these two steps into a single statement:

INSERT INTO some_table VALUES (:in_locator)
 RETURNING lob_column
 INTO :out_locator

An OCI application implements the placeholders in the RETURNING clause as pure
OUT bind variables. However, all binds in the RETURNING clause are initially IN
and must be properly initialized. To provide a valid value, you can provide a NULL
indicator and set that indicator to -1.

An application must adhere to the following rules when working with bind
variables in a RETURNING clause:

1. Bind RETURNING clause placeholders in OCI_DATA_AT_EXEC mode using
OCIBindByName() or OCIBindByPos(), followed by a call to
OCIBindDynamic() for each placeholder.

2. When binding RETURNING clause placeholders, supply a valid OUT bind
function as the ocbfp parameter of the OCIBindDynamic() call. This function
must provide storage to hold the returned data.

3. The icbfp parameter of OCIBindDynamic() call should provide a default
function which returns NULL values when called.

4. The piecep parameter of OCIBindDynamic() must be set to
OCI_ONE_PIECE.

No duplicate binds are allowed in a DML statement with a RETURNING clause, and
no duplication between bind variables in the DML section and the RETURNING
section of the statement is allowed.

DML with RETURNING Clause in OCI

5-28 Oracle Call Interface Programmer's Guide

OCI Error Handling
The OUT bind function provided to OCIBindDynamic() must be prepared to
receive partial results of a statement in the event of an error. If the application has
issued a DML statement that is executed 10 times, and an error occurs during the
fifth iteration, the server returns the data from iterations 1 through 4. The callback
function is still called to receive data for the first four iterations.

DML with RETURNING REF...INTO Clause in OCI
The RETURNING clause can also be used to return a REF to an object which is being
inserted into or updated in the database:

UPDATE extaddr e SET e.zip = '12345', e.state ='AZ'
 WHERE e.state = 'CA' AND e.zip = '95117'
 RETURNING REF(e), zip
 INTO :addref, :zip

The preceding statement updates several attributes of an object in an object table
and returns a REF to the object (and a scalar ZIP code) in the RETURNING clause.

Binding the Output Variable
Binding the REF output variable in an OCI application requires three steps:

1. The initial bind information is set using OCIBindByName()

2. Additional bind information for the REF (including the TDO) is set with
OCIBindObject()

3. A call to OCIBindDynamic()

The following pseudocode shows a function which performs the binds necessary
for the preceding example.

sword bind_output(stmthp, bndhp, errhp)
OCIStmt *stmthp;
OCIBind *bndhp[];
OCIError *errhp;
{
 ub4 i;
 /* get TDO for BindObject call */

Note: The OCI only supports the callback mechanism for
RETURNING clause binds. The polling mechanism is not supported.

DML with RETURNING Clause in OCI

Binding and Defining in OCI 5-29

 if (OCITypeByName(envhp, errhp, svchp, (CONST text *) 0,
 (ub4) 0, (CONST text *) "ADDRESS_OBJECT",
 (ub4) strlen((CONST char *) "ADDRESS_OBJECT"),
 (CONST text *) 0, (ub4) 0,
 OCI_DURATION_SESSION, OCI_TYPEGET_HEADER, &addrtdo))
 {
 return OCI_ERROR;
 }

 /* initial bind call for both variables */
 if (OCIBindByName(stmthp, &bndhp[2], errhp,
 (text *) ":addref", (sb4) strlen((char *) ":addref"),
 (dvoid *) 0, (sb4) sizeof(OCIRef *), SQLT_REF,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":zip", (sb4) strlen((char *) ":zip"),
 (dvoid *) 0, (sb4) MAXZIPLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))
 {
 return OCI_ERROR;
 }

 /* object bind for REF variable */
 if (OCIBindObject(bndhp[2], errhp, (OCIType *) addrtdo,
 (dvoid **) &addrref[0], (ub4 *) 0, (dvoid **) 0, (ub4 *) 0))
 {
 return OCI_ERROR;
 }

 for (i = 0; i < MAXCOLS; i++)
 pos[i] = i;
 /* dynamic binds for both RETURNING variables */
 if (OCIBindDynamic(bndhp[2], errhp, (dvoid *) &pos[0], cbf_no_data,
 (dvoid *) &pos[0], cbf_get_data)
 || OCIBindDynamic(bndhp[3], errhp, (dvoid *) &pos[1], cbf_no_data,
 (dvoid *) &pos[1], cbf_get_data))
 {
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

Character Conversion in OCI Binding and Defining

5-30 Oracle Call Interface Programmer's Guide

Additional Notes About OCI Callbacks
When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of
the bind handle tells the application the number of rows being returned in that
particular iteration. During the first callback of an iteration you can allocate space
for all rows that are returned for that bind variable. During subsequent callbacks of
the same iteration, you merely increment the buffer pointer to the correct memory
within the allocated space.

 Array Interface for DML RETURNING Statements in OCI
OCI provides additional functionality for single-row DML and array DML
operations in which each iteration returns more than one row. To take advantage of
this feature, you must specify an OUT buffer in the bind call that is at least as big as
the iteration count specified by the OCIStmtExecute() call. This is in addition to
the bind buffers provided through callbacks.

If any of the iteration returns more than one row, then the application receives an
OCI_SUCCESS_WITH_INFO return code. In this case, the DML operation is
successful. At this point the application may choose to roll back the transaction or
ignore the warning.

Character Conversion in OCI Binding and Defining
This section discusses issues involving character conversions between the client and
the server.

Choosing Character Set
If a database column containing character data is defined to be an NCHAR or
NVARCHAR2 column, then a bind or define involving that column must take into
account special considerations for dealing with character set specifications.

These considerations are necessary in case the width of the client character set is
different from the server character set, and also for proper character conversion.
During conversion of data between different character sets, the size of the data may
increase or decrease by a factor of four. Insure that buffers provided to hold the
data are of sufficient size.

In some cases, it may also be easier for an application to deal with NCHAR or
NVARCHAR2 data in terms of numbers of characters, rather than numbers of bytes,
which is the usual case.

Character Conversion in OCI Binding and Defining

Binding and Defining in OCI 5-31

Character Set Form and ID
Each OCI bind and define handle has OCI_ATTR_CHARSET_FORM and
OCI_ATTR_CHARSET_ID attributes associated. An application can set these
attributes with the OCIAttrSet() call in order to specify the character form and
character set ID of the bind/define buffer.

The csform attribute (OCI_ATTR_CHARSET_FORM) indicates the character set of
the client buffer, for binds, and the character set in which to store fetched data for
defines. It has two possible values:

■ SQLCS_IMPLICIT - default value, indicates database character set ID for the
bind or define buffer and the character buffer data are converted to the server
database character set

■ SQLCS_NCHAR - indicates that the national character set ID for the bind or
define buffer and the client buffer data are converted to the server national
character set.

If the character set ID attribute, OCI_ATTR_CHARSET_ID, is not specified, either
the default value of the database or the national character set ID of the client is
used, depending on the value of csform. They are the values specified in the
NLS_LANG and NLS_NCHAR environment variables, respectively

Note:

■ The data is converted and inserted into the database according
to the server's database character set ID or national character
set ID, regardless of the client-side character set id.

■ OCI_ATTR_CHARSET_ID must never be set to 0.

■ The define handle attributes OCI_ATTR_CHARSET_FORM
and OCI_ATTR_CHARSET_ID do not affect the LOB types.
LOB locators fetched from the server retain their original
csforms. There is no CLOB/NCLOB conversion as part of
define conversion based on these attributes.

See Also: Oracle Database Reference for more information about
NCHAR data

Character Conversion in OCI Binding and Defining

5-32 Oracle Call Interface Programmer's Guide

Implicit Conversion Between CHAR and NCHAR
As the result of implicit conversion between database character sets and national
character sets, OCI can support cross binding and cross defining between CHAR and
NCHAR. Even though the OCI_ATTR_CHARSET_FORM attribute is set to
SQLCS_NCHAR, OCI enables conversion of data to the database character set if the
data is inserted into a CHAR column.

Setting Client Character Sets in OCI
You can set the character sets through the OCIEnvNlsCreate() function
parameters charset and ncharset. Both of these parameters can be set as
OCI_UTF16ID. The charset parameter controls coding of the metadata and CHAR
data. ncharset controls coding of NCHAR data. The function
OCINlsEnvironmentVariableGet() returns the character set from NLS_LANG
and the national character set from NLS_NCHAR.

Here is an example of the use of these functions:

OCIEnv *envhp;
ub2 ncsid = 2; /* we8dec */
ub2 hdlcsid, hdlncsid;
OraText thename[20];
utext *selstmt = L"SELECT ename FROM emp"; /* UTF16 statement */
OCIStmt *stmthp;
OCIDefine *defhp;
OCIError *errhp;
OCIEnvNlsCreate(OCIEnv **envhp, ..., OCI_UTF16ID, ncsid);
...
OCIStmtPrepare(stmthp, ..., selstmt, ...); /* prepare UTF16 statement */
OCIDefineByPos(stmthp, defnp, ..., 1, thename, sizeof(thename), SQLT_CHR,...);
OCINlsEnvironmentVariableGet(&hdlcsid, (size_t)0, OCI_NLS_CHARSET_ID, (ub2)0,
 (size_t*)NULL);
OCIAttrSet(defnp, ..., &hdlcsid, 0, OCI_ATTR_CHARSET_ID, errhp);
 /* change charset ID to NLS_LANG setting*/
...

See Also:

■ OCIEnvNlsCreate() on page 15-14

■ "OCINlsEnvironmentVariableGet()" on page 21-7

Character Conversion in OCI Binding and Defining

Binding and Defining in OCI 5-33

Using OCI_ATTR_MAXDATA_SIZE Attribute
Update or insert operations are done through variable binding. When binding
variables, specify OCI_ATTR_MAXCHAR_SIZE and OCI_ATTR_MAXDATA_SIZE
in the bind handle to indicate character and byte constraints used when inserting
data on the server.

These attributes are defined as:

■ OCI_ATTR_MAXCHAR_SIZE sets the maximum number of characters allowed
in the buffer on the server side.

■ OCI_ATTR_MAXDATA_SIZE sets the maximum number of bytes allowed in
the buffer on the server side.

Every bind handle has a OCI_ATTR_MAXDATA_SIZE attribute that specifies the
number of bytes allocated on the server to accommodate client-side bind data after
character set conversions.

An application will typically set OCI_ATTR_MAXDATA_SIZE to the maximum size
of the column or the size of the PL/SQL variable, depending on how it is used.
Oracle issues an error if OCI_ATTR_MAXDATA_SIZE is not large enough to
accommodate the data after conversion, and the operation will fail.

The following scenarios demonstrate some examples of the use of the
OCI_ATTR_MAXDATA_SIZE attribute:

■ Scenario 1: CHAR (source data) -> non-CHAR (destination column)

There are implicit bind conversions of the data. The recommended value of
OCI_ATTR_MAXDATA_SIZE is the size of the source buffer multiplied by the
worst-case expansion factor between the client and server character sets.

■ Scenario 2: CHAR (source data) -> CHAR (destination column) or non-CHAR
(source data) -> CHAR (destination column)

The recommended value of OCI_ATTR_MAXDATA_SIZE is the size of the
column.

■ Scenario 3: CHAR (source data) -> PL/SQL variable

In this case, the recommended value of OCI_ATTR_MAXDATA_SIZE is the size
of the PL/SQL variable.

Using OCI_ATTR_MAXCHAR_SIZE Attribute
OCI_ATTR_MAXCHAR_SIZE enables processing to work with data in terms of
number of characters, rather than number of bytes.

Character Conversion in OCI Binding and Defining

5-34 Oracle Call Interface Programmer's Guide

For binds, the OCI_ATTR_MAXCHAR_SIZE attribute sets the number of characters
reserved on the server to store the bind data.

For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and
OCI_ATTR_MAXCHAR_SIZE is set to 0, then the maximum possible size of the
data on the server after conversion is 100 bytes. However, if
OCI_ATTR_MAXDATA_SIZE is set to 300, and OCI_ATTR_MAXCHAR_SIZE is set
to a nonzero value, such as 100, then if the character set has 2 bytes/character, the
maximum possible allocated size is 200 bytes.

For defines, the OCI_ATTR_MAXCHAR_SIZE attribute specifies the maximum
number of characters that the client application allows in the return buffer. Its
derived byte length overrides the maxlength parameter specified in the
OCIDefineByPos() call.

Buffer Expansion During OCI Binding
Do not set OCI_ATTR_MAXDATA_SIZE for OUT binds or for PL/SQL binds. Only
set OCI_ATTR_MAXDATA_SIZE for INSERT or UPDATE statements.

If neither of these two attributes is set, OCI expands the buffer using its best
estimates.

IN Binds
If the underlying column was created using character length semantics, then it is
preferable to specify the constraint using OCI_ATTR_MAXCHAR_SIZE. As long as
the actual buffer contains less characters than specified in
OCI_ATTR_MAXCHAR_SIZE, no constraints are violated at OCI level.

If the underlying column was created using byte length semantics, then use
OCI_ATTR_MAXDATA_SIZE in the bind handle to specify the byte constraint on
the server. If you also specify an OCI_ATTR_MAXCHAR_SIZE value, then this
constraint is imposed when allocating the receiving buffer on the server side.

Note: Regardless of the value of the attribute
OCI_ATTR_MAXCHAR_SIZE, the buffer lengths specified in a
bind or define call are always in terms of bytes. The actual length
values sent and received by you are also in bytes.

Character Conversion in OCI Binding and Defining

Binding and Defining in OCI 5-35

Dynamic SQL
For dynamic SQL, you can use the explicit describe to get OCI_ATTR_DATA_SIZE
and OCI_ATTR_CHAR_SIZE in parameter handles, as a guide for setting
OCI_ATTR_MAXDATA_SIZE and OCI_ATTR_MAXCHAR_SIZE attributes in bind
handles. It is a good practice to specify OCI_ATTR_MAXDATA_SIZE and
OCI_ATTR_MAXCHAR_SIZE to be no more than the actual column width in bytes,
or characters.

Buffer Expansion During Inserts
You should avoid unexpected behavior caused by buffer expansion during inserts.

Consider what happens when the database column has character length semantics,
and the user tries to insert data using OCIBindByPos() or OCIBindByName()
while setting only the OCI_ATTR_MAXCHAR_SIZE to 3000 bytes. The database
character set is UTF8 and the client character set is ASCII. Then, in this case
although 3000 characters will fit in a buffer of size 3000 bytes for the client, on the
server side it might expand to more than 4000 bytes. Unless the underlying column
is a LONG or a LOB type, the server will return an error. You can get around this
problem by specifying the OCI_ATTR_MAXDATA_SIZE to be 4000, to guarantee
that the data will never exceed 4000 bytes.

Constraint Checking During Defining
To select data from columns into client buffers, OCI uses defined variables. You can
set an OCI_ATTR_MAXCHAR_SIZE value on the define buffer to impose an
additional character length constraint. There is no OCI_ATTR_MAXDATA_SIZE
attribute for define handles since the buffer size in bytes serves as the limit on byte
length. The define buffer size provided in the OCIDefineByPos() call can be used
as the byte constraint.

Dynamic SQL Selects
When sizing buffers for dynamic SQL, always use the OCI_ATTR_DATA_SIZE
value in the implicit describe to avoid data loss through truncation. If the database
column is created using character length semantics known through
OCI_ATTR_CHAR_USED attribute, then you can use the
OCI_ATTR_MAXCHAR_SIZE value to set an additional constraint on the define
buffer. A maximum number of OCI_ATTR_MAXCHAR_SIZE characters is put in
the buffer.

Character Conversion in OCI Binding and Defining

5-36 Oracle Call Interface Programmer's Guide

Return Lengths
The following length values are always in bytes regardless of the character length
semantics of the database:

■ The value returned in the alen, or the actual length field in binds and defines.

■ The value that appears in the length, prefixed in special datatypes like
VARCHAR and LONG VARCHAR.

■ The value of the indicator variable in case of truncation.

The only exception to this rule is for string buffers in OCI_UTF16ID character set id;
then the lengths are in UTF-16 units.

General Compatibility Issues for Character Length Semantics in OCI
■ For a release 9.0 or later client talking to an 8.1 or earlier server,

OCI_ATTR_MAXCHAR_SIZE is not understood by the server, so this value will
be ignored. If you specify only this value, OCI will derive the corresponding
OCI_ATTR_MAXDATA_SIZE value based on the maximum bytes for each
character for the client-side character set.

■ For an 8.1 or earlier client talking to a 9.0 or later server, the client will never be
able to specify an OCI_ATTR_MAXCHAR_SIZE value, so the server will
consider the client always expecting byte length semantics. This is similar to the
situation when the client specifies only OCI_ATTR_MAXDATA_SIZE.

So in both cases, the server and client can exchange information in an appropriate
manner.

Code Example for Inserting and Selecting Using OCI_ATTR_MAXCHAR_SIZE
When a column is created by specifying a number N of characters, the actual
allocation in the data base will consider the worst scenario in the following table.
The real bytes allocated will be a multiple of N, say M times N. Currently, M is three
as the maximum bytes for each character in UTF-8.

For example, in the following table EMP, ENAME column is defined as 30 characters
and ADDRESS is defined as 80 characters. Then the corresponding byte lengths in
database are M*30 or 3*30=90, and M*80 or 3*80=240 respectively.

Note: The buffer sizes in the bind and define calls and the piece
sizes in the OCIGetPieceInfo() and OCISetPieceInfo() and
the callbacks are always in bytes.

Character Conversion in OCI Binding and Defining

Binding and Defining in OCI 5-37

...
utext ename[31], address[81];
/* E' <= 30+ 1, D' <= 80+ 1, considering null-termination */
sb4 ename_max_chars = EC=20, address_max_chars = ED=60;
 /* EC <= (E' - 1), ED <= (D' - 1) */
sb4 ename_max_bytes = EB=80, address_max_bytes = DB=200;
 /* EB <= M * EC, DB <= M * DC */
text *insstmt = (text *)"INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ENAME, \
:ADDRESS)";
text *selstmt = (text *)"SELECT ENAME, ADDRESS FROM EMP";
...
/* Inserting Column Data */
OCIStmtPrepare(stmthp1, errhp, insstmt, (ub4)strlen((char *)insstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIBindByName(stmthp1, &bnd1p, errhp, (text *)":ENAME",
 (sb4)strlen((char *)":ENAME"),
 (dvoid *)ename, sizeof(ename), SQLT_STR, (dvoid *)&insname_ind,
 (ub2 *)alenp, (ub2 *)rcodep, (ub4)maxarr_len, (ub4 *)curelep, OCI_DEFAULT);
/* either */
OCIAttrSet((dvoid *)bnd1p, (ub4)OCI_HTYPE_BIND, (dvoid *)&ename_max_bytes,
 (ub4)0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
/* or */
OCIAttrSet((dvoid *)bnd1p, (ub4)OCI_HTYPE_BIND, (dvoid *)&ename_max_chars,
 (ub4)0, (ub4)OCI_ATTR_MAXCHAR_SIZE, errhp);
...
/* Retrieving Column Data */
OCIStmtPrepare(stmthp2, errhp, selstmt, strlen((char *)selstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIDefineByPos(stmthp2, &dfn1p, errhp, (ub4)1, (dvoid *)ename,
 (sb4)sizeof (ename),
 SQLT_STR, (dvoid *)&selname_ind, (ub2 *)alenp, (ub2 *)rcodep,
 (ub4)OCI_DEFAULT);
/* if not called, byte semantics is by default */
OCIAttrSet((dvoid *)dfn1p, (ub4)OCI_HTYPE_DEFINE, (dvoid *)&ename_max_chars,
 (ub4)0,
 (ub4)OCI_ATTR_MAXCHAR_SIZE, errhp);
...

Code Example for UTF-16 Binding and Defining
The character set ID in bind and define of the CHAR or VARCHAR2, or in NCHAR
or NVARCHAR variant handles can be set to assume that all data will be passed in
UTF-16 (Unicode) encoding. To specify UTF-16, set OCI_ATTR_CHARSET_ID =
OCI_UTF16ID.

Character Conversion in OCI Binding and Defining

5-38 Oracle Call Interface Programmer's Guide

OCI provides a typedef called utext to facilitate binding and defining of UTF-16
data. The internal representation of utext is a 16-bit unsigned integer, ub2.
Operating systems where the encoding scheme of the wchar_t datatype conforms
to UTF-16 can easily convert utext to the wchar_t datatype using cast operators.

Even for UTF-16 data, the buffer size in bind and define calls is assumed to be in
bytes. Users should use the utext datatype as the buffer for input and output data.

The following pseudocode illustrates a bind and define for UTF-16 data:

...
OCIStmt *stmthp1, *stmthp2;
OCIDefine *dfn1p, *dfn2p;
OCIBind *bnd1p, *bnd2p;
text *insstmt=
 (text *) "INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ename, :address)"; \
text *selname =
 (text *) "SELECT ENAME, ADDRESS FROM EMP";
utext ename[21]; /* Name - UTF-16 */
utext address[51]; /* Address - UTF-16 */
ub2 csid = OCI_UTF16ID;
sb4 ename_col_len = 20;
sb4 address_col_len = 50;
...
/* Inserting UTF-16 data */
OCIStmtPrepare (stmthp1, errhp, insstmt, (ub4)strlen ((char *)insstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIBindByName (stmthp1, &bnd1p, errhp, (text*)":ENAME",
 (sb4)strlen((char *)":ENAME"),
 (dvoid *) ename, sizeof(ename), SQLT_STR,
 (dvoid *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
 (ub4 *)0, OCI_DEFAULT);
OCIAttrSet ((dvoid *) bnd1p, (ub4) OCI_HTYPE_BIND, (dvoid *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
OCIAttrSet((dvoid *) bnd1p, (ub4) OCI_HTYPE_BIND, (dvoid *) &ename_col_len,
 (ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);
...
/* Retrieving UTF-16 data */
OCIStmtPrepare (stmthp2, errhp, selname, strlen((char *) selname),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

See Also:

■ "OCI_ATTR_CHARSET_ID" on page A-36

■ "OCI_ATTR_CHARSET_ID" on page A-40

PL/SQL REF CURSORs and Nested Tables in OCI

Binding and Defining in OCI 5-39

OCIDefineByPos (stmthp2, &dfn1p, errhp, (ub4)1, (dvoid *)ename,
 (sb4)sizeof(ename), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet ((dvoid *) dfn1p, (ub4) OCI_HTYPE_DEFINE, (dvoid *) &csid,
 (ub4) 0, (ub4)OCI_ATTR_CHARSET_ID, errhp);
...

PL/SQL REF CURSORs and Nested Tables in OCI
The OCI provides the ability to bind and define PL/SQL REF CURSORs and nested
tables. An application can use a statement handle to bind and define these types of
variables. As an example, consider this PL/SQL block:

static const text *plsql_block = (text *)
 "begin \
 OPEN :cursor1 FOR SELECT employee_id, last_name, job_id, manager_id, \
 salary, department_id \
 FROM employees WHERE job_id=:job ORDER BY employee_id; \
 OPEN :cursor2 FOR SELECT * FROM departments ORDER BY department_id;
 end;";

An application allocates a statement handle for binding, by calling
OCIHandleAlloc(), and then binds the :cursor1 placeholder to the statement
handle, as in the following code, where :cursor1 is bound to stm2p.

status = OCIStmtPrepare (stm1p, errhp, (text *) plsql_block,
 strlen((char *)plsql_block), OCI_NTV_SYNTAX, OCI_DEFAULT);
...
status = OCIBindByName (stm1p, (OCIBind **) &bnd1p, errhp,
 (text *)":cursor1", (sb4)strlen((char *)":cursor1"),
 (dvoid *)&stm2p, (sb4) 0, SQLT_RSET, (dvoid *)0,
 (ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)0, (ub4)OCI_DEFAULT);

In this code, stm1p is the statement handle for the PL/SQL block, while stm2p is
the statement handle which is bound as a REF CURSOR for later data retrieval. A
value of SQLT_RSET is passed for the dty parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
 "SELECT last_name, CURSOR(SELECT department_name, location_id \
 FROM departments) FROM employees WHERE last_name = 'FORD'";

The second position is a nested table, which an OCI application can define as a
statement handle as follows:

Runtime Data Allocation and Piecewise Operations in OCI

5-40 Oracle Call Interface Programmer's Guide

status = OCIStmtPrepare (stm1p, errhp, (text *) nst_tab,
 strlen((char *)nst_tab), OCI_NTV_SYNTAX, OCI_DEFAULT);
...
status = OCIDefineByPos (stm1p, (OCIDefine **) &dfn2p, errhp, (ub4)2,
 (dvoid *)&stm2p, (sb4)0, SQLT_RSET, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT);

After execution, when you fetch a row into stm2p it becomes a valid statement
handle.

Runtime Data Allocation and Piecewise Operations in OCI
You can use the OCI to perform piecewise inserts, updates, and fetches of data. You
can also use the OCI to provide data dynamically in case of array inserts or updates,
instead of providing a static array of bind values. You can insert or retrieve a very
large column as a series of chunks of smaller size, minimizing client-side memory
requirements.

The size of individual pieces is determined at runtime by the application and can be
uniform or not.

The piecewise functionality of OCI is particularly useful when performing
operations on extremely large blocks of string or binary data, operations involving
database columns that store CLOB, BLOB, LONG, RAW, or LONG RAW data.

The piecewise fetch is complete when the final OCIStmtFetch() call returns a
value of OCI_SUCCESS.

In both the piecewise fetch and insert, it is important to understand the sequence of
calls necessary for the operation to complete successfully. For a piecewise insert,
you must call OCIStmtExecute() one time more than the number of pieces to be
inserted (if callbacks are not used). This is because the first time
OCIStmtExecute() is called, it merely returns a value indicating that the first

Note: If you have retrieved multiple REF CURSORs, you must take
care when fetching them into stm2p. If you fetch the first one, you
can then perform fetches on it to retrieve its data. However, once
you fetch the second REF CURSOR into stm2p, you no longer have
access to the data from the first REF CURSOR.

OCI does not support PL/SQL REF CURSORs that were executed in
scrollable mode.

Runtime Data Allocation and Piecewise Operations in OCI

Binding and Defining in OCI 5-41

piece to be inserted is required. As a result, if you are inserting n pieces, you must
call OCIStmtExecute() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call OCIStmtFetch()
once more than the number of pieces to be fetched.

Users who are binding to PL/SQL index-by tables can retrieve a pointer to the
current index of the table during the OCIStmtGetPieceInfo() calls.

Valid Datatypes for Piecewise Operations
Only some datatypes can be manipulated in pieces. OCI applications can perform
piecewise fetches, inserts, or updates of all the following datatypes:

■ VARCHAR2

■ STRING

■ LONG

■ LONG RAW

■ RAW

■ CLOB

■ BLOB

Another way of using this feature for all datatypes is to provide data dynamically
for array inserts or updates. The callbacks should always specify OCI_ONE_PIECE
for the piecep parameter of the callback for datatypes that do not support
piecewise operations.

Types of Piecewise Operations
You can perform piecewise operations in two ways:

■ Use calls provided in the OCI library to execute piecewise operations under a
polling paradigm.

■ Employ user-defined callback functions to provide the necessary information
and data blocks.

When you set the mode parameter of an OCIBindByPos() or OCIBindByName()
call to OCI_DATA_AT_EXEC, it indicates that an OCI application will be providing
data for an INSERT or UPDATE dynamically at runtime.

Runtime Data Allocation and Piecewise Operations in OCI

5-42 Oracle Call Interface Programmer's Guide

Similarly, when you set the mode parameter of an OCIDefineByPos() call to
OCI_DYNAMIC_FETCH, it indicates that an application will dynamically provide
allocation space for receiving data at the time of the fetch.

In each case, you can provide the run-time information for the INSERT, UPDATE, or
FETCH in one of two ways: through callback functions, or by using piecewise
operations. If callbacks are desired, an additional bind or define call is necessary to
register the callbacks.

The following sections give specific information about run-time data allocation and
piecewise operations for inserts, updates, and fetches.

Providing INSERT or UPDATE Data at Runtime
When you specify the OCI_DATA_AT_EXEC mode in a call to OCIBindByPos()
or OCIBindByName(), the value_sz parameter defines the total size of the data
that can be provided at runtime. The application must be ready to provide to the
OCI library the run-time IN data buffers on demand as many times as is necessary
to complete the operation. When the allocated buffers are no longer required, they
must be freed by the client.

Runtime data is provided in one of the two ways:

■ You can define a callback using the OCIBindDynamic() function, which when
called at runtime returns either a piece or the whole data.

■ If no callbacks are defined, the call to OCIStmtExecute() to process the SQL
statement returns the OCI_NEED_DATA error code. The client application then
provides the IN/OUT data buffer or piece using the
OCIStmtSetPieceInfo() call that specifies which bind and piece are being
used.

Performing a Piecewise Insert or Update
Once the OCI environment has been initialized, and a database connection and
session have been established, a piecewise insert begins with calls to prepare a SQL
or PL/SQL statement and to bind input values. Piecewise operations using
standard OCI calls rather than user-defined callbacks do not require a call to
OCIBindDynamic().

Note: Piecewise operations are also valid for SQL and PL/SQL
blocks.

Runtime Data Allocation and Piecewise Operations in OCI

Binding and Defining in OCI 5-43

Following the statement preparation and bind, the application performs a series of
calls to OCIStmtExecute(), OCIStmtGetPieceInfo() and
OCIStmtSetPieceInfo() to complete the piecewise operation. Each call to
OCIStmtExecute() returns a value that determines what action should be
performed next. In general, the application retrieves a value indicating that the next
piece needs to be inserted, populates a buffer with that piece, and then executes an
insert. When the last piece has been inserted, the operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at
runtime. In addition, each inserted piece does not need to be of the same size. The
size of each piece to be inserted is established by each OCIStmtSetPieceInfo()
call.

The procedure is illustrated in Figure 5–3.

Note: Additional bind variables that are not part of piecewise
operations may require additional bind calls, depending on their
datatypes.

Note: If the same piece size is used for all inserts, and the size of
the data being inserted is not evenly divisible by the piece size, the
final inserted piece will be smaller. You must account for this by
indicating the smaller size in the final OCIStmtSetPieceInfo()
call.

Runtime Data Allocation and Piecewise Operations in OCI

5-44 Oracle Call Interface Programmer's Guide

Figure 5–3 Performing Piecewise Insert

1. Initialize the OCI environment, allocate the necessary handles, connect to a
server, authorize a user, and prepare a statement request.

2. Bind a placeholder using OCIBindByName() or OCIBindByPos(). You do
not need to specify the actual size of the pieces you will use, but you must
provide the total size of the data that can be provided at runtime.

3. Call OCIStmtExecute() for the first time. No data is being inserted here, and
the OCI_NEED_DATA error code is returned to the application. If any other
value is returned, it indicates that an error occurred.

4. Call OCIStmtGetPieceInfo() to retrieve information about the piece that
needs to be inserted. The parameters of OCIStmtGetPieceInfo() include a
pointer to a value indicating if the required piece is the first piece,
OCI_FIRST_PIECE, or a subsequent piece, OCI_NEXT_PIECE.

5. The application populates a buffer with the piece of data to be inserted and calls
OCIStmtSetPieceInfo() with these parameters:

■ a pointer to the piece

■ a pointer to the length of the piece

■ a value indicating whether this is the

a. first piece, OCI_FIRST_PIECE

b. an intermediate piece, OCI_NEXT_PIECE

c. the last piece, OCI_LAST_PIECE

Bind
OCIBindByName()/

OCIBindByPos()

Execute
OCIStmtExecute()

Error
OtherOCI_NEED_DATAGet Piece Info

OCIStmtGetPieceInfo()

Set Piece Info
OCIStmtSetPieceInfo()

Done

Prepare Statement
OCIStmtPrepare()

OCI_SUCCESS

Runtime Data Allocation and Piecewise Operations in OCI

Binding and Defining in OCI 5-45

6. Call OCIStmtExecute() again. If OCI_LAST_PIECE was indicated in step 5
and OCIStmtExecute() returns OCI_SUCCESS, all pieces were inserted
successfully. If OCIStmtExecute() returns OCI_NEED_DATA, go back to
Step 3 for the next insert. If OCIStmtExecute() returns any other value, an
error occurred.

The piecewise operation is complete when the final piece has been successfully
inserted. This is indicated by the OCI_SUCCESS return value from the final
OCIStmtExecute() call.

Piecewise updates are performed in a similar manner. In a piecewise update
operation the insert buffer is populated with data that is being updated and
OCIStmtExecute() is called to execute the update.

Piecewise Operations with PL/SQL
An OCI application can perform piecewise operations with PL/SQL for IN, OUT,
and IN/OUT bind variables in a method similar to that outlined previously. Keep in
mind that all placeholders in PL/SQL statements are bound, rather than defined.
The call to OCIBindDynamic() specifies the appropriate callbacks for OUT or
IN/OUT parameters.

Providing FETCH Information at Runtime
When a call is made to OCIDefineByPos() with the mode parameter set to
OCI_DYNAMIC_FETCH, an application can specify information about the data
buffer at the time of fetch. You may also need to call OCIDefineDynamic() to set
callback function that will be invoked to get information about your data buffer.

Run-time data is provided in one of the two ways:

■ You can define a callback using the OCIDefineDynamic(). The value_sz
parameter defines the maximum size of the data that will be provided at
runtime. When the client library needs a buffer to return the fetched data, the
callback will be invoked to provide a run-time buffer into which a either piece
or the whole data will be returned.

■ If no callbacks are defined, the OCI_NEED_DATA error code is returned and
the OUT data buffer or piece can then be provided by the client application
using OCIStmtSetPieceInfo(). The OCIStmtGetPieceInfo() call
provides Information about which define and which piece are involved.

Runtime Data Allocation and Piecewise Operations in OCI

5-46 Oracle Call Interface Programmer's Guide

Performing a Piecewise Fetch
The fetch buffer can be of arbitrary size. In addition, each fetched piece does not
need to be of the same size. The only requirement is that the size of the final fetch
must be exactly the size of the last remaining piece. The size of each piece to be
fetched is established by each OCIStmtSetPieceInfo() call. This process is
illustrated in Figure 5–4.

Figure 5–4 Performing Piecewise Fetch

1. Initialize the OCI environment, allocate necessary handles, connect to a
database, authorize a user, prepare a statement, and execute the statement.

2. Define an output variable using OCIDefineByPos(), with mode set to
OCI_DYNAMIC_FETCH. At this point you do not need to specify the actual
size of the pieces you will use, but you must provide the total size of the data
that will be fetched at runtime.

3. Call OCIStmtFetch() for the first time. No data is retrieved, and the
OCI_NEED_DATA error code is returned to the application. If any other value
is returned, an error occurred.

4. Call OCIStmtGetPieceInfo() to obtain information about the piece to be
fetched. The piecep parameter indicates whether it is the first piece,
OCI_FIRST_PIECE, a subsequent piece, OCI_NEXT_PIECE, or the last piece,
OCI_LAST_PIECE.

5. Call OCIStmtSetPieceInfo() to specify the fetch buffer.

Define
OCIDefineByPos()

Fetch
OCIStmtFetch()

Error
OtherOCI_NEED_DATAGet Piece Info

OCIStmtGetPieceInfo()

Set Piece Info
OCIStmtSetPieceInfo()

Done

Execute Statement
OCIStmtExecute()

OCI_SUCCESS

Runtime Data Allocation and Piecewise Operations in OCI

Binding and Defining in OCI 5-47

Call OCIStmtFetch() again to retrieve the actual piece. If OCIStmtFetch()
returns OCI_SUCCESS, all the pieces have been fetched successfully. If
OCIStmtFetch() returns OCI_NEED_DATA, return to Step 4 to process the next
piece. If any other value is returned, an error occurred.

Piecewise Binds and Defines for LOBs
There are two ways of doing piecewise binds and defines for LOBs:

1. Using the data interface

You can bind or define character data for CLOB columns using SQLT_CHR
(VARCHAR2) or SQLT_LNG (LONG) as the input datatype for the following
functions. You can also bind or define raw data for BLOB columns using
SQLT_LBI (LONG RAW), and SQLT_BIN (RAW) as the input datatype for these
functions:

■ OCIDefineByPos()

■ OCIBindByName()

■ OCIBindByPos(}

All the piecewise operations described below are supported for CLOB and BLOB
columns in this case.

2. Using the LOB locator

You can bind or define a LOB locator for CLOB and BLOB columns using
SQLT_CLOB (CLOB) or SQLT_BLOB (BLOB) as the input datatype for the
following functions.

■ OCIDefineByPos()

■ OCIBindByName()

■ OCIBindByPos(}

See Also:

■ "Binding LOB Data" on page 5-11 for usage and examples for
both INSERT and UPDATE statements

■ "Defining LOB Data" on page 5-21 for usage and examples of
SELECT statements

Runtime Data Allocation and Piecewise Operations in OCI

5-48 Oracle Call Interface Programmer's Guide

You must then call OCILob* functions to read and manipulate the data.
OCILobRead2() and OCILobWrite2() support piecewise and callback
modes.

See Also:

■ "OCILobRead2()" on page 16-87

■ "OCILobWrite2()" on page 16-101

■ "LOB Read and Write Callbacks" on page 7-14 for information
about streaming using callbacks with OCILobWrite2() and
OCILobRead2().

Describing Schema Metadata 6-1

6
Describing Schema Metadata

This chapter discusses the use of the OCIDescribeAny()function to obtain
information about schema elements.

This chapter contains these topics:

■ Using OCIDescribeAny()

■ Parameter Attributes

■ Character Length Semantics Support in Describing

■ Examples Using OCIDescribeAny()

Using OCIDescribeAny()

6-2 Oracle Call Interface Programmer's Guide

Using OCIDescribeAny()
The OCIDescribeAny() function enables you to perform an explicit describe of
the following schema objects and their subschema objects:

■ tables and views

■ synonyms

■ procedures

■ functions

■ packages

■ sequences

■ collections

■ types

■ schemas

■ databases

Information about other schema elements (procedure/function arguments,
columns, type attributes, and type methods) is available through a describe of one
of the above schema objects or an explicit describe of the subschema object.

When an application describes a table, it can then retrieve information about that
table's columns. Additionally, OCIDescribeAny() can directly describe
subschema objects such as columns of a table, packages of a function, or fields of a
type if given the name of the subschema object.

The OCIDescribeAny() call requires a describe handle as one of its arguments.
The describe handle must be previously allocated with a call to
OCIHandleAlloc().

The information returned by OCIDescribeAny() is organized hierarchically like a
tree, as shown in Figure 6–1:

Using OCIDescribeAny()

Describing Schema Metadata 6-3

Figure 6–1 OCIDescribeAny() Table Description

The describe handle returned by OCIDescribeAny() has an attribute,
OCI_ATTR_PARAM, that points to such a description tree. Each node of the tree
has attributes associated with that node, and attributes that are like recursive
describe handles and point to subtrees containing further information. If all the
attributes are homogenous, as in the case of elements of a column list, they are
called parameters. The attributes associated with any node are returned by
OCIAttrGet(), and the parameters are returned by OCIParamGet().

A call to OCIAttrGet() on the describe handle for the table returns a handle to the
column-list information. An application can then use OCIParamGet() to retrieve
the handle to the column description of a particular column in the column-list. The
handle to the column descriptor can be passed to OCIAttrGet() to get further
information about the column, such as the name and datatype.

After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed. To retrieve
information about select-list items from the statement handle, the application must
call OCIParamGet() once for each position in the select-list to allocate a parameter
descriptor for that position.

Note: No subsequent OCIAttrGet() or OCIParamGet() call
requires extra round trips, as all the description is cached on the
client side by OCIDescribeAny().

column 1

data type name

columns

column 2

table
description

describe
handle

Using OCIDescribeAny()

6-4 Oracle Call Interface Programmer's Guide

Limitations on OCIDescribeAny()
The OCIDescribeAny() call limits information returned to the basic information
and stops expanding a node if it amounts to another describe. For example, if a
table column is of an object type, then the OCI does not return a subtree describing
the type since this information can be obtained by another describe.

The table name is not returned by OCIDescribeAny() or the implicit use of
OCIStmtExecute(). Sometimes a column is not associated with a table. In most
cases, the table is already known.

Notes on Types and Attributes
When performing describe operations, you should be aware of the following:

Datatype Codes

OCI_ATTR_TYPECODE returns typecodes which represent the types supplied by
the user when a new type is created using the CREATE TYPE statement. These
typecodes are of the enumerated type OCITypeCode, and are represented by
OCI_TYPECODE constants. Internal PL/SQL types (boolean, indexed table) are not
supported.

OCI_ATTR_DATA_TYPE returns typecodes which represent the datatypes stored in
database columns. These are similar to the describe values returned by previous
versions of Oracle. These values are represented by SQLT constants (ub2 values).
BOOLEAN types return SQLT_BOL.

Describing Types
In order to describe type objects, it is necessary to initialize the OCI process in object
mode:

/* Initialize the OCI Process */

See Also:

■ "Describing Select-list Items" on page 4-11

■ OCIDescribeAny() on page 15-102

See Also: "Typecodes" on page 3-33 for more information about
typecodes, such as the OCI_TYPCODE values returned in the
OCI_ATTR_TYPECODE attribute and the SQLT typecodes returned
in the OCI_ATTR_DATA_TYPE attribute

Parameter Attributes

Describing Schema Metadata 6-5

 if (OCIEnvCreate((OCIEnv **) &envhp, (ub4) OCI_OBJECT, (dvoid *) 0,
 (dvoid * (*)(dvoid *,size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
 (void (*)(dvoid *, dvoid *)) 0, (size_t) 0, (dvoid **) 0))
 {
 printf("FAILED: OCIEnvCreate()\n");
 return OCI_ERROR;
 }

Note on Implicit and Explicit Describes
The column attribute OCI_ATTR_PRECISION can be returned using an implicit
describe with OCIStmtExecute() and an explicit describe with
OCIDescribeAny(). When using an implicit describe, the precision should be set
to sb2. When using an explicit describe, the precision should be set to ub1 for a
placeholder. This is necessary to match the datatype of precision in the dictionary.

Note on OCI_ATTR_LIST_ARGUMENTS
The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents
second-level arguments for the method.

For example, given the following record my_type and the procedure my_proc
which takes an argument of type my_type:

my_type record(a number, b char)
my_proc (my_input my_type)

the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a and b
of the my_type record.

Parameter Attributes
A parameter is returned by OCIParamGet(). Parameters can describe different
types of objects or information, and have attributes depending on the type of
description they contain, or type-specific attributes. This section describes the
attributes and handles that belong to different parameters.

Table 6–1 lists the attributes of all parameters:

See Also: OCIInitialize() on page 15-18

Parameter Attributes

6-6 Oracle Call Interface Programmer's Guide

Table 6–1 Attributes of All Parameters

Attribute Description Attribute Datatype

OCI_ATTR_NUM_PARAMS The number of parameters ub2

OCI_ATTR_OBJ_ID Object or schema ID ub4

OCI_ATTR_OBJ_NAME Database name or object name in a schema OraText *

OCI_ATTR_OBJ_SCHEMA Schema name where the object is located OraText *

OCI_ATTR_PTYPE Type of information described by the
parameter. Possible values are:

OCI_PTYPE_TABLE - table

OCI_PTYPE_VIEW - view

OCI_PTYPE_PROC - procedure

OCI_PTYPE_FUNC - function

OCI_PTYPE_PKG - package

OCI_PTYPE_TYPE - type

OCI_PTYPE_TYPE_ATTR - attribute of a type

OCI_PTYPE_TYPE_COLL - collection type
information

OCI_PTYPE_TYPE_METHOD - method of a
type

OCI_PTYPE_SYN - synonym

OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view

OCI_PTYPE_ARG - argument of a function or
procedure

OCI_PTYPE_TYPE_ARG - argument of a type
method

OCI_PTYPE_TYPE_RESULT - results of a
method

OCI_PTYPE_LIST - column list for tables and
views, argument list for functions and
procedures, or subprogram list for packages.

OCI_PTYPE_SCHEMA - schema

OCI_PTYPE_DATABASE- database

ub1

OCI_ATTR_TIMESTAMP The timestamp of the object on which the
description is based in Oracle date format

ub1 *

Parameter Attributes

Describing Schema Metadata 6-7

The following sections list the attributes and handles specific to different types of
parameters.

Table Or View Parameters
Parameters for a table or view (type OCI_PTYPE_TABLE or OCI_PTYPE_VIEW)
have the following type-specific attributes:

The following are additional attributes which belong to tables:

Table 6–2 Attributes of Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_OBJID Object id ub4

OCI_ATTR_NUM_COLS Number of columns ub2

OCI_ATTR_LIST_COLUMNS Column list (type OCI_PTYPE_LIST) dvoid *

OCI_ATTR_REF_TDO REF to the TDO of the base type in case of
extent tables

OCIRef*

OCI_ATTR_IS_TEMPORARY Indicates the table is temporary ub1

OCI_ATTR_IS_TYPED Indicates the table is typed ub1

OCI_ATTR_DURATION Duration of a temporary table. Values can be:

OCI_DURATION_SESSION - session

OCI_DURATION_TRANS - transaction

OCI_DURATION_NULL -table not temporary

OCIDuration

Table 6–3 Attributes Specific to Tables

Attribute Description Attribute Datatype

OCI_ATTR_DBA Data block address of the segment header ub4

OCI_ATTR_TABLESPACE Tablespace the table resides in word

OCI_ATTR_CLUSTERED Indicates the table is clustered ub1

OCI_ATTR_PARTITIONED Indicates the table is partitioned ub1

OCI_ATTR_INDEX_ONLY Indicates the table is index-only ub1

Parameter Attributes

6-8 Oracle Call Interface Programmer's Guide

Procedure, Function, Subprogram Attributes
When a parameter is for a procedure or function (type OCI_PTYPE_PROC or
OCI_PTYPE_FUNC), it has the following type specific attributes:

The following attributes are defined only for package subprograms:

Package Attributes
When a parameter is for a package (type OCI_PTYPE_PKG), it has the following
type specific attributes:

Type Attributes
When a parameter is for a type (type OCI_PTYPE_TYPE), it has the attributes listed
in Table 6–7. These attributes are only valid if the application initialized the OCI
process in OCI_OBJECT mode in a call to OCIInitialize().

Table 6–4 Attribute of Procedures or Functions

Attribute Description Attribute Datatype

OCI_ATTR_LIST_ARGUMENTS Argument list. See "List Attributes" on
page 6-19.

dvoid *

OCI_ATTR_IS_INVOKER_RIGHTS Indicates the procedure or function has
invoker-rights

ub1

Table 6–5 Attributes Specific to Package Subprograms

Attribute Description Attribute Datatype

OCI_ATTR_NAME Name of the procedure or function OraText *

OCI_ATTR_OVERLOAD_ID Overloading ID number (relevant in case the
procedure or function is part of a package and
is overloaded). Values returned may be
different from direct query of a PL/SQL
function or procedure.

ub2

Table 6–6 Attributes of Packages

Attribute Description Attribute Datatype

OCI_ATTR_LIST_SUBPROGRAMS Subprogram list. See "List Attributes" on
page 6-19.

dvoid *

OCI_ATTR_IS_INVOKER_RIGHTS Is the package invoker-rights? ub1

Parameter Attributes

Describing Schema Metadata 6-9

Table 6–7 Attributes of Types

Attribute Description Attribute Datatype

OCI_ATTR_REF_TDO Returns the in-memory REF of the type
descriptor object for the type, if the column
type is an object type. If space has not been
reserved for the OCIRef, then it is allocated
implicitly in the cache. The caller can then
pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_TYPECODE Typecode. See "Datatype Codes" on
page 6-4. Currently can be only
OCI_TYPECODE_OBJECT or
OCI_TYPECODE_NAMEDCOLLECTION.

OCITypeCode

OCI_ATTR_COLLECTION_TYPECODE Typecode of collection if type is collection;
invalid otherwise. See "Datatype Codes" on
page 6-4. Currently can be only
OCI_TYPECODE_VARRAY or
OCI_TYPECODE_TABLE. Error is returned
if this attribute is queried for non-collection
type.

OCITypeCode

OCI_ATTR_IS_INCOMPLETE_TYPE Indicates this is an incomplete type ub1

OCI_ATTR_IS_SYSTEM_TYPE Indicates this is a system type ub1

OCI_ATTR_IS_PREDEFINED_TYPE Indicates this is a predefined type ub1

OCI_ATTR_IS_TRANSIENT_TYPE Indicates this is a transient type ub1

OCI_ATTR_IS_SYSTEM_

GENERATED_TYPE

Indicates this is a system-generated type ub1

OCI_ATTR_HAS_NESTED_TABLE This type contain a nested table attribute ub1

OCI_ATTR_HAS_LOB This type contain a LOB attribute ub1

OCI_ATTR_HAS_FILE This type contain a FILE attribute ub1

OCI_ATTR_COLLECTION_ELEMENT Handle to collection element. See
"Collection Attributes" on page 6-12.

dvoid *

OCI_ATTR_NUM_TYPE_ATTRS Number of type attributes ub2

OCI_ATTR_LIST_TYPE_ATTRS List of type attributes. See "List Attributes"
on page 6-19.

dvoid *

OCI_ATTR_NUM_TYPE_METHODS Number of type methods ub2

OCI_ATTR_LIST_TYPE_METHODS List of type methods. See "List Attributes"
on page 6-19.

dvoid *

Parameter Attributes

6-10 Oracle Call Interface Programmer's Guide

Type Attribute Attributes
When a parameter is for an attribute of a type (type OCI_PTYPE_TYPE_ATTR), it
has the attributes listed in Table 6–8.

OCI_ATTR_MAP_METHOD Map method of type. See "Type Method
Attributes" on page 6-11.

dvoid *

OCI_ATTR_ORDER_METHOD Order method of type. See "Type Method
Attributes" on page 6-11.

dvoid *

OCI_ATTR_IS_INVOKER_RIGHTS Indicates the type has invoker-rights ub1

OCI_ATTR_NAME A pointer to a string which is the type
attribute name

OraText *

OCI_ATTR_SCHEMA_NAME A string with the schema name where the
type has been created

OraText *

OCI_ATTR_IS_FINAL_TYPE Indicates this is a final type ub1

OCI_ATTR_IS_INSTANTIABLE_TYPE Indicates this is an instantiable type ub1

OCI_ATTR_IS_SUBTYPE Indicates this is a subtype ub1

OCI_ATTR_SUPERTYPE_SCHEMA_NAME Name of the schema that contains the
supertype

OraText *

OCI_ATTR_SUPERTYPE_NAME Name of the supertype OraText *

Table 6–8 Attributes of Type Attributes

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE The maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub4

OCI_ATTR_TYPECODE Typecode. See "Datatype Codes" on page 6-4. OCITypeCode

OCI_ATTR_DATA_TYPE The datatype of the type attribute. See "Datatype
Codes" on page 6-4.

ub2

OCI_ATTR_NAME A pointer to a string which is the type attribute
name

OraText *

Table 6–7 Attributes of Types (Cont.)

Attribute Description Attribute Datatype

Parameter Attributes

Describing Schema Metadata 6-11

Type Method Attributes
When a parameter is for a method of a type (type OCI_PTYPE_TYPE_METHOD), it
has the attributes listed in Table 6–9.

OCI_ATTR_PRECISION The precision of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

ub1 for explicit
describe
sb2 for implicit
describe

OCI_ATTR_SCALE The scale of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

sb1

OCI_ATTR_TYPE_NAME A string which is the type name. The returned
value will contain the type name if the datatype
is SQLT_NTY or SQLT_REF. If the datatype is
SQLT_NTY, the name of the named datatype's
type is returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to by
the REF is returned

OraText *

OCI_ATTR_SCHEMA_NAME A string with the schema name under which the
type has been created

OraText *

OCI_ATTR_REF_TDO Returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID The character set id, if the type attribute is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM The character set form, if the type attribute is of a
string/character type

ub1

OCI_ATTR_FSPRECISION The fractional seconds precision of a datetime or
interval.

ub1

OCI_ATTR_LFPRECISION The leading field precision of an interval. ub1

Table 6–8 Attributes of Type Attributes (Cont.)

Attribute Description Attribute Datatype

Parameter Attributes

6-12 Oracle Call Interface Programmer's Guide

Collection Attributes
When a parameter is for a collection type (type OCI_PTYPE_COLL), it has the
attributes listed in Table 6–10.

Table 6–9 Attributes of Type Methods

Attribute Description Attribute Datatype

OCI_ATTR_NAME Name of method (procedure or function) OraText *

OCI_ATTR_ENCAPSULATION Encapsulation level of the method (either
OCI_TYPEENCAP_PRIVATE or
OCI_TYPEENCAP_PUBLIC)

OCITypeEncap

OCI_ATTR_LIST_ARGUMENTS Argument list. See "Note on
OCI_ATTR_LIST_ARGUMENTS" on
page 6-5, and "List Attributes" on
page 6-19.

dvoid *

OCI_ATTR_IS_CONSTRUCTOR Indicates method is a constructor ub1

OCI_ATTR_IS_DESTRUCTOR Indicates method is a destructor ub1

OCI_ATTR_IS_OPERATOR Indicates method is an operator ub1

OCI_ATTR_IS_SELFISH Indicates method is selfish ub1

OCI_ATTR_IS_MAP Indicates method is a map method ub1

OCI_ATTR_IS_ORDER Indicates method is an order method ub1

OCI_ATTR_IS_RNDS Indicates "Read No Data State" is set for
method

ub1

OCI_ATTR_IS_RNPS Indicates "Read No Process State" is set for
method

ub1

OCI_ATTR_IS_WNDS Indicates "Write No Data State" is set for
method

ub1

OCI_ATTR_IS_WNPS Indicates "Write No Process State" is set for
method

ub1

OCI_ATTR_IS_FINAL_METHOD Indicates this is a final method ub1

OCI_ATTR_IS_INSTANTIABLE_METHOD Indicates this is an instantiable method ub1

OCI_ATTR_IS_OVERRIDING_METHOD Indicates this is an overriding method ub1

Parameter Attributes

Describing Schema Metadata 6-13

Table 6–10 Attributes of Collection Types

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE The maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub4

OCI_ATTR_TYPECODE Typecode. See "Datatype Codes" on page 6-4. OCITypeCode

OCI_ATTR_DATA_TYPE The datatype of the type attribute. See "Datatype
Codes" on page 6-4.

ub2

OCI_ATTR_NUM_ELEMENTS The number of elements in an array. It is only
valid for collections that are arrays

ub4

OCI_ATTR_NAME A pointer to a string which is the type attribute
name

OraText *

OCI_ATTR_PRECISION The precision of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

ub1 for explicit
describe
sb2 for implicit
describe

OCI_ATTR_SCALE The scale of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

sb1

OCI_ATTR_TYPE_NAME A string which is the type name. The returned
value will contain the type name if the datatype
is SQLT_NTY or SQLT_REF. If the datatype is
SQLT_NTY, the name of the named datatype's
type is returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to by
the REF is returned

OraText *

OCI_ATTR_SCHEMA_NAME A string with the schema name under which the
type has been created

OraText *

Parameter Attributes

6-14 Oracle Call Interface Programmer's Guide

Synonym Attributes
When a parameter is for a synonym (type OCI_PTYPE_SYN), it has the attributes
listed in Table 6–11.

Sequence Attributes
When a parameter is for a sequence (type OCI_PTYPE_SEQ), it has the attributes
listed in Table 6–12.

OCI_ATTR_REF_TDO Returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID The character set id, if the type attribute is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM The character set form, if the type attribute is of a
string/character type

ub1

Table 6–11 Attributes of Synonyms

Attribute Description Attribute Datatype

OCI_ATTR_OBJID Object id ub4

OCI_ATTR_SCHEMA_NAME A string containing the schema name of the
synonym translation

OraText *

OCI_ATTR_NAME A NULL-terminated string containing the object
name of the synonym translation

OraText *

OCI_ATTR_LINK A NULL-terminated string containing the database
link name of the synonym translation

OraText *

Table 6–12 Attributes of Sequences

Attribute Description Attribute Datatype

OCI_ATTR_OBJID Object id ub4

OCI_ATTR_MIN Minimum value (in Oracle NUMBER format) ub1 *

OCI_ATTR_MAX Maximum value (in Oracle NUMBER format) ub1 *

Table 6–10 Attributes of Collection Types (Cont.)

Attribute Description Attribute Datatype

Parameter Attributes

Describing Schema Metadata 6-15

Column Attributes

When a parameter is for a column of a table or view (type OCI_PTYPE_COL), it has
the attributes listed in Table 6–13.

OCI_ATTR_INCR Increment (in Oracle NUMBER format) ub1 *

OCI_ATTR_CACHE Number of sequence numbers cached; zero if
the sequence is not a cached sequence (in
Oracle NUMBER format)

ub1 *

OCI_ATTR_ORDER Whether the sequence is ordered ub1

OCI_ATTR_HW_MARK High-water mark (in NUMBER format) ub1 *

Note: For BINARY_FLOAT and BINARY_DOUBLE:

If OCIDescribeAny() is used to retrieve the column datatype
(OCI_ATTR_DATA_TYPE) for BINARY_FLOAT or
BINARY_DOUBLE columns in a table, it returns the internal
datatype code.

The SQLT codes corresponding to the internal datatype codes for
BINARY_FLOAT and BINARY_DOUBLE are SQLT_IBFLOAT and
SQLT_IBDOUBLE.

Table 6–13 Attributes of Columns of Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_CHAR_USED Returns the type of length semantics of the
column. 0 means byte-length semantics and 1
means character-length semantics. See
"Character Length Semantics Support in
Describing" on page 6-23.

ub4

OCI_ATTR_CHAR_SIZE Returns the column character length which is
the number of characters allowed in the
column. It is the counterpart of
OCI_ATTR_DATA_SIZE which gets the byte
length. See "Character Length Semantics
Support in Describing" on page 6-23.

ub2

Table 6–12 Attributes of Sequences (Cont.)

Attribute Description Attribute Datatype

Parameter Attributes

6-16 Oracle Call Interface Programmer's Guide

OCI_ATTR_DATA_SIZE The maximum size of the column. This length
is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub4

OCI_ATTR_DATA_TYPE The datatype of the column. See "Datatype
Codes" on page 6-4.

ub2

OCI_ATTR_NAME A pointer to a string which is the column name OraText *

OCI_ATTR_PRECISION The precision of numeric columns. If the
precision is nonzero and scale is -127, then it is
a FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

ub1 for explicit
describe
sb2 for implicit
describe

OCI_ATTR_SCALE The scale of numeric columns. If the precision
is nonzero and scale is -127, then it is a FLOAT,
else it is a NUMBER(precision, scale). For the
case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

sb1

OCI_ATTR_IS_NULL Returns 0 if null values are not permitted for
the column

ub1

OCI_ATTR_TYPE_NAME Returns a string which is the type name. The
returned value will contain the type name if
the datatype is SQLT_NTY or SQLT_REF. If the
datatype is SQLT_NTY, the name of the named
datatype's type is returned. If the datatype is
SQLT_REF, the type name of the named
datatype pointed to by the REF is returned

OraText *

OCI_ATTR_SCHEMA_NAME Returns a string with the schema name under
which the type has been created

OraText *

OCI_ATTR_REF_TDO The REF of the TDO for the type, if the column
type is an object type

OCIRef *

OCI_ATTR_CHARSET_ID The character set id, if the column is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM The character set form, if the column is of a
string/character type

ub1

Table 6–13 Attributes of Columns of Tables or Views (Cont.)

Attribute Description Attribute Datatype

Parameter Attributes

Describing Schema Metadata 6-17

Argument and Result Attributes
When a parameter is for an argument of a procedure or function (type
OCI_PTYPE_ARG), for a type method argument (type OCI_PTYPE_TYPE_ARG) or
for method results (type OCI_PTYPE_TYPE_RESULT), it has the attributes listed in
Table 6–14.

Table 6–14 Attributes of Arguments and Results

Attribute Description Attribute Datatype

OCI_ATTR_NAME Returns a pointer to a string which is the
argument name

OraText *

OCI_ATTR_POSITION The position of the argument in the argument
list. Always returns zero.

ub2

OCI_ATTR_TYPECODE Typecode. See "Datatype Codes" on page 6-4. OCITypeCode

OCI_ATTR_DATA_TYPE The datatype of the argument. See "Datatype
Codes" on page 6-4.

ub2

OCI_ATTR_DATA_SIZE The size of the datatype of the argument. This
length is returned in bytes and not characters
for strings and raws. It returns 22 for
NUMBERs.

ub4

OCI_ATTR_PRECISION The precision of numeric arguments. If the
precision is nonzero and scale is -127, then it
is a FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

b1 for explicit describe

sb2 for implicit
describe

OCI_ATTR_SCALE The scale of numeric arguments. If the
precision is nonzero and scale is -127, then it
is a FLOAT, else it is a NUMBER(precision,
scale). For the case when precision is 0,
NUMBER(precision, scale) can be
represented simply as NUMBER.

sb1

OCI_ATTR_LEVEL The datatype levels. This attribute always
returns zero.

ub2

OCI_ATTR_HAS_DEFAULT Indicates whether an argument has a default ub1

OCI_ATTR_LIST_ARGUMENTS The list of arguments at the next level (when
the argument is of a record or table type).

dvoid *

Parameter Attributes

6-18 Oracle Call Interface Programmer's Guide

OCI_ATTR_IOMODE Indicates the argument mode:

0 is IN (OCI_TYPEPARAM_IN),

1 is OUT (OCI_TYPEPARAM_OUT),

2 is IN/OUT (OCI_TYPEPARAM_INOUT)

OCITypeParamMode

OCI_ATTR_RADIX Returns a radix (if number type) ub1

OCI_ATTR_IS_NULL Returns 0 if null values are not permitted for
the column

ub1

OCI_ATTR_TYPE_NAME Returns a string which is the type name, or
the package name in the case of package local
types. The returned value will contain the
type name if the datatype is SQLT_NTY or
SQLT_REF. If the datatype is SQLT_NTY, the
name of the named datatype's type is
returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to
by the REF is returned.

OraText *

OCI_ATTR_SCHEMA_NAME For SQLT_NTY or SQLT_REF, returns a string
with the schema name under which the type
was created, or under which the package was
created in the case of package local types

OraText *

OCI_ATTR_SUB_NAME For SQLT_NTY or SQLT_REF, returns a string
with the type name, in the case of package
local types

OraText *

OCI_ATTR_LINK For SQLT_NTY or SQLT_REF, returns a string
with the database link name of the database
on which the type exists. This can happen
only in the case of package local types, when
the package is remote.

OraText *

OCI_ATTR_REF_TDO Returns the REF of the TDO for the type, if
the argument type is an object

OCIRef *

OCI_ATTR_CHARSET_ID Returns the character set ID if the argument is
of a string/character type

ub2

OCI_ATTR_CHARSET_FORM Returns the character set form if the
argument is of a string/character type

ub1

Table 6–14 Attributes of Arguments and Results (Cont.)

Attribute Description Attribute Datatype

Parameter Attributes

Describing Schema Metadata 6-19

List Attributes
When a parameter is for a list of columns, arguments, or subprograms (type
OCI_PTYPE_LIST), it has the following type specific attributes and handles
(parameters):

The list has an OCI_ATTR_LIST_TYPE attribute which designates the list type. The
possible values and their lower bounds when traversing the list are:
List

■ The list has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of
elements in the list.

■ Each list has LowerBound .. OCI_ATTR_NUM_PARAMS parameters.
LowerBound is the value in the Lower Bound column of Table 6–15, "List
Attributes". In the case of a function argument list, position 0 has a parameter
for the return value (type OCI_PTYPE_ARG).

Schema Attributes
When a parameter is for a schema type (type OCI_PTYPE_SCHEMA), it has the
attributes listed in Table 6–16:

Table 6–15 List Attributes

List Attribute Description Lower Bound

OCI_LTYPE_COLUMN Column list 1

OCI_LTYPE_ARG_PROC Procedure argument list 1

OCI_LTYPE_ARG_FUNC Function argument list 0

OCI_LTYPE_SUBPRG Subprogram list 0

OCI_LTYPE_TYPE_ATTR Type attribute list 1

OCI_LTYPE_TYPE_METHOD Type method list 1

OCI_LTYPE_TYPE_ARG_PROC Type method without result argument list 0

OCI_LTYPE_TYPE_ARG_FUNC Type method without result argument list 1

OCI_LTYPE_SCH_OBJ Object list within a schema 0

OCI_LTYPE_DB_SCH Schema list within a database 0

Parameter Attributes

6-20 Oracle Call Interface Programmer's Guide

Database Attributes
When a parameter is for a database type (type OCI_PTYPE_DATABASE), it has the
attributes listed in Table 6–17:

Table 6–16 Attributes Specific to Schemas

Attribute Description Attribute Datatype

OCI_ATTR_LIST_OBJECTS List of objects in the schema OraText *

Table 6–17 Attributes Specific to Databases

Attribute Description Attribute Datatype

OCI_ATTR_VERSION Database version OraText *

OCI_ATTR_CHARSET_ID Database character set Id from the server
handle

ub2

OCI_ATTR_NCHARSET_ID Database character set Id from the server
handle

ub2

OCI_ATTR_LIST_SCHEMAS List of schemas (type
OCI_PTYPE_SCHEMA) in the database

ub1

OCI_ATTR_MAX_PROC_LEN Maximum length of a procedure name ub4

OCI_ATTR_MAX_COLUMN_LEN Maximum length of a column name ub4

OCI_ATTR_CURSOR_COMMIT_BEHAVIOR How a COMMIT operation affects cursors
and prepared statements in the database.
Values are:

OCI_CURSOR_OPEN - preserve cursor
state as before the commit operation

OCI_CURSOR_CLOSED - cursors are
closed on COMMIT, but the application
can still reexecute the statement without
re-preparing it

ub1

OCI_ATTR_MAX_CATALOG_NAMELEN Maximum length of a catalog (database)
name

ub1

OCI_ATTR_CATALOG_LOCATION Position of the catalog in a qualified table.
Values are OCI_CL_START and
OCI_CL_END

ub1

OCI_ATTR_SAVEPOINT_SUPPORT Does database support savepoints? Values
are OCI_SP_SUPPORTED and
OCI_SP_UNSUPPORTED

ub1

Parameter Attributes

Describing Schema Metadata 6-21

Rule Attributes
When a parameter is for a rule (type OCI_PTYPE_RULE), it has the attributes listed
in Table 6–18:

Rule Set Attributes
When a parameter is for a rule set (type OCI_PTYPE_RULE_SET), it has the
attributes listed in Table 6–19:

OCI_ATTR_NOWAIT_SUPPORT Does database support the nowait clause?
Values are OCI_NW_SUPPORTED and
OCI_NW_UNSUPPORTED

ub1

OCI_ATTR_AUTOCOMMIT_DDL Is autocommit mode required for DDL
statements? Values are OCI_AC_DDL and
OCI_NO_AC_DDL

ub1

OCI_ATTR_LOCKING_MODE Locking mode for the database. Values are
OCI_LOCK_IMMEDIATE and
OCI_LOCK_DELAYED

ub1

Table 6–18 Attributes Specific to Rules

Attribute Description Attribute Datatype

OCI_ATTR_CONDITION Rule condition OraText *

OCI_ATTR_EVAL_CONTEXT_OWNER Owner name of evaluation context associated
with the rule, if any

OraText *

OCI_ATTR_EVAL_CONTEXT_NAME Object name of evaluation context associated
with the rule, if any

OraText *

OCI_ATTR_COMMENT Comment associated with the rule, if any OraText *

OCI_ATTR_LIST_ACTION_CONTEXT List of name value pairs in the action context
(type OCI_PTYPE_LIST)

dvoid *

Table 6–17 Attributes Specific to Databases (Cont.)

Attribute Description Attribute Datatype

Parameter Attributes

6-22 Oracle Call Interface Programmer's Guide

Evaluation Context Attributes
When a parameter is for an evaluation context (type
OCI_PTYPE_EVALUATION_CONTEXT), it has the attributes listed in Table 6–20:

Table Alias Attributes
When a parameter is for a table alias (type OCI_PTYPE_TABLE_ALIAS), it has the
attributes listed in Table 6–21:

Table 6–19 Attributes Specific to Rule Sets

Attribute Description Attribute Datatype

OCI_ATTR_EVAL_CONTEXT_OWNER Owner name of evaluation context associated
with the rule set, if any

OraText *

OCI_ATTR_EVAL_CONTEXT_NAME Object name of evaluation context associated
with the rule set, if any

OraText *

OCI_ATTR_COMMENT Comment associated with the rule set, if any OraText *

OCI_ATTR_LIST_RULES List of rules in the rule set (type
OCI_PTYPE_LIST)

dvoid *

Table 6–20 Attributes Specific to Evaluation Contexts

Attribute Description Attribute Datatype

OCI_ATTR_EVALUATION_FUNCTION Evaluation function associated with the
evaluation context, if any

OraText *

OCI_ATTR_COMMENT Comment associated with the evaluation
context, if any

OraText *

OCI_ATTR_LIST_TABLE_ALIASES List of table aliases in the evaluation context
(type OCI_PTYPE_LIST)

dvoid *

OCI_ATTR_LIST_VARIABLE_TYPES List of variable types in the evaluation context
(type OCI_PTYPE_LIST)

dvoid *

Table 6–21 Attributes Specific to Table Aliases

Attribute Description Attribute Datatype

OCI_ATTR_NAME Table alias name OraText *

OCI_ATTR_TABLE_NAME Table name associated with the alias OraText *

Character Length Semantics Support in Describing

Describing Schema Metadata 6-23

Variable Type Attributes
When a parameter is for a variable (type OCI_PTYPE_VARIABLE_TYPE), it has the
attributes listed in Table 6–22:

Name Value Attributes
When a parameter is for a name value pair (type OCI_PTYPE_NAME_VALUE), it
has the attributes listed in Table 6–23:

Character Length Semantics Support in Describing
Since release Oracle9i, query and column information are supported with character
length semantics.

The following attributes of describe handles support character length semantics:

■ OCI_ATTR_CHAR_SIZE gets the column character length, which is the number
of characters allowed in the column. It is the counterpart of
OCI_ATTR_DATA_SIZE that gets the byte length.

■ Calling OCIAttrGet() with attribute OCI_ATTR_CHAR_SIZE or
OCI_ATTR_DATA_SIZE does not return data on stored procedure parameters,
because stored procedure parameters are not bounded.

Table 6–22 Attributes Specific to Variable Types

Attribute Description
Attribute
Datatype

OCI_ATTR_NAME Variable name OraText *

OCI_ATTR_TYPE Variable type OraText *

OCI_ATTR_VAR_VALUE_FUNCTION Variable value function associated with the
variable, if any

OraText *

OCI_ATTR_VAR_METHOD_FUNCTION Variable method function associated with the
variable, if any

OraText *

Table 6–23 Attributes Specific to Name Value Pair

Attribute Description Attribute Datatype

OCI_ATTR_NAME Name OraText *

OCI_ATTR_VALUE Value OCIAnyData*

Character Length Semantics Support in Describing

6-24 Oracle Call Interface Programmer's Guide

■ OCI_ATTR_CHAR_USED gets the type of length semantics of the column. 0
means byte-length semantics and 1 means character length semantics.

An application can describe a select-list query either implicitly or explicitly through
OCIStmtExecute(). Other schema elements must be described explicitly through
OCIDescribeAny().

Implicit Describing
If the database column was created using character length semantics, then the
implicit describe information will contain the character length, the byte length, and
a flag indicating how the database column was created. OCI_ATTR_CHAR_SIZE is
the character length of the column or expression. The OCI_ATTR_CHAR_USED
flag is 1 in this case, indicating that the column or expression was created with
character length semantics.

The OCI_ATTR_DATA_SIZE value will be always large enough to hold all the data,
as many as OCI_ATTR_CHAR_SIZE number of characters. The
OCI_ATTR_DATA_SIZE will be usually set to (OCI_ATTR_CHAR_SIZE)*(the
client's max bytes) for each character value.

If the database column was created with byte length semantics, then the implicit
describe will behave exactly as it does before release 9.0. That is, the
OCI_ATTR_DATA_SIZE value returned will be (column's byte length)*(the
maximum conversion ratio between the client and server's character set), that is,
column byte length divided by the server's max bytes for each character multiplied
by the client's max bytes for each character. The OCI_ATTR_CHAR_USED value is
0 and the OCI_ATTR_CHAR_SIZE value will be set to the same value as
OCI_ATTR_DATA_SIZE.

Explicit Describing
Explicit describes of tables will have the following attributes:

■ OCI_ATTR_DATA_SIZE that gets the column's size in bytes, as it appears in the
server

■ the length in characters in OCI_ATTR_CHAR_SIZE

■ a flag OCI_ATTR_CHAR_USED that indicates how the column was created

When inserting, if the OCI_ATTR_CHAR_USED flag is set, you can set the
OCI_ATTR_MAXCHAR_SIZE in the bind handle to the value returned by
OCI_ATTR_CHAR_SIZE in the parameter handle. This will prevent you from
violating the size constraint for the column.

Examples Using OCIDescribeAny()

Describing Schema Metadata 6-25

Client and Server Compatibility Issues for Describing
When an Oracle9i or later client talks to an Oracle8i or earlier server, it will behave
as if the database is only using byte length semantics;

When an Oracle8i or earlier client talks to a Oracle9i or later server, the attributes
OCI_ATTR_CHAR_SIZE and OCI_ATTR_CHAR_USED are not available on the
client side.

In both cases, the character length semantics cannot be described when either the
server or client has an Oracle8i or earlier software release.

Examples Using OCIDescribeAny()
The following examples demonstrate the use of OCIDescribeAny() for describing
different types of schema objects. For a more detailed code sample, see the
demonstration program cdemodsa.c included with your Oracle installation.

Retrieving Column Datatypes for a Table
This example illustrates the use of an explicit describe that retrieves the column
datatypes for a table.

...
int i=0;
text objptr[] = "EMPLOYEES"; /* the name of a table to be described */
ub2 numcols, col_width;
ub1 char_semantics;
ub2 coltyp;
ub4 objp_len = (ub4) strlen((char *)objptr);
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *collsthd = (OCIParam *) 0; /* handle to list of columns */
OCIParam *colhd = (OCIParam *) 0; /* column handle */
OCIDescribe *dschp = (OCIDescribe *)0; /* describe handle */

OCIHandleAlloc((dvoid *)envhp, (dvoid **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0);

/* get the describe handle for the table */

See Also: "IN Binds" on page 5-34

See Also: For additional information on the demonstration
programs, see Appendix B, "OCI Demonstration Programs"

Examples Using OCIDescribeAny()

6-26 Oracle Call Interface Programmer's Guide

if (OCIDescribeAny(svch, errh, (dvoid *)objptr, objp_len, OCI_OTYPE_NAME, 0,
 OCI_PTYPE_TABLE, dschp))
 return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAttrGet(). */
/* get the number of columns in the table */
numcols = 0;
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&numcols, (ub4 *)0,
 OCI_ATTR_NUM_COLS, errh))
 return OCI_ERROR;

/* get the handle to the column list of the table */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&collsthd, (ub4 *)0,
 OCI_ATTR_LIST_COLUMNS, errh)==OCI_NO_DATA)
 return OCI_ERROR;

/* go through the column list and retrieve the data-type of each column,
and then recursively describe column types. */

for (i = 1; i <= numcols; i++)
{
 /* get parameter for column i */
 if (OCIParamGet((dvoid *)collsthd, OCI_DTYPE_PARAM, errh, (dvoid **)&colhd,
(ub4)i))
 return OCI_ERROR;

 /* for example, get datatype for ith column */
 coltyp = 0;
 if (OCIAttrGet((dvoid *)colhd, OCI_DTYPE_PARAM, (dvoid *)&coltyp, (ub4 *)0,
 OCI_ATTR_DATA_TYPE, errh))
 return OCI_ERROR;

 /* Retrieve the length semantics for the column */
 char_semantics = 0;
 OCIAttrGet((dvoid*) colhd, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &char_semantics,(ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
 (OCIError *) errh);

 col_width = 0;

Examples Using OCIDescribeAny()

Describing Schema Metadata 6-27

 if (char_semantics)
 /* Retrieve the column width in characters */
 OCIAttrGet((dvoid*) colhd, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
 (OCIError *) errh);
 else
 /* Retrieve the column width in bytes */
 OCIAttrGet((dvoid*) colhd, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &col_width,(ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errh);
}

if (dschp)
 OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);
...

Describing the Stored Procedure
The difference between a procedure and a function is that the latter has a return
type at position 0 in the argument list, while the former has no argument associated
with position 0 in the argument list. The steps required to describe type methods
(also divided into functions and procedures) are identical to that of regular PL/SQL
functions and procedures. Note that procedures and functions can take default
types of objects as arguments. Consider the following procedure:

P1 (arg1 emp.sal%type, arg2 emp%rowtype)

Assume that each row in emp table has two columns: name(VARCHAR2(20)), and
sal(NUMBER). In the argument list for P1, there are two arguments, arg1 and
arg2, at positions 1 and 2 respectively at level 0, and arguments name and sal at
positions 1and 2 respectively at level 1. Description of P1 returns the number of
arguments as two while returning the higher level (> 0) arguments as attributes of
the 0 zero level arguments.

...
int i = 0, j = 0;
text objptr[] = "add_job_history"; /* the name of a procedure to be described */
ub4 objp_len = (ub4)strlen((char *)objptr);
ub2 numargs = 0, numargs1, pos, level;
text *name, *name1;
ub4 namelen, namelen1;
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *arglst = (OCIParam *) 0; /* list of args */
OCIParam *arg = (OCIParam *) 0; /* argument handle */

Examples Using OCIDescribeAny()

6-28 Oracle Call Interface Programmer's Guide

OCIParam *arglst1 = (OCIParam *) 0; /* list of args */
OCIParam *arg1 = (OCIParam *) 0; /* argument handle */
OCIDescribe *dschp = (OCIDescribe *)0; /* describe handle */

OCIHandleAlloc((dvoid *)envhp, (dvoid **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0);

/* get the describe handle for the procedure */
if (OCIDescribeAny(svch, errh, (dvoid *)objptr, objp_len, OCI_OTYPE_NAME, 0,
 OCI_PTYPE_PROC, dschp))
 return OCI_ERROR;

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* Get the number of arguments and the arg list */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&arglst,
 (ub4 *)0, OCI_ATTR_LIST_ARGUMENTS, errh))
 return OCI_ERROR;

if (OCIAttrGet((dvoid *)arglst, OCI_DTYPE_PARAM, (dvoid *)&numargs, (ub4 *)0,
 OCI_ATTR_NUM_PARAMS, errh))
 return OCI_ERROR;

/* For a procedure, we begin with i = 1; for a
function, we begin with i = 0. */

for (i = 1; i <= numargs; i++) {
 OCIParamGet ((dvoid *)arglst, OCI_DTYPE_PARAM, errh, (dvoid **)&arg, (ub4)i);
 namelen = 0;
 OCIAttrGet((dvoid *)arg, OCI_DTYPE_PARAM, (dvoid *)&name, (ub4 *)&namelen,
 OCI_ATTR_NAME, errh);

 /* to print the attributes of the argument of type record
 (arguments at the next level), traverse the argument list */

 OCIAttrGet((dvoid *)arg, OCI_DTYPE_PARAM, (dvoid *)&arglst1, (ub4 *)0,
 OCI_ATTR_LIST_ARGUMENTS, errh);

 /* check if the current argument is a record. For arg1 in the procedure
 arglst1 is NULL. */

 if (arglst1) {

Examples Using OCIDescribeAny()

Describing Schema Metadata 6-29

 numargs1 = 0;
 OCIAttrGet((dvoid *)arglst1, OCI_DTYPE_PARAM, (dvoid *)&numargs1, (ub4 *)0,
 OCI_ATTR_NUM_PARAMS, errh);

 /* Note that for both functions and procedures,the next higher level
 arguments start from index 1. For arg2 in the procedure, the number of
 arguments at the level 1 would be 2 */

 for (j = 1; j <= numargs1; j++) {
 OCIParamGet((dvoid *)arglst1, OCI_DTYPE_PARAM, errh, (dvoid **)&arg1,
 (ub4)j);
 namelen1 = 0;
 OCIAttrGet((dvoid *)arg1, OCI_DTYPE_PARAM, (dvoid *)&name1, (ub4
*)&namelen1,
 OCI_ATTR_NAME, errh);
 }
 }
}

if (dschp)
 OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);
...

Retrieving Attributes of an Object Type
This example illustrates the use of an explicit describe on a named object type. We
illustrate how you can describe an object by its name or by its object reference
(OCIRef). The following code fragment attempts to retrieve the datatype value of
each of the object type's attributes.

...
int i = 0;
text type_name[] = "inventory_typ";
ub4 type_name_len = (ub4)strlen((char *)type_name);
OCIRef *type_ref = (OCIRef *) 0;
ub2 numattrs = 0, describe_by_name = 1;
ub2 datatype = 0;
OCITypeCode typecode = 0;
OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */
OCIParam *attrlsthd = (OCIParam *) 0; /* handle to list of attrs */
OCIParam *attrhd = (OCIParam *) 0; /* attribute handle */

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,

Examples Using OCIDescribeAny()

6-30 Oracle Call Interface Programmer's Guide

 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))
 return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by_name) {
 if (OCIDescribeAny(svch, errh, (dvoid *)type_name, type_name_len,
 OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}
else {
 /* get ref to type using OCIAttrGet */

 /* get the describe handle for the type */
 if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF,
 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* The type information of the object, in this case, OCI_PTYPE_TYPE, is
obtained from the parameter descriptor returned by the OCIAttrGet */

/* get the number of attributes in the type */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&numattrs, (ub4 *)0,
 OCI_ATTR_NUM_TYPE_ATTRS, errh))
 return OCI_ERROR;

/* get the handle to the attribute list of the type */
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&attrlsthd, (ub4 *)0,
 OCI_ATTR_LIST_TYPE_ATTRS, errh))
 return OCI_ERROR;

/* go through the attribute list and retrieve the data-type of each attribute,
and then recursively describe attribute types. */

for (i = 1; i <= numattrs; i++)
{
/* get parameter for attribute i */
if (OCIParamGet((dvoid *)attrlsthd, OCI_DTYPE_PARAM, errh, (dvoid **)&attrhd,
i))
 return OCI_ERROR;

Examples Using OCIDescribeAny()

Describing Schema Metadata 6-31

/* for example, get datatype and typecode for attribute; note that
OCI_ATTR_DATA_TYPE returns the SQLT code, while OCI_ATTR_TYPECODE returns the
Oracle Type System typecode. */
datatype = 0;
if (OCIAttrGet((dvoid *)attrhd, OCI_DTYPE_PARAM, (dvoid *)&datatype, (ub4 *)0,
 OCI_ATTR_DATA_TYPE,errh))
 return OCI_ERROR;

typecode = 0;
if (OCIAttrGet((dvoid *)attrhd, OCI_DTYPE_PARAM,(dvoid *)&typecode, (ub4 *)0,
 OCI_ATTR_TYPECODE, errh))
 return OCI_ERROR;

/* if attribute is an object type, recursively describe it */
if (typecode == OCI_TYPECODE_OBJECT)
{
 OCIRef *attr_type_ref;
 OCIDescribe *nested_dschp;

 /* allocate describe handle */
 if (OCIHandleAlloc((dvoid *)envh,(dvoid**)&nested_dschp,
 (ub4)OCI_HTYPE_DESCRIBE,(size_t)0, (dvoid **)0))
 return OCI_ERROR;

 if (OCIAttrGet((dvoid *)attrhd, OCI_DTYPE_PARAM,
 (dvoid *)&attr_type_ref, (ub4 *)0, OCI_ATTR_REF_TDO,errh))
 return OCI_ERROR;

 OCIDescribeAny(svch, errh,(dvoid*)attr_type_ref, 0,
 OCI_OTYPE_REF, 0, OCI_PTYPE_TYPE, nested_dschp);
 /* go on describing the attribute type... */
}
}

if (dschp)
 OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);
...

Retrieving the Collection Element's Datatype of a Named Collection Type
This example illustrates the use of an explicit describe on a named collection type:

text type_name[] = "phone_list_typ";
ub4 type_name_len = (ub4) strlen((char *)type_name);

Examples Using OCIDescribeAny()

6-32 Oracle Call Interface Programmer's Guide

OCIRef *type_ref = (OCIRef *) 0;
ub2 describe_by_name = 1;
ub4 num_elements = 0;
OCITypeCode typecode = 0, collection_typecode = 0, element_typecode = 0;
dvoid *collection_element_parmh = (dvoid *) 0;
OCIDescribe *dschp = (OCIDescribe *) 0; /* describe handle */
OCIParam *parmh = (OCIParam *) 0; /* parameter handle */

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))
 return OCI_ERROR;

/* get the describe handle for the type */
if (describe_by_name) {
 if (OCIDescribeAny(svch, errh, (dvoid *)type_name, type_name_len,
 OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}
else {
 /* get ref to type using OCIAttrGet */

 /* get the describe handle for the type */
 if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF,
 0, OCI_PTYPE_TYPE, dschp))
 return OCI_ERROR;
}

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCI_HTYPE_DESCRIBE, (dvoid *)&parmh, (ub4 *)0,
 OCI_ATTR_PARAM, errh))
 return OCI_ERROR;

/* get the Oracle Type System type code of the type to determine that this is a
collection type */
typecode = 0;
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM,(dvoid *)&typecode, (ub4 *)0,
 OCI_ATTR_TYPECODE, errh))
 return OCI_ERROR;

/* if typecode is OCI_TYPECODE_NAMEDCOLLECTION,
 proceed to describe collection element */
if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
{
 /* get the collection's type: ie, OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE */

Examples Using OCIDescribeAny()

Describing Schema Metadata 6-33

 collection_typecode = 0;
if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, (dvoid *)&collection_typecode,

(ub4 *)0,
 OCI_ATTR_COLLECTION_TYPECODE, errh))
 return OCI_ERROR;

 /* get the collection element; you MUST use this to further retrieve
information
 about the collection's element */
 if (OCIAttrGet((dvoid *)parmh, OCI_DTYPE_PARAM, &collection_element_parmh,
(ub4 *)0,
 OCI_ATTR_COLLECTION_ELEMENT, errh))
 return OCI_ERROR;

 /* get the number of elements if collection is a VARRAY; not valid for nested
 tables */
 if (collection_typecode == OCI_TYPECODE_VARRAY) {
 if (OCIAttrGet((dvoid *)collection_element_parmh, OCI_DTYPE_PARAM,
 (dvoid *)&num_elements, (ub4 *)0, OCI_ATTR_NUM_ELEMS, errh))
 return OCI_ERROR;
 }

 /* now use the collection_element parameter handle to retrieve information
about
 the collection element */
 element_typecode = 0;
 if (OCIAttrGet((dvoid *)collection_element_parmh, OCI_DTYPE_PARAM,
 (dvoid *)&element_typecode, (ub4 *)0, OCI_ATTR_TYPECODE, errh))
 return OCI_ERROR;

 /* do the same to describe additional collection element information; this is
 very similar to describing type attributes */
}

if (dschp)
 OCIHandleFree((dvoid *) dschp, OCI_HTYPE_DESCRIBE);
...

Describing with Character Length Semantics
The following sample code shows a loop that retrieves the column names and
datatypes corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare().

...

Examples Using OCIDescribeAny()

6-34 Oracle Call Interface Programmer's Guide

OCIParam *mypard = (OCIParam *) 0;
ub2 dtype;
text *col_name;
ub4 counter, col_name_len, char_semantics;
ub2 col_width;
sb4 parm_status;

text *sqlstmt = (text *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0, (OCISnapshot *)0,
(OCISnapshot *)0, OCI_DEFAULT));

/* Request a parameter descriptor for position 1 in the select-list */
counter = 1;
parm_status = OCIParamGet((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,
 (dvoid **)&mypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
 current position, starting at 1 */

while (parm_status == OCI_SUCCESS) {
 /* Retrieve the datatype attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &dtype,(ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));

 /* Retrieve the column name attribute */
 col_name_len = 0;
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid**) &col_name, (ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
 (OCIError *) errhp));

 /* Retrieve the length semantics for the column */
 char_semantics = 0;
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &char_semantics,(ub4 *) 0, (ub4) OCI_ATTR_CHAR_USED,
 (OCIError *) errhp));
 col_width = 0;
 if (char_semantics)
 /* Retrieve the column width in characters */
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,

Examples Using OCIDescribeAny()

Describing Schema Metadata 6-35

 (dvoid*) &col_width, (ub4 *) 0, (ub4) OCI_ATTR_CHAR_SIZE,
 (OCIError *) errhp));
 else
 /* Retrieve the column width in bytes */
 checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &col_width,(ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));

 /* increment counter and get next descriptor, if there is one */
 counter++;
 parm_status = OCIParamGet((dvoid *)stmthp, OCI_HTYPE_STMT, errhp,
 (dvoid **)&mypard, (ub4) counter);
} /* while */
...

Examples Using OCIDescribeAny()

6-36 Oracle Call Interface Programmer's Guide

LOB and BFILE Operations 7-1

7
LOB and BFILE Operations

This chapter contains these topics:

■ Using OCI Functions for LOBs

■ Creating and Modifying Persistent LOBs

■ Associating a BFILE in a Table with an Operating System File

■ LOB Attributes of an Object

■ Array Interface for LOBs

■ Using LOBs of Size Greater than 4 GB

■ LOB and BFILE Functions in OCI

■ Temporary LOB Support

Using OCI Functions for LOBs

7-2 Oracle Call Interface Programmer's Guide

Using OCI Functions for LOBs
The OCI includes a set of functions for performing operations on large objects
(LOBs) in a database. Persistent LOBs (BLOBs, CLOBs, NCLOBs) are stored in the
database tablespaces in a way that optimizes space and provides efficient access.
These LOBs have the full transactional support of the database server. BFILEs are
large data objects stored in the server's operating system files outside the database
tablespaces.

The OCI also provides support for temporary LOBs, which can be used like local
variables for operating on LOB data.

BFILEs are read-only. Oracle supports only binary BFILEs.

Creating and Modifying Persistent LOBs
LOB instances can be either persistent (stored in the database) or temporary
(existing only in the scope of your application). Do not confuse the concept of a
persistent LOB with a persistent object.

There are two ways of creating and modifying persistent LOBs:

1. Using the Data Interface

You can create a LOB by inserting character data into a CLOB column or RAW
data into a BLOB column directly. You can also modify LOBs by using a SQL
UPDATE statement, binding character data into a CLOB column or RAW data into
a BLOB column.

See Also:

■ Appendix B, "OCI Demonstration Programs" for code samples
showing the use of LOBs.

■ $ORACLE_HOME/rdbms/demo/lobs/oci/ for specific LOB
code samples.

■ PL/SQL Packages and Types Reference for the DBMS_LOB package

■ Oracle Database Application Developer's Guide - Large Objects.

See Also: Binding LOB Data on page 5-11 for usage and examples
for both INSERT and UPDATE

LOB Attributes of an Object

LOB and BFILE Operations 7-3

2. Using the LOB locator

You create a new internal LOB by initializing a new LOB locator using
OCIDescriptorAlloc(), calling OCIAttrSet() to set it to empty (using the
OCI_ATTR_LOBEMPTY attribute), and then binding the locator to a
placeholder in an INSERT statement. Doing so inserts the empty locator into a
table with a LOB column or attribute. You can then SELECT...FOR UPDATE this
row to get the locator, and write to it using one of the OCI LOB functions.

For any LOB write command to be successful, a transaction must be open. If you
commit a transaction before writing the data, you must lock the row again (by
reissuing the SELECT...FOR UPDATE, for example), because the commit closes the
transaction.

Associating a BFILE in a Table with an Operating System File
The BFILENAME() function can be used in an INSERT statement to associate an
external server-side (operating system) file with a BFILE column/attribute in a
table. Using BFILENAME() in an UPDATE statement associates the BFILE column
or attribute with a different operating system file. OCILobFileSetName() can
also be used to associate a BFILE in a table with an operating system file.
BFILENAME() is usually used in an INSERT or UPDATE without bind variables and
OCILobFileSetName() is used for bind variables.

LOB Attributes of an Object
An OCI application can use OCIObjectNew() to create a persistent or transient
object with a LOB attribute.

Note: To modify a LOB column or attribute (write, copy, trim, and
so forth), you must lock the row containing the LOB. One way to
do this is to use a SELECT...FOR UPDATE statement to select the
locator before performing the operation.

See Also:

■ "OCILobFileSetName()" on page 16-57

■ Oracle Database Application Developer's Guide - Large Objects for
more information about the BFILENAME() function

Array Interface for LOBs

7-4 Oracle Call Interface Programmer's Guide

Writing to a LOB Attribute of an Object
It is possible to use the OCI to create a new persistent object with a LOB attribute
and write to that LOB attribute. The application would follow these steps:

1. Call OCIObjectNew() to create a persistent object with a LOB attribute.

2. Mark the object as "dirty."

3. Flush the object, thereby inserting a row into the table

4. Repin the latest version of the object (or refresh the object), thereby retrieving
the object from the database and acquiring a valid locator for the LOB

5. Call OCILobWrite() using the LOB locator in the object to write the data.

Transient Objects with LOB Attributes
An application can call OCIObjectNew() and create a transient object with an
internal LOB (BLOB, CLOB, NCLOB) attribute. However, you cannot perform any
operations, such as read or write, on the LOB attribute because transient objects
with LOB attributes are not supported. Calling OCIObjectNew() to create a
transient internal LOB type will not fail, but the application cannot use any LOB
operations with the transient LOB.

An application can, however, create a transient object with a BFILE attribute and
use the BFILE attribute to read data from a file stored in the server's file system.
The application can also call OCIObjectNew() to create a transient BFILE.

Array Interface for LOBs
You can use the OCI array interface with LOBs, just as with any other datatype.
There are two ways of using the array interface:.

1. Using the data interface

You can bind or define arrays of character data for a CLOB column or RAW data
for a BLOB column.

See Also: Chapter 10, "OCI Object-Relational Programming" and
the following chapters for more information about objects

Using LOBs of Size Greater than 4 GB

LOB and BFILE Operations 7-5

2. Using the LOB locator

When using the LOB locator you must allocate the descriptors:

/* First create an array of OCILocator pointers: */
OCILobLocator *lobp[10];

for (i=0; i < 10; i++)
{ OCIDescriptorAlloc (...,&lobp[i],...);

/* Then bind the descriptor as follows */
 OCIBindByPos(... &lobp[i], ...);
}

Using LOBs of Size Greater than 4 GB
Starting with release 10.1 of OCI, new functions were introduced to support LOBs
of size greater than 4 GB. These new functions can also be used in new applications
for LOBs of less than 4 GB.

In this guide, 4 GB is defined as 4 gigabytes -1, or 4,294,967,295 bytes. The
maximum size of a LOB (persistent or temporary) is 4,294,967,295 *
db_block_size. Because block size ranges from 2KB to 32KB, the maximum LOB
size ranges from 8 terabytes to 128 terabytes. The maximum size of a BFILE is the
maximum file size allowed in the operating system.

Because the older LOB functions use ub4 as the datatypes of some parameters and
ub4 datatype can only hold up to 4 GB. The newer functions use parameters of
8-byte length, oraub8, which is a datatype defined in oratypes.h. The datatypes
oraub8 and orasb8 are mapped to appropriate 64-bit native datatypes depending
on the compiler and operating system. Macros are used to not define oraub8 and
orasb8 if compiling in 32-bit mode with strict ANSI option.

A new function, OCILobGetStorageLimit(), is also provided. It returns the
maximum size in bytes of internal LOBs in the current installation.

See Also:

■ "Binding LOB Data" on page 5-11 for usage and examples for
both INSERT and UPDATE statements

■ "Defining LOB Data" on page 5-21 for usage and examples of
SELECT statements

Using LOBs of Size Greater than 4 GB

7-6 Oracle Call Interface Programmer's Guide

New Functions for the Increased LOB Sizes
Eight functions with names that end in "2" and use the datatype oraub8 in place of
the datatype ub4 were introduced in release 10.1. Other changes are made in the
read and write functions (OCILobRead2(), OCILobWrite2(), and
OCILobWriteAppend2()) to solve several problems:

Problem: Before release 10.1, the parameter amtp assumes either byte or char length
for LOBs based on the locator type and character set. It is complicated and users did
not have the flexibility to use byte length or char length according to their
requirements.

Solution: Read/Write calls should take both byte_amtp and char_amtp as
replacement for amtp parameter. char_amtp takes preference for CLOB and NCLOB
and byte_amtp is only considered as input if char_amtp is zero. On output for
CLOB and NCLOB, both byte_amtp and char_amtp are filled. For BLOB and
BFILE, char_amtp parameter is ignored for both input and output.

Problem: For OCILobRead2(), there is no flag to indicate polling mode. There is
no easy way for the users to say "I have a 100 byte buffer. Fill it as much as you
can". Previously, they had to estimate how many characters to specify for the
amount. If they guessed too much, they were forced into polling mode
unintentionally. The user code thus can get trapped in the polling mode and
subsequent OCI calls are all blocked.

Solution: This call should take piece as an input parameter and if
OCI_ONE_PIECE is passed, it should fill the buffer as much as possible and come
out even if the amount indicated by byte_amtp or char_amtp is more than the
buffer length. The value of bufl is used to specify the maximum amount of bytes to
read.

Problem: After calling for a LOB write in polling mode, users do not know how
many chars or bytes are actually fetched till the end of the polling.

Solution: Both byte_amtp and char_amtp needs to be updated after each call in
polling mode.

Problem: While reading or writing data in streaming mode with callback, users
have to use the same buffer for each piece of data.

Solution: The callback function needs to have two new parameters to provide a new
buffer and the buffer length. Callback function can set the new buffer parameter to
NULL to follow old behavior: to use the default buffer passed in the first call for all
the pieces.

Using LOBs of Size Greater than 4 GB

LOB and BFILE Operations 7-7

Compatibility and Migration
Existing OCI programs can be enhanced to process larger amounts of LOB data
(greater than 4GB). Table 7–1 summarizes compatibility issues ("old" refers to
releases before 10.1):

See Also:

■ "LOB Functions" on page 16-23

■ "OCILobRead2()" on page 16-87

■ "OCILobWrite2()" on page 16-101

■ "OCILobWriteAppend2()" on page 16-110

Table 7–1 LOB Functions Compatibility and Migration

LOB Function
Old Client/New or Old
Server New Client/Old Server New Client/New Server

OCILobCopy2() NA OK until LOB size, piece
size (amount) and offset
are < 4GB.

OK

OCILobCopy() OK; limit is 4GB. OK OK; limit is 4GB.

OCILobErase2() NA OK until piece size and
offset are < 4GB.

OK

OCILobErase() OK; limit is 4GB. OK OK; limit is 4GB.

OCILobGetLength2() NA OK OK

OCILobGetLength() OK; limit is 4GB. OK OK; OCI_ERROR if LOB
size > 4GB.

OCILobLoadFromFile2() NA OK until LOB size, piece
size (amount) and offset
are < 4GB.

OK

OCILobLoadFromFile() OK; limit is 4GB. OK OK; limit is 4GB.

OCILobRead2() NA OK until LOB size, piece
size (amount) and offset
are < 4GB.

OK

Using LOBs of Size Greater than 4 GB

7-8 Oracle Call Interface Programmer's Guide

OCILobRead() OK; limit 4GB.

With new server:
OCI_ERROR will be
returned if you try to
read any amount >= 4GB
from any offset < 4GB.
This is because when you
read any amount >= 4GB,
that will result in
overflow of returned value
in *amtp, and so will
be flagged as an error.

Note:

1) If you read up to 4GB-1
from offset, that will not
be flagged as an error.

2) When you use
streaming mode with
polling, no error will be
returnedifnoattemptis
made to use piece size >
4GB (you can read data >
4GB in this case).

OK OK.

OCI_ERROR will be
returned if youtry to
read any amount >= 4GB
from any
offset < 4GB. This is
becausewhenyouread
any amount >= 4GB, that
will result in
overflow of returned
value in *amtp, and so
will be flagged as an
error.

Note:

1) If you read up to
4GB-1 from offset, that
will not be flagged an as
error.

2) When the you use
streamingmodewith
polling, no error will be
returnedifnoattemptis
made to use piece size >
4GB (you can case).

OCIlobTrim2() NA OK OK

OCIlobTrim() OK; limit 4GB. OK OK; limit 4GB.

OCILobWrite2() NA OK until LOB size, piece
size (amount) and offset
are < 4GB.

OK

Table 7–1 LOB Functions Compatibility and Migration (Cont.)

LOB Function
Old Client/New or Old
Server New Client/Old Server New Client/New Server

Using LOBs of Size Greater than 4 GB

LOB and BFILE Operations 7-9

You are encouraged not to mix old and new functions because that might result in
unexpected application behavior.

Use the new functions while using the new server and client. Mixing old and new
functions can result in unexpected situations such as data written using
OCILobWrite2() being greater than 4GB if the application tries to read it with
OCILobRead() and gets only partial data (if a callback function is not used). In
most cases the application will get an error message when the size crosses 4GB and
older functions are used. However, there will be no issue if you use those older
functions for LOBs of size smaller than 4GB.

OCILobWrite() OK; limit 4GB.

With new server:

OCI_ERROR will be
returned if you write
any amount >= 4GB (from
any offset <4GB) because
that will result in overflow
of returned value in
*amtp.

Note: Updating a LOB of
10GB from any offset
up to 4GB-1 by up to
4GB-1 amount of data will
not be flagged as an error.

OK OK.

OCI_ERROR will be
returnedifyouwrite
any amount > =4GB
(from any offset < 4GB)
because that will result in
overflow of returned
value in *amtp.

Note: Updating a LOB of
10GBfromanyoffset
up to 4GB-1 by up to
4GB-1 amount of data
will not be flagged as an
error.

OCILobWriteAppend2() NA OK until LOB size and
piece size are <4GB.

OK

OCILobWriteAppend() OK; limit 4GB.

With new server:
OCI_ERROR will be
returned if you append
any amount >= 4GB of
data because that will
result in overflow of
returned value in *amtp.

OK OK; limit 4GB.

 OCI_ERROR will be
returned if you append
any amount >= 4GB of
data because that will
result in overflow of
returned value in *amtp.

OCILobGetStorageLimit() NA Error OK

Table 7–1 LOB Functions Compatibility and Migration (Cont.)

LOB Function
Old Client/New or Old
Server New Client/Old Server New Client/New Server

LOB and BFILE Functions in OCI

7-10 Oracle Call Interface Programmer's Guide

LOB and BFILE Functions in OCI
In all LOB operations that involve offsets into the data, the offset begins at 1. For
LOB operations, such as OCILobCopy(), OCILobErase(),
OCILobLoadFromFile(), and OCILobTrim(), the amount parameter is in
characters for CLOBs and NCLOBs, regardless of the client-side character set.

These LOB operations refer to the amount of LOB data on the server. When the
client-side character set is of varying width, the following general rules apply to the
amount and offset parameters in LOB calls:

■ amount - When the amount parameter refers to the server-side LOB, the
amount is in characters. When the amount parameter refers to the client-side
buffer, the amount is in bytes.

■ offset - Regardless of whether the client-side character set is varying-width,
the offset parameter is always in characters for CLOBs or NCLOBs and in bytes
for BLOBs or BFILEs.

Exceptions to these general rules are noted in the description of the specific LOB
call.

Improving LOB Read/Write Performance
Here are some hints to improve performance.

Using Data Interface For LOBs
You can bind or define character data for a CLOB column or RAW data for a BLOB
column. This requires only one round trip for inserting or selecting a LOB, as
opposed to the traditional LOB interface which requires multiple round trips.

See Also:

■ "LOB Functions" on page 16-23

■ "Buffer Expansion During OCI Binding" on page 5-34

See Also:

■ "Binding LOB Data" on page 5-11 for usage and examples for
both INSERT and UPDATE statements

■ "Defining LOB Data" on page 5-21 for usage and examples of
SELECT statements

LOB and BFILE Functions in OCI

LOB and BFILE Operations 7-11

Using OCILobGetChunkSize()
You can take advantage of the OCILobGetChunkSize() call to improve the
performance of LOB read and write operations. OCILobGetChunkSize() returns
the usable chunk size in bytes for BLOBs and in characters for CLOBs and NCLOBs.
When a read or write is done on data whose size is a multiple of the usable chunk
size and starts on a chunk boundary, performance improves. You can specify the
chunk size for a LOB column when creating a table.

Calling OCILobGetChunkSize() returns the usable chunk size of the LOB, and an
application can batch a series of write operations for the entire chunk, rather than
issuing multiple LOB write calls for the same chunk.

To read through the end of a LOB, call OCILobRead2() with an amount of 4
gigabytes. This avoids the round trip involved with first calling
OCILobGetLength().

Using OCILobWriteAppend2()
OCI provides a shortcut for more efficient writing of data to the end of a LOB. The
OCILobWriteAppend2() call appends data to the end of a LOB without first
requiring a call to OCILobGetLength() to determine the starting point for an
OCILobWrite() operation. OCILobWriteAppend2() does both steps.

LOB Buffering Functions
The Oracle OCI provides several calls for controlling LOB buffering for small reads
and writes of internal LOB values:

■ OCILobEnableBuffering()

■ OCILobDisableBuffering()

■ OCILobFlushBuffer()

These functions provide performance improvements by allowing applications using
internal LOBs (BLOB, CLOB, NCLOB) to buffer small reads and writes in client-side
buffers. This reduces the number of network round trips and LOB versions, thereby
improving LOB performance significantly.

Note: For LOBs which store varying width characters,
OCILobGetChunkSize() returns the number of Unicode
characters that fit in a LOB chunk.

LOB and BFILE Functions in OCI

7-12 Oracle Call Interface Programmer's Guide

Functions for Opening and Closing LOBs
The OCI provides functions to explicitly open a LOB, OCILobOpen(), to close a
LOB, OCILobClose(), and to test whether a LOB is open, OCILobIsOpen().
These functions mark the beginning and end of a series of LOB operations so that
specific processing such as updating indexes can be performed when a LOB is
closed.

For internal LOBs, the concept of openness is associated with a LOB and not its
locator. The locator does not store any information about the state of the LOB. It is
possible for more than one locator to point to the same open LOB. However, for
BFILEs, being open is associated with a specific locator. Hence, more than one open
can be performed on the same BFILE using different locators.

If an application does not wrap LOB operations between a set of OCILobOpen()
and OCILobClose() calls, then each modification to the LOB implicitly opens and
closes the LOB, thereby firing any triggers associated with changes to the LOB.

If LOB operations are not wrapped inside open and close calls, any extensible
indexes on the LOB are updated as LOB modifications are made, and thus are
always valid and may be used at any time. If the LOB is modified between a set of
OCILobOpen() and OCILobClose() calls, triggers are not fired for individual
LOB modifications. Triggers are only fired after the OCILobClose() call, so
indexes are not updated until after the close call and thus are not valid in between
the open and close calls. OCILobIsOpen() can be used with internal LOBs and
BFILEs.

An error is returned when you commit the transaction before closing all opened
LOBs that were opened by the transaction. When the error is returned, the LOB is
no longer marked as open, but the transaction is successfully committed. Hence, all
the changes made to the LOB and non-LOB data in the transaction are committed,
but the domain and functional indexing are not updated. If this happens, please
rebuild your functional and domain indexes on the LOB column.

See Also:

■ Oracle Database Application Developer's Guide - Large Objects. For
more information on LOB buffering, refer to the chapter on
LOBs.

■ "LOB Function Round Trips" on page C-3 Appendix B, "OCI
Demonstration Programs" or a list of the server round trips
required for each function

LOB and BFILE Functions in OCI

LOB and BFILE Operations 7-13

A LOB opened when there is no transaction must be closed before the end of the
session. If there are LOBs open at the end of session, the LOB is no longer marked as
open and the domain and functional indexing will not be updated. If this happens,
rebuild your functional and domain indexes on the LOB column.

Restrictions on Opening and Closing LOBs
The LOB opening and closing mechanism has the following restrictions:

1. An application must close all previously opened LOBs before committing a
transaction. Failing to do so will result in an error. If a transaction is rolled back,
all open LOBs are discarded along with the changes made since the LOBs are
not closed, so associated triggers are not fired.

2. While there is no limit to the number of open internal LOBs, there is a limit on
the number of open files. Refer to SESSION_MAX_OPEN_FILES parameter in
Oracle Database Reference. Assigning an already opened locator to another
locator does not count as opening a new LOB.

3. It is an error to open or close the same internal LOB twice within the same
transaction, either with different locators or the same locator.

4. It is an error to close a LOB that has not been opened.

Note: The definition of a transaction within which an open LOB
value must be closed is one of the following:

■ between SET TRANSACTION and COMMIT

■ between DATA MODIFYING DML or SELECT ... FOR
UPDATE and COMMIT.

■ within an autonomous transaction block

See Also:

■ Appendix B, "OCI Demonstration Programs" for examples of
the use of the OCILobOpen() and OCILobCLose() calls in
the online demonstration programs

■ Appendix C, "OCI Function Server Round Trips"

LOB and BFILE Functions in OCI

7-14 Oracle Call Interface Programmer's Guide

LOB Read and Write Callbacks
OCI supports read and write callback functions. The following sections describe the
use of callbacks in more detail.

The Callback Interface for Streaming
User-defined read and write callback functions for inserting or retrieving data
provide an alternative to the polling methods for streaming LOB. These functions
are implemented by you and registered with OCI through the OCILobRead2(),
OCILobWriteAppend2(), and OCILobWrite2() calls. These callback functions
are called by OCI whenever required.

Reading LOBs using Callbacks
The user-defined read callback function is registered through the OCILobRead2()
function. The callback function should have the following prototype:

CallbackFunctionName (dvoid *ctxp, CONST dvoid *bufp, oraub8 len, ub1 piece,
 dvoid **changed_bufpp, oraub8 *changed_lenp);

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobRead() function call. When the callback function is called, the information
provided by you in ctxp is passed back to you (the OCI does not use this
information on the way IN). The bufp parameter is the pointer to the storage where
the LOB data is returned and bufl is the length of this buffer. It tells you how much
data has been read into the buffer provided.

If the buffer length provided in the original OCILobRead2() call is insufficient to
store all the data returned by the server, then the user-defined callback is called. In
this case, the piece parameter indicates whether the information returned in the
buffer is the first, next or last piece.

The parameters changed_bufpp and changed_lenp can be used inside the
callback function to change the buffer dynamically. changed_bufpp should point
to the address of the changed buffer and changed_lenp should point to the length
of the changed buffer. changed_bufpp and changed_lenp need not be used
inside the callback function if the application does not change the buffer
dynamically.

The following code fragment implements read callback functions using
OCILobRead2(). Assume that lobl is a valid locator that has been previously
selected, svchp is a valid service handle and errhp is a valid error handle In the
example. The user-defined function cbk_read_lob() is repeatedly called until all
the LOB data has been read.

LOB and BFILE Functions in OCI

LOB and BFILE Operations 7-15

...
oraub8 offset = 1;
oraub8 loblen = 0;
oraub8 byte_amt = 0;
oraub8 char_amt = 0
ub1 bufp[MAXBUFLEN];

sword retval;
byte_amtp = 4294967297; /* 4 gigabytes plus 1 */

if (retval = OCILobRead2(svchp, errhp, lobl, &byte_amt, &char_amt, offset,
 (dvoid *) bufp, (oraub8) MAXBUFLEN, (dvoid *) 0, OCI_FIRST_PIECE,
 cbk_read_lob, (ub2) 0, (ub1) SQLCS_IMPLICIT))
{
 (void) printf("ERROR: OCILobRead2() LOB.\n");
 report_error();
}
...
sb4 cbk_read_lob(ctxp, bufxp, len, piece, changed_bufpp, changed_lenp)
dvoid *ctxp;
CONST dvoid *bufxp;
oraub8 len;
ub1 piece;
dvoid **changed_bufpp;
oraub8 *changed_lenp;
{
 static ub4 piece_count = 0;
 piece_count++;

 switch (piece)
 {
 case OCI_LAST_PIECE: /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece\n\n", piece_count);
 piece_count = 0;
 break;
 case OCI_FIRST_PIECE: /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece\n", piece_count);
 /* --Optional code to set changed_bufpp and changed_lenp if the
 buffer needs to be changed dynamically --*/
 break;
 case OCI_NEXT_PIECE: /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece\n", piece_count);
 /* --Optional code to set changed_bufpp and changed_lenp if the
 buffer needs to be changed dynamically --*/
 break;

LOB and BFILE Functions in OCI

7-16 Oracle Call Interface Programmer's Guide

 default:
 (void) printf("callback read error: unkown piece = %d.\n", piece);
 return OCI_ERROR;
 }
 return OCI_CONTINUE;
}

Writing LOBs using Callbacks
Similar to read callbacks, the user-defined write callback function is registered
through the OCILobWrite2() function. The callback function should have the
following prototype:

CallbackFunctionName (dvoid *ctxp, dvoid *bufp, oraub8 *lenp, ub1 *piecep,
 dvoid **changed_bufpp, oraub8 *changed_lenp)

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobWrite2() function call. The information provided by you in ctxp, is
passed back to you when the callback function is called by the OCI (the OCI does
not use this information on the way IN). The bufp parameter is the pointer to a
storage area; you provide this pointer in the call to OCILobWrite().

After inserting the data provided in the call to OCILobWrite2() any data
remaining is inserted by the user-defined callback. In the callback provide the data
to insert in the storage indicated by bufp and also specify the length in buflp. You
also indicate whether it is the next (OCI_NEXT_PIECE) or the last
(OCI_LAST_PIECE) piece using the piecep parameter. You are completely
responsible for the storage pointer the application provides and should make sure
that it does not write more than the allocated size of the storage.

The parameters changed_bufpp and changed_lenp can be used inside the
callback function to change the buffer dynamically. changed_bufpp should point
to the address of the changed buffer and changed_lenp should point to the length
of the changed buffer. changed_bufpp and changed_lenp need not be used
inside the callback function if the application does not change the buffer
dynamically.

The following code fragment implements write callback functions using
OCILobWrite2(). Assume that lobl is a valid locator that has been locked for
updating, svchp is a valid service handle, and errhp is a valid error handle. The
user-defined function cbk_write_lob() is repeatedly called until the piecep
parameter indicates that the application is providing the last piece.

...

Temporary LOB Support

LOB and BFILE Operations 7-17

ub1 bufp[MAXBUFLEN];
oraub8 byte_amt = MAXBUFLEN * 20;
oraub8 char_amt = 0;
oraub8 offset = 1;
oraub8 nbytes = MAXBUFLEN;

/*-- code to fill bufp with data goes here. nbytes should reflect the size and
should be less than or equal to MAXBUFLEN --*/
if (retval = OCILobWrite2(svchp, errhp, lobl, &byte_amt, &char_amt, offset,
 (dvoid*)bufp, (ub4)nbytes, OCI_FIRST_PIECE, (dvoid *)0, cbk_write_lob,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
{
 (void) printf("ERROR: OCILobWrite2().\n");
 report_error();
 return;
}
...
sb4 cbk_write_lob(ctxp, bufxp, lenp, piecep, changed_bufpp, changed_lenp)
dvoid *ctxp;
dvoid *bufxp;
oraub8 *lenp;
ub1 *piecep;
dvoid **changed_bufpp;
oraub8 *changed_lenp;
{
 /*-- code to fill bufxp with data goes here. *lenp should reflect the
 size and should be less than or equal to MAXBUFLEN -- */
 /* --Optional code to set changed_bufpp and changed_lenp if the
 buffer needs to be changed dynamically --*/
 if (this is the last data buffer)
 *piecep = OCI_LAST_PIECE;
 else
 *piecep = OCI_NEXT_PIECE;
 return OCI_CONTINUE;
}

Temporary LOB Support
The OCI provides functions for creating and freeing temporary LOBs,
OCILobCreateTemporary() and OCILobFreeTemporary(), and a function for
determining whether a LOB is temporary, OCILobIsTemporary().

Temporary LOB Support

7-18 Oracle Call Interface Programmer's Guide

Temporary LOBs are not permanently stored in the database, but act like local
variables for operating on LOB data. OCI functions which operate on standard
(persistent) LOBs can also be used on temporary LOBs.

As with persistent LOBs, all functions operate on the locator for the temporary LOB,
and the actual LOB data is accessed through the locator.

Temporary LOB locators can be used as arguments to the following types of SQL
statements:

■ UPDATE - The temporary LOB locator can be used as a value in a WHERE clause
when testing for nullness or as a parameter to a function. The locator can also
be used in a SET clause.

■ DELETE - The temporary LOB locator can be used in a WHERE clause when
testing for nullness or as a parameter to a function.

■ SELECT - The temporary LOB locator can be used in a WHERE clause when
testing for nullness or as a parameter to a function. The temporary LOB can also
be used as a return variable in a SELECT...INTO statement when selecting the
return value of a function.

Creating and Freeing Temporary LOBs
You create a temporary LOB with the OCILobCreateTemporary() function. The
parameters passed to this function include a value for the duration of the LOB. The
default duration is for the length of the current session. All temporary LOBs are
deleted at the end of the duration. Users can reclaim temporary LOB space by
explicitly freeing the temporary LOB with the OCILobFreeTemporary()
function. A temporary LOB is empty when it is created.

Note: If you select a permanent locator into a temporary locator,
the temporary locator is overwritten with the permanent locator. In
this case the temporary LOB is not implicitly freed. You must
explicitly free the temporary LOB before the SELECT...INTO. If
the temporary LOB is not freed explicitly, it will not be freed until
the end of its duration. Unless you have another temporary locator
pointing to the same LOB, you will no longer have a locator
pointing to the temporary LOB, because the original locator was
overwritten by the SELECT...INTO.

Temporary LOB Support

LOB and BFILE Operations 7-19

When creating a temporary LOB, you can also specify whether or not the temporary
LOB is read into the server's buffer cache.

To make a temporary LOB permanent, use OCILobCopy() to copy the data from
the temporary LOB into a permanent one. You can also use the temporary LOB in
the VALUES clause of an INSERT statement, as the source of the assignment in an
UPDATE statement, or assign it to a persistent LOB attribute and then flush the
object. Temporary LOBs can be modified using the same functions which are used
for standard LOBs.

Temporary LOB Durations
The OCI supports several predefined durations for temporary LOBs, and a set of
functions that the application can use to define application-specific durations. The
predefined durations are:

1. call, OCI_DURATION_CALL, only on the server side

2. session, OCI_DURATION_SESSION

The session duration expires when the containing session/connection ends. The call
duration expires at the end of the current OCI call.

When running in object mode, a you can also define application-specific durations.
An application-specific duration, also referred to as a user duration, is defined by
specifying the start of a duration using OCIDurationBegin() and the end of the
duration using OCIDurationEnd().

Each application-specific duration has a duration identifier that is returned by
OCIDurationBegin() and is guaranteed to be unique until OCIDurationEnd()
is called. An application-specific duration can be as long as a session duration.

At the end of a duration, all temporary LOBs associated with that duration are
freed. The descriptor associated with the temporary LOB must be freed explicitly
with the OCIDescriptorFree() call.

User-defined durations can be nested; one duration can be defined as a child
duration of another user duration. It is possible for a parent duration to have child
durations that have their own child durations.

Note: User-defined durations are only available if an application
has been initialized in object mode.

Temporary LOB Support

7-20 Oracle Call Interface Programmer's Guide

Take Care When Assigning Pointers
Special care needs to be taken when assigning OCILobLocator pointers. Pointer
assignments create a shallow copy of the LOB. After the pointer assignment, source
and target LOBs point to the same copy of data. This behavior is different from
using LOB APIs, such as OCILobAssign() or OCILobLocatorAssign() to
perform assignments.

When the APIs are used, the locators logically point to independent copies of data
after assignment.

For temporary LOBs, before pointer assignments, it is your responsibility to make
sure any temporary LOB in the target LOB locator is freed by
OCIFreeTemporary(). When OCILobLocatorAssign() is used, the original
temporary LOB in the target LOB locator variable, if any, is freed before the
assignment happens.

Before an out-bind variable is reused in executing a SQL statement, it is your
responsibility to free any temporary LOB in the existing out-bind LOB locator
buffer via OCIFreeTemporary() call.

Temporary LOB Example
The following code example shows how temporary LOBs can be used:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

/* Function Prototype */

Note: When a duration is started with OCIDurationBegin(),
one of the parameters is the identifier of a parent duration. When a
parent duration is ended, all child durations are also ended.

See Also:

■ Oracle Database Application Developer's Guide - Large Objects,
"Temporary LOB Performance Guidelines" section.

■ Oracle Database Application Developer's Guide - Large Objects,
discussion on optimal performance of temporary LOBS.

Temporary LOB Support

LOB and BFILE Operations 7-21

static void checkerr (/*_ OCIError *errhp, sword status _*/);
sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp);
/* This function reads in a single video Frame from the print_media table.
Then it creates a temporary lob. The temporary LOB which is created is read
through the CACHE, and is automatically cleaned up at the end of the user's
session, if it is not explicitly freed sooner. This function returns OCI_SUCCESS
if it completes successfully or OCI_ERROR if it fails. */

sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIDefine *defnp1;
 OCIBind *bndhp;
 text *sqlstmt;
 int rowind =1;
 ub4 loblen = 0;
 OCILobLocator *tblob;
 printf ("in select_and_createtemp \n");
 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0,
 (dvoid**)0))
 {
 printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
 return OCI_ERROR;
 }
 /* arbitrarily select where Clip_ID =1 */
 sqlstmt = (text *)"SELECT Frame FROM print_media WHERE product_ID = 1
FOR \
 UPDATE";
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }
 /* Define for BLOB */
 if (OCIDefineByPos(stmthp,

Temporary LOB Support

7-22 Oracle Call Interface Programmer's Guide

 &defnp1,
 errhp,
 (ub4) 1,
 (dvoid *) &lob_loc,
 (sb4)0,
 (ub2) SQLT_BLOB,
 (dvoid *) 0,
 (ub2 *) 0,
 (ub2 *) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: Select locator: OCIDefineByPos()\n");
 return OCI_ERROR;
 }
 /* Execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return OCI_ERROR;
 }
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return OCI_ERROR;
 }
 if (OCILobGetLength(svchp, errhp, lob_loc, &loblen) != OCI_SUCCESS)
 {
 printf("OCILobGetLength FAILED\n");
 return OCI_ERROR;
 }
 if (OCILobCopy(svchp, errhp, tblob,lob_loc,(ub4)loblen, (ub4) 1, (ub4) 1))
 {
 printf("OCILobCopy FAILED \n");
 }
 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call \n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}
int main(char *argv, int argc)
{

Temporary LOB Support

LOB and BFILE Operations 7-23

 /* OCI Handles */
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *clob, *blob;
 OCILobLocator *lob_loc;
 int type =1;
 /* Initialize and Logon */
 OCIEnvCreate(&envhp, OCI_DEFAULT, (dvoid *)0, 0, 0, 0,
 (size_t)0, (dvoid *)0);
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);
 /* server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);
 /* service context */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);
 /* attach to Oracle */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);
 /* set attribute server context in the service context */
 (void) OCIAttrSet ((dvoid *) svchp, OCI_HTYPE_SVCCTX,
 (dvoid *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);
 (void) OCIHandleAlloc((dvoid *) envhp,
 (dvoid **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "scott", (ub4)5,
 (ub4) OCI_ATTR_USERNAME, errhp);
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "tiger", (ub4) 5,
 (ub4) OCI_ATTR_PASSWORD, errhp);
 /* Begin a User Session */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));
 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);
 /* ------- Done loggin in ----------------------------------*/
 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,

Temporary LOB Support

7-24 Oracle Call Interface Programmer's Guide

 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));
 checkerr(errhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&lob_loc,
 (ub4) OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0));
 /* Subroutine calls begin here */
 printf("calling select_and_createtemp\n");
 select_and_createtemp (lob_loc, errhp, svchp,stmthp,envhp);
 return 0;
}
void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;
 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

Managing Scalable Platforms 8-1

8
Managing Scalable Platforms

This chapter contains these topics:

■ OCI Support for Transactions

■ Levels of Transactional Complexity

■ Password and Session Management

■ Middle-Tier Applications in OCI

■ Externally Initialized Context in OCI

OCI Support for Transactions

8-2 Oracle Call Interface Programmer's Guide

OCI Support for Transactions
OCI has a set of API calls to support operations on both local and global
transactions. These calls include object support, so that if an OCI application is
running in object mode, the commit and rollback calls will synchronize the object
cache with the state of the transaction.

The functions listed later perform transaction operations. Each call takes a service
context handle that must be initialized with the proper server context and user
session handle. The transaction handle is the third element of the service context; it
stores specific information related to a transaction. When a SQL statement is
prepared, it is associated with a particular service context. When the statement is
executed, its effects (query, fetch, insert) become part of the transaction that is
currently associated with the service context.

■ OCITransStart() - marks the start of a transaction

■ OCITransDetach() - detaches a transaction

■ OCITransCommit() - commits a transaction

■ OCITransRollback() - rolls back a transaction

■ OCITransPrepare() - prepares a transaction to be committed in a distributed
processing environment

■ OCITransMultiPrepare() - prepares a transaction with multiple branches
in a single call.

■ OCITransForget() - causes the server to forget a heuristically completed
global transaction.

Depending on the level of transactional complexity in your application, you may
need all or only a few of these calls. The following section discusses this in more
detail.

Levels of Transactional Complexity
The OCI supports several levels of transaction complexity.

■ Simple Local Transactions

■ Serializable or Read-Only Local Transactions

■ Global Transactions

See Also: "Transaction Functions" on page 16-197

Levels of Transactional Complexity

Managing Scalable Platforms 8-3

Simple Local Transactions
Many applications work with only simple local transactions. In these applications,
an implicit transaction is created when the application makes database changes. The
only transaction-specific calls needed by such applications are:

■ OCITransCommit() - to commit the transaction

■ OCITransRollback() - to roll back the transaction

As soon as one transaction has been committed or rolled back, the next modification
to the database creates a new implicit transaction for the application.

Only one implicit transaction can be active at any time on a service context.
Attributes of the implicit transaction are opaque to the user.

If an application creates multiple sessions, each one can have an implicit transaction
associated with it.

Serializable or Read-Only Local Transactions
Applications requiring serializable or read-only transactions require an additional
OCI OCITransStart() call to start the transaction.

The OCITransStart() call must specify OCI_TRANS_SERIALIZABLE or
OCI_TRANS_READONLY, as appropriate, for the flags parameter. If no flag is
specified, the default value is OCI_TRANS_READWRITE for a standard read/write
transaction.

Specifying the read-only option in the OCITransStart() call saves the
application from performing a server round trip to execute a SET TRANSACTION
READ ONLY statement.

Global Transactions
Global transactions are necessary only in more sophisticated transaction-processing
applications.

Transaction Identifiers
Three-tier applications such as transaction processing (TP) monitors create and
manage global transactions. They supply a global transaction identifier (XID), that a
server then associates with a local transaction.

See Also: OCITransCommit() on page 16-198 for sample code
showing the use of simple local transactions

Levels of Transactional Complexity

8-4 Oracle Call Interface Programmer's Guide

A global transaction has one or more branches. Each branch is identified by an XID.
The XID consists of a global transaction identifier (gtrid) and a branch qualifier
(bqual). This structure is based on the standard XA specification.

For example, the following is the structure for one possible XID of 1234:

The transaction identifier used by OCI transaction calls is set in the OCI_ATTR_XID
attribute of the transaction handle, using OCIAttrSet(). Alternately, the
transaction can be identified by a name set in the OCI_ATTR_TRANS_NAME
attribute.

Attribute OCI_ATTR_TRANS_NAME
When setting this attribute in a transaction handle, the length of the name can be at
most 64 bytes. The formatid of the XID is 0 and the branch qualifier is 0.

When retrieving this attribute from a transaction handle, the returned transaction
name is the global transaction identifier. The size is the length of the global
transaction identifier.

Transaction Branches
Within a single global transaction, Oracle supports both tightly coupled and loosely
coupled relationships between a pair of branches.

■ Tightly coupled branches share the same local transaction. In this case, the
gtrid references a unique local transaction, and multiple branches point to
that same transaction. The owner of the transaction is the branch that was
created first.

■ Loosely coupled branches use different local transactions. In this case the
gtrid and bqual together map to a unique local transaction. Each branch
points to a different transaction.

Table 8–1 Global transaction Identifier

Component Value

gtrid 12

bqual 34

gtrid+bqual=XID 1234

See Also: Oracle Heterogeneous Connectivity Administrator's Guide
for more information about transaction identifiers

Levels of Transactional Complexity

Managing Scalable Platforms 8-5

The flags parameter of OCITransStart() allows applications to pass
OCI_TRANS_TIGHT or OCI_TRANS_LOOSE to specify the type of coupling.

A session corresponds to a user session, created with OCISessionBegin().

Figure 8–1 illustrates tightly coupled branches within an application. S1 and S2, are
sessions, B1 and B2 are branches, and T is a transaction. The XIDs of the two
branches share the same gtrid, because they are operating on the same
transaction, but they have a different bqual, because they are on separate branches

Figure 8–1 Multiple Tightly Coupled Branches

Figure 8–2 illustrates how a single session operates on different branches. The gtrid
component of the XIDs are different, because they represent separate global
transactions

Session

Branch

Transact ion
T

B1

S1

B2

S2

Levels of Transactional Complexity

8-6 Oracle Call Interface Programmer's Guide

Figure 8–2 Session Operating on Multiple Branches

It is possible for a single session to operate on multiple branches that share the same
transaction, but this scenario does not have much practical value.

Branch States
Transaction branches are classified into two states: active branches and inactive
branches.

A branch is active if a server process is executing requests on the branch. A branch
is inactive if no server processes are executing requests in the branch. In this case,
no session is the parent of the branch, and the branch becomes owned by the PMON
process in the server.

Detaching and Resuming Branches
A branch becomes inactive when an OCI application detaches it, using the
OCITransDetach() call. The branch can be made active again by resuming it with
a call to OCITransStart() with the flags parameter set to
OCI_TRANS_RESUME.

When an application detaches a branch with OCITransDetach(), it uses the value
specified in the timeout parameter of the OCITransStart() call that created the
branch. The timeout specifies the number of seconds the transaction can remain
dormant as a child of PMON before being deleted.

See Also: OCITransStart() on page 16-207 for sample code
demonstrating this scenario

Session

Branch

Transact ion

T1 T2

B1

S1

B2

Levels of Transactional Complexity

Managing Scalable Platforms 8-7

When an application wants to resume a branch, it calls OCITransStart(),
specifying the XID of the branch as an attribute of the transaction handle,
OCI_TRANS_RESUME for the flags parameter, and a different timeout
parameter. This timeout value for this call specifies the length of time that the
session will wait for the branch to become available if it is currently in use by
another process. If no other processes are accessing the branch, it can be resumed
immediately. A transaction can be resumed by a different process than the one that
detached it, as long as that process has the same authorization as the one that
detached the transaction.

Setting Client Database Name
The server handle has OCI_ATTR_EXTERNAL_NAME and
OCI_ATTR_INTERNAL_NAME attributes. These attributes set the client database
name recorded when performing global transactions. The name can be used by the
database administrator to track transactions that may be pending in a prepared
state because of failures.

One-Phase Versus Two-Phase Commit
Global transactions may be committed in one or two phases. The simplest situation
is when a single transaction is operating against a single database. In this case, the
application can perform a one-phase commit of the transaction by calling
OCITransCommit() because the default value of the call is for one-phase commit.

The situation is more complicated if the application is processing transactions
against multiple databases or multiple Oracle servers. In this case, a two-phase
commit is necessary. A two-phase commit consists of these steps:

1. Prepare - The application issues OCITransPrepare() call against each
transaction. The transactions return a value indicating whether it is able to
commit its current work (OCI_SUCCESS) or not (OCI_ERROR).

2. Commit - If each OCITransPrepare() call returns a value of OCI_SUCCESS,
the application can issue a OCITransCommit() call to each transaction. The
flags parameter of the commit call must be explicitly set to
OCI_TRANS_TWOPHASE for the appropriate behavior, since the default for
this call is for a one-phase commit.

Caution: An OCI application sets these attributes, using
OCIAttrSet() before logging on and using global transactions.

Levels of Transactional Complexity

8-8 Oracle Call Interface Programmer's Guide

An additional call, OCITransForget(), indicates that a database "forgets" a
completed transaction. This call is for situations in which a problem has occurred
that requires that a two-phase commit be aborted. When a server receives a
OCITransForget() call, it removes all information about the transaction.

Preparing Multiple Branches in a Single Message
There are times when multiple applications will be using different branches of a
global transaction against the same Oracle database. Before such a transaction can
be committed, all branches must be prepared.

Most often, the applications using the branches are responsible for preparing their
own branches. However, some architectures turn this responsibility over to an
external transaction service. This external transaction service must then prepare
each branch of the global transaction. Using the traditional OCITransPrepare()
call becomes inefficient as each branch must be individually prepared. The number
of messages sent from the client to the server can be greatly reduced by using the
OCITransMultiPrepare() call, that prepares multiple branches involved in the
same global transaction in one round trip.

Transaction Examples
Here is how to use the transaction OCI calls:

The following tables show series of OCI calls and other actions, along with their
resulting behavior. For the sake of simplicity, not all parameters to these calls are
listed; rather, the flow of calls which is being demonstrated.

The OCI Action column indicates what the OCI application is doing, or what call it
is making. The XID column lists the transaction identifier, when necessary. The
Flags column lists the values passed in the flags parameter. The Result column
describes the result of the call.

Initialization Parameters
Two initialization parameters relate to the use of global transaction branches and
migratable open connections:

Note: The OCITransPrepare() call can also return
OCI_SUCCESS_WITH_INFO if a transaction needs to indicate that
it is read-only. This means that a commit is neither appropriate nor
necessary.

Levels of Transactional Complexity

Managing Scalable Platforms 8-9

■ TRANSACTIONS - This parameter specifies the maximum number of global
transaction branches in the entire system. In contrast, the maximum number of
branches on a single global transaction is 8.

■ OPEN_LINKS_PER_INSTANCE - This parameter specifies the maximum
number of migratable open connections. Migratable open connections are used
by global transactions to cache connections after committing a
transaction.Contrast this with the OPEN_LINKS parameter, that controls the
number of connections from a session and is not applicable to applications that
use global transactions.

Update Successfully, One-Phase Commit
Here is a list of the steps:

Start a Transaction, Detach, Resume, Prepare, Two-Phase Commit
Here is a list of the steps:

Table 8–2 One-Phase Commit

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW Starts new read/write transaction

2 SQL UPDATE - - Update rows

3 OCITransCommit - - Commit succeeds

Table 8–3 Two-Phase Commit

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW Starts new read-only transaction

2 SQL UPDATE - - Update rows

3 OCITransDetach - - Transaction is detached

4 OCITransStart 1234 OCI_TRANS_RESUME Transaction is resumed

5 SQL UPDATE - - -

6 OCITransPrepare - - Transaction prepared for two-phase
commit

7 OCITransCommit - OCI_TRANS_TWOPHASE Transaction is committed.

Note: In step 4, the transaction can be resumed by a different process, as long as it had the same authorization.

Password and Session Management

8-10 Oracle Call Interface Programmer's Guide

Read-Only Update Fails
Here is a list of the steps:

Start a Read-Only Transaction, Select and Commit
Here is a list of the steps:

Password and Session Management
The OCI has the ability to authenticate and maintain multiple users.

OCI Authentication Management
The OCISessionBegin() call authenticates a user against the server set in the
service context handle. It must be the first call for any given server handle.
OCISessionBegin() authenticates the user for access to the Oracle server
specified by the server handle and the service context of the call: after
OCIServerAttach() initializes a server handle, OCISessionBegin() must be
called to authenticate the user for that server.

When OCISessionBegin() is called for the first time on a server handle, the user
session may not be created in migratable mode (OCI_MIGRATE). After

Table 8–4 Read-Only Update Fails

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY

Starts new read-only transaction

2 SQL UPDATE - - Update fails, because transaction is
read-only

3 OCITransCommit - - Commit has no effect

Table 8–5 Read-Only Transaction

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY

Starts new read-only transaction

2 SQL SELECT - - Query database

3 OCITransCommit - - No effect — transaction is read-only,
no changes made

Password and Session Management

Managing Scalable Platforms 8-11

OCISessionBegin() has been called for a server handle, the application may call
OCISessionBegin() again to initialize another user session handle with different
or the same credentials and different or the same operation modes. If an application
wants to authenticate a user in OCI_MIGRATE mode, the service handle must
already be associated with a non-migratable user handle. The userid of that user
handle becomes the ownership ID of the migratable user session. Every migratable
session must have a non-migratable parent session.

■ If the OCI_MIGRATE mode is not specified, then the user session context can be
used only with the server handle used with the OCISessionBegin().

■ If OCI_MIGRATE mode is specified, then the user authentication can be set
with other server handles. However, the user session context may only be used
with server handles that resolve to the same database instance. Security
checking is performed during session switching.

A migratable session can switch to a different server handle only if the ownership
ID of the session matches the userid of a non-migratable session currently
connected to that same server.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH settings can only be used
with a primary user session context.

A migratable session can be switched, or migrated, to a server handle within an
environment represented by an environment handle. It can also migrate or be
cloned, to a server handle in another environment in the same process, or in a
different process in a different mode. To perform this migration, or cloning, you
need to do the following:

1. Extract the session id from the session handle using OCI_ATTR_MIGSESSION.
This is an array of bytes that must not be modified by the caller.

2. Transport this session id to another process.

3. In the new environment, create a session handle and set the session id using
OCI_ATTR_MIGSESSION.

4. Execute OCISessionBegin(). The resulting session handle is
fully-authenticated.

To provide credentials for a call to OCISessionBegin(), you must provide a valid
user name and password pair for database authentication in the user session handle
parameter. This involves using OCIAttrSet() to set the OCI_ATTR_USERNAME

See Also: OCI_ATTR_MIGSESSION on page A-20

Password and Session Management

8-12 Oracle Call Interface Programmer's Guide

and OCI_ATTR_PASSWORD attributes on the user session handle. Then
OCISessionBegin() is called with OCI_CRED_RDBMS.

When the user session handle is terminated using OCISessionEnd(), the user
name and password attributes are changed and thus cannot be re-used in a future
call to OCISessionBegin(). They must be reset to new values before the next
OCISessionBegin() call.

Or, you can supply external credentials. No attributes need to be set on the user
session handle before calling OCISessionBegin(). The credential type is
OCI_CRED_EXT. If values have been set for OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD, then these are ignored if OCI_CRED_EXT is used.

OCI Password Management
The OCIPasswordChange() call enables an application to modify a user's
database password as necessary. This is particularly useful if a call to
OCISessionBegin() returns an error message or warning indicating that a user's
password has expired.

Applications can also use OCIPasswordChange() to establish a user
authentication context, and to change the password. If OCIPasswordChange() is
called with an uninitialized service context, it establishes a service context and
authenticates the user's account using the old password, and then changes the
password to the new password. If the OCI_AUTH flag is set, it leaves the user
session initialized. Otherwise, the user session is cleared.

If the service context passed to OCIPasswordChange() is already initialized, then
OCIPasswordChange() authenticates the given account using the old password
and changes the password to the new password. In this case, no matter how the flag
is set, the user session remains initialized.

OCI Session Management
Transaction servers that actively balance user load by multiplexing user sessions
over a few server connections must group these connections into a server group.
Oracle uses server groups to identify these connections so that sessions can be
managed effectively and securely.

The attribute OCI_ATTR_SERVER_GROUP must be defined to specify the server
group name using the OCIAttrSet() call:

OCIAttrSet ((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER, (dvoid *) group_name,
 (ub4) strlen ((CONST char *) group_name),
 (ub4) OCI_ATTR_SERVER_GROUP, errhp);

Middle-Tier Applications in OCI

Managing Scalable Platforms 8-13

The server group name is an alphanumeric string not exceeding 30 characters.
OCI_ATTR_SERVER_GROUP attribute must be set in the server context prior to
creating the first non-migratable session that uses that context. After the session is
created successfully and the connection to the server is established, the server group
name cannot be changed.

All migratable sessions created on servers within a server group can only migrate to
other servers in the same server group. Servers that terminate will get removed
from the server group. New servers may be created within an existing server group
at any time.

The use of server groups is optional. If no server group is specified, the server is
created in a server group called DEFAULT.

The owner of the first non-migratable session created in a non-default server group
becomes the owner of the server group. All subsequent non-migratable sessions for
any server in this server group must be created by the owner of the server group.

The server group feature is useful when dedicated servers are used. It has no effect
on shared servers. All shared servers effectively belong to the server group
DEFAULT.

Middle-Tier Applications in OCI
A middle-tier application receives requests from browser clients and determines
database access and whether to generate an HTML page. Applications can have
multiple lightweight user sessions within a single database session. These
lightweight sessions allow each user to be authenticated, without the overhead of a
separate database connection, and preserve the identity of the real user through the
middle tier.

As long as the client authenticates itself with the middle tier and the middle tier
authenticates itself with the database, and the middle tier is authorized to act on
behalf of the client by the administrator, client identities can be maintained all the
way into the database without compromising the security of the client.

The design of a secure three-tier architecture is developed around a set of three trust
zones.

The first is the client trust zone.Clients connecting to a Web application server are
authenticated by the middle tier using any means: password, cryptographic token,

See Also: OCI_ATTR_SERVER_GROUP on page A-15

Middle-Tier Applications in OCI

8-14 Oracle Call Interface Programmer's Guide

or another. This method may be entirely different from the method used to establish
the other trust zones.

The second trust zone is the application server. The data server verifies the identity
of the application server and trusts it to pass the correct identity of the client.

The third trust zone is the data server interaction with the authorization server to
obtain the roles assigned to the client and the application server.

The application server creates a primary session for itself once it connects to a
server. It authenticates itself in the normal manner to the database, creating the
application server trust zone. The application server identity is now well known
and trusted by the data server.

When the application verifies the identity of a client connecting to the application
server, it creates the first trust zone. The application server now needs a session
handle for the client so that it can service client requests. The middle-tier process
allocates a session handle and then sets the following attributes of the client using
OCIAttrSet():

■ OCI_ATTR_USERNAME to set the database user name of the client.

■ OCI_ATTR_PROXY_CREDENTIALS to indicate the authenticated application
making the proxy request.

If the application server wants to specify a list of roles activated after it connects as
the client, it can call OCIAttrSet() with the attribute
OCI_ATTR_INITIAL_CLIENT_ROLES and an array of strings that contains the list
of roles prior to OCISessionBegin(). Then the role is established and proxy
capability verified in one round trip. If the application server is not allowed to act
on behalf of the client or if the application server is not allowed to activate the
specified roles, the OCISessionBegin() call will fail.

OCI Attributes for Middle-Tier Applications
The following attributes allow you to specify the external name and initial
privileges of a client. These credentials are used by applications as alternative
means of identifying or authenticating the client.

OCI_CRED_PROXY
Use OCI_CRED_PROXY as the value passed in the credt parameter of
OCISessionBegin() when an application server starts a session on behalf of a
client, rather than OCI_CRED_RDBMS (database user name and password
required) or OCI_CRED_EXT (externally provided credentials).

Middle-Tier Applications in OCI

Managing Scalable Platforms 8-15

OCI_ATTR_PROXY_CREDENTIALS
Use this attribute to specify the credentials of the application server in client
authentication. You can code the following declarations and OCIAttrSet() call:

OCISession *session_handle;
OCISvcCtx *application_server_session_handle;
OCIError *error_handle;
...
OCIAttrSet((dvoid *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)application_server_session_handle, (ub4) 0,
 OCI_ATTR_PROXY_CREDENTIALS, error_handle);

OCI_ATTR_DISTINGUISHED_NAME
Your applications can use the distinguished name contained within a X.509
certificate as the login name of the client, instead of the database user name.

To pass the distinguished name of the client, the middle-tier server calls
OCIAttrSet(), passing OCI_ATTR_DISTINGUISHED_NAME:

/* Declarations */
...
OCIAttrSet((dvoid *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)distinguished_name, (ub4) 0,
 OCI_ATTR_DISTINGUISHED_NAME, error_handle);

OCI_ATTR_CERTIFICATE
This method of authentication is similar to the use of distinguished name. The
entire X.509 certificate is passed by the middle-tier server to the database.

To pass over the entire certificate, the middle tier calls OCIAttrSet(), passing
OCI_ATTR_CERTIFICATE:

OCIAttrSet((dvoid *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)certificate, ub4 certificate_length,
 OCI_ATTR_CERTIFICATE, error_handle);

If the certificate type is passed over with the certificate, the middle tier calls
OCIAttrSet(), passing OCI_ATTR_CERTIFICATE_TYPE:

OCIAttrSet((dvoid *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)certificate_type,
 ub4 certificate_type_length, OCI_ATTR_CERTIFICATE_TYPE,
 error_handle);

Middle-Tier Applications in OCI

8-16 Oracle Call Interface Programmer's Guide

If the type is not specified, then the server will use its default certificate type of
X.509.

OCI_ATTR_INITIAL_CLIENT_ROLES
Use the OCI_ATTR_INITIAL_CLIENT_ROLES attribute to specify the roles the
client is to possess when the application server connects to the Oracle server. To
enable a set of roles, the function OCIAttrSet() is called with the attribute, an
array of NULL-terminated strings and the number of strings in the array:

OCIAttrSet((dvoid *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)role_array, ub4 number_of_strings,
 OCI_ATTR_INITIAL_CLIENT_ROLES, error_handle);

OCI_ATTR_CLIENT_IDENTIFIER
Many middle tier applications connect to the database as an application, and rely on
the middle-tier to track end user identity. To integrate tracking of these end users in
various database components, the database client can set the client identifier (a
predefined attribute from the application context namespace USERENV) in the
session handle at any time. Use the OCI attribute OCI_ATTR_CLIENT_IDENTIFIER
in the call to OCIAttrSet(). On the next request to the server, the information is
propagated and stored in the server session.

To support the global application context, the client can set the
CLIENT_IDENTIFIER (a predefined attribute from the application context
namespace USERENV) in the session handle at any time. Use the OCI attribute
OCI_ATTR_CLIENT_IDENTIFIER in the call to OCIAttrSet(). On the next
request to the server, the information is propagated and stored in the server session.

OCIAttrSet((dvoid *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)"janedoe", (ub4)strlen("janedoe"),
 OCI_ATTR_CLIENT_IDENTIFIER, error_handle);

When a client has multiple session, execute OCIAttrSet() for each session using
the same client identifier. OCIAttrSet() must be executed automatically for each
process when the session is reconnected in the event that sessions:

■ are migrated across instances

■ span instances using dblinks

■ are pre-connected using TAF PRECONNECT

■ use TAF BASIC

Middle-Tier Applications in OCI

Managing Scalable Platforms 8-17

The client identifier is found in V$SESSION as a CLIENT_IDENTIFIER column or
through the system context with this SQL statement:

SELECT sys_context('userenv', 'client_identifier') FROM dual;

OCI_ATTR_PASSWORD
A middle-tier can ask the database server to authenticate a client on its behalf by
validating the password of the client rather than doing the authentication itself.
While it appears that this is the same as a client/server connection, the client does
not have to have Oracle software installed on the client's system to be able to
perform database operations. To use the password of the client, the application
server supplies OCIAttrSet() with the authentication data, using the existing
attribute OCI_ATTR_PASSWORD:

OCIAttrSet((dvoid *)session_handle, (ub4) OCI_HTYPE_SESSION, (dvoid *)password,
 (ub4)0, OCI_ATTR_PASSWORD, error_handle);

OCI Middle-Tier Example
Here is a middle-tier example:

...
*OCIEnv *environment_handle;
OCIServer *data_server_handle;
OCIError *error_handle;
OCISvcCtx *application_server_service_handle;
OraText *client_roles[2];
OCISession *first_client_session_handle, second_client_session_handle;
...
/*
** General initialization and allocation of contexts.
*/

(void) OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);

See Also: Oracle Database Security Guide the chapter on Preserving
User Identity in Multitiered Environments

See Also: "User Session Handle Attributes" on page A-16

Middle-Tier Applications in OCI

8-18 Oracle Call Interface Programmer's Guide

(void) OCIEnvInit((OCIEnv **) &environment_handle, OCI_DEFAULT, (size_t) 0,
 (dvoid **) 0);
(void) OCIHandleAlloc((dvoid *) environment_handle, (dvoid **) &error_handle,
 OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0);
/*
** Allocate and initialize the server and service contexts used by the
** application server.
*/

(void) OCIHandleAlloc((dvoid *) environment_handle,
(dvoid **)&data_server_handle, OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0);

(void) OCIHandleAlloc((dvoid *) environment_handle, (dvoid **)
 &application_server_service_handle, OCI_HTYPE_SVCCTX, (size_t) 0,
 (dvoid **) 0);
(void) OCIAttrSet((dvoid *) application_server_service_handle,
 OCI_HTYPE_SVCCTX, (dvoid *) data_server_handle, (ub4) 0, OCI_ATTR_SERVER,
 error_handle);
/*
** Authenticate the application server. In this case, external authentication is
** being used.
*/

(void) OCIHandleAlloc((dvoid *) environment_handle,
 (dvoid **)&application_server_session_handle, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);
checkerr(error_handle, OCISessionBegin(application_server_service_handle,
 error_handle, application_server_session_handle, OCI_CRED_EXT,
 OCI_DEFAULT));
/*
** Authenticate the first client ** Note that no password is specified by the
** application server for the client as it is trusted.
*/

(void) OCIHandleAlloc((dvoid *) environment_handle,
 (dvoid **)&first_client_session_handle, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0,(dvoid **) 0);
(void) OCIAttrSet((dvoid *) first_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (dvoid *) "jeff", (ub4) strlen("jeff"),
 OCI_ATTR_USERNAME, error_handle);
/*
** In place of specifying a password, pass the session handle of the application
** server instead.
*/

(void) OCIAttrSet((dvoid *) first_client_session_handle,

Middle-Tier Applications in OCI

Managing Scalable Platforms 8-19

 (ub4) OCI_HTYPE_SESSION, (dvoid *) application_server_session_handle,
 (ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);
(void) OCIAttrSet((dvoid *) first_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (dvoid *) "jeff@VeryBigBank.com",
 (ub4) strlen("jeff@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
 error_handle);
/*
** Establish the roles that the application server can use as the client.
*/

client_roles[0] = (OraText *) "TELLER";
client_roles[1] = (OraText *) "SUPERVISOR";
(void) OCIAttrSet((dvoid *) first_client_session_handle,
 OCI_ATTR_INITIAL_CLIENT_ROLES, error_handle);
checkerr(error_handle, OCISessionBegin(application_server_service_handle,
 error_handle, first_client_session_handle, OCI_CRED_PROXY, OCI_DEFAULT));
/*
** To start a session as another client, the application server does the
** following. It must be
** noted this code is unchanged from the current way of doing session switching.
*/

(void) OCIHandleAlloc((dvoid *) environment_handle,
 (dvoid **)&second_client_session_handle, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);
(void) OCIAttrSet((dvoid *) second_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (dvoid *) "mutt", (ub4) strlen("mutt"),
 OCI_ATTR_USERNAME, error_handle);
(void) OCIAttrSet((dvoid *) second_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (dvoid *) application_server_session_handle,
 (ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);
(void) OCIAttrSet((dvoid *) second_client_session_handle,
 (ub4) OCI_HTYPE_SESSION, (dvoid *) "mutt@VeryBigBank.com",
 (ub4) strlen("mutt@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
 error_handle);
/*
** Note that the application server has not specified any initial roles to have
** as the second client.
*/

checkerr(error_handle, OCISessionBegin(application_server_service_handle,
 error_handle, second_client_session_handle, OCI_CRED_PROXY, OCI_DEFAULT));
/*
** To switch to the first user, the application server applies the session
** handle obtained by the first

Middle-Tier Applications in OCI

8-20 Oracle Call Interface Programmer's Guide

** OCISessionBegin() call. This is the same as is currently done.
*/

(void) OCIAttrSet((dvoid *)application_server_service_handle,
 (ub4) OCI_HTYPE_SVCCTX, (dvoid *)first_client_session_handle,
 (ub4)0, (ub4)OCI_ATTR_SESSION, error_handle);
/*
** After doing some operations, the application server can switch to
** the second client. That
** is be done by the following call:
*/

(void) OCIAttrSet((dvoid *)application_server_service_handle,
 (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *)second_client_session_handle, (ub4)0, (ub4)OCI_ATTR_SESSION,
 error_handle);
/*
** and then do operations as that client
*/
...

End-to-End Application Tracing
Use the following attributes to measure server call time, not including server round
trips. These attributes can also be set using the PL/SQL package
DBMS_APPLICATION_INFO which incurs one round trip to the server. Using OCI
to set the attributes does not incur a round trip.

OCI_ATTR_COLLECT_CALL_TIME
Set a boolean variable to TRUE or FALSE. Then, after you set this attribute by
calling OCIAttrSet(), the server measures each call time. All server times
between setting the variable to TRUE and setting it to FALSE are measured.

OCI_ATTR_CALL_TIME
The elapsed time, in milliseconds, of the last server call is returned in a ub8 variable
by calling OCIAttrGet() with this attribute. The following code snippet shows
how to do this:

boolean enable_call_time;
ub8 call_time;
...
enable_call_time = TRUE;
OCIAttrSet(session, OCI_HTYPE_SESSION, (dvoid *)&enable_call_time,

Externally Initialized Context in OCI

Managing Scalable Platforms 8-21

 (ub4)0, OCI_ATTR_COLLECT_CALL_TIME,
 (OCIError *)error_handle);
OCIStmtExecute(...);
OCIAttrGet(session, OCI_HTYPE_SESSION, (dvoid *)&call_time,
 (ub4)0, OCI_ATTR_CALL_TIME,
 (OCIError *)error_handle);
...

Attributes for End-to-end Application Tracing
Set these attributes for tracing and debugging applications:

■ OCI_ATTR_MODULE - name of the current module in the client application

■ OCI_ATTR_ACTION -name of the current action within the current module.
Set to NULL if you do not want to specify an action.

■ OCI_ATTR_CLIENT_INFO - Client application additional information.

Externally Initialized Context in OCI
An externally initialized context is an application context where attributes can be
initialized from OCI. Use the SQL statement CREATE CONTEXT to create a context
namespace in the server with the option INITIALIZED EXTERNALLY.

Then, you can initialize an OCI interface when establishing a session using
OCIAttrSet() and OCISessionBegin(). Issue subsequent commands to write
to any attributes inside the namespace only with the PL/SQL package designated in
the CREATE CONTEXT statement.

You are able to set default values and other session attributes through the
OCISessionBegin() call, thus reducing server round trips.

See Also: "User Session Handle Attributes" on page A-16

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals, the
chapter on Establishing Security

■ Oracle Database SQL Reference, the CREATE CONTEXT statement
and the SYS_CONTEXT function

Externally Initialized Context in OCI

8-22 Oracle Call Interface Programmer's Guide

Externally Initialized Context Attributes in OCI
The client applications you develop can set application contexts explicitly in the
session handle before authentication, using the following attributes in OCI
functions:

OCI_ATTR_APPCTX_SIZE
Use this to initialize the context array size with the desired number of context
attributes in the OCIAttrSet() call.

OCIAttrSet(session, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)&size, (ub4)0, OCI_ATTR_APPCTX_SIZE, error_handle);

OCI_ATTR_APPCTX_LIST
Use this attribute to get a handle on the application context list descriptor for the
session in the OCIAttrGet() call. (The parameter ctxl_desc must be of datatype
OCIParam *).

OCIAttrGet(session, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX_LIST, error_handle);

Use the application context list descriptor to obtain an individual descriptor for the
i-th application context in a call to OCIParamGet():

OCIParamGet(ctxl_desc, OCI_DTYPE_PARAM, error_handle,(dvoid **)&ctx_desc, i);

Session Handle Attributes Used to Set an Externally Initialized Context
Set the appropriate values of the application context using these attributes:

■ OCI_ATTR_APPCTX_NAME to set the namespace of the context, which must
be a valid SQL identifier.

■ OCI_ATTR_APPCTX_ATTR to set an attribute name in the given context, a
non-case sensitive string of up to 30 bytes.

■ OCI_ATTR_APPCTX_VALUE to set the value of an attribute in the given
context.

Each namespace can have many attributes, each of which has one value. Here are
the calls you can use to set them:

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)ctx_name, sizeof(ctx_name), OCI_ATTR_APPCTX_NAME, error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,

Externally Initialized Context in OCI

Managing Scalable Platforms 8-23

(dvoid *)attr_name, sizeof(attr_name), OCI_ATTR_APPCTX_ATTR, error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE, error_handle);

Note that only character type is supported, because application context operations
are based on the VARCHAR2 datatype.

Using OCISessionBegin() with an Externally initialized Context
When you call OCISessionBegin(), the context set in the session handle will be
pushed to the server. No additional contexts are propagated to the server session.
Here is a code example to illustrate use of these calls and attributes:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OraText *username = (OraText *) "HR";
static OraText *password = (OraText *) "HR";

static OCIEnv *envhp;
static OCIError *errhp;

int main(/*_ int argc, char *argv[] _*/);

static sword status;

int main(argc, argv)
int argc;
char *argv[];
{

 OCISession *authp = (OCISession *) 0;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIDefine *defnp = (OCIDefine *) 0;
 dvoid *parmdp;
 ub4 ctxsize;
 OCIParam *ctxldesc;
 OCIParam *ctxedesc;

See Also: "User Session Handle Attributes" on page A-16

Externally Initialized Context in OCI

8-24 Oracle Call Interface Programmer's Guide

 OCIEnvCreate(&envhp, OCI_DEFAULT, (dvoid *)0, 0, 0, 0,
 (size_t)0, (dvoid *)0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 /* server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

 (void) OCIServerAttach(srvhp, errhp, (OraText *)"", strlen(""), 0);

 /* set attribute server context in the service context */
 (void) OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,
 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);
/**/
 /* set app ctx size to 2 because we want to set up 2 application contexts */
 ctxsize = 2;

 /* set up app ctx buffer */
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) &ctxsize, (ub4) 0,
 (ub4) OCI_ATTR_APPCTX_SIZE, errhp);

 /* retrieve the list descriptor */
 (void) OCIAttrGet((dvoid *)authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *)&ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp);

 /* retrieve the 1st ctx element descriptor */
 (void) OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp, (dvoid**)&ctxedesc, 1);

 (void) OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "HR", (ub4) strlen((char *)"HR"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp);

 (void) OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "ATTR1", (ub4) strlen((char *)"ATTR1"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp);

Externally Initialized Context in OCI

Managing Scalable Platforms 8-25

 (void) OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "VALUE1", (ub4) strlen((char *)"VALUE1"),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp);

 /* set second context */
 (void) OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp, (dvoid**)&ctxedesc, 2);

 (void) OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "HR", (ub4) strlen((char *)"HR"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp);

 (void) OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "ATTR2", (ub4) strlen((char *)"ATTR2"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp);

 (void) OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "VALUE2", (ub4) strlen((char *)"VALUE2"),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp);
/**/
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) username, (ub4) strlen((char *)username),
 (ub4) OCI_ATTR_USERNAME, errhp);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) password, (ub4) strlen((char *)password),
 (ub4) OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, authp, OCI_CRED_EXT, (ub4) OCI_DEFAULT);

}

Externally Initialized Context in OCI

8-26 Oracle Call Interface Programmer's Guide

OCI Programming Advanced Topics 9-1

9
OCI Programming Advanced Topics

This chapter contains these topics:

■ Overview of OCI Multithreaded Development

■ The OCIThread Package

■ Connection Pooling in OCI

■ Session Pooling in OCI

■ When to Use Connection Pooling, Session Pooling, or Neither

■ Statement Caching in OCI

■ User-Defined Callback Functions in OCI

■ Application Failover Callbacks in OCI

■ OCI and Streams Advanced Queuing

■ Publish-Subscribe Notification in OCI

Overview of OCI Multithreaded Development

9-2 Oracle Call Interface Programmer's Guide

Overview of OCI Multithreaded Development
Threads are lightweight processes that exist within a larger process. Threads share
the same code and data segments but have their own program counters, machine
registers, and stacks. Global and static variables are common to all threads, and a
mutual exclusivity mechanism is required to manage access to these variables from
multiple threads within an application.

Once spawned, threads run asynchronously with respect to one another. They can
access common data elements and make OCI calls in any order. Because of this
shared access to data elements, a synchronized mechanism is required to maintain
the integrity of data being accessed.

The mechanism to manage data access takes the form of mutexes (mutual exclusivity
locks), that is implemented to ensure that no conflicts arise between multiple
threads accessing shared. In OCI, mutexes are granted for each environment
handle.

The thread safety feature of the Oracle database server and OCI libraries allows
developers to use the OCI in a multithreaded environment. Thread safety ensures
code can be reentrant, with multiple threads making OCI calls without side effects.

Advantages of OCI Thread Safety
The implementation of thread safety in OCI has the following advantages:

■ Multiple threads of execution can make OCI calls with the same result as
successive calls made by a single thread.

■ When multiple threads make OCI calls, there are no side effects between
threads.

■ Users who do not write multithreaded programs do not pay a performance
penalty for using thread-safe OCI calls.

■ Use of multiple threads can improve program performance. Gains may be seen
on multiprocessor systems where threads run concurrently on separate

Note: Thread safety is not available on every operating system.
Check your Oracle system-specific documentation for more
information.

In a multithreaded UNIX environment, OCI calls are not allowed in
a user signal handler, except for OCIBreak().

Overview of OCI Multithreaded Development

OCI Programming Advanced Topics 9-3

processors, and on single processor systems where overlap can occur between
slower operations and faster operations.

OCI Thread Safety and Three-Tier Architectures
In addition to client/server applications, where the client can be a multithreaded
program, a typical use of multithreaded applications is in three-tier, or
client-agent-server, architectures. In this architecture the client is concerned only
with presentation services. The agent, or application server, processes the
application logic for the client application. Typically, this relationship is a
many-to-one relationship, with multiple clients sharing the same application server.

The server tier in this scenario is a database. The applications server, or agent, is
very well suited to being a multithreaded application server, with each thread
serving a single client application. In an Oracle environment this application server
is an OCI or precompiler program.

Implementing Thread Safety
In order to take advantage of thread safety, an application must be running on a
thread-safe operating system. The application specifies that it is running in a
multithreaded environment by making an OCIEnvNlsCreate() call with
OCI_THREADED as the value of the mode parameter.

All subsequent calls to OCIEnvNlsCreate() must also be made with
OCI_THREADED.

If an application is single-threaded, whether or not the operating system is
thread-safe, the application must pass a value of OCI_DEFAULT to
OCIInitialize() or OCIEnvNlsCreate(). Single-threaded applications that
run in OCI_THREADED mode may incur lower performance.

If a multithreaded application is running on a thread-safe operating system, the
OCI library will manage mutexes for the application for each environment handle.
An application can override this feature and maintain its own mutex scheme by
specifying a value of OCI_NO_MUTEX in the mode parameter of the
OCIEnvCreate() call.

Note: Applications running on non-thread-safe operating systems
must not pass a value of OCI_THREADED to OCIInitialize()
or OCIEnvNlsCreate().

The OCIThread Package

9-4 Oracle Call Interface Programmer's Guide

The following scenarios are possible, depending on how many connections exist in
each environment handle, and how many threads are spawned in each connection.

1. If an application has multiple environment handles, with a single thread in
each, mutexes are not required.

2. If an application running in OCI_THREADED mode maintains one or more
environment handles, with multiple connections, it has these options:

■ Pass a value of OCI_NO_MUTEX for the mode of OCIEnvNlsCreate().
The application must mutex OCI calls made on the same environment
handle. This has the advantage that the mutex scheme can be optimized to
the application design. The programmer must also insure that only one OCI
call is in process on the environment handle connection at any given time.

■ Pass a value of OCI_DEFAULT for the mode of OCIEnvNlsCreate(). The
OCI library automatically gets a mutex on every OCI call on the same
environment handle.

Mixing 7.x and Later Release OCI Calls
If an application is mixing later release and 7.x OCI calls, and the application has
been initialized as thread-safe (with the appropriate calls of the later release), it is
not necessary to call opinit() to achieve thread safety. The application will get 7.x
behavior on any subsequent 7.x function calls.

The OCIThread Package
The OCIThread package provides a number of commonly used threading
primitives. It offers a portable interface to threading capabilities native to various
operating systems, but does not implement threading on operating systems that do
not have native threading capability.

OCIThread does not provide a portable implementation, but it serves as a set of
portable covers for native multithreaded facilities. Therefore, operating systems that

Note: The bulk of processing of an OCI call happens on the server,
so if two threads using OCI calls go to the same connection, then
one them can be blocked while the other finishes processing at the
server.

Use one error handle per thread in an application, since OCI errors
can be over-written by other threads.

The OCIThread Package

OCI Programming Advanced Topics 9-5

do not have native support for multithreading will only be able to support a limited
implementation of the OCIThread package. As a result, products that rely on all of
OCIThread's functionality will not port to all operating systems. Products that
must port to all operating systems must use only a subset of OCIThread's
functionality.

The OCIThread API consists of three main parts. Each part is described briefly
here. The following subsections describe each in greater detail.

■ Initialization and Termination. These calls deal with the initialization and
termination of OCIThread context, which is required for other OCIThread
calls.

OCIThread only requires that the process initialization function,
OCIThreadProcessInit(), is called when OCIThread is being used in a
multithreaded application. Failing to call OCIThreadProcessInit() in a
single-threaded application is not an error.

Separate calls to OCIThreadInit() will all return the same OCIThread
context. Each call to OCIThreadInit() must eventually be matched by a call
to OCIThreadTerm().

■ Passive Threading Primitives.Passive threading primitives are used to
manipulate mutual exclusion locks (mutex), thread IDs, and thread-specific
data keys. These primitives are described as passive because while their
specifications allow for the existence of multiple threads, they do not require it.
It is possible for these primitives to be implemented according to specification
in both single-threaded and multithreaded environments. As a result,
OCIThread clients that use only these primitives will not require a
multiple-thread environment in order to work correctly. They will be able to
work in single-threaded environments without branching code.

■ Active Threading Primitives. Active threading primitives deal with the creation,
termination, and manipulation of threads. These primitives are described as
active because they can only be used in true multithreaded environments. Their
specification explicitly requires multiple threads. If you need to determine at
runtime whether or not you are in a multithreaded environment, call
OCIThreadIsMulti() before using an OCIThread active primitive.

In order to write a version of the same application to run on single-threaded
operating system, it is necessary to branch your code, whether by branching
versions of the source file or by branching at runtime with the
OCIThreadIsMulti() call.

The OCIThread Package

9-6 Oracle Call Interface Programmer's Guide

Initialization and Termination
The types and functions described in this section are associated with the
initialization and termination of the OCIThread package. OCIThread must be
initialized before any of its functionality can be used.

The observed behavior of the initialization and termination functions is the same
regardless of whether OCIThread is in single-threaded or multithreaded
environment. Table 9–1 lists functions for thread initialization and termination.

OCIThread Context
Most calls to OCIThread functions use the OCI environment or user session handle
as a parameter. The OCIThread context is part of the OCI environment or user
session handle and it must be initialized by calling OCIThreadInit().
Termination of the OCIThread context occurs by calling OCIThreadTerm().

See Also:

■ Detailed descriptions of OCIThread functions, including
syntax, parameters lists, and other comments can be found in
"Thread Management Functions" on page 16-168

■ cdemothr.c in the demo directory is an example of a
multithreading application.

Table 9–1 Initialization and Termination Multithreading Functions

Function Purpose

OCIThreadProcessInit() Performs OCIThread process initialization.

OCIThreadInit() Initializes OCIThread context.

OCIThreadTerm() Terminates the OCIThread layer and frees context memory.

OCIThreadIsMulti() Tells the caller whether the application is running in a
multithreaded environment or a single-threaded
environment.

See Also: "Thread Management Functions" on page 16-168 for
complete descriptions of each thread function

The OCIThread Package

OCI Programming Advanced Topics 9-7

Passive Threading Primitives
The passive threading primitives deal with the manipulation of mutex, thread ID's,
and thread-specific data. Since the specifications of these primitives do not require
the existence of multiple threads, they can be used both in multithreaded and
single-threaded operating systems. Table 9–2 lists functions used to implement
passive threading.

OCIThreadMutex
The OCIThreadMutex datatype is used to represent a mutex. This mutex is used to
ensure that:

Note: The OCIThread context is an opaque data structure. Do not
attempt to examine the contents of the context.

Table 9–2 Passive Threading Primitives

Function Purpose

OCIThreadMutexInit() Allocates and initializes a mutex.

OCIThreadMutexDestroy() Destroys and deallocates a mutex.

OCIThreadMutexAcquire() Acquires a mutex for the thread in which it is called.

OCIThreadMutexRelease() Releases a mutex.

OCIThreadKeyInit() Allocates and initializes a key.

OCIThreadKeyDestroy() Destroys and deallocates a key.

OCIThreadKeyGet() Gets the calling thread's current value for a key.

OCIThreadKeySet() Sets the calling thread's value for a key.

OCIThreadIdInit() Allocates and initializes a thread ID.

OCIThreadIdDestroy() Destroys and deallocates a thread ID.

OCIThreadIdSet() Sets on thread ID to another.

OCIThreadIdSetNull() Nulls a thread ID.

OCIThreadIdGet() Retrieves a thread ID for the thread in which it is called.

OCIThreadIdSame() Determines if two thread IDs represent the same thread.

OCIThreadIdNull() Determines if a thread ID is NULL.

The OCIThread Package

9-8 Oracle Call Interface Programmer's Guide

■ only one thread accesses a given set of data at a time, or

■ only one thread executes a given critical section of code at a time

Mutex pointers can be declared as parts of client structures or as stand-alone
variables. Before they can be used, they must be initialized using
OCIThreadMutexInit(). Once they are no longer needed, they must be
destroyed using OCIThreadMutexDestroy().

A thread can acquire a mutex by using OCIThreadMutexAcquire(). This ensures
that only one thread at a time is allowed to hold a given mutex. A thread that holds
a mutex can release it by calling OCIThreadMutexRelease().

OCIThreadKey
The datatype OCIThreadKey can be thought of as a process-wide variable with a
thread-specific value. This means that all threads in a process can use a given key,
but each thread can examine or modify that key independently of the other threads.
The value that a thread sees when it examines the key will always be the same as
the value that it last set for the key. It will not see any values set for the key by other
threads. The datatype of the value held by a key is a dvoid * generic pointer.

Keys can be created using OCIThreadKeyInit(). Key value are initialized to
NULL for all threads.

A thread can set a key's value using OCIThreadKeySet(). A thread can get a
key's value using OCIThreadKeyGet().

The OCIThread key functions will save and retrieve data specific to the thread.
When clients maintain a pool of threads and assign them to different tasks, it may
not be appropriate for a task to use OCIThread key functions to save data
associated with it.

Here is a scenario of how things can fail: A thread is assigned to execute the
initialization of a task. During initialization, the task stores data in the thread using
OCIThread key functions. After initialization, the thread is returned back to the
threads pool. Later, the threads pool manager assigns another thread to perform
some operations on the task, and the task needs to retrieve the data it stored earlier
in initialization. Since the task is running in another thread, it will not be able to
retrieve the same data. Application developers that use thread pools have to be
aware of this.

OCIThreadKeyDestFunc
OCIThreadKeyDestFunc is the type of a pointer to a key's destructor routine.
Keys can be associated with a destructor routine when they are created using

The OCIThread Package

OCI Programming Advanced Topics 9-9

OCIThreadKeyInit(). A key's destructor routine will be called whenever a
thread with a non-NULL value for the key terminates. The destructor routine returns
nothing and takes one parameter, the value that was set for key when the thread
terminated.

The destructor routine is guaranteed to be called on a thread's value in the key after
the termination of the thread and before process termination. No more precise
guarantee can be made about the timing of the destructor routine call; no code in
the process may assume any post-condition of the destructor routine. In particular,
the destructor is not guaranteed to execute before a join call on the terminated
thread returns.

OCIThreadId
OCIThreadId datatype is used to identify a thread. At any given time, no two
threads will ever have the same OCIThreadId, but OCIThreadId values can be
recycled; once a thread dies, a new thread may be created that has the same
OCIThreadId value. In particular, the thread ID must uniquely identify a thread T
within a process, and it must be consistent and valid in all threads U of the process
for which it can be guaranteed that T is running concurrently with U. The thread ID
for a thread T must be retrievable within thread T. This is done using
OCIThreadIdGet().

The OCIThreadId type supports the concept of a NULL thread ID: the NULL thread
ID will never be the same as the ID of an actual thread.

Active Threading Primitives
The active threading primitives deal with manipulation of actual threads. Because
specifications of most of these primitives require multiple threads, they work
correctly only in the enabled OCIThread; In the disabled OCIThread, they always
return an error. The exception is OCIThreadHandleGet(); it may be called in a
single-threaded environment and has no effect.

Active primitives can only be called by code running in a multithreaded
environment. You can call OCIThreadIsMulti() to determine whether the
environment is multithreaded or single-threaded. Table 9–3 lists functions used to
implement active threading.

Table 9–3 Active Threading Primitives

Function Purpose

OCIThreadHndInit() Allocates and initializes a thread handle.

Connection Pooling in OCI

9-10 Oracle Call Interface Programmer's Guide

OCIThreadHandle
Datatype OCIThreadHandle is used to manipulate a thread in the active
primitives: OCIThreadJoin() and OCIThreadClose(). A thread handle opened
by OCIThreadCreate() must be closed in a matching call to
OCIThreadClose(). A thread handle is invalid after the call to
OCIThreadClose().

Connection Pooling in OCI
Connection pooling is the use of a group (the pool) of reusable physical connections
by several sessions, in order to balance loads. The management of the pool is done
by OCI, not the application. Applications that can use connection pooling include
middle-tier applications for Web application servers and e-mail servers.

A sample usage of this feature is in a Web application server connected to a
back-end Oracle database. Suppose that a Web application server gets several
concurrent requests for data from the database server. The application can create a
pool (or a set of pools) in each environment during application initialization.

OCI Connection Pooling Concepts
Oracle has several transaction monitor capabilities such as the fine-grained
management of database sessions and connections. This is done by separating the
notion of database sessions (user handles) from connections (server handles). Using
these OCI calls for session switching and session migration, it is possible for an
application server or transaction monitor to multiplex several sessions over fewer
physical connections, thus achieving a high degree of scalability by pooling of
connections and back-end Oracle server processes.

OCIThreadHndDestroy() Destroys and deallocates a thread handle.

OCIThreadCreate() Creates a new thread.

OCIThreadJoin() Allows the calling thread to join with another.

OCIThreadClose() Closes a thread handle.

OCIThreadHandleGet() Retrieves a thread handle.

Table 9–3 Active Threading Primitives (Cont.)

Function Purpose

Connection Pooling in OCI

OCI Programming Advanced Topics 9-11

The connection pool itself is normally configured with a shared pool of physical
connections, translating to a back-end server pool containing an identical number of
dedicated server processes.

The number of physical connections is less than the number of database sessions in
use by the application.The number of physical connections and back-end server
processes are also reduced by using connection pooling. Thus many more database
sessions can be multiplexed.

Similarities and Differences from Shared Server
Connection pooling on the middle-tier is similar to what shared server offers on the
back end. Connection pooling makes a dedicated server instance behave like a
shared server instance by managing the session multiplexing logic on the middle
tier.

The pooling of dedicated server processes including incoming connections into the
dedicated server processes is controlled by the connection pool on the middle tier.
The main difference between connection pooling and a shared server is that in the
latter case, the connection from the client is normally to a dispatcher in the database
instance. The dispatcher is responsible for directing the client request to an
appropriate shared server. On the other hand, the physical connection from the
connection pool is established directly from the middle-tier to the dedicated server
process in the back-end server pool.

Connection pooling is beneficial only if the middle tier itself is multithreaded. Each
thread can maintain a session to the database. The actual connections to the
database are maintained by the connection pool and these connections (including
the pool of dedicated database server processes) are shared among all the threads in
the middle tier.

Stateless Sessions Versus Stateful Sessions
Stateless sessions are serially reusable across mid-tier threads. After a thread is done
processing a database request on behalf of a three-tier user, the same database
session can be reused for the purpose of a completely different request on behalf of
a completely different three-tier user.

Stateful sessions to the database, on the other hand, are not serially reusable across
mid-tier threads because they may have some particular state associated with a
particular three-tier user. Examples of such state may be: open transactions, fetch
state from a statement, PL/SQL package state, and so on. This makes the session
not reusable for a different request for the duration that such state persists.

Connection Pooling in OCI

9-12 Oracle Call Interface Programmer's Guide

Note: Stateless sessions too may have open transactions, open statement fetch state,
and so on. However, such a state persists for a relatively short duration (only
during the processing of a particular three-tier request by a mid-tier thread) which
allows the session to be serially reused for a different three-tier user (when such
state is cleaned up).

Note: Stateless sessions are typically used in conjunction with Statement Caching.

What connection pooling offers is stateless connections and stateful sessions. Users
who need to work with stateless sessions, see "Session Pooling in OCI" on
page 9-17.

Multiple Connection Pools
This advanced concept can be used for different database connections. Multiple
connection pools can also be used when different priorities are assigned to users.
Different service level guarantees can be implemented using connection pooling.

The following figure illustrates connection pooling:

Figure 9–1 OCI Connection Pooling

OCI Calls for Connection Pooling
The steps in using connection pooling in your application are:

■ Allocate the Pool Handle

Server 1

Server 2

. . .

Physical
Connections

Sessions

Application

Thread 1

Thread 2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Pool 1

Pool 2

Connection Pooling in OCI

OCI Programming Advanced Topics 9-13

■ Create the Connection Pool

■ Logon to the Database

■ Deal with SGA Limitations in Connection Pooling

■ Logoff from the Database

■ Destroy the Connection Pool

■ Free the Pool Handle

Allocate the Pool Handle
Connection pooling requires that the pool handle OCI_HTYPE_CPOOL be allocated
by OCIHandleAlloc(). Multiple pools can be created for a given environment
handle.

For a single connection pool, here is an allocation example:

OCICPool *poolhp;
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &poolhp, OCI_HTYPE_CPOOL,
 (size_t) 0, (dvoid **) 0));

Create the Connection Pool
The function OCIConnectionPoolCreate() initializes the connection pool
handle. It has these IN parameters:

■ connMin, the minimum number of connections to be opened when the pool is
created.

■ connIncr, the incremental number of connections to be opened when all the
connections are busy and a call needs a connection. This increment is used only
when the total number of open connections is less than the maximum number
of connections that can be opened in that pool.

■ connMax, the maximum number of connections that can be opened in the pool.
When the maximum number of connections are open in the pool, and all the
connections are busy, if a call needs a connection, it will wait till it gets one.
However, if the OCI_ATTR_CONN_NOWAIT attribute is set for the pool, an
error is returned.

■ A poolUsername, and a poolPasswd, to allow user sessions to transparently
migrate between connections in the pool.

■ In addition, an attribute OCI_ATTR_CONN_TIMEOUT, can be set to time out
the connections in the pool. Connections idle for more than this time are

Connection Pooling in OCI

9-14 Oracle Call Interface Programmer's Guide

terminated periodically, to maintain an optimum number of open connections.
If this attribute is not set, then the connections are never timed out.

All the preceding attributes can be configured dynamically. So the application has
the flexibility of reading the current load (number of open connections and number
of busy connections) and tuning these attributes appropriately.

If the pool attributes (connMax, connMin, connIncr) are to be changed
dynamically, OCIConnectionPoolCreate() must be called with mode set to
OCI_CPOOL_REINITIALIZE.

The OUT parameters poolName and poolNameLen will contain values to be used
in subsequent OCIServerAttach() and OCILogon2() calls in place of the
database name and the database name length arguments.

There is no limit on the number of pools that can be created by an application.
Middle tier applications can take advantage of this feature and create multiple pools
to connect to the same server or to different servers, to balance the load based on
the specific needs of the application.

Here is an example of this call:

OCIConnectionPoolCreate((OCIEnv *)envhp,
 (OCIError *)errhp, (OCICPool *)poolhp,
 &poolName, &poolNameLen,
 (text *)database,strlen(database),
 (ub4) conMin, (ub4) conMax, (ub4) conIncr,
 (text *)pooluser,strlen(pooluser),
 (text *)poolpasswd,strlen(poolpasswd),
 OCI_DEFAULT));

Logon to the Database
The application will need to log on to the database for each thread, using one of the
following interfaces.

■ OCILogon2()

This is the simplest interface. Use this interface when you need a simple
Connection Pool connection and do not need to alter any attributes of the
session handle. This interface can also be used to make proxy connections to the
database.

Here is an example using OCILogon2():

for (i = 0; i < MAXTHREADS; ++i)
{
 OCILogon2(envhp, errhp, &svchp[i], "hr", 2, "hr", 2, poolName,

Connection Pooling in OCI

OCI Programming Advanced Topics 9-15

 poolNameLen, OCI_LOGON2_CPOOL));

}

In order to use this interface to get a proxy connection, set the password
parameter to NULL.

■ OCISessionGet()

This is the recommended interface. It gives the user the additional option of
using external authentication methods, such as certificates, distinguished name,
and so on. OCISessionGet() is the recommended uniform function call to
retrieve a session.

Here is an example using OCISessionGet():

for (i = 0; i < MAXTHREADS; ++i)
{
 OCISessionGet(envhp, errhp, &svchp, authp,
 (OraText *) poolName,
 strlen(poolName), NULL, 0, NULL, NULL, NULL,
 OCI_SESSGET_CPOOL)
 }

■ OCIServerAttach() and OCISessionBegin():

Another interface can be used if the application needs to set any special
attributes on the user session handle and server handle. For such a requirement,
applications need to allocate all the handles (connection pool handle, server
handles, session handles and service context handles).

■ Create the connection pool.

■ Call OCIServerAttach() with mode set to OCI_CPOOL.

■ Call OCISessionBegin() with mode set to OCI_DEFAULT or
OCI_MIGRATE.

The OCI_MIGRATE flag will be set internally in any case. Credentials can be set to
OCI_CRED_RDBMS or OCI_CRED_PROXY. If the credentials are set to
OCI_CRED_PROXY, only username needs to be set on the session handle. (no
explicit primary session needs to be created and OCI_ATTR_MIGSESSION need not
be set).

Connection Pooling in OCI

9-16 Oracle Call Interface Programmer's Guide

Deal with SGA Limitations in Connection Pooling
With OCI_CPOOL mode (connection pooling), the session memory (UGA) in the
back-end database will come out of the SGA. This may require some SGA tuning on
the back-end database to have a larger SGA if your application consumes more
session memory than the SGA can accommodate. The memory tuning requirements
for the back-end database will be similar to configuring the LARGE POOL in case of
a shared server back end except that the instance is still in dedicated mode.

If you are still running into the SGA limitation, you must consider:

■ Reducing the session memory consumption by having fewer open statements
for each session

■ reducing the number of sessions in the back end by pooling sessions on the
mid-tier or otherwise

■ turning off connection pooling

The application must avoid using dedicated database links on the back end with
connection pooling.

If the back end is a dedicated server, effective connection pooling will not be
possible because sessions using dedicated database links will be tied to a physical
connection rendering that same connection unusable by other sessions. If your
application uses dedicated database links and you do not see effective sharing of
back-end processes among your sessions, you must consider using shared database
links.

Logoff from the Database
Corresponding to the logon calls, these are the interfaces to use to log off from the
database in connection pooling mode.

■ OCILogoff():

If OCILogon2() was used to make the connection, OCILogoff() must be
used to log off.

■ OCISessionRelease()

See Also: Oracle Database Performance Tuning Guide for more
information, see the section on configuring Shared Server

See Also: For more information about distributed databases, see
the section on shared database links in Oracle Database
Administrator's Guide

Session Pooling in OCI

OCI Programming Advanced Topics 9-17

If OCISessionGet() was called to make the connection, then
OCISessionRelease() must be called to log off.

■ OCISessionEnd() and OCIServerDetach()

If OCIServerAttach() and OCISessionBegin() were called to make the
connection and start up the session, then OCISessionEnd() must be called to
end the session and OCIServerDetach() must be called to release the
connection.

Destroy the Connection Pool
Use OCIConnectionPoolDestroy() to destroy the connection pool.

Free the Pool Handle
The pool handle is freed using OCIHandleFree().

These last three actions are illustrated in this code fragment:

 for (i = 0; i < MAXTHREADS; ++i)
 {
 checkerr(errhp, OCILogoff((dvoid *) svchp[i], errhp));
 }
 checkerr(errhp, OCIConnectionPoolDestroy(poolhp, errhp, OCI_DEFAULT));
 checkerr(errhp, OCIHandleFree((dvoid *)poolhp, OCI_HTYPE_CPOOL));

Examples of OCI Connection Pooling
Examples of connection pooling in tested complete programs can be found in
cdemocp.c and cdemocpproxy.c in directory demo.

Session Pooling in OCI
Session pooling means that the application will create and maintain a group of
stateless sessions to the database. These sessions will be handed over to thin clients

See Also:

■ "Connection Pool Handle Attributes" on page A-22 for more
information about the connection pooling attributes

■ OCIConnectionPoolCreate(), OCILogon2(), and
OCIConnectionPoolDestroy() for more information about
these functions

Session Pooling in OCI

9-18 Oracle Call Interface Programmer's Guide

as requested. If no sessions are available, a new one may be created. When the client
is done with the session, the client will release it to the pool. Thus, the number of
sessions in the pool can increase dynamically.

Some of the sessions in the pool may be 'tagged' with certain properties. For
instance, a user may request for a default session, set certain attributes on it, then
label it or 'tag' it and return in to the pool. That user, or some other user, can require
a session with the same attributes, and thus request for a session with the same tag.
There may be several sessions in the pool with the same tag. The 'tag' on a session
can be changed or reset.

Proxy sessions, too, can be created and maintained through this interface.

The behavior of the application when no free sessions are available and the pool has
reached it's maximum size, will depend on certain attributes. A new session may be
created or an error returned, or the thread may just block and wait for a session to
become free.

The main benefit of this type of pooling will be performance. Making a connection
to the database is a time-consuming activity, especially when the database is remote.
Thus, instead of a client spending time connecting to the server, authenticating its
credentials, and then receiving a valid session, it can just pick one from the pool.

Functionality of OCI Session Pooling
Session pooling has the following features:

■ Create, maintain and manage a pool of stateless sessions transparently.

■ Provide an interface for the application to create a pool and specify the
minimum, increment and maximum number of sessions in the pool.

■ Provide an interface for the user to obtain and release a default or 'tagged'
session to the pool. A 'tagged' session is one with certain client-defined
properties.

■ Allow the application to dynamically change the number of minimum and
maximum number of sessions.

■ Provide a mechanism to always maintain an optimum number of open sessions,
by closing sessions that have been idle for very long, and creating sessions
when required.

See Also: "Using Tags in Session Pools" on page 9-19 for a
discussion of using tags.

Session Pooling in OCI

OCI Programming Advanced Topics 9-19

■ Allow for session pooling with authentication.

Homogeneous and Heterogeneous Session Pools
A session pool can be either homogeneous or heterogeneous. Homogeneous session
pooling means that sessions in the pool are alike with respect to authentication
(have the same username and password and privileges). Heterogeneous session
pooling means that you must provide authentication information because the
sessions can have different security attributes and privileges.

Using Tags in Session Pools
The tags provide a way for users to customize sessions in the pool. A client may get
a default or untagged session from a pool, set certain attributes on the session (such
as NLS settings), and return the session to the pool, labeling it with an appropriate
tag in the OCISessionRelease() call.

The user, or some other user, may request a session with the same tags in order to
have a session withe the same attributes, and can do so by providing the same tag
in the OCISessionGet() call.

OCI Handles for Session Pooling
Two handle types have been added for session pooling:

OCISPool
This is the session pool handle. It is allocated using OCIHandleAlloc(). It needs
to be passed to OCISessionPoolCreate(), and OCISessionPoolDestroy(). It has
the attribute type OCI_HTYPE_SPOOL.

An example of the OCIHandleAlloc() call follows:

OCISPool *spoolhp;
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &spoolhp, OCI_HTYPE_SPOOL,
 (size_t) 0, (dvoid **) 0));

For an environment handle, multiple session pools can be created.

See Also: "OCISessionGet()" on page 15-36 for a further
discussion of tagging sessions.

Session Pooling in OCI

9-20 Oracle Call Interface Programmer's Guide

OCIAuthInfo
This is the authentication information handle. It is allocated using
OCIHandleAlloc(). It is passed to OCISessionGet(). It supports all the
attributes that are supported for user session handle. Please refer to user session
handle attributes for more information. The authentication information handle has
the attribute type OCI_HTYPE_AUTHINFO.

An example of the OCIHandleAlloc() call follows:

OCIAuthInfo *authp;
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp, OCI_HTYPE_AUTHINFO,
 (size_t) 0, (dvoid **) 0));

Using OCI Session Pooling
The steps in writing a simple session pooling application which uses a username
and password are:

■ Allocate the session pool handle using OCIHandleAlloc() for an OCISPool
handle. Multiple session pools can be created for an environment handle.

■ Create the session pool using OCISessionPoolCreate() with mode set to
OCI_DEFAULT (for a new session pool). Refer to the function for a discussion
of the other modes.

■ Loop for each thread. Create the thread with a function that does the following:

■ Allocate an authentication information handle of type OCIAuthInfo using
OCIHandleAlloc().

See Also:

■ "User Session Handle Attributes" on page A-16 for the
attributes that belong to the authentication information handle.

■ "Session Pool Handle Attributes" on page A-24 for more
information about the session pooling attributes.

■ "Connect, Authorize, and Initialize Functions" on page 15-4 for
complete information about the functions used in session
pooling.

■ See "OCISessionGet()" on page 15-36 for details of the session
handle attributes that can be used with this call.

Session Pooling in OCI

OCI Programming Advanced Topics 9-21

■ Set the username and password in the authentication information handle using
OCIAttrSet().

■ Get a pooled session using OCISessionGet() with mode set to
OCI_SESSGET_SPOOL.

■ Perform the transaction.

■ Commit or rollback the transactions.

■ Release the session (logoff) with OCISessionRelease().

■ Free the authentication information handle with OCIHandleFree().

■ End of the loop for each thread.

■ Destroy the session pool using OCISessionPoolDestroy().

OCI Calls for Session Pooling
Here are the usages for OCI calls for session pooling.

Allocate the Pool Handle
Session pooling requires that the pool handle OCI_HTYPE_SPOOL be allocated by
calling OCIHandleAlloc().

Multiple pools can be created for a given environment handle. For a single session
pool, here is an allocation example:

OCISPool *poolhp;
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &poolhp, OCI_HTYPE_SPOOL, (size_t) 0,
 (dvoid **) 0));

Create the Pool Session
The function OCISessionPoolCreate() can be used to create the session pool.
Here is an example of how to use this call:

OCISessionPoolCreate(envhp, errhp, poolhp, (OraText **)&poolName,
 (ub4 *)&poolNameLen, database,
 (ub4)strlen((const signed char *)database),
 sessMin, sessMax, sessIncr,
 (OraText *)appusername,
 (ub4)strlen((const signed char *)appusername),
 (OraText *)apppassword,
 (ub4)strlen((const signed char *)apppassword),
 OCI_DEFAULT);

Session Pooling in OCI

9-22 Oracle Call Interface Programmer's Guide

Logon to the Database
These are the interfaces that can be used to logon to the database in session pooling
mode.

■ OCILogon2():

This is the simplest interface. However, it does not give the user the option of
using tagging. Here is an example of how OCILogon2() can be used to log on
to the database in session pooling mode:

for (i = 0; i < MAXTHREADS; ++i)
{
 OCILogon2(envhp, errhp, &svchp[i], "hr", 2, "hr", 2, poolName,
 poolNameLen, OCI_LOGON2_SPOOL));

}

■ OCISessionGet():

This is the recommended interface. It gives the user the option of using tagging
to label sessions in the pool, and thus make it easier to retrieve specific sessions.
An example of using OCISessionGet() follows. It is taken from cdemosp.c
in the demo directory.:

OCISessionGet(envhp, errhp, &svchp, authInfop,
 (OraText *)database,strlen(database), tag,
 strlen(tag), &retTag, &retTagLen, &found,
 OCI_SESSGET_SPOOL);

Logoff from the Database
Corresponding to the preceding logon calls, these are the interfaces to use to log off
from the database in session pooling mode.

■ OCILogoff():

If OCILogon2() was used to make the connection, OCILogoff() must be
used to log off.

■ OCISessionRelease()

If OCISessionGet() was called to make the connection, then
OCISessionRelease() must be called to log off.

When to Use Connection Pooling, Session Pooling, or Neither

OCI Programming Advanced Topics 9-23

Destroy the Session Pool
OCISessionPoolDestroy() must be called to destroy the session pool. Here is
an example of how this call can be made:

OCISessionPoolDestroy(poolhp, errhp, OCI_DEFAULT);

Free the Pool Handle
OCIHandleFree() must be called to free the session pool handle. Here is how this
call can be made:

OCIHandleFree((dvoid *)poolhp, OCI_HTYPE_SPOOL);

Example of OCI Session Pooling
Here is an example of session pooling in a tested, complete program:

When to Use Connection Pooling, Session Pooling, or Neither
If database sessions are not reusable by mid-tier threads (that is, they are stateful)
and the number of back-end server processes may cause scaling problems on the
database, use OCI connection pooling.

If database sessions are reusable by mid-tier threads (that is, they are stateless) and
the number of back-end server processes may cause scaling problems on the
database, use OCI session pooling.

If database sessions are not reusable by mid-tier threads (that is, they are stateful)
and the number of back-end server processes will never be large enough to
potentially cause any scaling issue on the database, there is no need to use any
pooling mechanism.

Note: The application has to ensure either a commit or rollback is
done before a session is released to the session pool. OCI does not
reset the state of the session.

See Also: cdemosp.c in directory demo

When to Use Connection Pooling, Session Pooling, or Neither

9-24 Oracle Call Interface Programmer's Guide

In connection pooling, the pool element is a connection and in session pooling, the
pool element is a session.

As with any pool, the pooled resource is locked by the application thread for a
certain duration until the thread has done its job on the database and the resource is
released. The resource is unavailable to other threads during its period of use.
Hence, application developers need to be aware that any kind of pooling works
effectively with relatively short tasks. If the application is performing a long
running transaction for example, it may deny the pooled resource to other sharers
for long periods of time leading to starvation. Hence, pooling should be used in
conjunction with short tasks and the size of the pool should be sufficiently large to
maintain the desired concurrency of transactions.

Also, note that with

1. OCI Connection Pool

a. Connections to the database are pooled. Sessions are created and destroyed
by the user. Each call to the database will pick up an appropriate available
connection from the pool.

b. The application is multiplexing several sessions over fewer physical
connections to the database. The users can tune the pool configuration to
achieve required concurrency.

c. The life-time of the application sessions is independent of the life-time of
the cached pooled connections.

2. OCI Session Pool

Sessions and connections are pooled by OCI. The application gets sessions from
the pool and release sessions back to the pool.

Functions for Session Creation
The choices are:

Note: Having non-pooled sessions/connections will result in
tearing down and recreation of the database session/connection for
every mid-tier user request. This can cause severe scaling problems
on the database side and excessive latency for the fulfillment of the
request. Hence, it is strongly recommended that one of the pooling
strategies be adopted for mid-tier applications based on whether
the database session is stateful or stateless.

When to Use Connection Pooling, Session Pooling, or Neither

OCI Programming Advanced Topics 9-25

1. OCILogon()

This is the simplest way to get an OCI Session. The advantage is ease of
obtaining an OCI service context. The disadvantage is that you cannot perform
any advance OCI operations like session migration, proxy authentication, using
a connection pool, or a session pool.

2. OCILogon2()

This includes the functionality of OCILogon() to get a session. This session
may be a new one with a new underlying connection, or one that is started over
a virtual connection from an existing connection pool, or one from an existing
session pool. The mode parameter value that the function is called with
determines its behavior.

The user cannot modify the attributes (except OCI_ATTR_ STMTCACHESIZE)
of the service context returned by OCI.

3. OCISessionBegin()

This supports all the various options of an OCI session such as proxy
authentication, getting a session from a connection pool or a session pool,
external credentials, and migratable sessions. This is the lowest level call where
all handles are needed to be explicitly allocated and all attributes set, and
OCIServerAttach() is to be called prior to this call.

4. OCISessionGet()

This is now the recommended method to get a session. This session may be a
new one with a new underlying connection, or one that is started over a virtual
connection from an existing connection pool, or one from an existing session
pool. The mode parameter value that the function is called with determines its

See Also: "Application Initialization, Connection, and Session
Creation" on page 2-21

See Also: "OCILogon2()" on page 15-24

See Also: "OCISessionBegin()" on page 15-31

When to Use Connection Pooling, Session Pooling, or Neither

9-26 Oracle Call Interface Programmer's Guide

behavior. This works like OCILogon2() but additionally allows you to specify
tags for obtaining specific sessions from the pool.

Choosing Between Different Types of OCI Sessions
The choices are:

■ Basic OCI Sessions

This works by using user name and password over a dedicated OCI server
handle. This is the no-pool mechanism. See earlier notes of when to use it.

If authentication is obtained via external credentials, then user name or
password is not required.

■ Session Pool Sessions

These sessions are from the session pool cache. Some sessions may be tagged.
These are stateless sessions. Each OCISessionGet() and
OCISessionRelease() call gets and releases a session from the session
cache. This saves the server from creating and destroying sessions.

See the earlier notes on connection pool sessions versus session pooling
sessions versus no-pooling sessions.

■ Connection Pool Sessions

These are sessions created using OCISessionGet() and
OCISessionBegin() calls from an OCI Connection Pool. There is no session
cache as these are stateful sessions. Each call creates a new session and the user
is responsible for terminating these sessions.

The sessions are automatically migratable between the server handles of the
connection pool. Each session can have user name and password or be a proxy
session. See the earlier notes on connection pool sessions versus session pooling
sessions versus no-pooling sessions.

■ Sessions Sharing a Server Handle

 You can multiplex several OCI Sessions over a few physical connections. The
application does this manually by having the same server handle for these
multiple sessions. It is preferred to have the session multiplexing details be left
to OCI by using the OCI Connection Pool APIs.

■ Proxy Sessions

See Also: "OCISessionGet()" on page 15-36

Statement Caching in OCI

OCI Programming Advanced Topics 9-27

This is useful if the password of the client needs to be protected from the
middle-tier. Proxy sessions can also be part of OCI Connection Pool and OCI
Session Pool.

■ Migratable Sessions

With transaction handles being migratable, there should be no need for
applications to use this older feature, in light of OCI Connection Pooling.

Statement Caching in OCI
Statement caching refers to the feature that provides and manages a cache of
statements for each session. In the server, it means that cursors are ready to be used
without the need to parse the statement again. Statement caching can be used with
connection pooling and with session pooling, and will improve performance and
scalability. It can be used without session pooling as well. The OCI calls that
implement statement caching are:

■ OCIStmtPrepare2()

■ OCIStmtRelease()

Statement Caching without Session Pooling in OCI
Users perform the usual OCI steps to logon. The call to obtain a session will have a
mode that specifies whether statement caching is enabled for the session. Initially
the statement cache will be empty. Developers will try to find a statement in the
cache using the statement text. If the statement exists the API will return a
previously prepared statement handle, otherwise it will return an newly prepared
statement handle.

The application developer can perform binds and defines and then simply execute
and fetch the statement before returning the statement back to the cache. In the
latter case, where the statement handle was not found, the developer will need to
set different attributes on the handle in addition to the other steps.

See Also: "Middle-Tier Applications in OCI" on page 8-13

See Also: "OCI Session Management" on page 8-12

Statement Caching in OCI

9-28 Oracle Call Interface Programmer's Guide

OCIStmtPrepare2() will also take a mode which will determine if the developer
wants a prepared statement handle or a null statement handle if the statement is not
found in the cache.

The pseudo code will look like:

OCISessionBegin(userhp, ... OCI_STMT_CACHE) ;
OCIAttrset(svchp, userhp, ...); /* Set the user handle in the service context
*/
OCIStmtPrepare2(svchp, &stmthp, stmttext, key, ...);
OCIBindByPos(stmthp, ...);
OCIDefineByPos(stmthp, ...);
OCIStmtExecute(svchp, stmthp, ...);
OCIStmtFetch(svchp, ...);
OCIStmtRelease(stmthp, ...);
...

Statement Caching with Session Pooling in OCI
The concepts remain the same, except that the statement cache is enabled at the
session pool layer rather than at the session layer.

The attribute OCI_ATTR_SPOOL_STMTCACHESIZE represents the statement
cache size for the entire session pool. It is set on the OCI_HTYPE_SPOOL handle.
The value of OCI__ATTR_SPOOL_STMTCACHESIZE can be changed at any time.
This attribute can be used to enable or disable statement caching at the pool level,
after creation, just as attribute OCI_ATTR_STMTCACHESIZE (on the service
context) is used to enable or disable statement caching at the session level. This
change will be reflected on individual sessions in the pool, when they are handed to
a user. Tagged sessions are an exception to this behavior. This is explained later.

Enabling or disabling of statement caching is allowed on individual pooled sessions
similar to non-pooled sessions.

A user can enable statement caching on a session retrieved from a non-statement
cached pool in an OCISessionGet() or OCILogon2() call by specifying
OCI_SESSGET_STMTCACHE or OCI_LOGON2_STMTCACHE, respectively, in the
mode argument.

When you ask for a session from a session pool, the statement cache size will
default to that of the pool. This may also mean enabling or disabling statement
caching in that session. For example, if a pooled session (session A) has statement
caching enabled, and statement caching is turned off in the pool, and a user asks for
a session, and session A is returned, then statement caching will be turned off in
Session A. As another example, if Session A in a pool does not have statement

Statement Caching in OCI

OCI Programming Advanced Topics 9-29

caching enabled, and statement caching at the pool level is turned on, then before
returning session A to a user, statement caching on Session A with size equal to that
of the pool is turned on.

This will not hold true if a tagged session is asked for and retrieved. In this case, the
size of the statement cache will not be changed. Consequently, it will not be turned
on or off. Moreover, if the user specifies mode OCI_SESSGET_STMTCACHE in the
OCISessionGet() call, this will be ignored if the session is tagged. In our earlier
example, if Session A was tagged, then it is returned as is to the user.

Rules for Statement Caching in OCI
Here are some notes to follow:

■ Use the function OCIStmtPrepare2() instead of OCIStmtPrepare(). If you are
using OCIStmtPrepare(), you are strongly urged not to use a statement
handle across different service contexts. Doing so will raise an error if the
statement has been obtained by OCIStmtPrepare2(). Migration of a
statement handle to a new service context actually closes the cursor associated
with the old session and therefore no sharing is achieved. Client-side sharing is
also not obtained, because OCI will free all buffers associated with the old
session when the statement handle is migrated.

■ You are urged to keep one service context for each session and use statement
handles only for that service context. That will be the preferred and
recommended model and usage.

■ A call to OCIStmtPrepare2(), even if the session does not have a statement
cache, will also allocate the statement handle and therefore applications using
only OCIStmtPrepare2() must not call OCIHandleAlloc() for the
statement handle.

■ A call to the OCIStmtPrepare2() must be followed with
OCIStmtRelease() after the user is done with the statement handle. If
statement caching is used, this will release the statement to the cache. If
statement caching is not used, the statement will be deallocated. Do not call
OCIHandleFree() to free the memory.

■ If the call to OCIStmtPrepare2() is made with the
OCI_PREP2_CACHE_SEARCHONLY mode and a NULL statement was
returned (statement was not found), the subsequent call to
OCIStmtRelease() is not required and must not be performed.

■ Do not call OCIStmtRelease() for a statement that was prepared using
OCIStmtPrepare().

User-Defined Callback Functions in OCI

9-30 Oracle Call Interface Programmer's Guide

■ The statement cache has a maximum size (number of statements) which can be
modified by an attribute on the service context, OCI_ATTR_STMTCACHESIZE.
The default value is 20.

■ You can choose a to tag a statement at the release time so that the next time you
can request a statement of the same tag. The tag will be used to search the
cache. An untagged statement (tag is null) is a special case of a tagged
statement. Two statements are considered different if they only differ in their
tags, or if one is untagged and the other is not.

OCI Statement Caching Code Example
Here is an example of statement caching:

User-Defined Callback Functions in OCI
The Oracle Call Interface has the capability to execute user-specific code in addition
to OCI calls. This functionality can be used for:

■ Adding tracing and performance measurement code to enable users to tune
their applications.

■ Performing pre- or post-processing code for specific OCI calls.

■ Accessing other data sources with OCI by using the native OCI interface for
Oracle databases and directing the OCI calls to use user callbacks for
non-Oracle data sources.

The OCI callback feature has been added by providing support for calling user code
before or after executing the OCI calls. Functionality has also been provided to
allow the user-defined code to be executed instead of executing the OCI code.

The user callback code can also be registered dynamically without modifying the
source code of the application. The dynamic registration is implemented by loading

See Also: For information about the functions for statement
caching,

■ see "Statement Functions" on page 16-4

■ "OCI_ATTR_STMTCACHESIZE" on page A-12

■ "OCI_ATTR_SPOOL_STMTCACHESIZE" on page A-27

See Also: Please refer to ocisc.c in directory demo for a
working example of statement caching.

User-Defined Callback Functions in OCI

OCI Programming Advanced Topics 9-31

up to five user-created dynamically linked libraries after the initialization of the
environment handle during the OCIEnvCreate() call. These user-created libraries
(such as Dynamic Link Libraries (DLLs) on NT, or shared libraries on Solaris
register the user callbacks for the selected OCI calls transparently to the application.

Sample Application
For a listing of the complete demonstration programs that illustrate the OCI user
callback feature, see Appendix B, "OCI Demonstration Programs".

Registering User Callbacks in OCI
An application can register user callback libraries with the
OCIUserCallbackRegister() function. Callbacks are registered in the context
of the environment handle. An application can retrieve information about callbacks
registered with a handle with the OCIUserCallbackGet() function.

A user-defined callback is a subroutine that is registered against an OCI call and an
environment handle. It can be specified to be either an entry callback, a replacement
callback, or an exit callback.

■ If it is an entry callback, it is called when the program enters the OCI function.

■ Replacement callbacks are executed after entry callbacks. If the replacement
callback returns a value of OCI_CONTINUE, then a subsequent replacement
callback or the normal OCI-specific code is executed. If a replacement callback
returns anything other than OCI_CONTINUE, subsequent replacement
callbacks and the OCI code does not execute.

■ After a replacement callback returns something other than OCI_CONTINUE, or
an OCI function successfully executes, program control transfers to the exit
callback (if one is registered).

If a replacement or exit callback returns anything other than OCI_CONTINUE, then
the return code from the callback is returned from the associated OCI call.

A user callback can return OCI_INVALID_HANDLE when either an invalid handle
or an invalid context is passed to it.

See Also: For detailed descriptions of these functions and their
parameters, refer to the descriptions of OCIUserCallbackGet()
and OCIUserCallbackRegister()

User-Defined Callback Functions in OCI

9-32 Oracle Call Interface Programmer's Guide

OCIUserCallbackRegister
A user callback is registered using the OCIUserCallbackRegister() call.

 Currently, OCIUserCallbackRegister() is only registered on the environment
handle. The user's callback function of typedef OCIUserCallback is registered
along with its context for the OCI call identified by the OCI function code, fcode.
The type of the callback, whether entry, replacement, or exit, is specified by the
when parameter.

For example, the stmtprep_entry_dyncbk_fn entry callback function and its
context dynamic_context, are registered against the environment handle hndlp
for the OCIStmtPrepare() call by calling the OCIUserCallbackRegister()
function with the following parameters.

OCIUserCallbackRegister(hndlp,
 OCI_HTYPE_ENV,
 errh,
 stmtprep_entry_dyncbk_fn,
 dynamic_context,
 OCI_FNCODE_STMTPREPARE,
 OCI_UCBTYPE_ENTRY
 (OCIUcb*) NULL);

User Callback Function
The user callback function has to follow the following syntax:

typedef sword (*OCIUserCallback)
 (dvoid *ctxp, /* context for the user callback*/
 dvoid *hndlp, /* handle for the callback, env handle for now */
 ub4 type, /* type of handlp, OCI_HTYPE_ENV for this release */
 ub4 fcode, /* function code of the OCI call */
 ub1 when, /* type of the callback, entry or exit */
 sword returnCode, /* OCI return code */

Note: If any callback returns anything other than
OCI_CONTINUE, then that return code is passed to the subsequent
callbacks. If a replacement or exit callback returns a return code
other than OCI_CONTINUE, then the final (not OCI_CONTINUE)
return code is returned from the OCI call.

See Also: See OCIUserCallbackRegister() on page 16-234
for the syntax of this call.

User-Defined Callback Functions in OCI

OCI Programming Advanced Topics 9-33

 ub4 *errnop, /* Oracle error number */
 va_list arglist); /* parameters of the oci call */

In addition to the parameters described in the OCIUserCallbackRegister()
call, the callback is called with the return code, errnop, and all the parameters of
the original OCI as declared by the prototype definition.

The return code is always passed in as OCI_SUCCESS and *errnop is always
passed in as 0 for the first entry callback. Note that *errnop refers to the content of
errnop because errnop is an IN/OUT parameter.

If the callback does not want to change the OCI return code, then it must return
OCI_CONTINUE, and the value returned in *errnop is ignored. If on the other
hand, the callback returns any other return code than OCI_CONTINUE, the last
returned return code becomes the return code for the call. At the this point, the
value of *errnop returned is set in the error handle, or in the environment handle
if the error information is returned in the environment handle because of the
absence of the error handle for certain OCI calls such as OCIHandleAlloc().

For replacement callbacks, the returnCode is the non-OCI_CONTINUE return
code from the previous callback or OCI call and *errnop is the value of the error
number being returned in the error handle. This allows the subsequent callback to
change the return code or error information if needed.

The processing of replacement callbacks is different in that if it returns anything
other than OCI_CONTINUE, then subsequent replacement callbacks and OCI code
is bypassed and processing jumps to the exit callbacks.

Note that if the replacement callbacks return OCI_CONTINUE to allow processing
of OCI code, then the return code from entry callbacks is ignored.

All the original parameters of the OCI call are passed to the callback as variable
parameters and the callback must retrieve them using the va_arg macros. The
callback demonstration programs provide examples.

A null value can be registered to de-register a callback. That is, if the value of the
callback (OCIUserCallback) is NULL in the OCIUserCallbackRegister() call,
then the user callback is de-registered.

When using the thread-safe mode, the OCI program acquires all mutexes before
calling the user callbacks.

See Also: See Appendix B, "OCI Demonstration Programs"

User-Defined Callback Functions in OCI

9-34 Oracle Call Interface Programmer's Guide

UserCallback Control Flow
This pseudocode describes the overall processing of a typical OCI call:

OCIXyzCall()
{
 Acquire mutexes on handles;
 retCode = OCI_SUCCESS;
 errno = 0;
 for all ENTRY callbacks do
 {

 EntryretCode = (*entryCallback)(..., retcode, &errno, ...);
 if (retCode != OCI_CONTINUE)
 {
 set errno in error handle or environment handle;
 retCode = EntryretCode;
 }
 }
 for all REPLACEMENT callbacks do
 {
 retCode = (*replacementCallback) (..., retcode, &errno, ...);
 if (retCode != OCI_CONTINUE)
 {
 set errno in error handle or environment handle
 goto executeEXITCallback;
 }
 }

 retCode = return code for XyzCall; /* normal processing of OCI call */

 errno = error number from error handle or env handle;

 executeExitCallback:
 for all EXIT callbacks do
 {
 exitRetCode = (*exitCallback)(..., retCode, &errno,...);
 if (exitRetCode != OCI_CONTINUE)
 {
 set errno in error handle or environment handle;
 retCode = exitRetCode;
 }
 }
 release mutexes;
 return retCode
}

User-Defined Callback Functions in OCI

OCI Programming Advanced Topics 9-35

UserCallback for OCIErrorGet()
If the callbacks are a total replacement of the OCI code, then they usually maintain
their own error information in the call context and use that to return error
information in bufp and errnop parameters of the replacement callback of the
OCIErrorGet() call.

If on the other hand, the callbacks are either partially overriding OCI code, or just
doing some other post processing, then they can use the exit callback to modify the
error text and errnop parameters of the OCIErrorGet() by their own error
message and error number. Note that the *errnop passed into the exit callback is
the error number in the error or the environment handle.

Errors from Entry Callbacks
If an entry callback wants to return an error to the caller of the OCI call, then it must
register a replacement or exit callback. This is because if the OCI code is executed,
then the error code from the entry callback is ignored. Therefore the entry callback
must pass the error to the replacement or exit callback through its own context.

Dynamic Callback Registrations
Because user callbacks are expected to be used for monitoring OCI behavior or to
access other data sources, it is desirable that the registration of the callbacks be done
transparently and non-intrusively. This is accomplished by loading user-created
dynamically linked libraries at OCI initialization time. These dynamically linked
libraries are called packages. The user-created packages register the user callbacks for
the selected OCI calls. These callbacks can further register or de-register user
callbacks as needed when receiving control at runtime.

A makefile (ociucb.mk on Solaris) is provided with the OCI demonstration
programs to create the package. The exact naming and location of this package is
operating system dependent. The source code for the package must provide code
for special callbacks that are called at OCI initialization and environment creation
times.

The loading of the package is controlled by setting an operating system
environment variable, ORA_OCI_UCBPKG. This variable names the packages in a
generic way. The packages must be located in the $ORACLE_HOME/lib directory.

Loading Multiple Packages
The ORA_OCI_UCBPKG variable can contain a semicolon separated list of package
names. The packages are loaded in the order they are specified in the list.

User-Defined Callback Functions in OCI

9-36 Oracle Call Interface Programmer's Guide

For example, previously one specified the package as:

setenv ORA_OCI_UCBPKG mypkg

Now, you can still specify the package as earlier, but in addition multiple packages
can be specified as:

setenv ORA_OCI_UCBPKG "mypkg;yourpkg;oraclepkg;sunpkg;msoftpkg"

All these packages are loaded in order. That is, mypkg is loaded first and msoftpkg
is loaded last.

A maximum of five packages can be specified.

Package Format
Previously a package had to specify the source code for the OCIEnvCallback()
function. Now the OCIEnvCallback() function is obsolete. Instead, the package
source must provide two functions. The first function has to be named as
packagename suffixed with the word Init. For example, if the package is named foo,
then the source file (for example, but not necessarily, foo.c) must contain a
fooInit() function with a call to OCISharedLibInit() function specified
exactly as:

sword fooInit(metaCtx, libCtx, argfmt, argc, argv)
 dvoid * metaCtx; /* The metacontext */
 dvoid * libCtx; /* The context for this package. */
 ub4 argfmt; /* package argument format */
 sword argc; /* package arg count*/
 dvoid * argv[]; /* package arguments */
{

Note: The sample makefile ociucb.mk creates ociucb.so.1.0
on a Solaris or ociucb.dll on an NT system. To load the ociucb
package, the environmental variable ORA_OCI_UCBPKG must be
set to ociucb. On Solaris, if the package name ends with .so,
OCIInitialize() fails. The package name must end with
.so.1.0.

For further details about creating the dynamic link libraries, read
the Makefiles provided in the demo directory for your operating
system. For further information on user-defined callbacks, see your
operating system-specific documentation on compiling and linking
applications.

User-Defined Callback Functions in OCI

OCI Programming Advanced Topics 9-37

 return (OCISharedLibInit(metaCtx, libCtx, argfmt, argc, argv,
 fooEnvCallback));
}

The last parameter of the OCISharedLibInit() function, fooEnvCallback(),
in this case, is the name of the second function. It can be named anything, but by
convention it can be named packagename suffixed with the word EnvCallback.

 This function is a replacement for OCIEnvCallback(). Now all the dynamic user
callbacks must be registered in this function. The function must be of type
OCIEnvCallbackType, which is specified as:

typedef sword (*OCIEnvCallbackType)(OCIEnv *env, ub4 mode,
 size_t xtramem_sz, dvoid *usrmemp,
 OCIUcb *ucbDesc);

When an environment handle is created, then this callback function is called at the
very end. The env parameter is the newly created environment handle.

The mode, xtramem_sz, and usrmemp are the parameters passed to the
OCIEnvCreate() call. The last parameter, ucbDesc, is a descriptor that is passed
to the package. The package uses this descriptor to register the user callbacks as
described later.

A sample ociucb.c file is provided in the demo directory. The makefile
ociucb.mk is also provided (on Solaris) in the demo directory to create the
package. Please note that this may be different on other operating systems. The
demo directory also contains full user callback demo programs (cdemoucb.c,
cdemoucbl.c,) illustrating this.

User Callback Chaining
User callbacks can both be registered statically in the application itself or
dynamically at runtime in the DLLs. A mechanism is needed to allow the
application to override a previously registered callback and then later invoke the
overridden one in the newly registered callback to preserve the behavior intended
by the dynamic registrations. This can result in chaining of user callbacks.

For this purpose, the OCIUserCallbackGet() function is provided to find out
which function and context is registered for an OCI call.

See Also: See OCIUserCallbackGet() on page 16-231 for the
syntax of this call

User-Defined Callback Functions in OCI

9-38 Oracle Call Interface Programmer's Guide

Accessing Other Data Sources Through OCI
Because Oracle is the predominant database accessed, applications can take
advantage of the OCI interface to access non-Oracle data by using the user callbacks
to access them. This allows an application written in OCI to access Oracle data
without any performance penalty. To access non-Oracle data sources, drivers can be
written that access the non-Oracle data in user callbacks. Because OCI provides a
very rich interface, there is usually a straightforward mapping of OCI calls to most
data sources. This solution is better than writing applications for other middle
layers such as ODBC that introduce performance penalties for all data sources.
Using OCI does not incur any penalty for the common case of accessing Oracle data
sources, and incurs the same penalty that ODBC does for non-Oracle data sources.

Restrictions on Callback Functions
There are certain restrictions on the usage of callback functions, including
OCIEnvCallback():

■ A callback cannot call other OCI functions except
OCIUserCallbackRegister(), OCIUserCallbackGet(),
OCIHandleAlloc(), OCIHandleFree(). Even for these functions, if they are
called in a user callback, then callbacks on them are not called to avoid
recursion. For example, if OCIHandleFree() is called in the callback for
OCILogoff(), then the callback for OCIHandleFree() is disabled during the
execution of the callback for OCILogoff().

■ A callback cannot modify OCI data structures such as the environment or error
handles.

■ A callback cannot be registered for OCIUserCallbackRegister() call itself,
or for any of the following:

■ OCIUserCallbackGet()

■ OCIEnvCreate()

■ OCIInitialize()

■ OCIEnvInit()

Example of OCI Callbacks
For example, lets suppose that there are five packages each registering entry,
replacement, and exit callbacks for OCIStmtPrepare call. That is, the
ORA_OCI_UCBPKG variable is set as:

setenv ORA_OCI_UCBPKG "pkg1;pkg2;pkg3;pkg4;pkg5"

User-Defined Callback Functions in OCI

OCI Programming Advanced Topics 9-39

In each package pkgN (where N can be 1 through 5), the pkgNInit() and
PkgNEnvCallback() functions are specified as:

pkgNInit(dvoid *metaCtx, dvoid *libCtx, ub4 argfmt, sword argc, dvoid **argv)
{
 return OCISharedLibInit(metaCtx, libCtx, argfmt, argc, argv, pkgNEnvCallback);
}

The pkgNEnvCallback() function registers the entry, replacement, and exit
callbacks as:

pkgNEnvCallback(OCIEnv *env, ub4 mode, size_t xtramemsz,
 dvoid *usrmemp, OCIUcb *ucbDesc)
{
 OCIHandleAlloc((dvoid *)env, (dvoid **)&errh, OCI_HTYPE_ERROR, (size_t) 0,
 (dvoid **)NULL);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_entry_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_ENTRY, ucbDesc);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_replace_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_REPLACE, ucbDesc);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_exit_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_EXIT, ucbDesc);

 return OCI_CONTINUE;
}

Finally, in the source code for the application, user callbacks can be registered with
the NULL ucbDesc as:

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, static_entry_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_ENTRY, (OCIUcb *)NULL);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, static_replace_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_REPLACE, (OCIUcb *)NULL);

 OCIUserCallbackRegister(env, OCI_HTYPE_ENV, errh, static_exit_callback_fn,
 pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_EXIT, (OCIUcb *)NULL);

 When the OCIStmtPrepare() call is executed, the callbacks are called in the
following order:

static_entry_callback_fn()

User-Defined Callback Functions in OCI

9-40 Oracle Call Interface Programmer's Guide

pkg1_entry_callback_fn()
pkg2_entry_callback_fn()
pkg3_entry_callback_fn()
pkg4_entry_callback_fn()
pkg5_entry_callback_fn()

static_replace_callback_fn()
 pkg1_replace_callback_fn()
 pkg2_replace_callback_fn()
 pkg3_replace_callback_fn()
 pkg4_replace_callback_fn()
 pkg5_replace_callback_fn()

 OCI code for OCIStmtPrepare call

pkg5_exit_callback_fn()
pkg4_exit_callback_fn()
pkg3_exit_callback_fn()
pkg2_exit_callback_fn()
pkg1_exit_callback_fn()

static_exit_callback_fn()

The entry and exit callbacks can return any return code and the processing
continues to the next callback. However, if the replacement callback returns
anything other than OCI_CONTINUE, then the next callback (or OCI code if it is
the last replacement callback) in the chain is bypassed and processing jumps to the
exit callback. For example, if pkg3_replace_callback_fn() returned
OCI_SUCCESS, then pkg4_replace_callback_fn(),
pkg5_replace_callback_fn(), and the OCI processing for the
OCIStmtPrepare call is bypassed. Instead, pkg5_exit_callback_fn() is
executed next.

OCI Callbacks from External Procedures
There are several OCI functions that can be used as callbacks from external
procedures.

Note: The exit callbacks are called in the reverse order of the entry
and replacement callbacks

Application Failover Callbacks in OCI

OCI Programming Advanced Topics 9-41

Application Failover Callbacks in OCI
Application failover callbacks can be used in the event of the failure of one database
instance, and failover to another instance. Because of the delay which can occur
during failover, the application developer may want to inform the user that failover
is in progress, and request that the user stand by. Additionally, the session on the
initial instance may have received some ALTER SESSION commands. These will
not be automatically replayed on the second instance. Consequently, the developer
may wish to replay these ALTER SESSION commands on the second instance.

Failover Callback Overview
To address the problems described earlier, the application developer can register a
failover callback function. In the event of failover, the callback function is invoked
several times during the course of reestablishing the user's session.

The first call to the callback function occurs when Oracle first detects an instance
connection loss. This callback is intended to allow the application to inform the user
of an upcoming delay. If failover is successful, a second call to the callback function
occurs when the connection is reestablished and usable. At this time the client may
wish to replay ALTER SESSION commands and inform the user that failover has
happened. If failover is unsuccessful, then the callback is called to inform the
application that failover will not take place. Additionally, the callback is called each
time a user handle besides the primary handle is reauthenticated on the new
connection. Since each user handle represents a server-side session, the client may
wish to replay ALTER SESSION commands for that session.

An initial attempt at failover may not always successful. The OCI provides a
mechanism for retrying failover after an unsuccessful attempt.

See Also: These functions are listed in Chapter 19, "OCI Cartridge
Functions". For information about writing C subroutines that can
be called from PL/SQL code, including a list of which OCI calls can
be used, and some example code, refer to the Oracle Database
Application Developer's Guide - Fundamentals.

See Also: Oracle Net Services Reference Guide for more detailed
information about application failover

See Also: See "Handling OCI_FO_ERROR" on page 9-45 for more
information about this scenario

Application Failover Callbacks in OCI

9-42 Oracle Call Interface Programmer's Guide

Failover Callback Structure and Parameters
The basic structure of a user-defined application failover callback function is as
follows:

sb4 appfocallback_fn (dvoid * svchp,
 dvoid * envhp,
 dvoid * fo_ctx,
 ub4 fo_type,
 ub4 fo_event);

An example is provided in the section "Failover Callback Example" on page 9-43 for
the following parameters:

svchp
The first parameter, svchp, is the service context handle. It is of type dvoid *.

envhp
The second parameter, envhp, is the OCI environment handle. It is of type dvoid
*.

fo_ctx
The third parameter, fo_ctx, is a client context. It is a pointer to memory specified
by the client. In this area the client can keep any necessary state or context. It is
passed as a dvoid *.

fo_type
The fourth parameter, fo_type, is the failover type. This lets the callback know
what type of failover the client has requested. The usual values are:

■ OCI_FO_SESSION, which indicates that the user has requested only session
failover.

■ OCI_FO_SELECT, which indicates that the user has requested select failover as
well.

fo_event
The last parameter is the failover event. This indicates to the callback why it is being
called. It has several possible values:

■ OCI_FO_BEGIN indicates that failover has detected a lost connection and
failover is starting.

■ OCI_FO_END indicates successful completion of failover.

Application Failover Callbacks in OCI

OCI Programming Advanced Topics 9-43

■ OCI_FO_ABORT indicates that failover was unsuccessful, and there is no
option of retrying.

■ OCI_FO_ERROR also indicates that failover was unsuccessful, but it gives the
application the opportunity to handle the error and retry failover.

■ OCI_FO_REAUTH indicates that a user handle has been reauthenticated. To
find out which, the application checks the OCI_ATTR_SESSION attribute of the
service context handle (which is the first parameter).

Failover Callback Registration
For the failover callback to be used, it must be registered on the server context
handle. This registration is done by creating a callback definition structure and
setting the OCI_ATTR_FOCBK attribute of the server handle to this structure.

The callback definition structure must be of type OCIFocbkStruct. It has two
fields: callback_function, which contains the address of the function to call,
and fo_ctx which contains the address of the client context.

An example of callback registration is included as part of the example in the next
section.

Failover Callback Example
The following code shows an example of a simple user-defined callback function
definition and registration.

Part 1, Failover Callback Definition
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
dvoid * svchp;
dvoid * envhp;
dvoid *fo_ctx;
ub4 fo_type;
ub4 fo_event;
{
switch (fo_event)
 {
 case OCI_FO_BEGIN:

See Also: "Handling OCI_FO_ERROR" on page 9-45 for more
information about this value

Application Failover Callbacks in OCI

9-44 Oracle Call Interface Programmer's Guide

 {
 printf(" Failing Over ... Please stand by \n");
 printf(" Failover type was found to be %s \n",
 ((fo_type==OCI_FO_SESSION) ? "SESSION"
 :(fo_type==OCI_FO_SELECT) ? "SELECT"
 : "UNKNOWN!"));
 printf(" Failover Context is :%s\n",
 (fo_ctx?(char *)fo_ctx:"NULL POINTER!"));
 break;
 }
 case OCI_FO_ABORT:
 {
 printf(" Failover aborted. Failover will not take place.\n");
 break;
 }
 case OCI_FO_END:
 {
 printf(" Failover ended ...resuming services\n");
 break;
 }
 case OCI_FO_REAUTH:
 {
 printf(" Failed over user. Resuming services\n");
 break;
 }
 default:
 {
 printf("Bad Failover Event: %d.\n", fo_event);
 break;
 }
 }
 return 0;
}

Part 2, Failover Callback Registration
int register_callback(srvh, errh)
dvoid *srvh; /* the server handle */
OCIError *errh; /* the error handle */
{
 OCIFocbkStruct failover; /* failover callback structure */
 /* allocate memory for context */
 if (!(failover.fo_ctx = (dvoid *)malloc(strlen("my context.")+1)))
 return(1);
 /* initialize the context. */

Application Failover Callbacks in OCI

OCI Programming Advanced Topics 9-45

 strcpy((char *)failover.fo_ctx, "my context.");
 failover.callback_function = &callback_fn;
 /* do the registration */
 if (OCIAttrSet(srvh, (ub4) OCI_HTYPE_SERVER,
 (dvoid *) &failover, (ub4) 0,
 (ub4) OCI_ATTR_FOCBK, errh) != OCI_SUCCESS)
 return(2);
 /* successful conclusion */
 return (0);
}

Handling OCI_FO_ERROR
A failover attempt is not always successful. If the attempt fails, the callback function
receives a value of OCI_FO_ABORT or OCI_FO_ERROR in the fo_event
parameter. A value of OCI_FO_ABORT indicates that failover was unsuccessful,
and no further failover attempts are possible. OCI_FO_ERROR, on the other hand,
provides the callback function with the opportunity to handle the error in some
way. For example, the callback may choose to wait a specified period of time and
then indicate to the OCI library that it must reattempt failover.

Consider the following timeline of events:

Note: This functionality is only available to applications linked
with the 8.0.5 or later OCI libraries running against any Oracle
server.

Failover does not work if a LOB column is part of the select list.

Table 9–4 Time and Event

Time Event

T0 Database fails (failure lasts until T5).

T1 Failover triggered by user activity.

T2 User attempts to reconnect; attempt fails.

T3 Failover callback invoked with OCI_FO_ERROR.

T4 Failover callback enters predetermined sleep period.

T5 Database comes back up again.

T6 Failover callback triggers new failover attempt; it is successful.

Application Failover Callbacks in OCI

9-46 Oracle Call Interface Programmer's Guide

The callback function triggers the new failover attempt by returning a value of
OCI_FO_RETRY from the function.

The following example code shows a callback function which might be used to
implement the failover strategy similar to the scenario described earlier. In this case
the failover callback enters a loop in which it sleeps and then reattempts failover
until it is successful:

/*--*/
/* the user defined failover callback */
/*--*/
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
dvoid * svchp;
dvoid * envhp;
dvoid *fo_ctx;
ub4 fo_type;
ub4 fo_event;
{
 OCIError *errhp;
 OCIHandleAlloc(envhp, (dvoid **)&errhp, (ub4) OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);
 switch (fo_event)
 {
 case OCI_FO_BEGIN:
 {
 printf(" Failing Over ... Please stand by \n");
 printf(" Failover type was found to be %s \n",
 ((fo_type==OCI_FO_NONE) ? "NONE"
 :(fo_type==OCI_FO_SESSION) ? "SESSION"
 :(fo_type==OCI_FO_SELECT) ? "SELECT"
 :(fo_type==OCI_FO_TXNAL) ? "TRANSACTION"
 : "UNKNOWN!"));
 printf(" Failover Context is :%s\n",
 (fo_ctx?(char *)fo_ctx:"NULL POINTER!"));
 break;
 }
 case OCI_FO_ABORT:
 {
 printf(" Failover aborted. Failover will not take place.\n");
 break;

T7 User successfully reconnects

Table 9–4 Time and Event (Cont.)

Time Event

Application Failover Callbacks in OCI

OCI Programming Advanced Topics 9-47

 }
 case OCI_FO_END:
 {
 printf("\n Failover ended ...resuming services\n");
 break;
 }
 case OCI_FO_REAUTH:
 {
 printf(" Failed over user. Resuming services\n");
 break;
 }
 case OCI_FO_ERROR:
 {
 /* all invocations of this can only generate one line. The newline
 * will be put at fo_end time.
 */
 printf(" Failover error gotten. Sleeping...");
 sleep(3);
 printf("Retrying. ");
 return (OCI_FO_RETRY);
 break;
 }
 default:
 {
 printf("Bad Failover Event: %d.\n", fo_event);
 break;
 }
 }
 return 0;
}

The following is sample output from a program containing this failover callback
function:

executing select...
7369 SMITH CLERK
7499 ALLEN SALESMAN
 Failing Over ... Please stand by
 Failover type was found to be SELECT
 Failover Context is :My context.
 Failover error gotten. Sleeping...Retrying. Failover error gotten.
Sleeping...Retrying. Failover error gotten. Sleeping...Retrying. Failover
error gotten. Sleeping...Retrying. Failover error gotten. Sleeping...Retrying.
Failover error gotten. Sleeping...Retrying. Failover error gotten.

OCI and Streams Advanced Queuing

9-48 Oracle Call Interface Programmer's Guide

Sleeping...Retrying. Failover error gotten. Sleeping...Retrying. Failover
error gotten. Sleeping...Retrying. Failover error gotten. Sleeping...Retrying.
 Failover ended ...resuming services
7521 WARD SALESMAN
7566 JONES MANAGER
7654 MARTIN SALESMAN
7698 BLAKE MANAGER
7782 CLARK MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7844 TURNER SALESMAN
7876 ADAMS CLERK
7900 JAMES CLERK
7902 FORD ANALYST

OCI and Streams Advanced Queuing
The OCI provides an interface to Streams Advanced Queuing (Streams AQ) feature.
Streams AQ provides message queuing as an integrated part of the Oracle server.
Streams AQ provides this functionality by integrating the queuing system with the
database, thereby creating a message-enabled database. By providing an integrated
solution Streams AQ frees application developers to devote their efforts to their
specific business logic rather than having to construct a messaging infrastructure.

OCI Streams Advanced Queuing Functions
The OCI library includes several functions related to Streams Advanced Queuing:

Note: In order to use Streams Advanced Queuing, you must be
using the Enterprise Edition

See Also:

■ Oracle Streams Advanced Queuing User’s Guide and Reference

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle Integration Server Overview

■ For example code demonstrating the use of the OCI with AQ,
refer to the description of OCIAQEnq() on page 16-121

OCI and Streams Advanced Queuing

OCI Programming Advanced Topics 9-49

■ OCIAQEnq()

■ OCIAQDeq()

■ OCIAQListen()

■ OCIAQEnqArray()

■ OCIAQDeqArray()

You can enqueue an array of messages to a single queue. The messages all share the
same enqueue options, but each message in the array can have different message
properties. You can also dequeue an array of messages from a single queue. For
transaction group queues, you can dequeue all messages for a single transaction
group using one call.

OCI Streams Advanced Queuing Descriptors
The following descriptors are used by OCI Streams AQ operations:

■ OCIAQEnqOptions

■ OCIAQDeqOptions

■ OCIAQMsgProperties

■ OCIAQAgent

You can allocate these descriptors with respect to the service handle using the
standard OCIDescriptorAlloc() call. The following code shows examples of
this:

OCIDescriptorAlloc(svch, &enqueue_options, OCI_DTYPE_AQENQ_OPTIONS, 0, 0);
OCIDescriptorAlloc(svch, &dequeue_options, OCI_DTYPE_AQDEQ_OPTIONS, 0, 0);
OCIDescriptorAlloc(svch, &message_properties, OCI_DTYPE_AQMSG_PROPERTIES, 0, 0);
OCIDescriptorAlloc(svch, &agent, OCI_DTYPE_AQAGENT, 0, 0);

Each descriptor has a variety of attributes which can be set or read.

See Also: "Streams Advanced Queuing and Publish-Subscribe
Functions" on page 16-114, contains complete descriptions of these
functions and their parameters

See Also: These attributes are described in more detail in
"Advanced Queuing Descriptor Attributes" on page A-44

OCI and Streams Advanced Queuing

9-50 Oracle Call Interface Programmer's Guide

Streams Advanced Queuing in OCI Versus PL/SQL
The following tables compare functions, parameters, and options for OCI Streams
AQ functions and descriptors, and PL/SQL AQ functions in the DBMS_AQ
package.

The following table compares the parameters for the enqueue functions:

The following table compares the parameters for the dequeue functions:

Table 9–5 AQ Functions

PL/SQL Function OCI Function

DBMS_AQ.ENQUEUE OCIAQEnq()

DBMS_AQ.DEQUEUE OCIAQDeq()

DBMS_AQ.LISTEN OCIAQListen()

DBMS_AQ.ENQUEUE_ARRAY OCIAQEnqArray()

DBMS_AQ.DEQUEUE_ARRAY OCIAQDeqArray()

Table 9–6 Enqueue Parameters

DBMS_AQ.ENQUEUE Parameter OCIAQEnq() Parameter

queue_name queue_name

enqueue_options enqueue_options

message_properties message_properties

payload payload

msgid msgid

Note: OCIAQEnq() also requires the following additional parameters:
svch, errh, payload_tdo, payload_ind, and flags.

Table 9–7 Dequeue Parameters

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

queue_name queue_name

dequeue_options dequeue_options

OCI and Streams Advanced Queuing

OCI Programming Advanced Topics 9-51

The following table compares parameters for the listen functions:

The following table compares parameters for the array enqueue functions:

message_properties message_properties

payload payload

msgid msgid

Note: OCIAQDeq() also requires the following additional parameters:
svch, errh, dequeue_options, message_properties,
payload_tdo, payload, payload_ind, and flags.

Table 9–8 Listen Parameters

DBMS_AQ.LISTEN Parameter OCIAQListen() Parameter

agent_list agent_list

wait wait

agent agent

Note: OCIAQListen() also requires the following additional parameters:
svchp, errhp, agent_list, num_agents, wait, agent,
and flags.

Table 9–9 Array Enqueue Parameters

DBMS_AQ.ENQUEUE_ARRAY
Parameter OCIAQEnqArray() Parameter

queue_name queue_name

enqueue_options enqopt

array_size iters

message_properties_array msgprop

payload_array payload

msgid_array msgid

Table 9–7 Dequeue Parameters (Cont.)

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

OCI and Streams Advanced Queuing

9-52 Oracle Call Interface Programmer's Guide

The following table compares parameters for the array dequeue functions:

The following table compares parameters for the agent attributes:

The following table compares parameters for the message properties:

Note: OCIAQEnqArray() also requires the following additional
parameters: svch, errh, payload_tdo, payload_ind,
ctxp, enqcbfp, and flags.

Table 9–10 Array Dequeue Parameters

DBMS_AQ.DEQUEUE_ARRAY
Parameter OCIAQDeqArray() Parameter

queue_name queue_name

dequeue_options deqopt

array_size iters

message_properties_array msgprop

payload_array payload

msgid_array msgid

Note: OCIAQDeqArray() also requires the following additional
parameters: svch, errh, msgprop, payload_tdo,
payload_ind, ctxp, deqcbfp, and flags.

Table 9–11 Agent Parameters

PL/SQL Agent Parameter OCIAQAgent Attribute

name OCI_ATTR_AGENT_NAME

address OCI_ATTR_AGENT_ADDRESS

protocol OCI_ATTR_AGENT_PROTOCOL

Table 9–9 Array Enqueue Parameters (Cont.)

DBMS_AQ.ENQUEUE_ARRAY
Parameter OCIAQEnqArray() Parameter

OCI and Streams Advanced Queuing

OCI Programming Advanced Topics 9-53

The following table compares enqueue option attributes:

The following table compares dequeue option attributes:

Table 9–12 Message Properties

PL/SQL Message Property OCIAQMsgProperties Attribute

priority OCI_ATTR_PRIORITY

delay OCI_ATTR_DELAY

expiration OCI_ATTR_EXPIRATION

correlation OCI_ATTR_CORRELATION

attempts OCI_ATTR_ATTEMPTS

recipient_list OCI_ATTR_RECIPIENT_LIST

exception_queue OCI_ATTR_EXCEPTION_QUEUE

enqueue_time OCI_ATTR_ENQ_TIME

state OCI_ATTR_MSG_STATE

sender_id OCI_ATTR_SENDER_ID

transaction_group OCI_ATTR_TRANSACTION_NO

original_msgid OCI_ATTR_ORIGINAL_MSGID

Table 9–13 Enqueue Option Attributes

PL/SQL Enqueue Option OCIAQEnqOptions Attribute

visibility OCI_ATTR_VISIBILITY

relative_msgid OCI_ATTR_RELATIVE_MSGID

sequence_deviation OCI_ATTR_SEQUENCE_DEVIATION

Table 9–14 Dequeue Option Attributes

PL/SQL Dequeue Option OCIAQDeqOptions Attribute

consumer_name OCI_ATTR_CONSUMER_NAME

dequeue_mode OCI_ATTR_DEQ_MODE

navigation OCI_ATTR_NAVIGATION

Publish-Subscribe Notification in OCI

9-54 Oracle Call Interface Programmer's Guide

Publish-Subscribe Notification in OCI
The publish-subscribe notification feature allows an OCI application to receive
client notifications directly, register an e-mail address to which notifications can be
sent, register a HTTP URL to which notifications can be posted, or register a
PL/SQL procedure to be invoked on a notification. Figure 9–2, "Publish-Subscribe
Model" illustrates the process.

visibility OCI_ATTR_VISIBILITY

wait OCI_ATTR_WAIT

msgid OCI_ATTR_DEQ_MSGID

correlation OCI_ATTR_CORRELATION

Table 9–14 Dequeue Option Attributes (Cont.)

PL/SQL Dequeue Option OCIAQDeqOptions Attribute

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-55

Figure 9–2 Publish-Subscribe Model

An OCI application can:

■ register interest in notifications in the AQ namespace and be notified when an
enqueue occurs.

■ register interest in subscriptions to database events and receive notifications
when the events are triggered.

■ manage registrations, such as disabling registrations temporarily or dropping
the registrations entirely.

■ post, or send, notifications to registered clients.

Client

Consumer

HTTP Server

OCI Client

E-mail Client

Channel

push

Lightwieght
Queues

Persistent
Transactional

Queues

Supplier

push

Trigger
Mechanism

System
Events

Clients

Database
PL/SQL

procedure

Publish-Subscribe Notification in OCI

9-56 Oracle Call Interface Programmer's Guide

In all the preceding scenarios the notification can be received directly by the OCI
application, or the notification can be sent to a pre-specified e-mail address, or it can
be sent to a pre-defined HTTP URL, or a pre-specified database PL/SQL procedure
can be invoked as a result of a notification.

Registered clients are notified asynchronously when events are triggered or on an
explicit AQ enqueue. Clients do not need to be connected to a database.

Publish-Subscribe Registration Functions in OCI
Registration can be done in two ways:

■ You register directly to the database. This way is simple and the registration
will take effect immediately.

■ Open Registration. You register using LDAP, from which the database receives
the registration request. This is useful when the client cannot have a database
connection (the client wants to register for a database open event while the
database is down), or if the client wants to register for the same event or events
in multiple databases at one time.

Let us next consider these two alternative ways of registration.

Publish-Subscribe Register Directly to the Database
The following steps are required in an OCI application to register and receive
notifications for events. It is assumed that the appropriate event trigger or AQ
queue has been set up. The initialization parameter COMPATIBLE must be set to 8.1
or higher.

See Also:

■ For information on Streams Advanced Queuing, see "OCI and
Streams Advanced Queuing" on page 9-48

■ For information on creating queues and about Streams AQ,
including concepts, features, and examples, refer to the chapter
on Advanced Queuing in the Oracle Streams Advanced Queuing
User’s Guide and Reference.

■ For information on creating triggers, refer to the chapter on
Commands in the Oracle Database SQL Reference.

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-57

1. Execute OCIInitialize() with OCI_EVENTS mode to specify that the
application is interested in registering for and receiving notifications. This starts
a dedicated listening thread for notifications on the client.

2. Execute OCIHandleAlloc() with handle type OCI_HTYPE_SUBSCRIPTION
to allocate a subscription handle.

3. Execute OCIAttrSet() to set the subscription handle attributes for:

■ OCI_ATTR_SUBSCR_NAME - subscription name

■ OCI_ATTR_SUBSCR_NAMESPACE - subscription namespace

■ OCI_ATTR_SUBSCR_CALLBACK - notification callback

■ OCI_ATTR_SUBSCR_CTX - callback context

■ OCI_ATTR_SUBSCR_PAYLOAD - payload buffer for posting

■ OCI_ATTR_SUBSCR_RECPT - recipient name

■ OCI_ATTR_SUBSCR_RECPTPROTO - protocol to receive notification with

■ OCI_ATTR_SUBSCR_RECPTPRES - presentation to receive notification
with

OCI_ATTR_SUBSCR_NAME, OCI_ATTR_SUBSCR_NAMESPACE and
OCI_ATTR_SUBSCR_RECPTPROTO must be set before registering a
subscription.

See Also:

■ Detailed descriptions of the functions noted can be found
in"Streams Advanced Queuing and Publish-Subscribe
Functions" on page 16-114

■ For examples of the use of these functions in an application, see
"Publish-Subscribe Direct Registration Example" on page 9-63

Note: The publish-subscribe feature is only available on
multithreaded operating systems.

Publish-Subscribe Notification in OCI

9-58 Oracle Call Interface Programmer's Guide

If OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_OCI,
then OCI_ATTR_SUBSCR_CALLBACK and OCI_ATTR_SUBSCR_CTX also
need to be set.

If OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_MAIL,
OCI_SUBSCR_PROTO_SERVER, or OCI_SUBSCR_PROTO_HTTP, then
OCI_ATTR_SUBSCR_RECPT also needs to be set.

Setting OCI_ATTR_SUBSCR_CALLBACK and OCI_ATTR_SUBSCR_RECPT at
the same time will cause an application error.

OCI_ATTR_SUBSCR_PAYLOAD is required before posting to a subscription.

4. If OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_OCI,
then define the callback routine to be used with the subscription handle.

5. If OCI_ATTR_SUBSCR_RECPTPROTO is set to
OCI_SUBSCR_PROTO_SERVER, then define the PL/SQL procedure, to be
invoked on notification, in the database.

6. Execute OCISubscriptionRegister() to register with the subscriptions.
This call can register interest in several subscriptions at the same time.

Open Registration for Publish-Subscribe
Prerequisites for this method are:

■ Registering using LDAP (open registration) requires the client to be an
enterprise user.

See Also: For information on these attributes, see "Subscription
Handle Attributes" on page A-56

See Also: "Notification Callback in OCI" on page 9-61

See Also: "Notification Procedure" on page 9-62

See Also: Oracle Advanced Security Administrator's Guide, sections
on managing enterprise user security

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-59

■ The compatibility of the database has to be 9.0 or higher.

■ LDAP_REGISTRATION_ENABLED must be set to TRUE. This can be done this
way:

 ALTER SYSTEM SET LDAP_REGISTRATION_ENABLED=TRUE

The default is FALSE.

■ LDAP_REG_SYNC_INTERVAL must be set to the time interval (in seconds) to
refresh registrations from LDAP:

 ALTER SYSTEM SET LDAP_REG_SYNC_INTERVAL = time_interval

 The default is 0, which means do not refresh.

■ To force a database refresh of LDAP registration information immediately:

ALTER SYSTEM REFRESH LDAP_REGISTRATION

The steps in open registration using Oracle Enterprise Security Manager (OESM)
are:

1. In each enterprise domain, create enterprise role,
ENTERPRISE_AQ_USER_ROLE.

2. For each database in the enterprise domain, add global role
GLOBAL_AQ_USER_ROLE to enterprise role ENTERPRISE_AQ_USER_ROLE.

3. For each enterprise domain, add enterprise role
ENTERPRISE_AQ_USER_ROLE to privilege group cn=OracleDBAQUsers,
under cn=oraclecontext, under the administrative context.

4. For each enterprise user that is authorized to register for events in the database,
grant enterprise role ENTERPRISE_AQ_USER_ROLE.

Using OCI to Open Register with LDAP
1. Call OCIInitialize() with mode set to OCI_EVENTS | OCI_USE_LDAP.

2. Call OCIAttrSet() to set the following environment handle attributes for
accessing LDAP:

■ OCI_ATTR_LDAP_HOST: the host name on which the LDAP server resides

■ OCI_ATTR_LDAP_PORT: the port on which the LDAP server is listening

■ OCI_ATTR_BIND_DN: the distinguished name to login to the LDAP server,
usually the DN of the enterprise user

Publish-Subscribe Notification in OCI

9-60 Oracle Call Interface Programmer's Guide

■ OCI_ATTR_LDAP_CRED: the credential used to authenticate the client, for
example, the password for simple authentication (username/password)

■ OCI_ATTR_WALL_LOC: for SSL authentication, the location of the client wallet

■ OCI_ATTR_LDAP_AUTH: the authentication method code

■ OCI_ATTR_LDAP_CTX: the administrative context for Oracle in the LDAP
server

3. Call OCIHandleAlloc() with handle type OCI_HTYPE_SUBSCRIPTION, to
allocate a subscription handle.

4. Call OCIDescriptorAlloc() with descriptor type OCI_DTYPE_SRVDN, to
allocate a server DN descriptor.

5. Call OCIAttrSet() to set the server DN descriptor attributes for
OCI_ATTR_SERVER_DN, the distinguished name of the database in which the
client wants to receive notifications. OCIAttrSet() can be called multiple
times for this attribute so that more than one database server is included in the
registration

6. Call OCIAttrSet() to set the subscription handle attributes for:

■ OCI_ATTR_SUBSCR_NAME: subscription name

■ OCI_ATTR_SUBSCR_NAMESPACE: subscription namespace

■ OCI_ATTR_SUBSCR_CALLBACK: notification callback

■ OCI_ATTR_SUBSCR_CTX: callback context

■ OCI_ATTR_SUBSCR_PAYLOAD: payload buffer for posting

■ OCI_ATTR_SUBSCR_RECPT: recipient name

■ OCI_ATTR_SUBSCR_RECPTPROTO: protocol to receive notification

■ OCI_ATTR_SUBSCR_RECPTRES: presentation to receive notification with

■ OCI_ATTR_SUBSCR_SERVER_DN: the descriptor handles you populated in
step 5

7. Call OCISubscriptionRegister() to register the subscriptions. The
registration will take effect when the database accesses LDAP to pick up new

See Also: "OCI_ATTR_LDAP_AUTH" on page A-6 for a complete
list of authentication modes

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-61

registrations. The frequency of pick-ups is determined by the value of
REG_SYNC_INTERVAL.

OCI Functions Used to Manage Publish-Subscribe Notification
The following functions are used to manage publish-subscribe notification.

Notification Callback in OCI
The client needs to register a notification callback that gets invoked when there is
some activity on the subscription for which interest has been registered. In the AQ
namespace, for instance, this occurs when a message of interest is enqueued.

This callback is typically set through the OCI_ATTR_SUBSCR_CALLBACK
attribute of the subscription handle.

The callback must return a value of OCI_CONTINUE and adhere to the following
specification:

typedef ub4 (*OCISubscriptionNotify) (dvoid *pCtx,
 OCISubscription *pSubscrHp,
 dvoid *pPayload,
 ub4 iPayloadLen,
 dvoid *pDescriptor,
 ub4 iMode);

The parameters are described as follows:

pCtx (IN) A user-defined context specified when the callback was registered.

Table 9–15 Publish-Subscribe Functions

Function Purpose

OCISubscriptionDisable() Disables a subscription.

OCISubscriptionEnable() Enables a subscription.

OCISubscriptionPost() Posts a subscription.

OCISubscriptionRegister() Registers a subscription.

OCISubscriptionUnRegister() Unregisters a subscription.

See Also: For information, see "Subscription Handle Attributes"
on page A-56

Publish-Subscribe Notification in OCI

9-62 Oracle Call Interface Programmer's Guide

pSubscrHp (IN) The subscription handle specified when the callback was registered.

pPayload (IN) The payload for this notification. For this release, only ub1 * (a
sequence of bytes) for the payload is supported.

iPayloadLen (IN) The length of the payload for this notification.

pDescriptor (IN) The namespace-specific descriptor. Namespace-specific parameters
can be extracted from this descriptor. The structure of this descriptor is opaque to
the user and its type is dependent on the namespace.

The attributes of the descriptor are namespace-specific. For Advanced Queuing, the
descriptor is OCI_DTYPE_AQNFY. The attributes of this descriptor are:

■ Queue Name - OCI_ATTR_QUEUE_NAME

■ Consumer Name - OCI_ATTR_CONSUMER_NAME

■ Message Id - OCI_ATTR_NFY_MSGID

■ Message Properties - OCI_ATTR_MSG_PROP

iMode (IN) Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Notification Procedure
The PL/SQL procedure that will be invoked when there is some activity on the
subscription for which interest has been registered, has to be created in the
database.

This procedure is typically set through the OCI_ATTR_SUBSCR_RECPT attribute of
the subscription handle.

See Also: For more information about OCI and Advanced
Queuing, refer to "OCI and Streams Advanced Queuing" on
page 9-48

See Also:

■ See "Subscription Handle Attributes" on page A-56.

■ "Oracle Streams AQ PL/SQL Callback" in PL/SQL Packages and
Types Reference for the PL/SQL procedure specification.

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-63

Publish-Subscribe Direct Registration Example
This example shows how system events, client notification, and Advanced Queuing
work together to implement publish subscription notification.

The following PL/SQL code creates all objects necessary to support a
publish-subscribe mechanism under the user schema, pubsub. In this code, the
Agent snoop subscribes to messages that are published at logon events. Note that
the user pubsub needs AQ_ADMINISTRATOR_ROLE and AQ_USER_ROLE
privileges to use Advance Queuing functionality. The initialization parameter
_SYSTEM_TRIG_ENABLED must be set to TRUE (the default) to enable triggers for
system events.

--
----create queue table for persistent multiple consumers
--
connect pubsub/pubsub;
---- Create or replace a queue table
begin
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 QUEUE_TABLE=>'pubsub.raw_msg_table',
 MULTIPLE_CONSUMERS => TRUE,
 QUEUE_PAYLOAD_TYPE =>'RAW',
 COMPATIBLE => '8.1.5');
end;
/
--
---- Create a persistent queue for publishing messages
--
---- Create a queue for logon events
begin
 DBMS_AQADM.CREATE_QUEUE(QUEUE_NAME=>'pubsub.logon',
 QUEUE_TABLE=>'pubsub.raw_msg_table',
 COMMENT=>'Q for error triggers');
end;
/
--
---- Start the queue
--
begin
 DBMS_AQADM.START_QUEUE('pubsub.logon');
end;
/
--
---- define new_enqueue for convenience

Publish-Subscribe Notification in OCI

9-64 Oracle Call Interface Programmer's Guide

--
create or replace procedure new_enqueue(queue_name in varchar2,
 payload in raw ,
correlation in varchar2 := NULL,
exception_queue in varchar2 := NULL)
as
 enq_ct dbms_aq.enqueue_options_t;
 msg_prop dbms_aq.message_properties_t;
 enq_msgid raw(16);
 userdata raw(1000);
begin
 msg_prop.exception_queue := exception_queue;
 msg_prop.correlation := correlation;
 userdata := payload;
 DBMS_AQ.ENQUEUE(queue_name,enq_ct, msg_prop,userdata,enq_msgid);
end;
/
--
---- add subscriber with rule based on current user name,
---- using correlation_id
--
declare
subscriber sys.aq$_agent;
begin
 subscriber := sys.aq$_agent('SNOOP', null, null);
 dbms_aqadm.add_subscriber(queue_name => 'pubsub.logon',
 subscriber => subscriber,
 rule => 'CORRID = ''ix'' ');
end;
/
--
---- create a trigger on logon on database
--
---- create trigger on after logon
create or replace trigger systrig2
 AFTER LOGON
 ON DATABASE
 begin
 new_enqueue('pubsub.logon', hextoraw('9999'), dbms_standard.login_user);
 end;
/

--
---- create a PL/SQL callback for notification of logon
---- of user 'ix' on database

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-65

--

create or replace procedure plsqlnotifySnoop(
 context raw, reginfo sys.aq$_reg_info, descr sys.aq$_descriptor,
 payload raw, payloadl number)
as
begin
 dbms_output.put_line('Notification : User ix Logged on\n');
end;
/

After the subscriptions are created, the client needs to register for notification using
callback functions. The following sample code performs the necessary steps for
registration. The initial steps of allocating and initializing session handles are
omitted here for sake of clarity.

..
static ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;

static OCISubscription *subscrhpSnoop = (OCISubscription *)0;
static OCISubscription *subscrhpSnoopMail = (OCISubscription *)0;
static OCISubscription *subscrhpSnoopServer = (OCISubscription *)0;

/* callback function for notification of logon of user 'ix' on database */

static ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
 dvoid *ctx;
 OCISubscription *subscrhp;
 dvoid *pay;
 ub4 payl;
 dvoid *desc;
 ub4 mode;
{
 printf("Notification : User ix Logged on\n");
 (void)OCIHandleFree((dvoid *)subscrhpSnoop,
 (ub4) OCI_HTYPE_SUBSCRIPTION);
 return 1;
}

static void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 ub4 buflen;

Publish-Subscribe Notification in OCI

9-66 Oracle Call Interface Programmer's Guide

 sb4 errcode;

 if (status == OCI_SUCCESS) return;

 switch (status)
 {
 case OCI_SUCCESS_WITH_INFO:
 printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf("Error - OCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error - %s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf("Error - OCI_STILL_EXECUTING\n");
 break;
 case OCI_CONTINUE:
 printf("Error - OCI_CONTINUE\n");
 break;
 default:
 printf("Error - %d\n", status);
 break;
 }
}

static void initSubscriptionHn (subscrhp,
 subscriptionName,
 func,
 recpproto,
 recpaddr,
 recppres)
OCISubscription **subscrhp;
 char * subscriptionName;
 dvoid * func;
 ub4 recpproto;

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-67

 char * recpaddr;
 ub4 recppres;
{
 /* allocate subscription handle */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)subscrhp,
 (ub4) OCI_HTYPE_SUBSCRIPTION,
 (size_t) 0, (dvoid **) 0);

 /* set subscription name in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) subscriptionName,
 (ub4) strlen((char *)subscriptionName),
 (ub4) OCI_ATTR_SUBSCR_NAME, errhp);

 /* set callback function in handle */
 if (func)
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) func, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

 /* set context in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CTX, errhp);

 /* set namespace in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

 /* set receive with protocol in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &recpproto, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_RECPTPROTO, errhp);

 /* set recipient address in handle */
 if (recpaddr)
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) recpaddr, (ub4) strlen(recpaddr),
 (ub4) OCI_ATTR_SUBSCR_RECPT, errhp);

 /* set receive with presentation in handle */
 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &recppres, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_RECPTPRES, errhp);

Publish-Subscribe Notification in OCI

9-68 Oracle Call Interface Programmer's Guide

 printf("Begining Registration for subscription %s\n", subscriptionName);
 checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,
 OCI_DEFAULT));
 printf("done\n");

}

int main(argc, argv)
int argc;
char * argv[];
{
 OCISession *authp = (OCISession *) 0;

/***
Initialize OCI Process/Environment
Initialize Server Contexts
Connect to Server
Set Service Context
**/

 /* Registration Code Begins */
/* Each call to initSubscriptionHn allocates
 and Initialises a Registration Handle */

/* Register for OCI notification */
 initSubscriptionHn(&subscrhpSnoop, /* subscription handle*/
 (char*) "PUBSUB.LOGON:SNOOP", /* subscription name
//<queue_name>:<agent_name>
*/
 (dvoid*)notifySnoop, /* callback function */
 OCI_SUBSCR_PROTO_OCI, /* receive with protocol */
 (char *)0, /* recipient address */
 OCI_SUBSCR_PRES_DEFAULT); /* receive with presentation */

/* Register for email notification */
 initSubscriptionHn(&subscrhpSnoopMail, /* subscription handle */
 (char*) "PUBSUB.LOGON:SNOOP", /* subscription name */ /*
<queue_name>:<agent_name> */
 (dvoid*)0, /* callback function */
 OCI_SUBSCR_PROTO_MAIL, /* receive with protocol */
 (char*) "longying.zhao@oracle.com", /* recipient address */
 OCI_SUBSCR_PRES_DEFAULT); /* receive with presentation */

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-69

/* Register for server to server notification */
 initSubscriptionHn(&subscrhpSnoopServer, /* subscription handle */
 (char*) "PUBSUB.LOGON:SNOOP", /* subscription name */ /*
<queue_name>:<agent_name> */
 (dvoid*)0, /* callback function */
 OCI_SUBSCR_PROTO_SERVER, /* receive with protocol */
 (char*) "pubsub.plsqlnotifySnoop", /* recipient address */
 OCI_SUBSCR_PRES_DEFAULT); /* receive with presentation */

 checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) OCI_DEFAULT));

/***
The Client Process does not need a live Session for Callbacks
End Session and Detach from Server
**/

 OCISessionEnd (svchp, errhp, authp, (ub4) OCI_DEFAULT);

 /* detach from server */
 OCIServerDetach(srvhp, errhp, OCI_DEFAULT);

 while (1) /* wait for callback */
 sleep(1);
}
If user IX logs on to the database, the client is notified by e-mail, and the callback
function notifySnoop is called. An e-mail notification will be sent to the address
xyz@company.com and the PL/SQL procedure plsqlnotifySnoop will also be
called in the database.

Publish-Subscribe LDAP Registration Example
The following code fragment illustrates how to do LDAP registration. Please read
all the program comments:

 ...

 /* TO use LDAP registration feature, OCI_EVENTS | OCI_USE_LDAP must be set
 in OCIInitialize: */

 (void) OCIInitialize((ub4) OCI_EVENTS|OCI_OBJECT|OCI_USE_LDAP, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);

Publish-Subscribe Notification in OCI

9-70 Oracle Call Interface Programmer's Guide

 ...

 /* set LDAP attributes in the environment handle */

 /* LDAP host name */
 (void) OCIAttrSet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)"yow", 3
 OCI_ATTR_LDAP_HOST, (OCIError *)errhp);

 /* LDAP server port */
 ldap_port = 389;
 (void) OCIAttrSet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&ldap_port,
 (ub4)0, OCI_ATTR_LDAP_PORT, (OCIError *)errhp);

 /* bind DN of the client, normally the enterprise user name */
 (void) OCIAttrSet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)"cn=orcladmin",
 12, OCI_ATTR_BIND_DN, (OCIError *)errhp);

 /* password of the client */
 (void) OCIAttrSet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)"welcome",
 7, OCI_ATTR_LDAP_CRED, (OCIError *)errhp);

 /* authentication method is "simple", username/password authentication */
 ldap_auth = 0x01;
 (void) OCIAttrSet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&ldap_auth,
 (ub4)0, OCI_ATTR_LDAP_AUTH, (OCIError *)errhp);

 /* adminstrative context: this is the DN above cn=oraclecontext */
 (void) OCIAttrSet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)"cn=acme,cn=com",
 14, OCI_ATTR_LDAP_CTX, (OCIError *)errhp);

 ...

 /* retrieve the LDAP attributes from the environment handle */

 /* LDAP host */
 (void) OCIAttrGet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&buf,
 &szp, OCI_ATTR_LDAP_HOST, (OCIError *)errhp);

 /* LDAP server port */
 (void) OCIAttrGet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&intval,
 0, OCI_ATTR_LDAP_PORT, (OCIError *)errhp);

 /* client binding DN */
 (void) OCIAttrGet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&buf,

Publish-Subscribe Notification in OCI

OCI Programming Advanced Topics 9-71

 &szp, OCI_ATTR_BIND_DN, (OCIError *)errhp);

 /* client password */
 (void) OCIAttrGet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&buf,
 &szp, OCI_ATTR_LDAP_CRED, (OCIError *)errhp);

 /* adminstrative context */
 (void) OCIAttrGet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&buf,
 &szp, OCI_ATTR_LDAP_CTX, (OCIError *)errhp);

 /* client authentication method */
 (void) OCIAttrGet((dvoid *)envhp, OCI_HTYPE_ENV, (dvoid *)&intval,
 0, OCI_ATTR_LDAP_AUTH, (OCIError *)errhp);

 ...

 /* to set up the server DN descriptor in the subscription handle */

 /* allocate a server DN descriptor, dn is of type "OCIServerDNs **",
 subhp is of type "OCISubscription **" */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)dn,
 (ub4) OCI_DTYPE_SRVDN, (size_t)0, (dvoid **)0);

 /* now *dn is the server DN descriptor, add the DN of the first database
 that we want to register */
 (void) OCIAttrSet((dvoid *)*dn, (ub4) OCI_DTYPE_SRVDN,
 (dvoid *)"cn=server1,cn=oraclecontext,cn=acme,cn=com",
 42, (ub4)OCI_ATTR_SERVER_DN, errhp);
 /* add the DN of another database in the descriptor */
 (void) OCIAttrSet((dvoid *)*dn, (ub4) OCI_DTYPE_SRVDN,
 (dvoid *)"cn=server2,cn=oraclecontext,cn=acme,cn=com",
 42, (ub4)OCI_ATTR_SERVER_DN, errhp);

 /* set the server DN descriptor into the subscription handle */
 (void) OCIAttrSet((dvoid *) *subhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) *dn, (ub4)0, (ub4) OCI_ATTR_SERVER_DNS, errhp);

 ...

 /* now we will try to get the server DN information from the subscription
 handle */

 /* first, get the server DN descriptor out */
 (void) OCIAttrGet((dvoid *) *subhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *)dn, &szp, OCI_ATTR_SERVER_DNS, errhp);

Publish-Subscribe Notification in OCI

9-72 Oracle Call Interface Programmer's Guide

 /* then, get the number of server DNs in the descriptor */
 (void) OCIAttrGet((dvoid *) *dn, (ub4)OCI_DTYPE_SRVDN, (dvoid *)&intval,
 &szp, (ub4)OCI_ATTR_DN_COUNT, errhp);

 /* allocate an array of char * to hold server DN pointers returned by
 oracle */
 if (intval)
 {
 arr = (char **)malloc(intval*sizeof(char *));
 (void) OCIAttrGet((dvoid *)*dn, (ub4)OCI_DTYPE_SRVDN, (dvoid *)arr,
 &intval, (ub4)OCI_ATTR_SERVER_DN, errhp);
 }

 /* OCISubscriptionRegister() calls have two modes: OCI_DEFAULT and
 OCI_REG_LDAPONLY. If OCI_DEFAULT is used, there should be only one
 server DN in the server DN descriptor. The registration request will
 be sent to the database. If a database connection is not available,
 the registration request will be detoured to the LDAP server. On the
 other hand, if mode OCI_REG_LDAPONLY is used the registration request
 will be directly sent to LDAP. This mode should be used when there are
 more than one server DNs in the server DN descriptor, or we are sure
 that a database connection is not available.

 In this example, two DNs are entered; so we should use mode
 OCI_REG_LDAPONLY in register. */
 OCISubscriptionRegister(svchp, subhp, 1, errhp, OCI_REG_LDAPONLY);

 ...

 /* as OCISubscriptionRegister(), OCISubscriptionUnregister() also has
 mode OCI_DEFAULT and OCI_REG_LDAPONLY. The usage is the same. */

 OCISubscriptionUnRegister(svchp, *subhp, errhp, OCI_REG_LDAPONLY);
}

...

Part II
 OCI Object Concepts

This part contains these chapters:

■ Chapter 10, "OCI Object-Relational Programming", provides an introduction to
object concepts and object-relational programming with OCI. Type evolution is
also discussed.

■ Chapter 11, "Object-Relational Datatypes in OCI", discusses object datatypes
and how you can represent database objects as C structures. This chapter also
describes OCI functions that map and manipulate datatypes. It covers binding
and defining object-relational datatypes. The AnyType, AnyData, and
AnyDataSet interfaces are presented.

■ Chapter 12, "Direct Path Loading" A discussion of the direct path loading of
data is presented.

■ Chapter 13, "Object Advanced Topics in OCI", describes the object cache and
how to navigate between objects.

■ Chapter 14, "Using the Object Type Translator with OCI", discusses how the
OTT is used to convert database type definitions into host language
representations.

OCI Object-Relational Programming 10-1

10
OCI Object-Relational Programming

This chapter introduces the OCI's facility for working with objects in an Oracle
database server. It also discusses the OCI's object navigational function calls.

This chapter contains these topics:

■ OCI Object Overview

■ Working with Objects in OCI

■ Developing an OCI Object Application

■ Type Inheritance

■ Type Evolution

OCI Object Overview

10-2 Oracle Call Interface Programmer's Guide

OCI Object Overview
OCI allows applications to access any of the datatypes found in the Oracle database
server, including scalar values, collections, and instances of any object type. This
includes all of the following:

■ objects

■ variable-length arrays (VARRAYs)

■ nested tables (multisets)

■ references (REFs)

■ LOBs

To take full advantage of Oracle server object capabilities, most applications need to
do more than just access objects. After an object has been retrieved, the application
must navigate through references from that object to other objects. OCI provides the
capability to do this. Through OCI's object navigational calls, an application can
perform any of the following functions on objects:

■ creating, accessing, locking, deleting, copying, and flushing objects

■ getting references to the objects and their meta-objects

■ dynamically getting and setting values of objects' attributes

The OCI navigational calls are discussed in more detail later in this chapter.

OCI also provides the ability to access type information stored in an Oracle
database. The OCIDescribeAny() function enables an application to access most
information relating to types stored in the database, including information about
methods, attributes, and type metadata.

Applications interacting with Oracle objects need a way to represent those objects in
a host language format. Oracle provides a utility called the Object Type Translator
(OTT), which can convert type definitions in the database to C struct declarations.
The declarations are stored in a header file that can be included in an OCI
application.

When type definitions are represented in C, the types of attributes are mapped to
special C variable types. The OCI includes a set of datatype mapping and manipulation

See Also: OCIDescribeAny() is discussed in Chapter 6,
"Describing Schema Metadata"

Working with Objects in OCI

OCI Object-Relational Programming 10-3

functions that enable an application to manipulate these datatypes, and thus
manipulate the attributes of objects.

The terminology for objects can occasionally become confusing. In the remainder of
this chapter, the terms object and instance both refer to an object that is either stored
in the database or is present in the object cache.

Working with Objects in OCI
Many of the programming principles that govern a relational OCI application are
the same for an object-relational application. An object-relational application uses
the standard OCI calls to establish database connections and process SQL
statements. The difference is that the SQL statements issued retrieve object
references, which can then be manipulated with OCI's object functions. An object
can also be directly manipulated as a value instance (without using its object
reference).

Basic Object Program Structure
The basic structure of an OCI application that uses objects is essentially the same as
that for a relational OCI application, as described in the section "OCI Program
Structure" on page 2-2. That paradigm is reproduced here, with extra information
covering basic object functionality.

1. Initialize the OCI programming environment. You must initialize the
environment in object mode.

Your application will most likely also need to include C struct representations
of database objects in a header file.

2. Allocate necessary handles, and establish a connection to a server.

See Also: These functions are discussed in more detail in
Chapter 11, "Object-Relational Datatypes in OCI"

See Also: These structs can be created by the programmer, or,
more easily, they can be generated by the Object Type Translator
(OTT), as described in Chapter 14, "Using the Object Type
Translator with OCI"

Working with Objects in OCI

10-4 Oracle Call Interface Programmer's Guide

3. Prepare a SQL statement for execution. This is a local (client-side) step, which
may include binding placeholders and defining output variables. In an
object-relational application, this SQL statement should return a reference (REF)
to an object.

4. Associate the prepared statement with a database server, and execute the
statement.

5. Fetch returned results.

In an object-relational application, this step entails retrieving the REF, and then
pinning the object to which it refers. Once the object is pinned, your application
will do some or all of the following:

■ Manipulate the attributes of the object and mark it as dirty

■ Follow a REF to another object or series of objects

■ Access type and attribute information

■ Navigate a complex object retrieval graph

■ Flush modified objects to the server

6. Commit the transaction. This step implicitly flushes all modified objects to the
server and commits the changes.

7. Free statements and handles not to be reused or re-execute prepared statements
again.

All of these steps are discussed in more detail in the remainder of this chapter.

Note: It is also possible to fetch an entire object, rather than just a
reference (REF). If you SELECT a referenceable object, rather than
pinning it, you get that object by value. You can also select a
non-referenceable object. Fetching the entire object in this way is
described in "Fetching Embedded Objects" on page 10-15.

Working with Objects in OCI

OCI Object-Relational Programming 10-5

 Persistent Objects, Transient Objects, and Values
Instances of an Oracle type are categorized into persistent objects and transient objects
based on their lifetime. Instances of persistent objects can be further divided into
standalone objects and embedded objects depending on whether or not they are
referenceable by way of an object identifier.

Persistent Object
A persistent object is an object which is stored in an Oracle database. It may be
fetched into the object cache and modified by an OCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. Once it is
created, it remains in the database until it is explicitly deleted. There are two types
of persistent objects:

■ Standalone instances are stored in rows of a object table, and each one has a
unique object identifier. An OCI application can retrieve a REF to a standalone
instance, pin the object and navigate from the pinned object to other related
objects. Standalone object may also be referred to as referenceable objects.

It is also possible to SELECT a referenceable object, in which case you fetch the
object by value instead of fetching its REF.

■ Embedded instances are not stored as rows in a object table. They are
embedded within other structures. Examples of embedded objects are objects
which are attributes of another object, or instances which exist in an object

See Also:

■ For information about using the OCI to connect to a server,
process SQL statements, and allocate handles, see Chapter 2,
"OCI Programming Basics" and the description of the OCI
relational functions in Chapter 15, "OCI Relational Functions"

■ For information about OTT, refer to the section "Representing
Objects in C Applications" on page 10-8, and Chapter 14,
"Using the Object Type Translator with OCI"

Note: The terms object and instance are used interchangeably in
this manual.

See Also: For more information about objects, refer to the Oracle
Database Application Developer's Guide - Object-Relational Features.

Working with Objects in OCI

10-6 Oracle Call Interface Programmer's Guide

column of a database table. Embedded instances do not have object identifiers,
and OCI applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as non-referenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

The following SQL examples demonstrate the difference between these two types of
persistent objects.

Example 1, Standalone Objects
CREATE TYPE person_t AS OBJECT
 (name varchar2(30),
 age number(3));
CREATE TABLE person_tab OF person_t;

Objects which are stored in the object table person_tab are standalone instances.
They have object identifiers and are referenceable. They can be pinned in an OCI
application.

Example 2, Embedded Objects
CREATE TABLE department
 (deptno number,
 deptname varchar2(30),
 manager person_t);

Objects which are stored in the manager column of the department table are
embedded objects. They do not have object identifiers, and they are not
referenceable. This means they cannot be pinned in an OCI application, and they
also never need to be unpinned. They are always retrieved into the object cache by
value.

Transient Objects
A transient object is a temporary instance whose life does not exceed that of the
application, and which cannot be stored or flushed to the server. The application
can delete a transient object at any time.

Transient objects are often created by the application using the OCIObjectNew()
function to store temporary values for computation. Transient objects cannot be
converted to persistent objects. Their role is fixed at the time they are instantiated.

See Also: See the section "Creating Objects" on page 10-33 for
more information about using OCIObjectNew().

Developing an OCI Object Application

OCI Object-Relational Programming 10-7

Values
In the context of this manual, a value refers to either:

■ a scalar value which is stored in a non-object column of a database table. An
OCI application can fetch values from a database by issuing SQL statements.

■ an embedded or non-referenceable object.

The context should make it clear which meaning is intended.

Developing an OCI Object Application
This section discusses the steps involved in developing a basic OCI object
application. Each step discussed in the section "Basic Object Program Structure" on
page 10-3 is described here in more detail.

The following figure shows a simple program logic flow for how an application
might work with objects. For simplicity, some required steps are omitted. Each step
in this diagram is discussed in the following sections.

Figure 10–1 Basic Object Operational Flow

Note: It is possible to SELECT a referenceable object into the object
cache, rather than pinning it, in which case you fetch the object by
value instead of fetching its REF.

Pin Object (Brings object into
client-side cache)

Operate on Object
in Cache

Mark Object
as Dirtied

Refresh Object

Flush Changes
to Object

Initialize OCI in
Object Mode

Developing an OCI Object Application

10-8 Oracle Call Interface Programmer's Guide

Representing Objects in C Applications
Before an OCI application can work with object types, those types must exist in the
database. Typically, you create types with SQL DDL statements, such as CREATE
TYPE.

When the Oracle server processes the type definition DDL commands, it stores the
type definitions in the data dictionary as type descriptor objects (TDOs).

When your application retrieves instances of object types from the database, it
needs to have a client-side representation of the objects. In a C program, the
representation of an object type is a struct. In an OCI object application, you may
also include a NULL indicator structure corresponding to each object type structure.

Oracle provides a utility called the Object Type Translator (OTT), which generates C
struct representations of database object types for you. For example, if you have a
type in your database declared as

CREATE TYPE emp_t AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER);

OTT produces the following C struct and corresponding NULL indicator struct:

struct emp_t
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};
typedef struct emp_t emp_t

struct emp_t_ind
{
 OCIInd _atomic;

See Also: Application programmers who wish to utilize object
representations other than the default structs generated by the
object cache should refer to "The Object Cache and Memory
Management" on page 13-2.

Developing an OCI Object Application

OCI Object-Relational Programming 10-9

 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct emp_t_ind emp_t_ind;

The variable types used in the struct declarations are special types employed by the
OCI object calls. A subset of OCI functions manipulate data of these types.

These struct declarations are automatically written to a .h file whose name is
determined by the OTT input parameters. You can include this header file in the
code files for an application to provide access to objects.

Initializing Environment and Object Cache
If your OCI application will be accessing and manipulating objects, it is essential
that you specify a value of OCI_OBJECT for the mode parameter of the
OCIEnvCreate() call, which is the first OCI call in any OCI application.
Specifying this value for mode indicates to the OCI libraries that your application
will be working with objects. This notification has the following important effects:

■ it establishes the object run-time environment

■ it sets up the object cache

Memory for the object cache is allocated on demand when objects are loaded into
the cache.

If the mode parameter of OCIInitialize() is not set to OCI_OBJECT, any attempt
to use an object-related function will result in an error.

See Also: These functions are mentioned later in this chapter, and
are discussed in more detail in Chapter 11, "Object-Relational
Datatypes in OCI".

See "NULL Indicator Structure" on page 10-30.

See Also:

■ For more information about OTT, see Chapter 14, "Using the
Object Type Translator with OCI".

■ For more information on the use of the NULL indicator struct,
see the section "NULL Indicator Structure" on page 10-30.

Developing an OCI Object Application

10-10 Oracle Call Interface Programmer's Guide

The client-side object cache is allocated in the program's process space. This cache is
the memory for objects that have been retrieved from the server and are available to
your application.

Making Database Connections
Once the OCI environment has been properly initialized, the application can
connect to a server. This is accomplished through the standard OCI connect calls
described in "OCI Programming Steps" on page 2-18. When using these calls, no
additional considerations need to be made because this application will be
accessing objects.

There is only one object cache allocated for each OCI environment. All objects
retrieved or created through different connections within the environment use the
same physical object cache. Each connection has its own logical object cache.

Retrieving an Object Reference from the Server
In order to work with objects, your application must first retrieve one or more
objects from the server. You accomplish this by issuing a SQL statement that returns
REFs to one or more objects.

In the following example, the application declares a text block that stores a SQL
statement designed to retrieve a REF to a single employee object from a object table
of employees (emp_tab) in the database, given a particular employee number
which is passed as an input variable (:emp_num) at runtime:

text *selemp = (text *) "SELECT REF(e)

Note: If you initialize the OCI environment in object mode, your
application allocates memory for the object cache, whether or not
the application actually uses object calls.

See Also: The object cache is mentioned throughout this chapter.
For a detailed explanation of the object cache, see Chapter 13,
"Object Advanced Topics in OCI".

Note: It is also possible for a SQL statement to fetch embedded
objects, rather than REFs, from a database. See the section
"Fetching Embedded Objects" on page 10-15 for more information.

Developing an OCI Object Application

OCI Object-Relational Programming 10-11

 FROM emp_tab e
 WHERE empno = :emp_num";

Your application should prepare and process this statement in the same way that it
would handle any relational SQL statement, as described in Chapter 2, "OCI
Programming Basics":

■ Prepare an application request, using OCIStmtPrepare().

■ Bind the host input variable using the appropriate bind call(s).

■ Declare and prepare an output variable to receive the employee object
reference. Here you would use an employee object reference, like the one
declared in "Representing Objects in C Applications" on page 10-8:

OCIRef *emp1_ref = (OCIRef *) 0; /* reference to an employee object */

When defining the output variable, set the dty datatype parameter for the define
call to SQLT_REF, the datatype constant for REF.

■ Execute the statement with OCIStmtExecute().

■ Fetch the resulting REF into emp1_ref, using OCIStmtFetch().

At this point, you could use the object reference to access and manipulate an object
or objects from the database.

Pinning an Object
Upon completion of the fetch step, your application has a REF, or pointer, to an
object. The actual object is not currently available to work with. Before you can
manipulate an object, it must be pinned. Pinning an object loads the object instance

See Also:

■ For general information about preparing and executing SQL
statements, see the section "OCI Programming Steps" on
page 2-18. For specific information about binding and defining
REF variables, refer to the sections "Advanced Bind Operations
in OCI" on page 5-9 and "Advanced Define Operations in OCI"
on page 5-20.

■ For a code example showing REF retrieval and pinning, see the
demonstration programs included with your Oracle
installation. For additional information, refer to Appendix B,
"OCI Demonstration Programs".

Developing an OCI Object Application

10-12 Oracle Call Interface Programmer's Guide

into the object cache, and enables you to access and modify the instance's attributes
and follow references from that object to other objects, if necessary. Your application
also controls when modified objects are written back to the server.

An application pins an object by calling the function OCIObjectPin(). The
parameters for this function allow you to specify the pin option, pin duration, and lock
option for the object.

The following sample code illustrates a pin operation for the employee reference we
retrieved in the previous section:

if (OCIObjectPin(env, err, &emp1_ref, (OCIComplexObject *) 0,
 OCI_PIN_ANY,
 OCI_DURATION_TRANS,
 OCI_LOCK_X, &emp1) != OCI_SUCCESS)
 process_error(err);

In this example, process_error() represents an error-handling function. If the
call to OCIObjectPin() returns anything but OCI_SUCCESS, the error-handling
function is called. The parameters of the OCIObjectPin() function are as follows:

■ env is the OCI environment handle.

■ err is the OCI error handle.

■ emp1_ref is the reference that was retrieved through SQL.

■ (OCIComplexObject *) 0 indicates that this pin operation is not utilizing
complex object retrieval.

■ OCI_PIN_ANY is the pin option. See "Pinning an Object Copy" on page 13-7 for
more information.

■ OCI_DURATION_TRANS is the pin duration. See "Object Duration" on
page 13-15 for more information.

■ OCI_LOCK_X is the lock option. See "Locking Objects For Update" on
page 13-13 for more information.

■ emp1 is an out parameter, which returns a pointer to the pinned object.

Note: This section deals with a simple pin operation involving a
single object at a time. For information about retrieving multiple
objects through complex object retrieval, see the section "Complex
Object Retrieval" on page 10-21.

Developing an OCI Object Application

OCI Object-Relational Programming 10-13

Now that the object has been pinned, the OCI application can modify that object. In
this simple example, the object contains no references to other objects.

Array Pin
Given an array of references, an OCI application can pin an array of objects by
calling OCIObjectArrayPin(). The references may point to objects of different
types. This function provides the ability for fetching objects of different types from
different tables in one network round trip.

Manipulating Object Attributes
Once an object has been pinned, an OCI application can modify its attributes. The
OCI provides a set of function for working with datatypes of object type structs,
known as the OCI datatype mapping and manipulation functions.

For example, assume that the employee object in the previous section was pinned so
that the employee's salary could be increased. Assume also that at this company,
yearly salary increases are prorated for employees who have been at the company
for less than 180 days.

For this example we will need to access the employee's hire date and check whether
it is more or less than 180 days prior to the current date. Based on that calculation,
the employee's salary is increased by either $5000 (for more than 180 days) or $3000
(for less than 180 days). The sample code on the following page demonstrates this
process.

Note that the datatype mapping and manipulation functions work with a specific
set of datatypes; you must convert other types, like int, to the appropriate OCI
types before using them in calculations.

/* assume that sysdate has been fetched into sys_date, a string. */

See Also: For an example of navigation from one instance to
another, see the section "Simple Object Navigation" on page 13-18.

Note: Changes made to objects pinned in the object cache affect
only those object copies (instances), and not the original object in
the database. In order for changes made by the application to reach
the database, those changes must be flushed/committed to the
server. See "Marking Objects and Flushing Changes" on page 10-14
for more information.

Developing an OCI Object Application

10-14 Oracle Call Interface Programmer's Guide

/* emp1 and emp1_ref are the same as in previous sections. */
/* err is the OCI error handle. */
/* NOTE: error handling code is not included in this example. */

sb4 num_days; /* the number of days between today and hiredate */
OCIDate curr_date; /* holds the current date for calculations */
int raise; /* holds the employee's raise amount before calculations */
OCINumber raise_num; /* holds employee's raise for calculations */
OCINumber new_sal; /* holds the employee's new salary */

/* convert date string to an OCIDate */
OCIDateFromText(err, (text *) sys_date, (ub4) strlen(sys_date), (text *)
 NULL, (ub1) 0, (text *) NULL, (ub4) 0, &curr_date);

 /* get number of days between hire date and today */
OCIDateDaysBetween(err, &curr_date, &emp1->hiredate, &num_days);

/* calculate raise based on number of days since hiredate */
if (num_days > 180)
 raise = 5000;
else
 raise = 3000;

/* convert raise value to an OCINumber */
OCINumberFromInt(err, (dvoid *)&raise, (uword)sizeof(raise),
 OCI_NUMBER_SIGNED, &raise_num);

/* add raise amount to salary */
OCINumberAdd(err, &raise_num, &emp1->salary, &new_sal);
OCINumberAssign(err, &new_sal, &emp1->salary);

This example points out how values must be converted to OCI datatypes (for
example, OCIDate, OCINumber) before being passed as parameters to the OCI
datatype mapping and manipulation functions.

Marking Objects and Flushing Changes
In the example in the previous section, an attribute of an object instance was
changed. At this point, however, that change exists only in the client-side object

See Also: For more information about the OCI datatypes and the
datatype mapping and manipulation functions, refer to Chapter 11,
"Object-Relational Datatypes in OCI".

Developing an OCI Object Application

OCI Object-Relational Programming 10-15

cache. The application must take specific steps to insure that the change is written in
the database.

The first step is to indicate that the object has been modified. This is done with the
OCIObjectMarkUpdate() function. This function marks the object as dirty
(modified).

Objects that have had their dirty flag set must be flushed to the server for the
changes to be recorded in the database. You can do this in three ways:

■ Flush a single dirty object by calling OCIObjectFlush().

■ Flush the entire cache using OCICacheFlush(). In this case the OCI traverses
the dirty list maintained by the cache and flushes the dirty objects to the server.

■ Call OCITransCommit() to commit a transaction. Doing so also traverses the
dirty list and flushes objects to the server.

The flush operations work only on persistent objects in the cache. Transient objects
are never flushed to the server.

Flushing an object to the server can activate triggers in the database. In fact, on
some occasions an application may want to explicitly flush objects just to fire
triggers on the server side.

Fetching Embedded Objects
If your application needs to fetch an embedded object instance—an object stored in
a column of a regular table, rather than an object table—you cannot use the REF
retrieval mechanism described in the section "Retrieving an Object Reference from
the Server" on page 10-10. Embedded instances do not have object identifiers, so it is
not possible to get a REF to them. This means that they cannot serve as the basis for
object navigation. There are still many situations, however, in which an application
will want to fetch embedded instances.

See Also:

■ For more information about OCITransCommit() see the
section "OCI Support for Transactions" on page 8-2

■ For information about transient and persistent objects, see the
section "Creating Objects" on page 10-33

■ For information about seeing and checking object
meta-attributes, such as dirty, see the section "Object
Meta-Attributes" on page 10-17

Developing an OCI Object Application

10-16 Oracle Call Interface Programmer's Guide

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
 street2 varchar2(50),
 city varchar2(30),
 state char(2),
 zip number(5));

You could then use that type as the datatype of a column in another table:

CREATE TABLE clients
(name varchar2(40),
 addr address);

Your OCI application could then issue the following SQL statement:

SELECT addr FROM clients
WHERE name='BEAR BYTE DATA MANAGEMENT'

This statement would return an embedded address object from the clients
table. The application could then use the values in the attributes of this object for
other processing.

Your application should prepare and process this statement in the same way that it
would handle any relational SQL statement, as described in Chapter 2, "OCI
Programming Basics":

■ Prepare an application request, using OCIStmtPrepare().

■ Bind the input variable using the appropriate bind call(s).

■ Define an output variable to receive the address instance. You use a C struct
representation of the object type that was generated by OTT, as described in the
section "Representing Objects in C Applications" on page 10-8:

addr1 *address; /* variable of the address struct type */

When defining the output variable, set the dty datatype parameter for the
define call to SQLT_NTY, the datatype constant for named datatypes.

■ Execute the statement with OCIStmtExecute()

■ Fetch the resulting instance into addr1, using OCIStmtFetch().

Following this, you can access the attributes of the instance, as described in the
section "Manipulating Object Attributes" on page 10-13, or pass the instance as an
input parameter for another SQL statement.

Developing an OCI Object Application

OCI Object-Relational Programming 10-17

Object Meta-Attributes
An object's meta-attributes serve as flags which can provide information to an
application, or to the object cache, about the status of an object. For example, one of
the meta-attributes of an object indicates whether or not it has been flushed to the
server. These can help an application control the behavior of instances.

Persistent and transient object instances have different sets of meta-attributes. The
meta-attributes for persistent objects are further broken down into persistent
meta-attributes and transient meta-attributes. Transient meta-attributes exist only
when an instance is in memory. Persistent meta-attributes also apply to objects
stored in the server.

Persistent Object Meta-Attributes
Table 10–1 shows the meta-attributes for standalone persistent objects.

Note: Changes made to an embedded instance can be made
persistent only by executing a SQL UPDATE statement.

See Also: For more information about preparing and executing
SQL statements, see the section "OCI Programming Steps" on
page 2-18.

Table 10–1 Meta-Attributes of Persistent Objects

Meta-Attributes Meaning

existent does the object exist?

nullness null information of the instance

locked has the object been locked?

dirty has the object been marked as dirtied?

pinned is the object pinned?

allocation duration see "Object Duration" on page 13-15

pin duration see "Object Duration" on page 13-15

Developing an OCI Object Application

10-18 Oracle Call Interface Programmer's Guide

The OCI provides the OCIObjectGetProperty() function, which allows an
application to check the status of a variety of attributes of an object. The syntax of
the function is:

sword OCIObjectGetProperty (OCIEnv *envh,
 OCIError *errh,
 CONST dvoid *obj,
 OCIObjectPropId propertyId,
 dvoid *property,
 ub4 *size);

The propertyId and property parameters are used to retrieve information
about any of a variety of properties or attributes

The different property ids and the corresponding type of property argument
follow.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or
a value instance. The property argument must be a pointer to a variable of type
OCIObjectLifetime. Possible values include:

■ OCI_OBJECT_PERSISTENT

■ OCI_OBJECT_TRANSIENT

■ OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is
returned if the given object points to a transient instance or a value. If the input
buffer is not big enough to hold the schema name an error is returned, the error
message will communicate the required size. Upon success, the size of the returned
schema name in bytes is returned by size. The property argument must be an
array of type text and size should be set to size of array in bytes by the caller.

Note: Embedded persistent objects only have the nullness and
allocation duration attributes, which are transient.

See Also: For more information, see
OCIObjectGetProperty() on page 17-28.

Developing an OCI Object Application

OCI Object-Relational Programming 10-19

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the
given object points to a transient instance or a value. If the input buffer is not big
enough to hold the table name an error is returned, the error message will
communicate the required size. Upon success, the size of the returned table name in
bytes is returned by size. The property argument must be an array of type text
and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object
points to a value instance. The property argument must be a pointer to a variable
of type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be
a pointer to a variable of type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock status is enumerated by
OCILockOpt. An error is returned if the given object points to a transient or value
instance. The property argument must be a pointer to a variable of type
OCILockOpt. Note, the lock status of an object can also be retrieved by calling
OCIObjectIsLocked().

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object,
updated object or deleted object. An error is returned if the given object points to a
transient or value instance. The property argument must be of type
OCIObjectMarkStatus. Valid values include:

See Also: For more information about durations, see "Object
Duration" on page 13-15.

See Also: For more information about durations, see "Object
Duration" on page 13-15.

Developing an OCI Object Application

10-20 Oracle Call Interface Programmer's Guide

■ OCI_OBJECT_NEW

■ OCI_OBJECT_DELETED

■ OCI_OBJECT_UPDATED

The following macros are available to test the object mark status:

■ OCI_OBJECT_IS_UPDATED (flag)

■ OCI_OBJECT_IS_DELETED (flag)

■ OCI_OBJECT_IS_NEW (flag)

■ OCI_OBJECT_IS_DIRTY (flag)

OCI_OBJECTPROP_VIEW
This identifies whether the specified object is an object view or not. If the property
value returned is TRUE, it indicates the object is a view otherwise it is not. An error
is returned if the given object points to a transient or value instance. The property
argument must be of type boolean.

Just as a view is a virtual table, an object view is a virtual object table. Each row in
the view is an object: you can call its methods, access its attributes using the dot
notation, and create a REF that points to it.

Additional Attribute Functions
The OCI also provides functions which allow an application to set or check some of
these attributes directly or indirectly, as shown in the following table:

Transient Object Meta-Attributes
Transient objects have no persistent attributes, and the following transient
attributes:

Table 10–2 Set and Check Functions

Meta-Attribute Set With Check With

nullness <none> OCIObjectGetInd()

existence <none> OCIObjectExists()

locked OCIObjectLock() OCIObjectIsLocked()

dirty OCIObjectMark() OCIObjectIsDirty()

Developing an OCI Object Application

OCI Object-Relational Programming 10-21

Complex Object Retrieval
In the examples earlier in this chapter, only a single instance at a time was fetched
or pinned. In these cases, each pin operation involved a separate server round trip
to retrieve the object.

Object-oriented applications often model their problems as a set of interrelated
objects that form graphs of objects. The applications process objects by starting at
some initial set of objects, and then using the references in these initial objects to
traverse the remaining objects. In a client/server setting, each of these traversals
could result in costly network round trips to fetch objects.

Application performance when dealing with objects may be increased through the
use of complex object retrieval (COR). This is a prefetching mechanism in which an
application specifies a criteria for retrieving a set of linked objects in a single
operation.

A complex object is a set of logically related objects consisting of a root object, and a
set of objects each of which is prefetched based on a given depth level. The root object
is explicitly fetched or pinned. The depth level is the shortest number of references
that need to be traversed from the root object to a given prefetched object in a
complex object.

Table 10–3 Transient Meta-Attributes

Transient Meta-Attributes Meaning

existent does the object exist?

pinned is the object being accessed by the application?

dirty has the object been marked as dirtied?

nullness null information of the instance

allocation duration see "Object Duration" on page 13-15

pin duration see "Object Duration" on page 13-15

Note: As described later, this does not mean that these prefetched
objects are all pinned. They are fetched into the object cache, so that
subsequent pin calls are local operations.

Developing an OCI Object Application

10-22 Oracle Call Interface Programmer's Guide

An application specifies a complex object by describing its content and boundary.
The fetching of complex objects is constrained by an environment's prefetch limit, the
amount of memory in the object cache that is available for prefetching objects.

As an example for this discussion, consider the following type declaration:

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item_varray as VARRAY(100) of REF line_item;
CREATE TYPE purchase_order AS OBJECT
(po_number NUMBER,
 cust REF customer,
 related_orders REF purchase_order,
 line_items line_item_varray);

The purchase_order type contains a scalar value for po_number, a VARRAY of
line items, and two references. The first is to a customer type, and the second is to
a purchase_order type, indicating that this type may be implemented as a linked
list.

When fetching a complex object, an application must specify the following:

1. a REF to the desired root object.

2. one or more pairs of type and depth information to specify the boundaries of
the complex object. The type information indicates which REF attributes should
be followed for COR, and the depth level indicates how many levels deep those
links should be followed.

In the case of the purchase order object preceding, the application must specify the
following:

1. the REF to the root purchase order object

2. one or more pairs of type and depth information for cust, related_orders,
or line_items

An application fetching a purchase order will very likely need access to the
customer information for that order. Using simple navigation, this would require
two server accesses to retrieve the two objects. Through complex object retrieval,
the customer can be prefetched when the application pins the purchase order. In

Note: The use of COR does not add functionality; it only
improves performance so its use is optional.

Developing an OCI Object Application

OCI Object-Relational Programming 10-23

this case, the complex object would consist of the purchase order object and the
customer object it references.

In the previous example, the application would specify the purchase_order REF,
and would indicate that the cust REF attribute should be followed to a depth level
of 1:

1. REF(PO object)

2. {(customer, 1)}

If the application wanted to prefetch the purchase_order object and all objects in
the object graph it contains, the application would specify that both the cust and
related_orders should be followed to the maximum depth level possible.

1. REF(PO object)

2. {(customer, UB4MAXVAL), (purchase_order, UB4MAXVAL)}

where UB4MAXVAL specifies that all objects of the specified type reachable through
references from the root object should be prefetched.

If an application wanted to fetch a PO and all the associated line items, it would
specify:

1. REF(PO object)

2. {(line_item, 1)}

The application can also choose to fetch all objects reachable from the root object by
way of REFs (transitive closure) to a certain depth. To do so, set the level parameter
to the depth desired. For the preceding two examples, the application could also
specify (PO object REF, UB4MAXVAL) and (PO object REF, 1)
respectively to prefetch required objects. Doing so results in many extraneous
fetches but is quite simple to specify, and requires only one server round trip.

Prefetching Objects
After specifying and fetching a complex object, subsequent fetches of objects
contained in the complex object do not incur the cost of a network round trip,
because these objects have already been prefetched and are in the object cache. Keep
in mind that excessive prefetching of objects can lead to a flooding of the object
cache. This flooding, in turn, may force out other objects that the application had
already pinned leading to a performance degradation instead of performance
improvement.

Developing an OCI Object Application

10-24 Oracle Call Interface Programmer's Guide

The SELECT privilege is needed for all prefetched objects. Objects in the complex
object for which the application does not have SELECT privilege will not be
prefetched.

Implementing Complex Object Retrieval in the OCI
Complex Object Retrieval (COR) allows an application to prefetch a complex object
while fetching the root object. The complex object specifications are passed to the
same OCIObjectPin() function used for simple objects.

An application specifies the parameters for complex object retrieval using a complex
object retrieval handle. This handle is of type OCIComplexObject and is allocated in
the same way as other OCI handles.

The complex object retrieval handle contains a list of complex object retrieval
descriptors. The descriptors are of type OCIComplexObjectComp, and are allocated
in the same way as other OCI descriptors.

Each COR descriptor contains a type REF and a depth level. The type REF specifies
a type of reference to be followed while constructing the complex object. The depth
level indicates how far a particular type of reference should be followed. Specify an
integer value, or the constant UB4MAXVAL for the maximum possible depth level.

The application can also specify the depth level in the COR handle without creating
COR descriptors for type and depth parameters. In this case, all REFs are followed
to the depth specified in the COR handle. The COR handle can also be used to
specify whether a collection attribute should be fetched separately on demand
(out-of-line) as opposed to the default case of fetching it along with the containing
object (inline).

The application uses OCIAttrSet() to set the attributes of a COR handle. The
attributes are:

OCI_ATTR_COMPLEXOBJECT_LEVEL - the depth level

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE - fetch collection attribute
in an object type out-of-line

Note: If there is insufficient memory in the cache to hold all
prefetched objects, some objects may not be prefetched. The
application will then incur a network round trip when those objects
are accessed later.

Developing an OCI Object Application

OCI Object-Relational Programming 10-25

The application allocates the COR descriptor using OCIDescriptorAlloc() and
then can set the following attributes:

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE - the type REF

OCI_ATTR_COMPLEXOBJECTCOMP_LEVEL - the depth level for references
of the preceding type

Once these attributes are set, the application calls OCIParamSet() to put the
descriptor into a complex object retrieval handle. The handle has an
OCI_ATTR_PARAM_COUNT attribute which specifies the number of descriptors on
the handle. This attribute can be read with OCIAttrGet().

Once the handle has been populated, it can be passed to the OCIObjectPin() call
to pin the root object and prefetch the remainder of the complex object.

The complex object retrieval handles and descriptors must be freed explicitly when
they are no longer needed.

COR Prefetching
The application specifies a complex object while fetching the root object. The
prefetched objects are obtained by doing a breadth-first traversal of the graph(s) of
objects rooted at a given root object(s). The traversal stops when all required objects
have been prefetched, or when the total size of all the prefetched objects exceeds the
prefetch limit.

COR interface
The interface for fetching complex objects is the OCI pin interface. The application
can pass an initialized COR handle to OCIObjectPin() (or an array of handles to
OCIObjectArrayPin()) to fetch the root object and the prefetched objects
specified in the COR handle.

sword OCIObjectPin (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock_option,
 dvoid **object);

See Also: For more information about handles and descriptors,
see "Handles" on page 2-4 and "OCI Descriptors" on page 2-13.

Developing an OCI Object Application

10-26 Oracle Call Interface Programmer's Guide

sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,
 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 dvoid **obj_array,
 ub4 *pos);

Note the following points when using COR:

1. A null COR handle argument defaults to pinning just the root object.

2. A COR handle with type of the root object and a depth level of 0 fetches only
the root object and is thus equivalent to a null COR handle.

3. The lock options apply only to the root object.

Example of COR
The following example illustrates how an application program can be modified to
use complex object retrieval.

Consider an application that displays a purchase order and the line items associated
with it. The code in boldface accomplishes this. The rest of the code uses complex
object retrieval for prefetching and thus enhances the application's performance.

OCIEnv *envhp;
OCIError *errhp;
OCIRef **liref;
OCIRef *poref;
OCIIter *itr;
boolean eoc;
purchase_order *po = (purchase_order *)0;
line_item *li = (line_item *)0;
OCISvcCtx *svchp;

Note: In order to specify lock options for prefetched objects, the
application can visit all the objects in a complex object, create an
array of REFs, and lock the entire complex object in another round
trip using the array interface (OCIObjectArrayPin()).

Developing an OCI Object Application

OCI Object-Relational Programming 10-27

OCIComplexObject *corhp;
OCIComplexObjectComp *cordp;
OCIType *litdo;
ub4 level = 0;

/* get COR Handle */
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &corhp, (ub4)
 OCI_HTYPE_COMPLEXOBJECT, 0, (dvoid **)0);

/* get COR descriptor for type line_item */
OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &cordp, (ub4)
 OCI_DTYPE_COMPLEXOBJECTCOMP, 0, (dvoid **) 0);

/* get type of line_item to set in COR descriptor */
OCITypeByName(envhp, errhp, svchp, (const text *) 0, (ub4) 0,
 (const text *) "LINE_ITEM",
 (ub4) strlen((const char *) "LINE_ITEM"), (text *) 0,
 (ub4) 0, OCI_DURATION_SESSION,
 OCI_TYPEGET_HEADER, &litdo);

/* set line_item type in COR descriptor */
OCIAttrSet((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 (dvoid *) litdo, (ub4) sizeof(dvoid *), (ub4)
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE, (OCIError *) errhp);
level = 1;

/* set depth level for line_item_varray in COR descriptor */
OCIAttrSet((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 (dvoid *) &level, (ub4) sizeof(ub4), (ub4)
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL, (OCIError *) errhp);

/* put COR descriptor in COR handle */
OCIParamSet(corhp, OCI_HTYPE_COMPLEXOBJECT, errhp, cordp,
 OCI_DTYPE_COMPLEXOBJECTCOMP, 1);

/* pin the purchase order */
OCIObjectPin(envhp, errhp, poref, corhp, OCI_PIN_LATEST,
 OCI_DURATION_SESSION, OCI_LOCK_NONE, (dvoid **)&po);

/* free COR descriptor and COR handle */
OCIDescriptorFree((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP);
OCIHandleFree((dvoid *) corhp, (ub4) OCI_HTYPE_COMPLEXOBJECT);

/* iterate and print line items for this purchase order */
OCIIterCreate(envhp, errhp, po->line_items, &itr);

Developing an OCI Object Application

10-28 Oracle Call Interface Programmer's Guide

/* get first line item */
OCIIterNext(envhp, errhp, itr, (dvoid **)&liref, (dvoid **)0, &eoc);
while (!eoc) /* not end of collection */
{
/* pin line item */
 OCIObjectPin(envhp, errhp, *liref, (dvoid *)0, OCI_PIN_RECENT,
 OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (dvoid **)&li));
 display_line_item(li);

/* get next line item */
OCIIterNext(envhp, errhp, itr, (dvoid **)&liref, (dvoid **)0, &eoc);
}

OCI Versus SQL Access to Objects
If an application needs to manipulate a graph of objects (inter-related by object
references) then it is more effective to use the OCI interface rather than the SQL
interface for accessing objects. Retrieving a graph of objects using the SQL interface
may require executing multiple SELECT statements which would mean multiple
network round trips. Using the complex object retrieval capability provided by the
OCI, the application can retrieve the graph of objects in one OCIObjectPin() call.

Consider the update case where the application retrieves a graph of objects and
modifies it based upon user interaction and then wishes to make the modifications
persistent in the database. Using the SQL interface, the application would have to
execute multiple UPDATE statements to update the graph of objects. If the
modifications involved creation of new objects and deletion of existing objects then
corresponding INSERT and DELETE statements would also need to be executed. In
addition, the application would have to do more bookkeeping, such as keeping
track of table names, because this information is required for executing the
INSERT/UPDATE/DELETE statements.

Using the OCI's OCICacheFlush() function, the application can flush all
modifications (insertion, deletion and update of objects) in a single operation. The
OCI does all the bookkeeping, thereby requiring less coding on the part of the
application. So for manipulating graph of objects the OCI is not only efficient but
also provides an easy to use interface.

Consider a different case in which the application needs to fetch an object given its
REF. In the OCI this is achieved by pinning the object using the OCIObjectPin()
call. In the SQL interface this can be achieved by dereferencing the REF in a SELECT
statement (for example, SELECT DEREF(ref) from tbl;). Consider situations

Developing an OCI Object Application

OCI Object-Relational Programming 10-29

where the same REF (reference to the same object) is being dereferenced multiple
times in a transaction. By calling OCIObjectPin() with the OCI_PIN_RECENT
option, the object will be fetched from the server only once for the transaction and
repeated pins on the same REF result in returning a pointer to the already-pinned
object in the cache. In the case of the SQL interface, each execution of the SELECT
DEREF... statement would result in fetching the object from the server and hence
would result in multiple round trips to the server and multiple copies of the same
object.

Finally, consider the case in which the application needs to fetch a non-referenceable
object. For example,

CREATE TABLE department
(
deptno number,
deptname varchar2(30),
manager employee_t
);

employee_t instances stored in the manager column are non-referenceable. Only
the SQL interface can be used to fetch manager column instances. But if
employee_t has any REF attributes, OCI calls can then be used to navigate the
REF.

Pin Count and Unpinning
Each object in the object cache has a pin count associated with it. The pin count
essentially indicates the number of code modules that are concurrently accessing
the object. The pin count is set to 1 when an object is pinned into the cache for the
first time. Objects prefetched with complex object retrieval enter the object cache
with a pin count of zero.

It is possible to pin an already-pinned object. Doing so increases the pin count by
one. When a process finishes using an object, it should unpin it, using
OCIObjectUnpin(). This call decrements the pin count by one.

When the pin count of an object reaches zero, that object is eligible to be aged out of
the cache if necessary, freeing up the memory space occupied by the object.

The pin count of an object can be set to zero explicitly by calling
OCIObjectPinCountReset().

An application can unpin all objects in the cache related to a specific connection, by
calling OCICacheUnpin().

Developing an OCI Object Application

10-30 Oracle Call Interface Programmer's Guide

NULL Indicator Structure
If a column in a row of a database table has no value, then that column is said to be
NULL, or to contain a NULL. Two different types of NULLs can apply to objects:

■ Any attribute of an object can have a NULL value. This indicates that the value
of that attribute of the object is not known.

■ An object instance may be atomically NULL. This means that the value of the
entire object is unknown.

Atomic nullness is not the same thing as nonexistence. An atomically NULL instance
still exists, its value is just not known. It may be thought of as an existing object
with no data.

When working with objects in the OCI, an application can define a NULL indicator
structure for each object type used by the application. In most cases, doing so simply
requires including the NULL indicator structure generated by OTT along with the
struct declaration. When the OTT output header file is included, the NULL indicator
struct becomes available to your application.

For each type, the NULL indicator structure includes an atomic NULL indicator
(whose type is OCIInd), and a NULL indicator for each attribute of the instance. If
the type has an object attribute, the NULL indicator structure includes that attribute's
NULL indicator structure. The following example shows the C representations of
types with their corresponding NULL indicator structures.

struct address
{
 OCINumber no;
 OCIString *street;
 OCIString *state;
 OCIString *zip;

See Also:

■ See the section "Freeing an Object Copy" on page 13-9 for more
information about the conditions under which objects with zero
pin count are removed from the cache.

■ For information about explicitly flushing an object or the entire
cache, see the section "Marking Objects and Flushing Changes"
on page 10-14.

■ See the section "Freeing an Object Copy" on page 13-9 for more
information about objects being aged out of the cache.

Developing an OCI Object Application

OCI Object-Relational Programming 10-31

};
typedef struct address address;

struct address_ind
{
 OCIInd _atomic;
 OCIInd no;
 OCIInd street;
 OCIInd state;
 OCIInd zip;
};
typedef struct address_ind address_ind;

struct person
{
 OCIString *fname;
 OCIString *lname;
 OCINumber age;
 OCIDate birthday;
 OCIArray *dependentsAge;
 OCITable *prevAddr;
 OCIRaw *comment1;
 OCILobLocator *comment2;
 address addr;
 OCIRef *spouse;
};
typedef struct person person;

struct person_ind
{
 OCIInd _atomic;
 OCIInd fname;
 OCIInd lname;
 OCIInd age;
 OCIInd birthday;
 OCIInd dependentsAge;
 OCIInd prevAddr;
 OCIInd comment1;
 OCIInd comment2;
 address_ind addr;
 OCIInd spouse;
};
typedef struct person_ind person_ind;

Developing an OCI Object Application

10-32 Oracle Call Interface Programmer's Guide

For an object type instance, the first field of the NULL indicator structure is the
atomic NULL indicator, and the remaining fields are the attribute NULL indicators
whose layout resembles the layout of the object type instance's attributes.

Checking the value of the atomic NULL indicator allows an application to test
whether an instance is atomically NULL. Checking any of the others allows an
application to test the NULL status of that attribute, as in the following code sample:

person_ind *my_person_ind
if(my_person_ind -> _atomic == OCI_IND_NULL)
 printf ("instance is atomically NULL\n");
else
if(my_person_ind -> fname == OCI_IND_NULL)
 printf ("fname attribute is NULL\n");

In the preceding example, the value of the atomic NULL indicator, or one of the
attribute NULL indicators, is compared to the predefined value OCI_IND_NULL to
test if it is NULL. The following predefined values are available for such a
comparison:

■ OCI_IND_NOTNULL, indicating that the value is not NULL

■ OCI_IND_NULL, indicating that the value is NULL

■ OCI_IND_BADNULL, indicates that an enclosing object (or parent object) is
NULL. This is used by PL/SQL, and may also be referred to as an
INVALID_NULL. For example if a type instance is NULL, then its attributes are
INVALID_NULLs.

Use the function OCIObjectGetInd() on page 17-40 to retrieve the NULL
indicator structure of an object.

If you update an attribute in its C structure, you must also set the NULL indicator for
that attribute:

Note: The dependentsAge field of person_ind indicates
whether the entire varray (dependentsAge field of person) is
atomically NULL or not. NULL information of individual elements of
dependentsAge can be retrieved through the elemind parameter
of a call to OCICollGetElem(). Similarly, the prevAddr field of
person_ind indicates whether the entire nested table (prevAddr
field of person) is atomically NULL or not. NULL information of
individual elements of prevAddr can be retrieved through the
elemind parameter of a call to OCICollGetElem().

Developing an OCI Object Application

OCI Object-Relational Programming 10-33

obj->attr1 = string1;
OCIObjectGetInd(envhp, errhp, obj, &ind);
ind->attr1 = OCI_IND_NOTNULL;

Creating Objects
An OCI application can create any object using OCIObjectNew(). To create a
persistent object, the application must specify the object table where the new object
will reside. This value can be retrieved by calling OCIObjectPinTable(), and it
is passed in the table parameter. To create a transient object, the application needs
to pass only the type descriptor object (retrieved by calling OCIDescribeAny())
for the type of object being created.

OCIObjectNew() can also be used to create instances of scalars (for example, REF,
LOB, string, raw, number, and date) and collections (for example, varray and nested
table) by passing the appropriate value for the typecode parameter.

Attribute Values of New Objects
By default, all attributes of a newly created objects have NULL values. After
initializing attribute data, the user must change the corresponding NULL status of
each attribute to non-NULL.

It is possible to have attributes set to non-NULL values when an object is created.
This is accomplished by setting the OCI_OBJECT_NEWNOTNULL attribute of the
environment handle to TRUE using OCIAttrSet(). This mode can later be turned
off by setting the attribute to FALSE.

If OCI_OBJECT_NEWNOTNULL is set to TRUE, then OCIObjectNew() creates a
non-NULL object. The attributes of the object have the default values described in
the following table, and the corresponding NULL indicators are set to NOT NULL.

See Also: For more information about OTT-generated NULL
indicator structures, refer to Chapter 14, "Using the Object Type
Translator with OCI".

Table 10–4 Attribute Values for New Objects

Attribute Type Default Value

REF If an object has a REF attribute, the user must set it to a valid
REF before flushing the object or an error is returned.

DATE The earliest possible date Oracle allows, which is midnight,
01-JAN-4712 BCE (equivalent to Julian day 1).

Developing an OCI Object Application

10-34 Oracle Call Interface Programmer's Guide

ANSI DATE The earliest possible date Oracle allows, 01-JAN-4712 BCE
(equivalent to Julian day 1).

TIMESTAMP The earliest possible date and time Oracle allows, which is
midnight, 01-JAN-4712 BCE (equivalent to Julian day 1).

TIMESTAMP WITH TIME
ZONE

The earliest possible date and time Oracle allows, which is
midnight, 01-JAN-4712 BCE (equivalent to Julian day 1) at
UTC (0:0) time zone.

TIMESTAMP WITH LOCAL
TIME ZONE

The earliest possible date and time Oracle allows, which is
midnight, 01-JAN-4712 BCE (equivalent to Julian day 1) at
UTC (0:0) time zone.

INTERVAL YEAR TO MONTH INTERVAL '0-0' YEAR TO MONTH.

INTERVAL DAY TO SECOND INTERVAL '0 0:0:0' DAY TO SECOND.

FLOAT 0.

NUMBER 0

DECIMAL 0.

RAW Raw data with length set to 0. Note: the default value for a RAW
attribute is the same as that for a NULL RAW attribute.

VARCHAR2, NVARCHAR2 OCIString with 0 length and first char set to NULL. The
default value is the same as that of a NULL string attribute.

CHAR, NCHAR OCIString with 0 length and first char set to NULL. The
default value is the same as that of a null string attribute.

VARCHAR OCIString with 0 length and first char set to NULL. The
default value is the same as that of a null string attribute.

VARRAY collection with 0 elements.

NESTED TABLE table with 0 elements.

CLOB, NCLOB empty CLOB.

BLOB empty BLOB.

BFILE The user must initialize the BFILE to a valid value by setting
the directory alias and filename.

Table 10–4 Attribute Values for New Objects (Cont.)

Attribute Type Default Value

Developing an OCI Object Application

OCI Object-Relational Programming 10-35

Freeing and Copying Objects
Use OCIObjectFree() to free memory allocated by OCIObjectNew(). An object
instance can have attributes that are pointers to additional memory (secondary
memory chunks).

Freeing an object deallocates all the memory allocated for the object, including the
associated NULL indicator structure and any secondary memory chunks. You must
neither explicitly free the secondary memory chunks nor reassign the pointers.
Doing so can result in memory leaks as well as memory corruption. This procedure
deletes a transient, but not a persistent, object before its lifetime expires. An
application should use OCIObjectMarkDelete() to delete a persistent object.

An application can copy one instance to another instance of the same type using
OCIObjectCopy().

Object Reference and Type Reference
The object extensions to the OCI provide the application with the flexibility to
access the contents of objects using their pointers or their references. The OCI
provides the function OCIObjectGetObjectRef() to return a reference to an
object given the object's pointer.

For applications that also want to access the type information of objects, the OCI
provides the function OCIObjectGetTypeRef() to return a reference to an
object's type descriptor object (TDO), given a pointer to the object.

Creating Objects Based on Object Views or User-Defined OIDs
Applications can use the OCIObjectNew() call to create objects which are based
on object views, or on tables with user-defined OIDs. If OCIObjectNew() receives
a handle to an object view or a table with a user-defined OID, then the reference it
returns is a pseudo-reference. This pseudo-reference cannot be saved into any other
object, but it can be used to fill in the object's attributes so that a primary-key-based
reference can be obtained with OCIObjectGetObjectRef().

This process involves the following steps:

See Also: See "Memory Layout of an Instance" on page 13-17 for
additional details.

See Also: See the descriptions of these functions in Chapter 17,
"OCI Navigational and Type Functions" for more information.

Developing an OCI Object Application

10-36 Oracle Call Interface Programmer's Guide

1. Pin the object view or object table on which the new object will be based.

2. Create a new object using OCIObjectNew(), passing in the handle to the table
or view obtained by the pin operation in step 1.

3. Fill in the necessary values for the object. These include those attributes which
make up the user-defined OID for the object table or object view.

4. Use OCIObjectGetObjectRef() to obtain the primary-key-based reference
to the object, if necessary. If desired, return to step 2 to create more objects.

5. Flush the newly created object(s) to the server.

The following sample code shows how this process might be implemented to create
a new object for the emp_view object view in the HR schema:

void object_view_new ()
{
dvoid *table;
OCIRef *pkref;
dvoid *object;
OCIType *emptdo;
...
/* Set up the service context, error handle and so on.. */
...
/* Pin the object view */
OCIObjectPinTable(envp,errorp,svctx, "HR", strlen("HR"), "EMP_VIEW",
 strlen("EMP_VIEW"),(dvoid *) 0, OCI_DURATION_SESSION, (dvoid **) &table);

/* Create a new object instance */
OCIObjectNew(envp, errorp, svctx, OCI_TYPECODE_OBJECT,(OCIType *)emptdo, table,
OCI_DURATION_SESSION,FALSE,&object);

/* Populate the attributes of "object" */
OCIObjectSetAttr(...);
...
/* Allocate an object reference */
OCIObjectNew(envp, errorp, svctx, OCI_TYPECODE_REF, (OCIType *)0, (dvoid *)0,
 OCI_DURATION_SESSION,TRUE,&pkref);

/* Get the reference using OCIObjectGetObjectRef */
OCIObjectGetObjectRef(envp,errorp,object,pkref);
...
/* Flush new object(s) to server */
...
} /* end function */

Type Inheritance

OCI Object-Relational Programming 10-37

Error Handling in Object Applications
Error handling in OCI applications is the same, whether or not the application uses
objects.

Type Inheritance
Type inheritance of objects has many similarities to inheritance in C++ and Java.
You can create an object type as a subtype of an existing object type. The subtype is
said to inherit all the attributes and methods (member functions and procedures) of
the supertype, which is the original type. Only single inheritance is supported; an
object cannot have more than one supertype. The subtype can add new attributes
and methods to the ones it inherits. It can also override (redefine the
implementation) of any of its inherited methods. A subtype is said to extend (that is,
inherit from) its supertype.

As an example, a type Person_t can have a subtype Student_t and a subtype
Employee_t. In turn, Student_t can have its own subtype,
PartTimeStudent_t. A type declaration must have the flag NOT FINAL so that it
can have subtypes. The default is FINAL, which means that the type can have no
subtypes.

All types discussed so far in this chapter are FINAL. All types in applications
developed before release 9.0 are FINAL. A type that is FINAL can be altered to be
NOT FINAL. A NOT FINAL type with no subtypes can be altered to be FINAL.
Person_t is declared as NOT FINAL for our example:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;

A subtype inherits all the attributes and methods declared in its supertype. It can
also declare new attributes and methods, which must have different names than
those of the supertype.The keyword UNDER identifies the supertype, like this:

See Also: For more information about function return codes and
error messages, see the section "Error Handling in OCI" on
page 2-26.

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for a more complete discussion of this
topic

Type Inheritance

10-38 Oracle Call Interface Programmer's Guide

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;

The newly declared attributes deptid and major belong to the subtype
Student_t. The subtype Employee_t is declared as, for example:

CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,
 mgr VARCHAR2(30));

The resulting structs generated by OTT for this example are shown at:

This subtype Student_t, can have its own subtype, such as
PartTimeStudent_t:

CREATE TYPE PartTimeStudent_t UNDER Student_t
(numhours NUMBER) ;

Substitutability
The benefits of polymorphism derive partially from the property substitutability.
Substitutability allows a value of some subtype to be used by code originally
written for the supertype, without any specific knowledge of the subtype being
needed in advance. The subtype value behaves to the surrounding code just like a
value of the supertype would, even if it perhaps uses different mechanisms within
its specializations of methods.

Instance substitutability refers to the ability to use an object value of a subtype in a
context declared in terms of a supertype. REF substitutability refers to the ability to
use a REF to a subtype in a context declared in terms of a REF to a supertype.

REF type attributes are substitutable, that is, an attribute defined as REF T can hold
a REF to an instance of T or any of its subtypes.

Object type attributes are substitutable: an attribute defined to be of (an object) type
T can hold an instance of T or any of its subtypes.

Collection element types are substitutable: if we define a collection of elements of
type T, it can hold instances of type T and any of its subtypes. Here is an example of
object attribute substitutability:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),

See Also: "OTT Support for Type Inheritance" on page 14-17

Type Inheritance

OCI Object-Relational Programming 10-39

 author Person_t /* substitutable */);

Thus, a Book_t instance can be created by specifying a title string and a Person_t (or
any subtype of Person_t) instance:

Book_t('My Oracle Experience',
 Employee_t(12345, 'Joe', 'SF', 1111, NULL))

NOT INSTANTIABLE Types and Methods
A type can be declared to be NOT INSTANTIABLE, which means that there is no
constructor (default or user defined) for the type. Thus, it will not be possible to
construct instances of this type. The typical usage would be define instantiable
subtypes for such a type. Here is how this property is used:

CREATE TYPE Address_t AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE IntlAddress_t UNDER Address_t(...);

A method of a type can be declared to be NOT INSTANTIABLE. Declaring a method
as NOT INSTANTIABLE means that the type is not providing an implementation for
that method. Further, a type that contains any NOT INSTANTIABLE methods must
necessarily be declared as NOT INSTANTIABLE. For example:

CREATE TYPE T AS OBJECT
(
 x NUMBER,
 NOT INSTANTIABLE MEMBER FUNCTION func1() RETURN NUMBER
) NOT INSTANTIABLE NOT FINAL;

A subtype of a NOT INSTANTIABLE type can override any of the NOT
INSTANTIABLE methods of the supertype and provide concrete implementations.
If there are any NOT INSTANTIABLE methods remaining, the subtype must also
necessarily be declared as NOT INSTANTIABLE.

A NOT INSTANTIABLE subtype can be defined under an instantiable supertype.
Declaring a NOT INSTANTIABLE type to be FINAL is not useful and is not allowed.

OCI Support for Type Inheritance
The following calls support type inheritance.

Type Inheritance

10-40 Oracle Call Interface Programmer's Guide

OCIDescribeAny()
This function has been enhanced to provide information specific to inherited types.
Additional attributes have been added for the properties of inherited types. For
example, you can get the supertype of a type.

Bind and Define Functions
OCI bind functions support REF, instance and collection element substitutability
(subtype instances can be passed in where supertype is expected). There are no
changes to the OCI bind interface, since all type checking and conversions are done
at the server side.

OCI define functions also support substitutability (subtype instances can be fetched
into define variables declared to hold the supertype). However, note that this might
require the system to resize the memory to hold the subtype instance.

The client should not use a struct (allocated on the stack) as the define variable if the
value is potentially polymorphic.

OCIObjectGetTypeRef()
This function will return the REF of the TDO of the most specific type of the input
object. This operation will return an error if the user does not have privileges on the
most specific type.

OCIObjectCopy()
The source can be a instance of any subtype of the target type. For example, a
source object holding an Employee_t instance can be assigned to a target
Person_t object. The object copy will copy all the attributes from the source to the
target, including the subtype attributes. The copy changes the most specific type of
the target object to Employee_t.

See Also: Table 6–7, "Attributes of Types" and Table 6–9,
"Attributes of Type Methods" for attributes that
OCIDescribeAny() can be used to read

Note: The client program must use objects that are allocated out
of the object cache (and are thus re-sizable) in such scenarios.

See Also: Chapter 11, "Object-Relational Datatypes in OCI" for
details of the bind and define processes

Type Evolution

OCI Object-Relational Programming 10-41

The TDO argument refers to the most specific type of the source object.

OCICollAssignElem()
The input element can be a instance of the subtype of the declared type. If the
collection is of type Person_t, this function can be used to assign an Employee_t
instance as an element of the collection.

OCICollAppend()
The input element can be a instance of the subtype of the declared type; if the
collection is of type Person_t, this function can be used to append an
Employee_t instance to the collection.

OCICollGetElem()
The collection element returned could be an instance of the subtype of the declared
type.

OTT Support for Type Inheritance
The Object Type Translator (OTT) supports type inheritance of objects by declaring
first the inherited attributes in an encapsulated struct called '_super', followed by
the new declared attributes. This is done because C does not support type
inheritance.

Type Evolution
Adding, dropping and modifying type attributes are supported. This concept is
known as type evolution. It is discussed in:

OCIDescribeAny() will return information about the latest version of the
requested type if the type of the input object is OCI_OTYPE_NAME, and the type of
the described object is OCI_PTYPE_TYPE, that is, the name input to
OCIDescribeAny() is a type name.

To access type information use these functions, as well as OCIDescribeAny():

See Also: "OTT Reference" on page 14-26 for an example and
discussion

See Also: Oracle Database Application Developer's Guide -
Object-Relational Featuresect-Relational ect-Relational

Type Evolution

10-42 Oracle Call Interface Programmer's Guide

For a discussion of the impact of type evolution on the object cache:

See Also: OCITypeArrayByName() and OCITypeByName()

See Also: "Type Evolution and the Object Cache" on page 13-23

Object-Relational Datatypes in OCI 11-1

11
Object-Relational Datatypes in OCI

This chapter contains these topics:

■ Overview of OCI Functions for Objects

■ Mapping Oracle Datatypes to C

■ Manipulating C Datatypes with OCI

■ Date (OCIDate)

■ Datetime and Interval (OCIDateTime, OCIInterval)

■ Number (OCINumber)

■ Fixed or Variable-Length String (OCIString)

■ Raw (OCIRaw)

■ Collections (OCITable, OCIArray, OCIColl, OCIIter)

■ Multilevel Collection Types

■ REF (OCIRef)

■ Object Type Information Storage and Access

■ AnyType, AnyData and AnyDataSet Interfaces

■ Binding Named Datatypes

■ Defining Named Datatypes

■ Binding And Defining Oracle C Datatypes

■ SQLT_NTY Bind/Define Example

Overview of OCI Functions for Objects

11-2 Oracle Call Interface Programmer's Guide

Overview of OCI Functions for Objects
The OCI datatype mapping and manipulation functions provide the ability to
manipulate instances of predefined Oracle C datatypes. These datatypes are used to
represent the attributes of user-defined datatypes, including object types in Oracle.

Each group of functions within the OCI is distinguished by a particular naming
convention. The datatype mapping and manipulation functions, for example, can be
easily recognized because the function names start with the prefix OCI, followed by
the name of a datatype, as in OCIDateFromText() and OCIRawSize(). As will
be explained later, the names can be further broken down into function groups that
operate on a particular type of data.

Additionally, the predefined Oracle C types on which these functions operate are
also distinguished by names which begin with the prefix OCI, as in OCIDate or
OCIString.

The datatype mapping and manipulation functions are used when an application
needs to manipulate, bind, or define attributes of objects that are stored in an Oracle
database, or which have been retrieved by a SQL query. Retrieved objects are stored
in the client-side object cache, and described in Chapter 13, "Object Advanced
Topics in OCI".

This chapter describes the purpose and structure of each of the datatypes that can
be manipulated by the OCI datatype mapping and manipulation functions. It also
summarizes the different function groups, and gives lists of available functions and
their purposes.

This chapter also provides information about how to use these datatypes in bind
and define operations within an OCI application.

These functions are valid only when an OCI application is running in object mode.
For information about initializing the OCI in object mode, and creating an OCI
application that accesses and manipulates objects, refer to the section "Initializing
Environment and Object Cache" on page 10-9.

Mapping Oracle Datatypes to C
Oracle provides a rich set of predefined datatypes with which you can create tables
and specify user-defined datatypes (including object types). Object types extend the
functionality of Oracle by allowing you to create datatypes that precisely model the

See Also: For detailed information about object types, attributes,
and collection datatypes, refer to Oracle Database Concepts.

Mapping Oracle Datatypes to C

Object-Relational Datatypes in OCI 11-3

types of data with which they work. This can provide increased efficiency and
ease-of-use for programmers who are accessing the data.

NCHAR and NVARCHAR2 can be used as attributes in objects and map to
OCIString * in C.

Database tables and object types are based upon the datatypes supplied by Oracle.
These tables and types are created with SQL statements and stored using a specific
set of Oracle internal datatypes, like VARCHAR2 or NUMBER. For example, the
following SQL statements create a user-defined address datatype and an object
table to store instances of that type:

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
street2 varchar2(50),
city varchar2(30),
state char(2),
zip number(5));
CREATE TABLE address_table OF address;

The new address type could also be used to create a regular table with an object
column:

CREATE TABLE employees
(name varchar2(30),
birthday date,
home_addr address);

An OCI application can manipulate information in the name and birthday
columns of the employees table using straightforward bind and define operations
in association with SQL statements. Accessing information stored as attributes of
objects requires some extra steps.

The OCI application first needs a way to represent the objects in a C-language
format. This is accomplished by using the Object Type Translator (OTT) to generate
C struct representations of user-defined types. The elements of these structs have
datatypes that represent C language mappings of Oracle datatypes.

An additional C type, OCIInd, is used to represent null indicator information
corresponding to attributes of object types.

See Also: Table 14–1, "Object Datatype Mappings for Object Type
Attributes" for the available Oracle types you can use as object
attribute types and their C mappings

Manipulating C Datatypes with OCI

11-4 Oracle Call Interface Programmer's Guide

OCI Type Mapping Methodology
Oracle followed a distinct design philosophy when specifying the mappings of
Oracle predefined types. The current system has the following benefits and
advantages:

■ The actual representation of datatypes like OCINumber is opaque to client
applications, and the datatypes are manipulated with a set of predefined
functions. This allows for the internal representation to change to accommodate
future enhancements without breaking user code.

■ The implementation is consistent with object-oriented paradigms in which class
implementation is hidden and only the required operations are exposed.

■ This implementation can have advantages for programmers. Consider a C
program that wants to manipulate Oracle number variables without losing the
accuracy provided by Oracle numbers. To do this in Oracle release 7, you would
have had to issue a "SELECT ... FROM DUAL" statement. In later releases,
this is accomplished by invoking the OCINumber*() functions.

Manipulating C Datatypes with OCI
In an OCI application, the manipulation of data may be as simple as adding
together two integer variables and storing the result in a third variable:

int int_1, int_2, sum;
...
/* some initialization occurs */
...
sum = int_1 + int_2;

The C language provides a set of predefined operations on simple types like
integer. However, the C datatypes listed in Table 14–1, "Object Datatype
Mappings for Object Type Attributes" are not simple C primitives. Types like
OCIString and OCINumber are actually structs with a specific Oracle-defined
internal structure. It is not possible to simply add together two OCINumbers and
store the value in the third.

The following is not valid:

See Also: For more information and examples regarding the use
of the OTT, refer to Chapter 14, "Using the Object Type Translator
with OCI".

Manipulating C Datatypes with OCI

Object-Relational Datatypes in OCI 11-5

OCINumber num_1, num_2, sum;
...
/* some initialization occurs */
...
sum = num_1 + num_2; /* NOT A VALID OPERATION */

The OCI datatype mapping and manipulation functions are provided to enable you
to perform operations on these new datatypes. For example, the preceding addition
of OCINumbers could be accomplished as follows, using the OCINumberAdd()
function:

OCINumber num_1, num_2, sum;
...
/* some initialization occurs */
...
OCINumberAdd(errhp, &num_1, &num_2, &sum): /* errhp is error handle */

The OCI provides functions to operate on each of the new datatypes. The names of
the functions provide information about the datatype on which they operate. The
first three letters, OCI, indicate that the function is part of the OCI. The next part of
the name indicates the datatype on which the function operates. The following table
shows the various function prefixes, along with example function names and the
datatype on which those functions operate:

Table 11–1 Function Prefix Examples

Function Prefix Example Operates On

OCIColl OCICollGetElem() OCIColl, OCIIter,
OCITable, OCIArray

OCIDate OCIDateDaysBetween() OCIDate

OCIDateTime OCIDateTimeSubtract() OCIDate, OCIDateTime

OCIInter OCIInterToText() OCIInterval

OCIIter OCIIterInit() OCIIter

OCINumber OCINumberAdd() OCINumber

OCIRaw OCIRawResize() OCIRaw *

OCIRef OCIRefAssign() OCIRef *

OCIString OCIStringSize() OCIString *

OCITable OCITableLast() OCITable *

Date (OCIDate)

11-6 Oracle Call Interface Programmer's Guide

The structure of each of the datatypes is described later in this chapter, along with a
list of the functions that manipulate that type.

Precision of Oracle Number Operations
Oracle numbers have a precision of 38 decimal digits. All Oracle number operations
are accurate to the full precision, with the following exceptions:

■ Inverse trigonometric functions are accurate to 28 decimal digits.

■ Other transcendental functions, including trigonometric functions, are accurate
to approximately 37 decimal digits.

■ Conversions to and from native floating-point types have the precision of the
relevant floating-point type, not to exceed 38 decimal digits.

Date (OCIDate)
The Oracle date format is mapped in C by the OCIDate type, which is an opaque C
struct. Elements of the struct represent the year, month, day, hour, minute, and
second of the date. The specific elements can be set and retrieved using the
appropriate OCI functions.

The OCIDate datatype can be bound or defined directly using the external
typecode SQLT_ODT in the bind or define call.

Unless otherwise specified, the term date in these function calls refers to a value of
type OCIDate.

Date Example
The following code provides examples of how to manipulate an attribute of type
OCIDate using OCI calls. For this example, assume that OCIEnv and OCIError
have been initialized as described in Chapter 2, "OCI Programming Basics". See
Chapter 13, "Object Advanced Topics in OCI" for information about pinning.

#define FMT "DAY, MONTH DD, YYYY"
#define LANG "American"
struct person
{
OCIDate start_date;

See Also: The prototypes and descriptions for all the functions
are provided in Chapter 18, "OCI Datatype Mapping and
Manipulation Functions".

Date (OCIDate)

Object-Relational Datatypes in OCI 11-7

};
typedef struct person person;

OCIError *err;
person *tim;
sword status; /* error status */
uword invalid;
OCIDate last_day, next_day;
text buf[100], last_day_buf[100], next_day_buf[100];
ub4 buflen = sizeof(buf);

/* Pin tim person object in the object cache. */
/* For this example, assume that
/* tim is pointing to the pinned object. */
/* set the start date of tim */

OCIDateSetTime(&tim->start_date,8,0,0);
OCIDateSetDate(&tim->start_date,1990,10,5);

/* check if the date is valid */
if (OCIDateCheck(err, &tim->start_date, &invalid) != OCI_SUCCESS)
/* error handling code */

if (invalid)
/* error handling code */

/* get the last day of start_date's month */
if (OCIDateLastDay(err, &tim->start_date, &last_day) != OCI_SUCCESS)
/* error handling code */

/* get date of next named day */
if (OCIDateNextDay(err, &tim->start_date, "Wednesday", strlen("Wednesday"),
&next_day) != OCI_SUCCESS)
/* error handling code */
/* convert dates to strings and print the information out */
/* first convert the date itself*/
buflen = sizeof(buf);
if (OCIDateToText(err, &tim->start_date, FMT, sizeof(FMT)-1, LANG,
 sizeof(LANG)-1, &buflen, buf) != OCI_SUCCESS)
/* error handling code */

/* now the last day of the month */
buflen = sizeof(last_day_buf);
if (OCIDateToText(err, &last_day, FMT, sizeof(FMT)-1, LANG, sizeof(LANG)-1,
&buflen, last_day_buf) != OCI_SUCCESS)

Datetime and Interval (OCIDateTime, OCIInterval)

11-8 Oracle Call Interface Programmer's Guide

/* error handling code */

/* now the first Wednesday after this date */
buflen = sizeof(next_day_buf);
if (OCIDateToText(err, &next_day, FMT, sizeof(FMT)-1, LANG,
 sizeof(LANG)-1, &buflen, next_day_buf) != OCI_SUCCESS)
/* error handling code */

/* print out the info */
printf("For: %s\n", buf);
printf("The last day of the month is: %s\n", last_day_buf);
printf("The next Wednesday is: %s\n", next_day_buf);

The output will be:

For: FRIDAY , OCTOBER 05, 1990
The last day of the month is: WEDNESDAY, OCTOBER 31, 1990
The next Wednesday is: WEDNESDAY, OCTOBER 10, 1990

Datetime and Interval (OCIDateTime, OCIInterval)
The OCIDateTime datatype is an opaque structure used to represent Oracle time
and timestamp datatypes (TIME, TIME WITH TIME ZONE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE) and the ANSI DATE datatype. You can set or retrieve the data in
these types (that is, year, day, fractional second) using the appropriate OCI
functions.

The OCIInterval datatype is also an opaque structure and is used to represent
Oracle interval datatypes (INTERVAL YEAR TO MONTH, INTERVAL DAY TO
SECOND).

You can bind and define OCIDateTime and OCIInterval data using the
following external typecodes in the bind or define call:

Table 11–2 Binding and Defining

OCI Datatype Type of Data External Typecode for Binding/Defining

OCIDateTime ANSI DATE SQLT_DATE

OCIDateTime TIMESTAMP SQLT_TIMESTAMP

OCIDateTime TIMESTAMP WITH TIME
ZONE

SQLT_TIMESTAMP_TZ

OCIDateTime TIMESTAMP WITH
LOCAL TIME ZONE

SQLT_TIMESTAMP_LTZ

Datetime and Interval (OCIDateTime, OCIInterval)

Object-Relational Datatypes in OCI 11-9

The OCI functions which operate on datetime and interval data are listed in the
following tables. More detailed information about these functions can be found in
OCI Date, Datetime, and Interval Functions on page 18-33.

In general, functions which operate on OCIDateTime data are also valid for
OCIDate data.

Datetime Functions
The following functions operate on OCIDateTime values. Some of these functions
also perform arithmetic operations on datetime and interval values. Some functions
may only work for certain datetime types. The possible types are:

■ SQLT_DATE - DATE

■ SQLT_TIMESTAMP - TIMESTAMP

■ SQLT_TIMESTAMP_TZ - TIMESTAMP WITH TIME ZONE

■ SQLT_TIMESTAMP_LTZ -TIMESTAMP WITH LOCAL TIME ZONE

See the individual function descriptions for more information about input types
which are valid for a particular function.

OCIInterval INTERVAL YEAR TO
MONTH

SQLT_INTERVAL_YM

OCIInterval INTERVAL DAY TO
SECOND

SQLT_INTERVAL_DS

Table 11–3 Datetime Functions

Function Purpose

OCIDateTimeAssign() on page 18-55 Performs datetime assignment

OCIDateTimeCheck() on page 18-57 Checks if the given date is valid

OCIDateTimeCompare() on
page 18-59

Compares two datetime values

OCIDateTimeConstruct() on
page 18-61

Constructs a datetime descriptor

Table 11–2 Binding and Defining (Cont.)

OCI Datatype Type of Data External Typecode for Binding/Defining

Datetime and Interval (OCIDateTime, OCIInterval)

11-10 Oracle Call Interface Programmer's Guide

Datetime Example
The following snippet of code shows how to use an OCIDateTime datatype to
select data from a TIMESTAMP WITH LOCAL TIME ZONE column:

...

OCIDateTimeConvert() on
page 18-63

Converts one datetime type to another

OCIDateTimeFromArray() on
page 18-65

Converts an array of size OCI_DT_ARRAYLEN
to an OCIDateTime descriptor

OCIDateTimeFromText() on
page 18-67

Converts the given string to Oracle datetime type
in the OCIDateTime descriptor, according to the
specified format

OCIDateTimeGetDate() on
page 18-69

Gets the date (year, month, day) portion of a
datetime value

OCIDateTimeGetTime() on
page 18-71

Gets the time (hour, minute, second, fractional
second) out of a datetime value

OCIDateTimeGetTimeZoneName()
on page 18-73

Gets the time zone name portion of a datetime
value

OCIDateTimeGetTimeZoneOffset()
on page 18-75

Gets the time zone (hour, minute) portion of a
datetime value

OCIDateTimeIntervalAdd() on
page 18-77

Adds an interval to a datetime to produce a
resulting datetime

OCIDateTimeIntervalSub() on
page 18-79

Subtracts an interval from a datetime and stores
the result in a datetime

OCIDateTimeSubtract() on
page 18-81

Takes two datetimes as input and stores their
difference in an interval

OCIDateTimeSysTimeStamp() on
page 18-82

Gets the system current date and time as a
timestamp with time zone

OCIDateTimeToArray() on
page 18-83

Converts a OCIDateTime descriptor to an array

OCIDateTimeToText() on page 18-85 Converts the given date to a string according to
the specified format

OCIDateZoneToZone() on page 18-87 Converts date from one time zone to another
zone

Table 11–3 Datetime Functions (Cont.)

Function Purpose

Datetime and Interval (OCIDateTime, OCIInterval)

Object-Relational Datatypes in OCI 11-11

/* allocate the program variable for storing the data */
OCIDateTime *tstmpltz = (OCIDateTime *)NULL;

/* Col1 is a timestamp with local time zone column */
OraText *sqlstmt = (OraText *)"SELECT col1 FROM foo";

/* Allocate the descriptor (storage) for the datatype */
status = OCIDescriptorAlloc(envhp,(dvoid **)&tstmpltz, OCI_DTYPE_TIMESTAMP_LTZ,
 0, (dvoid **)0);
....

status = OCIStmtPrepare (stmthp, errhp, sqlstmt, (ub4)strlen ((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);

/* specify the define buffer for col1 */
status = OCIDefineByPos(stmthp, &defnp, errhp, 1, &tstmpltz, sizeof(tstmpltz),
 SQLT_TIMESTAMP_LTZ, 0, 0, 0, OCI_DEFAULT);

/* Execute and Fetch */
OCIStmtExecute(svchp, stmthp, errhp, 1, 0,(OCISnapshot *) NULL,
 (OCISnapshot *)NULL, OCI_DEFAULT)

At this point tstmpltz contains a valid timestamp with local time zone data. You
can get the time zone name of the datetime data using:

status = OCIDateTimeGetTimeZoneName(envhp, errhp, tstmpltz, (ub1 *)buf,
 (ub4 *)&buflen);
...

Interval Functions
The following functions operate exclusively on interval data. In some cases it is
necessary to specify the type of interval involved. Possible types include:

■ SQLT_INTERVAL_YM - interval year to month

■ SQLT_INTERVAL_DS - interval day to second

See the individual function descriptions for more detailed information.

See Also: Complete lists of the names and purposes as well as
more detailed information about these functions can be found in
OCI Date, Datetime, and Interval Functions on page 18-33.

Datetime and Interval (OCIDateTime, OCIInterval)

11-12 Oracle Call Interface Programmer's Guide

Table 11–4 Interval Functions

Function Purpose

OCIIntervalAdd() on
page 18-89

Adds two intervals to produce a resulting interval

OCIIntervalAssign() on
page 18-91

Copies one interval to another

OCIIntervalCheck() on
page 18-92

Checks the validity of an interval

OCIIntervalCompare() on
page 18-94

Compares two intervals

OCIIntervalDivide() on
page 18-96

Divides an interval by an Oracle Number to produce an
interval

OCIIntervalFromNumber() on
page 18-97

Converts an Oracle Number to an interval

OCIIntervalFromText() on
page 18-98

Given an interval string, produces the interval
represented by the string

OCIIntervalGetDaySecond()
on page 18-102

Gets values of day and second from an interval

OCIIntervalGetYearMonth()
on page 18-104

Gets year and month from an interval

OCIIntervalMultiply() on
page 18-105

Multiplies an interval by an Oracle Number to produce
an interval

OCIIntervalSetDaySecond()
on page 18-107

Sets day and second in an interval

OCIIntervalSetYearMonth()
on page 18-109

Sets year and month in an interval

OCIIntervalSubtract() on
page 18-111

Subtracts two intervals and stores the result in an
interval

OCIIntervalToNumber() on
page 18-113

Converts an interval to an Oracle Number

OCIIntervalToText() on
page 18-114

Given an interval, produces a string representing the
interval

Number (OCINumber)

Object-Relational Datatypes in OCI 11-13

Number (OCINumber)
The OCINumber datatype is an opaque structure used to represent Oracle numeric
datatypes (NUMBER, FLOAT, DECIMAL, and so forth). You can bind or define this
type using the external typecode SQLT_VNU in the bind or define call.

Unless otherwise specified, the term number in these functions refers to a value of
type OCINumber.

Number Example
The following example shows how to manipulate an attribute of type OCINumber.

struct person
{
OCINumber sal;
};
typedef struct person person;
OCIError *err;
person* steve;
person* scott;
person* jason;
OCINumber *stevesal;
OCINumber *scottsal;
OCINumber *debsal;
sword status;
int inum;
double dnum;
OCINumber ornum;
text buffer[21];
ub4 buflen;
sword result;

/* For this example, assume OCIEnv and OCIError are initialized. */
/* For this example, assume that steve, scott and jason are pointing to
 person objects which have been pinned in the object cache. */
stevesal = &steve->sal;
scottsal = &scott->sal;
debsal = &jason->sal;

See Also: The prototypes and descriptions for all the functions
are provided in Chapter 18, "OCI Datatype Mapping and
Manipulation Functions".

Number (OCINumber)

11-14 Oracle Call Interface Programmer's Guide

/* initialize steve's salary to be $12,000 */
inum = 12000;
status = OCINumberFromInt(err, &inum, sizeof(inum), OCI_NUMBER_SIGNED,
 stevesal);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromInt */;

/* initialize scott's salary to be same as steve */
OCINumberAssign(err, stevesal, scottsal);

/* initialize jason's salary to be 20% more than steve's */
dnum = 1.2;
status = OCINumberFromReal(err, &dnum, sizeof(dnum), &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, stevesal, &ornum, debsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* give scott a 50% raise */
dnum = 1.5;
status = OCINumberFromReal(err, &dnum, sizeof(dnum), &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, scottsal, &ornum, scottsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* double steve's salary */
status = OCINumberAdd(err, stevesal, stevesal, stevesal);
if (status != OCI_SUCCESS) /* handle error from OCINumberAdd */;

/* get steve's salary in integer */
status = OCINumberToInt(err, stevesal, sizeof(inum), OCI_NUMBER_SIGNED,
 &inum);
if (status != OCI_SUCCESS) /* handle error from OCINumberToInt */;

/* inum is set to 24000 */
/* get jason's salary in double */
status = OCINumberToReal(err, debsal, sizeof(dnum), &dnum);
if (status != OCI_SUCCESS) /* handle error from OCINumberToReal */;

/* dnum is set to 14400 */
/* print scott's salary as DEM0001'8000.00 */
buflen = sizeof(buffer);
status = OCINumberToText(err, scottsal, (text *)"C0999G9999D99", 13,
 (text *)"NLS_NUMERIC_CHARACTERS='.'' NLS_ISO_CURRENCY='Germany'",
 54, &buflen, (text *)buffer);
if (status != OCI_SUCCESS) /* handle error from OCINumberToText */;
printf("scott's salary = %s\n", buffer);

Fixed or Variable-Length String (OCIString)

Object-Relational Datatypes in OCI 11-15

/* compare steve and scott's salaries */
status = OCINumberCmp(err, stevesal, scottsal, &result);
if (status != OCI_SUCCESS) /* handle error from OCINumberCmp */;

/* result is positive */
/* read jason's new salary from string */
status = OCINumberFromText(err, (text *)"48'000.00", 9, (text
*)"99G999D99", 9,
 (text *)"NLS_NUMERIC_CHARACTERS='.''", 27, debsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromText */;
/* jason's salary is now 48000.00 */

Fixed or Variable-Length String (OCIString)
Fixed or variable-length string data is represented to C programs as an OCIString
*.

The length of the string does not include the NULL character.

For binding and defining variables of type OCIString * use the external typecode
SQLT_VST.

String Functions
The following functions allow the C programmer to manipulate an instance of a
string.

See Also: The prototypes and descriptions for all the functions
are provided in Chapter 18, "OCI Datatype Mapping and
Manipulation Functions".

Table 11–5 String Functions

Function Purpose

OCIStringAllocSize() get allocated size of string memory in bytes

OCIStringAssign() assign one string to another

OCIStringAssignText() assign text string to string

OCIStringPtr() get pointer to string part of string

OCIStringResize() resize string memory

OCIStringSize() get string size

Raw (OCIRaw)

11-16 Oracle Call Interface Programmer's Guide

String Example
This example assigns a text string to a string, then gets a pointer to the string part of
the string, as well as the string size, and prints it out.

Note the double indirection used in passing the vstring1 parameter in
OCIStringAssignText().

OCIEnv *envhp;
OCIError *errhp;
OCIString *vstring1 = (OCIString *)0;
OCIString *vstring2 = (OCIString *)0;
text c_string[20];
text *text_ptr;
sword status;

strcpy((char *)c_string, "hello world");
/* Assign a text string to an OCIString */
status = OCIStringAssignText(envhp, errhp, c_string,
 (ub4)strlen((char *)c_string),&vstring1);
/* Memory for vstring1 is allocated as part of string assignment */

status = OCIStringAssignText(envhp, errhp, (text *)"hello again",
 (ub4)strlen("This is a longer string."),&vstring1);
/* vstring1 is automatically resized to store the longer string */

/* Get a pointer to the string part of vstring1 */
text_ptr = OCIStringPtr(envhp, vstring1);
/* text_ptr now points to "hello world" */
printf("%s\n", text_ptr);

Raw (OCIRaw)
Variable-length raw data is represented in C using the OCIRaw * datatype.

For binding and defining variables of type OCIRaw *, use the external typecode
SQLT_LVB.

Raw Functions
The following functions perform OCIRaw operations.

See Also: The prototypes and descriptions for all the functions
are provided in Chapter 18, "OCI Datatype Mapping and
Manipulation Functions"

Collections (OCITable, OCIArray, OCIColl, OCIIter)

Object-Relational Datatypes in OCI 11-17

Raw Example
In this example, a raw data block is set up and a pointer to its data is obtained.

Note the double indirection in the call to OCIRawAssignBytes().

OCIEnv *envhp;
OCIError *errhp;
sword status;
ub1 data_block[10000];
ub4 data_block_len = 10000;
OCIRaw *raw1 = (OCIRaw *) 0;
ub1 *raw1_pointer;

/* Set up the RAW */
/* assume 'data_block' has been initialized */
status = OCIRawAssignBytes(envhp, errhp, data_block, data_block_len,
&raw1);

/* Get a pointer to the data part of the RAW */
raw1_pointer = OCIRawPtr(envhp, raw1);

Collections (OCITable, OCIArray, OCIColl, OCIIter)
Oracle provides two types of collections: variable-length arrays (VARRAYs) and
nested tables. In C applications, varrays are represented as OCIArray *, and
nested tables are represented as OCITable *. Both of these datatypes (along with
OCIColl and OCIIter, described later) are opaque structures.

Table 11–6 Raw Functions

Function Purpose

OCIRawAllocSize() get the allocated size of raw memory in bytes

OCIRawAssignBytes() assign raw data (ub1 *) to OCIRaw *

OCIRawAssignRaw() assign one OCIRaw * to another

OCIRawPtr() get pointer to raw data

OCIRawResize() resize memory of variable-length raw data

OCIRawSize() get size of raw data

Collections (OCITable, OCIArray, OCIColl, OCIIter)

11-18 Oracle Call Interface Programmer's Guide

A variety of generic collection functions enable you to manipulate collection data.
You can use these functions on both varrays and nested tables. In addition, there is a
set of functions specific to nested tables.

You can allocate an instance of a varray or nested table using OCIObjectNew()
and free it using OCIObjectFree().

Generic Collection Functions
Oracle provides two types of collections: variable-length arrays (varrays) and
nested tables. Both varrays and nested tables can be viewed as sub-types of a
generic collection type.

In C, a generic collection is represented as OCIColl *, a varray is represented as
OCIArray *, and a nested table as OCITable *. Oracle provides a set of functions
to operate on generic collections (such as OCIColl *). These functions start with
the prefix OCIColl, as in OCICollGetElem(). The OCIColl*() functions can
also be called to operate on varrays and nested tables.

The generic collection functions are grouped into two main categories:

■ manipulating varray or nested table data

■ scanning through a collection with a collection iterator

The generic collection functions represent a complete set of functions for
manipulating varrays. Additional functions are provided to operate specifically on
nested tables. They are identified by the prefix OCITable, as in
OCITableExists().

Collection Data Manipulation Functions
The following generic functions manipulate collection data:

See Also: "Nested Table Manipulation Functions" on page 11-21

See Also: The prototypes and descriptions for all the functions
are provided in "OCI Collection and Iterator Functions" on
page 18-5

See Also: "Nested Table Manipulation Functions" on page 11-21

Note: Indexes passed to collection functions are zero-based

Collections (OCITable, OCIArray, OCIColl, OCIIter)

Object-Relational Datatypes in OCI 11-19

Collection Scanning Functions
The following generic functions enable you to scan collections with a collection
iterator. The iterator is of type OCIIter, and is created by first calling
OCIIterCreate().

Varray/Collection Iterator Example
This example creates and uses a collection iterator to scan through a varray.

OCIEnv *envhp;
OCIError *errhp;
text *text_ptr;

Table 11–7 Collection Functions

Function Purpose

OCICollAppend() append an element

OCICollAssign() assign one collection to another

OCICollAssignElem() assign element at given index

OCICollGetElem() get pointer to an element given its index

OCICollGetElemArray() get array of elements from a collection

OCICollIsLocator() Indicates whether a collection is locator-based or not

OCICollMax() get upper bound of collection

OCICollSize() get current size of collection

OCICollTrim() trim n elements from the end of the collection

Table 11–8 Collection Scanning Functions

Function Purpose

OCIIterCreate() create an iterator for scanning collection

OCIIterDelete() delete iterator

OCIIterGetCurrent() get pointer to current element pointed by iterator

OCIIterInit() initialize iterator to scan the given collection

OCIIterNext() get pointer to next element

OCIIterPrev() get pointer to previous element

Collections (OCITable, OCIArray, OCIColl, OCIIter)

11-20 Oracle Call Interface Programmer's Guide

sword status;
OCIArray *clients;
OCIString *client_elem;
OCIIter *iterator;
boolean eoc;
dvoid *elem;
OCIInd *elemind;

/* Assume envhp, errhp have been initialized */
/* Assume clients points to a varray */

/* Print the elements of clients */
/* To do this, create an iterator to scan the varray */
status = OCIIterCreate(envhp, errhp, clients, &iterator);

/* Get the first element of the clients varray */
printf("Clients' list:\n");
status = OCIIterNext(envhp, errhp, iterator, &elem,
 (dvoid **) &elemind, &eoc);

while (!eoc && (status == OCI_SUCCESS))
{
 client_elem = *((OCIString **)elem);
 /* client_elem points to the string */

 /*
 the element pointer type returned by OCIIterNext() through 'elem' is

 the same as that of OCICollGetElem(). Refer to OCICollGetElem() for
 details. */

 /*
 client_elem points to an OCIString descriptor, so to print it out,
 get a pointer to where the text begins
 */
 text_ptr = OCIStringPtr(envhp, client_elem);

 /*
 text_ptr now points to the text part of the client OCIString, which
is a
NULL-terminated string
 */
 printf(" %s\n", text_ptr);
 status = OCIIterNext(envhp, errhp, iterator, &elem,
 (dvoid **)&elemind, &eoc);

Collections (OCITable, OCIArray, OCIColl, OCIIter)

Object-Relational Datatypes in OCI 11-21

}

if (status != OCI_SUCCESS)
{
 /* handle error */
}

/* destroy the iterator */
status = OCIIterDelete(envhp, errhp, &iterator);

Nested Table Manipulation Functions
As its name implies, one table may be nested, or contained within another, as a
variable, attribute, parameter or column. Nested tables may have elements deleted,
by means of the OCITableDelete() function.

For example, suppose a table is created with 10 elements, and OCITableDelete()
is used to delete elements at index 0 through 4 and 9. The first existing element is
now element 5, and the last existing element is element 8.

As noted previously, the generic collection functions may be used to map to and
manipulate nested tables. In addition, the following functions are specific to nested
tables. They should not be used on varrays.

Nested Table Element Ordering
When a nested table is fetched into the object cache, its elements are given a
transient ordering, numbered from zero to the number of elements, minus 1. For
example, a table with 40 elements would be numbered from 0 to 39.

Table 11–9 Nested Table Functions

Function Purpose

OCITableDelete() delete an element at a given index

OCITableExists() test whether an element exists at a given index

OCITableFirst() return index for first existing element of table

OCITableLast() return index for last existing element of table

OCITableNext() return index for next existing element of table

OCITablePrev() return index for previous existing element of table

OCITableSize() return table size, not including deleted elements

Multilevel Collection Types

11-22 Oracle Call Interface Programmer's Guide

You can use these position ordinals to fetch and assign the values of elements (for
example, fetch to element i, or assign to element j, where i and j are valid position
ordinals for the given table).

When the table is copied back to the database, its transient ordering is lost. Delete
operations may be performed against elements of the table. Delete operations create
transient holes; that is, they do not change the position ordinals of the remaining
table elements.

Nested Table Locators
You can retrieve a locator to a nested table. A locator is like a handle to a collection
value, and it contains information about the database snapshot which exists at the
time of retrieval. This snapshot information helps the database retrieve the correct
instantiation of a collection value at a later time when collection elements are
fetched using the locator.

Unlike a LOB locator, a collection locator cannot be used to modify a collection
instance, they merely locate the correct data. Using the locator enables an
application to return a handle to a nested table without having to retrieve the entire
collection, which may be quite large.

A user specifies when a table is created if a locator should be returned when a
collection column or attribute is fetched, using the RETURN AS LOCATOR
specification.

You can use the OCICollIsLocator() function to determine whether a collection
is a locator.

Multilevel Collection Types
The collection element itself can be directly or indirectly another collection type.
Multilevel collection type is the name given to such a top-level collection type.

Multilevel collections have the following characteristics:

■ They can be collections of other collection types.

■ They can be collections of objects with collection attributes.

■ They have no limit to the number of nesting levels.

■ They can contain any combination of varrays and nested tables.

See Also: Oracle Database SQL Reference for more information

Multilevel Collection Types

Object-Relational Datatypes in OCI 11-23

■ They can be used as columns in tables.

OCI routines work with multilevel collections. The following routines can return in
parameter *elem a OCIColl*, which can be used in any of the collection routines:

■ OCICollgetElem()

■ OCIIterGetCurrent()

■ OCIIterNext()

■ OCIIterPrev()

The following functions take a collection element and add it to an existing
collection. Parameter elem could be an OCIColl* if the element type is another
collection:

■ OCICollAssignElem()

■ OCICollAppend()

Multilevel Collection Type Example
Assume that the following types and tables are used for the example:

type_1 (a NUMBER, b NUMBER)
NT1 TABLE OF type_1
NT2 TABLE OF NT1

The following snippet of code iterates over the multilevel collection:

...
OCIColl *outer_coll;
OCIColl *inner_coll;
OCIIter *itr1, *itr2;
Type_1 *type_1_instance;
..
/* assume outer_coll points to a valid coll of type NT2 */
checkerr(errhp, OCIIterCreate(envhp, errhp, outer_coll, &itr1));
for(eoc = FALSE;!OCIIterNext(envhp, errhp, itr1, (dvoid **) &elem,
 (dvoid **) &elem_null, &eoc) && !eoc;)
{
 inner_coll = (OCIColl *)elem;
 /* iterate over inner collection.. */
 checkerr(errhp, OCIIterCreate(envhp, errhp, inner_coll, &itr2));
 for(eoc2 = FALSE;!OCIIterNext(envhp, errhp, itr2, (dvoid **)&elem2,
 (dvoid **) &elem2_null, &eoc2) && !eoc2;)
 {

REF (OCIRef)

11-24 Oracle Call Interface Programmer's Guide

 type_1_instance = (Type_1 *)elem2;
 /* use the fields of type_1_instance */
 }
 /* close iterator over inner collection */
 checkerr(errhp, OCIIterDelete(envhp, errhp, &itr2));
}
/* close iterator over outer collection */
checkerr(errhp, OCIIterDelete(envhp, errhp, &itr1));
...

REF (OCIRef)
A REF (reference) is an identifier to an object. It is an opaque structure that uniquely
locates the object. An object may point to another object by way of a REF.

In C applications, the REF is represented by OCIRef *.

REF Manipulation Functions
The following functions perform REF operations.

REF Example
This example tests two REFs for NULL, compares them for equality, and assigns one
REF to another. Note the double indirection in the call to OCIRefAssign().

See Also: The prototypes and descriptions for all the functions
are provided in Chapter 18, "OCI Datatype Mapping and
Manipulation Functions".

Table 11–10 REF Manipulation Functions

Function Purpose

OCIRefAssign() assign one REF to another

OCIRefClear() clear or nullify a REF

OCIRefFromHex() convert hexadecimal string to a REF

OCIRefHexSize() return size of hex string representation of REF

OCIRefIsEqual() compare two REFs for equality

OCIRefIsNull() test whether a REF is NULL

OCIRefToHex() convert REF to a hexadecimal string

Object Type Information Storage and Access

Object-Relational Datatypes in OCI 11-25

OCIEnv *envhp;
OCIError *errhp;
sword status;
boolean refs_equal;
OCIRef *ref1, *ref2;

/* assume refs have been initialized to point to valid objects */
/*Compare two REFs for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After first OCIRefIsEqual:\n");
if(refs_equal)
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

/*Assign ref1 to ref2 */
status = OCIRefAssign (envhp, errhp, ref1, &ref2);
if(status != OCI_SUCCESS)
/*error handling*/

/*Compare the two REFs again for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After second OCIRefIsEqual:\n");
if(refs_equal)
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

Object Type Information Storage and Access
The OCI datatypes and type descriptors are discussed in this section.

Descriptor Objects
When a given type is created with the CREATE TYPE statement, it is stored in the
server and associated with a type descriptor object (TDO). In addition, the database
stores descriptor objects for each data attribute of the type, each method of the type,
each parameter of each method, and the results returned by methods. The following
table lists the OCI datatypes associated with each type of descriptor object.

AnyType, AnyData and AnyDataSet Interfaces

11-26 Oracle Call Interface Programmer's Guide

Several OCI functions (including OCIBindObject() and OCIObjectNew())
require a TDO as an input parameter. An application can obtain the TDO by calling
OCITypeByName(), which gets the type's TDO in an OCIType variable. Once you
obtain the TDO, you can pass it, as necessary to other calls.

AnyType, AnyData and AnyDataSet Interfaces
These capabilities allow you to model self-descriptive data. You can store
heterogeneous datatypes in the same column and query the type of data in an
application.

These definitions are used in the discussion in the following sections:

■ Persistent types. These are created using the SQL statement CREATE TYPE. They
are stored persistently in the database.

■ Transient types. Anonymous type descriptions that are not stored persistently in
the database.They are created by programs on the fly. They are useful for
exchanging type information, if necessary, between various components of an
application in a dynamic fashion.

■ Self-descriptive data. Data encapsulating type information with its actual
contents. The OCIAnyData datatype models such data in OCI. A data value of
most SQL types can be converted to an OCIAnyData which can then be
converted back to the old data value. The type SYS.ANYDATA models such
data in SQL or PL/SQL.

■ Self-descriptive dataset. Encapsulation of a set of data instances (all of the same
type) along with their type description. They should all have the same type
description.The OCIDataAnySet datatype models this data in OCI. The type
SYS.ANYDATASET models such data in SQL or PL/SQL.

Interfaces are available in both OCI (C language) as well as in SQL and PL/SQL for
constructing and manipulating these type descriptions as well as self-descriptive
data. The following sections describe the relevant OCI interfaces.

Table 11–11 Descriptor Objects

Information Type OCI Datatype

Type OCIType

Type Attributes Collection Elements
Method Parameters Method Results

OCITypeElem

Method OCITypeMethod

AnyType, AnyData and AnyDataSet Interfaces

Object-Relational Datatypes in OCI 11-27

Type Interfaces
The type interfaces can be used to construct named as well as anonymous transient
object types (structured with attributes) and collection types. The
OCITypeBeginCreate() call is used to begin type construction of transient object
types as well as collection types (the typecode parameter determines which one is
being constructed).

You need to allocate a parameter handle using OCIDescriptorAlloc().
Subsequently, type information (for attributes of an object type as well as for the
collection element's type) needs to be set using OCIAttrSet(). For object types,
use OCITypeAddAttr() to add the attribute information to the type. After
information on the last attribute has been added, you must call
OCITypeEndCreate().

For example:

OCITypeBeginCreate(...) /* Begin Type Creation */
OCIDescriptorAlloc(...)
OCIAttrSet(...)
OCITypeAddAttr(...) /* Add attribute 1 */
OCIAttrSet(...)
OCITypeAddAttr(...) /* Add attribute 2 */
...
OCITypeEndCreate(...) /* End Type Creation */

For collection types, the information on the collection element type needs to be set
with OCITypeSetCollection(). Subsequently, OCITypeEndCreate() is called
to finish construction.

For example:

OCITypeBeginCreate(...) /* Begin Type Creation */
OCIDescriptorAlloc(...)
OCIAttrSet(...)
OCITypeSetCollection(...) /* Set information on collection element */
OCITypeEndCreate(...) /* End Type Creation */

The OCIDescribeAny() call can be used to obtain the OCIType corresponding to
a persistent type.

See Also: For more information see "Persistent Objects, Transient
Objects, and Values" on page 10-5, and Oracle Database SQL
Reference, section "Oracle-Supplied Types" for an overview

AnyType, AnyData and AnyDataSet Interfaces

11-28 Oracle Call Interface Programmer's Guide

Creating a Parameter Descriptor for OCIType Calls
The OCIDescriptorAlloc() call can be used to allocate an OCIParam (with the
parent handle being the environment handle). Subsequently, OCIAttrSet() can
be called with the following allowed attribute types to set relevant type
information:

■ OCI_ATTR_PRECISION

To set numeric precision. Pass a (ub1 *) attribute value to the buffer holding
precision value.

■ OCI_ATTR_SCALE

To set numeric scale. Pass a (sb1 *) attribute value to the buffer holding scale
value.

■ OCI_ATTR_CHARSET_ID

To set the character set id for character types. Pass a (ub2 *) attribute value to the
buffer holding char set id.

■ OCI_ATTR_CHARSET_FORM

To set the character set form for character types. Pass a (ub1 *) attribute value to
the buffer holding character set form value.

■ OCI_ATTR_DATA_SIZE

Length of VARCHAR2, RAW, and so on. Pass a (ub4 *) attribute value to the buffer
holding length.

■ OCI_ATTR_TYPECODE

To set typecode. Pass a (ub2 *) attribute value to the buffer holding typecode.
This attribute needs to be set first.

■ OCI_ATTR_TDO

To set OCIType of an object or collection attribute. Pass a (OCIType *) attribute
value to the OCIType corresponding to the attribute. It is your responsibility to
make sure that the OCIType is pinned when this OCIParam is used during
AnyType construction. If it is a transient type attribute, its allocation duration
should be at least as much as the top level OCIType being created. There will be an
exception returned otherwise.

■ For builtin types, here are the acceptable typecodes (the permissible values for
OCI_ATTR_TYPECODE) for SQL type attributes:

AnyType, AnyData and AnyDataSet Interfaces

Object-Relational Datatypes in OCI 11-29

OCI_TYPECODE_DATE, OCI_TYPECODE_NUMBER,
OCI_TYPECODE_VARCHAR, OCI_TYPECODE_ RAW,
OCI_TYPECODE_CHAR, OCI_TYPECODE_VARCHAR2,
OCI_TYPECODE_VARCHAR, OCI_TYPECODE_BLOB,
OCI_TYPECODE_BFILE, OCI_TYPECODE_CLOB

OCI_TYPECODE_TIMESTAMP, OCI_TYPECODE_TIMESTAMP_TZ,
OCI_TYPECODE_TIMESTAMP_LTZ.

OCI_TYPECODE_INTERVAL_YM, OCI_TYPECODE_INTERVAL_DS.

■ If the attribute/collection element type is itself another transient type, set
OCI_ATTR_TYPECODE to:

OCI_TYPECODE_OBJECT or OCI_TYPECODE_REF (for REFS) or
OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE and set the
OCI_ATTR_TDO to the OCIType corresponding to the transient type.

■ For user defined type attributes, the permissible values for
OCI_ATTR_TYPECODE are:

■ OCI_TYPECODE_OBJECT (for an Object Type),

■ OCI_TYPECODE_REF (for a REF type)

■ and OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE (for
collections).

The OCI_ATTR_TDO should be set in these cases to the appropriate user
defined type's OCIType.

Obtaining the OCIType for Persistent Types
The OCIDescribeAny() call can be used to obtain the OCIType corresponding to
a persistent type. For example:

OCIDescribeAny(svchp, errhp. (dvoid *)"HR.EMPLOYEES",
 (ub4)strlen("HR.EMPLOYEES"),
 (ub1)OCI_OTYPE_NAME, (ub1)OCI_DEFAULT, OCI_PTYPE_TYPE, dschp);

From the describe handle (dschp), the OCIType can be obtained using
OCIAttrGet() calls.

Type Access Calls
OCIDescribeAny() can be called with these transient type descriptions for a
dynamic description of the type. The OCIType pointer can be passed directly to

AnyType, AnyData and AnyDataSet Interfaces

11-30 Oracle Call Interface Programmer's Guide

OCIDescribeAny() (with objtype set to OCI_OTYPE_PTR). This provides a
way to obtain attribute information by name as well as position.

Extensions to OCIDescribeAny()
For transient types that represent builtin types (created with a builtin typecode), the
parameter handle that describes these types (which will be of type
OCI_PTYPE_TYPE) will support the following extra attributes.

OCI_ATTR_DATA_SIZE,

OCI_ATTR_TYPECODE,

OCI_ATTR_DATA_TYPE,

OCI_ATTR_PRECISION,

OCI_ATTR_SCALE,

OCI_ATTR_CHARSET_ID

OCI_ATTR_CHARSET_FORM,

OCI_ATTR_LFPRECISION,

OCI_ATTR_FSPRECISION

These attributes will have the usual meanings they have while describing a type
attribute.

OCIAnyData Interfaces
An OCIAnyData encapsulates type information as well as a data instance of that
type (that is, self descriptive data). An OCIAnyData can be created from any builtin
or user-defined type instance using the OCIAnyDataConvert() call. This call does
a conversion (cast) to an OCIAnyData.

Alternatively, object types and collection types can be constructed piece by piece (an
attribute at a time for object types or a collection element at a time). To construct in

Note: These attributes are supported only for transient builtin
types. The attributes OCI_ATTR_IS_TRANSIENT_TYPE and
OCI_ATTR_IS_PREDEFINED_TYPE are true for these types. For
persistent types, these attributes are supported only from the
parameter handle of the type's attributes (which will be of type
OCI_PTYPE_TYPE_ATTR).

AnyType, AnyData and AnyDataSet Interfaces

Object-Relational Datatypes in OCI 11-31

this fashion, OCIAnyDataBeginCreate() should be called with the type
information (OCIType). Subsequently OCIAnyDataAttrSet() can be used for
object types and OCIAnyDataCollAddElem() can be used for collection types.
OCIAnyDataEndCreate() must then be called to finish the construction process.

Subsequently, the access routines can be invoked. To convert (cast) an OCIAnyData
to the corresponding type instance, the OCIAnyDataAccess() call can be used.

An OCIAnyData that is based on an object or collection type can also be accessed
piece by piece.

Special collection construction and access calls are provided for performance
improvement. These calls can be used to avoid unnecessary creation and copying of
the entire collection in memory. For example:

OCIAnyDataConvert(...) /* Cast a builtin or user-defined type instance
 to an OCIAnyData in 1 call. */

OCIAnyDataBeginCreate(...) /* Begin AnyData Creation */

OCIAnyDataAttrSet(...) /* Attribute-wise construction for object types */

or,

OCIAnyDataCollAddElem(...) /* Element-wise construction for collections */

OCIAnyDataEndCreate(...) /* End OCIAnyData Creation */

NCHAR Typecodes for OCIAnyData Functions
The function OCIAnyDataTypeCodeToSqlt() converts the OCITypeCode for an
AnyData value to the SQLT code that corresponds to the representation of the value
as returned by the OCIAnyData API.

The following typecodes are used in the OCIAnyData functions only:

■ OCI_TYPECODE_NCHAR

■ OCI_TYPECODE_NVARCHAR2

■ OCI_TYPECODE_NCLOB

In calls to other functions, such as OCIDescribeAny(), these typecodes are not
returned and you must use the charset form to determine if the data is NCHAR (if
charset form is SQLCS_NCHAR).

Binding Named Datatypes

11-32 Oracle Call Interface Programmer's Guide

OCIAnyDataTypeCodeToSqlt() converts OCI_TYPECODE_CHAR as well as
OCI_TYPECODE_VARCHAR2 to the output values SQLT_VST (which corresponds
to the OCIString mapping) with a charset form of SQLCS_IMPLICIT.
OCI_TYPECODE_NVARCHAR2 will also return SQLT_VST (OCIString mapping
is used by OCIAnyData API) with a charset form of SQLCS_NCHAR.

OCIAnyDataSet Interfaces
An OCIAnyDataSet encapsulates type information as well as a set of instances of
that type. OCIAnyDataSetBeginCreate() is called to begin the construction
process. OCIAnyDataSetAddInstance() is called to add a new instance and this
call returns the OCIAnyData corresponding to that instance.

Then, the OCIAnyData functions can be invoked to construct this instance.
OCIAnyDataSetEndCreate() is called once all instances have been added.

For access, call OCIAnyDataSetGetInstance() to get the OCIAnyData
corresponding to the instance. Only sequential access is supported. Subsequently,
the OCIAnyData access functions can be invoked.For example:

OCIAnyDataSetBeginCreate(...) /* Begin AnyDataSet Creation */
OCIAnyDataSetAddInstance(...) /* Add a new instance to the AnyDataSet */
 /* Use the OCIAnyData*() functions to create
 the instance */
OCIAnyDataSetEndCreate(...) /* End OCIAnyDataSet Creation */

Binding Named Datatypes
This section provides information on binding named datatypes, such as objects and
collections, and REFs.

Named Datatype Binds
For a named datatype (object type or collection) bind, a second bind call is
necessary following OCIBindByName(), or OCIBindByPos(). The OCI Bind
Object Type call, OCIBindObject(), sets up additional attributes specific to the

See Also: For more information see
"OCIAnyDataTypeCodeToSqlt()" on page 20-34

Note: For complete descriptions of all the calls in these interfaces,
see Chapter 20, "OCI Any Type and Data Functions".

Binding Named Datatypes

Object-Relational Datatypes in OCI 11-33

object type bind. An OCI application uses this call when fetching data from a table
which has a column with an object datatype.

The OCIBindObject() call takes, among other parameters, a Type Descriptor
Object (TDO) for the named datatype. The TDO, of datatype OCIType is created
and stored in the database when a named datatype is created. It contains
information about the type and its attributes. An application can obtain a TDO by
calling OCITypeByName().

The OCIBindObject() call also sets up the indicator variable or structure for the
named datatype bind.

When binding a named datatype, use the SQLT_NTY datatype constant to indicate
the datatype of program variable being bound. SQLT_NTY indicates that a C struct
representing the named datatype is being bound. A pointer to this structure is
passed to the bind call.

With inheritance and instance substitutability, you can bind a subtype instance
where the supertype is expected.

It is possible that working with named datatypes may require the use of three bind
calls in some circumstances. For example, to bind a static array of named datatypes
to a PL/SQL table, three calls must be invoked: OCIBindByName(),
OCIBindArrayOfStruct(), and OCIBindObject().

 Binding REFs
As with named datatypes, binding REFs is a two-step process. First, call
OCIBindByName() or OCIBindByPos(), and then call OCIBindObject().

REFs are bound using the SQLT_REF datatype. When SQLT_REF is used, then the
program variable being bound must be of type OCIRef *.

See Also:

■ For information about using these datatypes to fetch an
embedded object from the database, refer to the section
"Fetching Embedded Objects" on page 10-15.

■ For additional important information, see the section
"Information for Named Datatype and REF Binds" on
page 11-34

■ For more information about descriptor objects, see "Descriptor
Objects" on page 11-25.

Binding Named Datatypes

11-34 Oracle Call Interface Programmer's Guide

With inheritance and REF substitutability, you can bind a REF value to a subtype
instance where a REF to the supertype is expected.

Information for Named Datatype and REF Binds
This section presents some additional important information to keep in mind when
working with named datatype and REF binds. It includes pointers about memory
allocation and indicator variable usage.

■ If the datatype being bound is SQLT_NTY, the indicator struct parameter of the
OCIBindObject() call (dvoid ** indpp) is used, and the scalar indicator is
completely ignored.

■ If the datatype is SQLT_REF, the scalar indicator is used, and the indicator
struct parameter of OCIBindObject() is completely ignored.

■ The use of indicator structures is optional. The user can pass a NULL pointer in
the indpp parameter for the OCIBindObject() call. During the bind, this
means that the object is not atomically NULL and none of its attributes are NULL.

■ The indicator struct size pointer, indsp, and program variable size pointer,
pgvsp, in the OCIBindObject() call is optional. Users can pass NULL if these
parameters are not needed.

Information Regarding Array Binds
For doing array binds of named datatypes or REFs, for array inserts or fetches, the
user needs to pass in an array of pointers to buffers (preallocated or otherwise) of
the appropriate type. Similarly, an array of scalar indicators for SQLT_REF types or
an array of pointers to indicator structs for SQLT_NTY types needs to be passed.

See Also:

■ For information about binding and pinning REFs to objects, see
"Retrieving an Object Reference from the Server" on page 10-10.

■ For additional important information, see the section
"Information for Named Datatype and REF Binds" on
page 11-34.

See Also: For more information about SQLT_NTY, see the section
"Named Datatypes: Object, VARRAY, Nested Table" on page 3-20.

Defining Named Datatypes

Object-Relational Datatypes in OCI 11-35

Defining Named Datatypes
This section provides information on defining named datatypes (for example,
objects, collections) and REFs.

Defining Named Datatype Output Variables
For a named datatype (object type, nested table, varray) define, two define calls are
necessary. The application should first call OCIDefineByPos(), specifying
SQLT_NTY in the dty parameter. Following OCIDefineByPos(), the application
must call OCIDefineObject(). In this case, the data buffer pointer in
OCIDefineByPos() is ignored and additional attributes pertaining to a named
datatype define are set up using the OCI Define Object attributes call,
OCIDefineObject().

There SQLT_NTY datatype constant is specified for a named datatype define. In this
case, the application fetches the result data into a host-language representation of
the named datatype. In most cases, this will be a C struct generated by the Object
Type Translator.

When making an OCIDefineObject() call, a pointer to the address of the C
struct (preallocated or otherwise) must be provided. The object may have been
created with OCIObjectNew(), allocated in the cache, or with user-allocated
memory.

However, in the presence of inheritance, we strongly recommend using objects in
the object cache and not passing objects allocated out of user memory from the
stack. The reason is that due to instance substitutability, the server may send back a
subtype instance when the client is expecting a supertype instance. This requires the
server to dynamically re-size the object -- which is possible only for objects in the
cache.

Defining REF Output Variables
As with named datatypes, defining for a REF output variable is a two-step process.
The first step is a call to OCIDefineByPos(), and the second is a call to
OCIDefineObject(). Also as with named datatypes, the SQLT_REF datatype
constant is passed to the dty parameter of OCIDefineByPos().

Note: Please refer to the section"Information for Named Datatype
and REF Defines, and PL/SQL OUT Binds" on page 11-36 for more
important information about defining named datatypes.

Defining Named Datatypes

11-36 Oracle Call Interface Programmer's Guide

SQLT_REF indicates that the application will be fetching the result data into a
variable of type OCIRef *. This REF can then be used as part of object pinning and
navigation, as described in Chapter 6.

Information for Named Datatype and REF Defines, and PL/SQL OUT Binds
This section presents some additional important information to keep in mind when
working with named datatype and REF defines. It includes pointers about memory
allocation and indicator variable usage.

A PL/SQL OUT bind refers to binding a placeholder to an output variable in a
PL/SQL block. Unlike a SQL statement, where output buffers are set up with define
calls, in a PL/SQL block, output buffers are set up with bind calls. Refer to the
section "Binding Placeholders in PL/SQL" on page 5-4 for more information.

■ If the datatype being defined is SQLT_NTY, the indicator struct parameter of
the OCIDefineObject() call (dvoid ** indpp) is used, and the scalar
indicator is completely ignored.

■ If the datatype is SQLT_REF, the scalar indicator is used, and the indicator
struct parameter of OCIDefineObject() is completely ignored.

■ The use of indicator structures is optional. The user can pass a NULL pointer in
the indpp parameter for the OCIDefineObject() call. During a fetch or
PL/SQL OUT bind, this means that the user is not interested in any information
about nullnes.

■ In a SQL define or PL/SQL OUT bind, you can pass in preallocated memory for
either the output variable or the indicator. Then that preallocated memory is
used to store result data, and all secondary memory (out-of-line memory), if
any, will be deallocated. The preallocated memory must come from the cache
(the result of an OCIObjectNew() call).

Note: Please refer to the section"Information for Named Datatype
and REF Defines, and PL/SQL OUT Binds" on page 11-36 for more
important information about defining REFs.

Note: If a client application wants to allocate memory from its
own private memory space, instead of the cache, it must insure that
there is no secondary out-of-line memory in the object.

Defining Named Datatypes

Object-Relational Datatypes in OCI 11-37

For an object define with type SQLT_NTY, client applications wanting to preallocate
object memory must use the OCIObjectNew() function. Client applications should
not allocate the object in its own private memory space, such as with malloc() or
on the stack. The OCIObjectNew() function allocates the object in the object cache.
The allocated object can be freed using OCIObjectFree(). Refer to Chapter 17,
"OCI Navigational and Type Functions" for details on OCIObjectNew() and
OCIObjectFree().

■ In a SQL define or PL/SQL OUT bind, if the user passes in a NULL address for
the output variable or the indicator, memory for the variable or the indicator
will be implicitly allocated by OCI.

■ If an output object of type SQLT_NTY is atomically NULL (in a SQL define or
PL/SQL OUT bind), only the NULL indicator struct will get allocated (implicitly
if necessary) and populated accordingly to indicate the atomic nullness of the
object. The top-level object, itself, will not get implicitly allocated.

■ An application can free indicators by calling OCIObjectFree(). If there is a
top-level object (as in the case of a non-atomically NULL object), then the
indicator is freed when the top-level object is freed with OCIObjectFree(). If
the object is atomically null, then there is no top-level object, so the indicator
must be freed separately.

■ The indicator struct size pointer, indsp, and program variable size pointer,
pgvsp, in the OCIDefineObject() call is optional. Users can pass NULL if
these parameters are not needed.

Information About Array Defines
For doing array defines of named datatypes or REFs, the user needs to pass in an
array of pointers to buffers (preallocated or otherwise) of the appropriate type.
Similarly, an array of scalar indicators (for SQLT_REF types) or an array of pointers
to indicator structs (for SQLT_NTY types) needs to be passed.

Note: There is no change to the behavior of
OCIDefineObject() when the user does not preallocate the
object memory and instead initializes the output variable to null
pointer value. In this case, the object will be implicitly allocated in
the object cache by the OCI library.

Binding And Defining Oracle C Datatypes

11-38 Oracle Call Interface Programmer's Guide

Binding And Defining Oracle C Datatypes
Previous chapters of this book have discussed OCI bind and define operations.
"Binding Placeholders in OCI" on page 4-5 discussed the basics of OCI bind
operations, while "Defining Output Variables in OCI" on page 4-16 discusses the
basics of OCI define operations. Information specific to binding and defining named
datatypes and REFs is found in Chapter 5, "Binding and Defining in OCI".

The sections covering basic bind and define functionality showed how an
application could use a scalar variable or array of scalars as an input (bind) value in
a SQL statement, or as an output (define) buffer for a query.

The sections covering named datatypes and REFs showed how to bind or define an
object or reference. Chapter 10, "OCI Object-Relational Programming" expanded on
this to talk about pinning object references, object navigation, and fetching
embedded instances.

The purpose of this section is to cover binding and defining of individual attribute
values, using the datatype mappings explained in this chapter.

Variables of one of the types defined in this chapter, such as OCINumber or
OCIString, can typically be declared in an application and used directly in an OCI
bind or define operation as long as the appropriate datatype code is specified. The
following table lists the datatypes that can be used for binds and defines, along with
their C mapping, and the OCI external datatype which must be specified in the dty
(datatype code) parameter of the bind or define call.

Table 11–12 Datatype Mappings for Binds and Defines

Datatype C Mapping OCI External Datatype and Code

Oracle NUMBER OCINumber VARNUM (SQLT_VNU)

Oracle DATE OCIDate SQLT_ODT

BLOB OCILobLocator * SQLT_BLOB

CLOB, NCLOB CILobLocator * SQLTY_LOB

VARCHAR2,
NVARCHAR2

OCIString * SQLT_VST (see note following)

RAW OCIRaw * SQLT_LVB (see note following)

CHAR, NCHAR OCIString * SQLT_VST

Object struct * Named Datatype (SQLT_NTY)

REF OCIRef * REF (SQLT_REF)

Binding And Defining Oracle C Datatypes

Object-Relational Datatypes in OCI 11-39

The following section presents examples of how to use C-mapped datatypes in an
OCI application.

Bind and Define Examples
The examples in this section demonstrate how variables of type OCINumber can be
used in OCI bind and define operations.

Assume, for this example, that the following person object type was created:

CREATE TYPE person AS OBJECT
(name varchar2(30),
salary number);

This type is then used to create an employees table which has a column of type
person.

CREATE TABLE employees
(emp_id number,
job_title varchar2(30),

VARRAY OCIArray * Named Datatype (SQLT_NTY)

Nested Table OCITable * Named Datatype (SQLT_NTY)

DATETIME OCIDateTime * See "Datetime and Interval (OCIDateTime,
OCIInterval)" on page 11-8.

INTERVAL OCIInterval * See "Datetime and Interval (OCIDateTime,
OCIInterval)" on page 11-8.

Note: Before fetching data into a define variable of type
OCIString *, the size of the string must first be set using the
OCIStringResize() routine. This may require a describe
operation to obtain the length of the select-list data. Similarly, an
OCIRaw * must be first sized with OCIRawResize().

See Also: For a discussion of OCI external datatypes, and a list of
datatype codes, refer to Chapter 3, "Datatypes".

Table 11–12 Datatype Mappings for Binds and Defines (Cont.)

Datatype C Mapping OCI External Datatype and Code

Binding And Defining Oracle C Datatypes

11-40 Oracle Call Interface Programmer's Guide

emp person);

The Object Type Translator (OTT) generates the following C struct and null
indicator struct for person:

struct person
{ OCIString * name;
 OCINumber salary;};
typedef struct person person;

struct person_ind
{ OCIInd _atomic;
 OCIInd name;
 OCIInd salary;}
typedef struct person_ind person_ind;

Assume that the employees table has been populated with values, and an OCI
application has declared a person variable:

person *my_person;

and fetched an object into that variable through a SELECT statement, like

text *mystmt = (text *) "SELECT person FROM employees
 WHERE emp.name='Andrea'";

This would require defining my_person to be the output variable for this
statement, using appropriate OCI define calls for named datatypes, as described in
the section "Advanced Define Operations in OCI" on page 5-20. Executing the
statement would retrieve the person object named Andrea into the my_person
variable.

Once the object is retrieved into my_person, the OCI application now has access to
the attributes of my_person, including the name and the salary.

The application could go on to update another employee's salary to be the same as
Andrea's, as in

text *updstmt = (text *) "UPDATE employees SET emp.salary = :newsal
 WHERE emp.name = 'MONGO'";

See Also: For a complete discussion of OTT, see Chapter 14,
"Using the Object Type Translator with OCI"

Binding And Defining Oracle C Datatypes

Object-Relational Datatypes in OCI 11-41

Andrea's salary (stored in my_person->salary) would be bound to the
placeholder :newsal, specifying an external datatype of VARNUM (datatype
code=6) in the bind operation:

OCIBindByName(...,":newsal",...,&my_person->salary,...,6,...);
OCIStmtExecute(...,updstmt,...);

Executing the statement updates Mongo's salary in the database to be equal to
Andrea's, as stored in my_person.

Conversely, the application could update Andrea's salary to be the same as
Mongo's, by querying the database for Mongo's salary, and then making the
necessary salary assignment:

text *selstmt = (text *) "SELECT emp.salary FROM employees
 WHERE emp.name = 'MONGO'";
OCINumber mongo_sal;
...
OCIDefineByPos(...,1,...,&mongo_sal,...,6,...);
OCIStmtExecute(...,selstmt,...);
OCINumberAssign(...,&mongo_sal, &my_person->salary);

In this case, the application declares an output variable of type OCINumber and
uses it in the define step. In this case we define an output variable for position 1,
and use the appropriate datatype code (6 for VARNUM).

The salary value is fetched into the mongo_sal OCINumber, and the appropriate
OCI function, OCINumberAssign(), is used to assign the new salary to the copy
of the Andrea object currently in the cache. To modify the data in the database, the
change must be flushed to the server.

Salary Update Examples
The examples in the previous section should give some idea of the flexibility which
the Oracle datatypes provide for bind and define operations. The goal of this section
is to show how the same operation can be performed in several different ways. The
goal is to give you some idea of the variety of ways in which these datatypes can be
used in OCI applications.

The examples in this section are intended to demonstrate the flow of calls used to
perform certain OCI tasks. An expanded pseudocode is used for the examples in
this section. Actual function names are used, but for the sake of simplicity not all
parameters and typecasts are filled in. Additionally, other necessary OCI calls, like
handle allocations, have been omitted.

Binding And Defining Oracle C Datatypes

11-42 Oracle Call Interface Programmer's Guide

The Scenario
The scenario for these examples is as follows:

1. An employee named BRUCE exists in the employees table for a hospital. See
person type and employees table creation statements in the previous section.

2. Bruce's current job title is RADIOLOGIST.

3. Bruce is being promoted to RADIOLOGY_CHIEF, and along with the promotion
comes a salary increase.

4. Hospital salaries are in whole dollar values, are set according to job title, and
stored in a table called salaries, defined as follows:

CREATE TABLE salaries
(job_title varchar2(20),
salary integer));

5. Bruce's salary needs to be updated to reflect his promotion.

Accomplishing the preceding task requires that the application retrieve the salary
corresponding to RADIOLOGY_CHIEF from the salaries table, and update
Bruce's salary. A separate step would write his new title and the modified object
back to the database.

Assuming that a variable of type person has been declared

person * my_person;

and the object corresponding to Bruce has been fetched into it, the following
sections present three different ways in which the salary update could be
performed.

Method 1 - fetch, convert, assign
This example uses the following method:

1. Do a traditional OCI define using an integer variable to retrieve the new salary
from the database.

2. Convert the integer to an OCINumber.

3. Assign the new salary to Bruce.

#define INT_TYPE 3 /* datatype code for sword integer define */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title='RADIOLOGY_CHIEF'";
sword new_sal;

Binding And Defining Oracle C Datatypes

Object-Relational Datatypes in OCI 11-43

OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,new_sal,...,INT_TYPE,...);
 /* define int output */
OCIStmtExecute(...,getsal,...);
 /* get new salary as int */
OCINumberFromInt(...,new_sal,...,&orl_new_sal);
 /* convert salary to OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);
 /* assign new salary */

Method 2 - fetch, assign
This method eliminates one of the steps in Method 1:

1. Define an output variable of type OCINumber, so that no conversion is
necessary after the value is retrieved.

2. Assign the new salary to Bruce

#define VARNUM_TYPE 6 /* datatype code for defining VARNUM */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title='RADIOLOGY_CHIEF'";
OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,orl_new_sal,...,VARNUM_TYPE,...);
 /* define OCINumber output */
OCIStmtExecute(...,getsal,...); /* get new salary as OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);
 /* assign new salary */

Method 3 - direct fetch
This method accomplishes the entire operation with a single define and fetch. No
intervening output variable is used, and the value retrieved from the database is
fetched directly into the salary attribute of the object stored in the cache.

1. Since Bruce is pinned in the object cache, use the location of his salary attribute
as the define variable, and execute/fetch directly into it.

#define VARNUM_TYPE 6 /* datatype code for defining VARNUM */

text *getsal = (text *) "SELECT salary FROM salaries
 WHERE job_title='RADIOLOGY_CHIEF'";
...
OCIDefineByPos(...,1,...,&my_person->salary,...,VARNUM_TYPE,...);

SQLT_NTY Bind/Define Example

11-44 Oracle Call Interface Programmer's Guide

 /* define bruce's salary in cache as output variable */
OCIStmtExecute(...,getsal,...);
 /* execute and fetch directly */

Summary and Notes
As the previous three examples show, the C datatypes provide flexibility for
binding and defining. In these examples an integer can be fetched, and then
converted to an OCINumber for manipulation. An OCINumber can be used as an
intermediate variable to store the results of a query. Or, data can be fetched directly
into a desired OCINumber attribute of an object.

In the precedingexamples, extra steps would be necessary to insure that changes are
written to the database permanently. This may involve SQL UPDATE calls and OCI
transaction commit calls.

These examples all dealt with define operations, but a similar situation applies for
binding.

Similarly, although these examples dealt exclusively with the OCINumber type, a
similar variety of operations are possible for the other Oracle C types described in
the remainder of this chapter.

SQLT_NTY Bind/Define Example
The following code fragments demonstrate the use of SQLT_NTY bind and define
calls, including OCIBindObject() and OCIDefineObject(). In each example, a
previously defined SQL statement is being processed.

Bind Example
/*
** This example performs a SQL insert statement
*/
void insert(envhp, svchp, stmthp, errhp, insstmt, nrows)
OCIEnv *envhp;
OCISvcCtx *svchp;

Note: In all of these examples it is important to keep in mind that
in OCI, if an output variable is defined before the execution of a
query, the resulting data will be prefetched directly into the output
buffer.

SQLT_NTY Bind/Define Example

Object-Relational Datatypes in OCI 11-45

OCIStmt *stmthp;
OCIError *errhp;
text *insstmt;
ub2 nrows;
{
 OCIType *addr_tdo = (OCIType *)0 ;
 address addrs;
 null_address naddrs;
 address *addr = &addrs;
 null_address *naddr = &naddrs;
 sword custno =300;
 OCIBind *bnd1p, *bnd2p;
 ub2 i;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insstmt,
 (ub4) strlen((char *)insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* bind the input variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":custno",
 (sb4) -1, (dvoid *) &custno,
 (sb4) sizeof(sword), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, (ub4) 0, (ub4 *) 0,
 (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":addr",
 (sb4) -1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr(errhp,
 OCITypeByName(envhp, errhp, svchp, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA),
 (const text *)"ADDRESS_VALUE",
 (ub4) strlen((char *)"ADDRESS_VALUE"),
 (text *)0, 0, OCI_DURATION_SESSION,
 OCI_TYPEGET_HEADER, &addr_tdo));

 if(!addr_tdo)
 {
 printf("Null tdo returned\n");
 return;
 }

SQLT_NTY Bind/Define Example

11-46 Oracle Call Interface Programmer's Guide

 checkerr(errhp, OCIBindObject(bnd2p, errhp, addr_tdo, (dvoid **) &addr,
 (ub4 *) 0, (dvoid **) &naddr, (ub4 *) 0));

Define Example
/*
** This example executes a SELECT statement from a table which includes
** an object.
*/

void selectval(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 OCIType *addr_tdo = (OCIType *)0;
 OCIDefine *defn1p, *defn2p;
 address *addr = (address *)NULL;
 sword custno =0;
 sb4 status;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selvalstmt,
 (ub4) strlen((char *)selvalstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* define the output variable */
checkerr(errhp, OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *)
 &custno, (sb4) sizeof(sword), SQLT_INT, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIDefineByPos(stmthp, &defn2p, errhp, (ub4) 2, (dvoid *)
 0, (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

checkerr(errhp,
 OCITypeByName(envhp, errhp, svchp, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA),
 (const text *) "ADDRESS_VALUE",
 (ub4) strlen((char *)"ADDRESS_VALUE"),
 (text *)0, 0, OCI_DURATION_SESSION,
 OCI_TYPEGET_HEADER, &addr_tdo));

 if(!addr_tdo)

SQLT_NTY Bind/Define Example

Object-Relational Datatypes in OCI 11-47

 {
 printf("NULL tdo returned\n");
 return;
 }

 checkerr(errhp, OCIDefineObject(defn2p, errhp, addr_tdo, (dvoid **)
 &addr, (ub4 *) 0, (dvoid **) 0, (ub4 *) 0));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

SQLT_NTY Bind/Define Example

11-48 Oracle Call Interface Programmer's Guide

Direct Path Loading 12-1

12
Direct Path Loading

The direct path loading functions are used to load data from external files into
tables and partitions.

This chapter contains these topics:

■ Direct Path Loading Overview

■ Direct Path Loading of Object Types

■ Direct Path Loading in Pieces

■ Direct Path Context Handles and Attributes for Object Types

Direct Path Loading Overview

12-2 Oracle Call Interface Programmer's Guide

Direct Path Loading Overview
The direct path load interface enables an OCI application to access the direct path
load engine of the Oracle database server to perform the functions of the Oracle
SQL*Loader utility. This functionality provides the ability to load data from external
files into either a table or a partition of a partitioned table.

Figure 12–1 Direct Path Loading

The OCI direct path load interface has the ability to load multiple rows by loading a
direct path stream that contains data for multiple rows.

To use the direct path API, the client application performs the following steps:

1. Perform the OCI initialization.

2. Allocate a direct path context handle and set the attributes.

3. Supply the name of the object (table, partition, or sub-partition) to be loaded.

4. Describe the external datatypes of the columns of the object(s).

5. Prepare the direct path interface.

6. Allocate one or more column arrays.

7. Allocate one or more direct path streams.

Block
Formatter

Input
Buffer

Column
Array

Client Server

Data

ColumnArrayToStream

Stream
Format

Stream
Format

Two-Task

Column
Array

OracleTable

Direct Path Loading Overview

Direct Path Loading 12-3

8. Set entries in the column array to point to the input data value for each column.

9. Convert a column array to a direct path stream format.

10. Load the direct path stream.

11. Retrieve any errors that may have occurred.

12. Invoke the direct path finishing function.

13. Free handles and data structures.

14. Disconnect from the server.

Steps 8 through 11 can be repeated many times, depending on the data to be loaded.

A direct load operation requires that the object being loaded is locked to prevent
DML on the object. Note that queries are lock-free and are allowed while the object
is being loaded. The mode of the DML lock, and which DML locks are obtained
depend upon the specification of the OCI_ATTR_DIRPATH_PARALLEL option,
and if a partition or sub-partition load is being done as opposed to an entire table
load.

■ For a table load, if the OCI_ATTR_DIRPATH_PARALLEL option is set to:

■ FALSE, then the table DML X-Lock is acquired.

■ TRUE, then the table DML S-Lock is acquired.

■ For a partition load, if the OCI_ATTR_DIRPATH_PARALLEL option is set to:

■ FALSE, then the table DML SX-Lock and partition DML X-Lock is acquired.

■ TRUE, then the table DML SS-Lock and partition DML S-Lock is acquired.

Datatypes Supported for Direct Path Loading
The following external datatypes are valid for scalar columns in a direct path load
operation:

■ SQLT_CHR

■ SQLT_DAT

■ SQLT_INT

■ SQLT_UIN

See Also: "OCI_ATTR_DIRPATH_PARALLEL" on page A-64

Direct Path Loading Overview

12-4 Oracle Call Interface Programmer's Guide

■ SQLT_FLT

■ SQLT_BIN

■ SQLT_NUM

■ SQLT_PDN

■ SQLT_DATE

■ SQLT_TIMESTAMP

■ SQLT_TIMESTAMP_TZ

■ SQLT_TIMESTAMP_LTZ

■ SQLT_INTERVAL_YM

■ SQLT_INTERVAL_DS

The following external object datatypes are supported:

■ SQLT_NTY - column objects (FINAL and NOT FINAL) and SQL string columns

■ SQLT_REF - REF columns (FINAL and NOT FINAL)

The following table types are supported:

■ Nested tables

■ Object tables (FINAL and NOT FINAL)

Direct Path Handles
A direct path load corresponds to a direct path array insert operation. The direct
path load interface uses the following handles to keep track of the objects loaded
and the specification of the data operated on:

■ direct path context

■ direct path function context

■ direct path column array

■ direct path function context column array

■ direct path stream

See Also: For information on setting or retrieving the datatype of
a column, see OCI_ATTR_DATA_TYPE on page A-74. For
information on datatypes, see Table 3–2, "External Datatypes and
Codes".

Direct Path Loading Overview

Direct Path Loading 12-5

Direct Path Context
This handle must be allocated for each object, either a table or a partition of a
partitioned table, being loaded. Because a OCIDirPathCtx handle is the parent
handle of the OCIDirPathFuncCtx, OCIDirPathColArray, and
OCIDirPathStream handles, freeing a OCIDirPathCtx handle frees its child
handles also (although for good coding practices, free child handles individually
before you free the parent handle).

A direct path context is allocated with OCIHandleAlloc(). Note that the parent
handle of a direct path context is always the environment handle. A direct path
context is freed with OCIHandleFree(). Include the header files in the first two
lines in all direct path programs:

...
#include <cdemodp0.h>
#include <cdemodp.h>

OCIEnv *envp;
OCIDirPathCtx *dpctx;
sword error;
error = OCIHandleAlloc((dvoid *)envp, (dvoid **)&dpctx,
 OCI_HTYPE_DIRPATH_CTX, (size_t)0,(dvoid **)0);
...
error = OCIHandleFree(dpctx, OCI_HTYPE_DIRPATH_CTX);

OCI Direct Path Function Context

This handle, of type OCIDirPathFuncCtx, is used to describe the following
named type and REF columns:

■ Column objects. The function context here describes the object type, which will
be used as the default constructor to construct the object, and the object
attributes of the constructor.

■ REF columns. The function context here describes a single object table
(optional) to reference row objects from, and the REF arguments that identify
the row object.

See Also: "Direct Path Loading Handle Attributes" on page A-60
and all the descriptions of direct path attributes following

See Also: For more about the datatypes supported, see Oracle
Database Application Developer's Guide - Object-Relational Features

Direct Path Loading Overview

12-6 Oracle Call Interface Programmer's Guide

■ SQL string columns. The function context here describes a SQL string and its
arguments to compute the value to be loaded into the column.

The handle type OCI_HTYPE_DIRPATH_FN_CTX is passed to
OCIHandleAlloc() to indicate that a function context is to be allocated, as in the
following example.

OCIDirPathCtx *dpctx; /* direct path context */
OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
sword error;

error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (dvoid **)0);

Note that the parent handle of a direct path function context is always the direct
path context handle. A direct path function context handle is freed with:

error = OCIHandleFree(dpfnctx, OCI_HTYPE_DIRPATH_FN_CTX);

Direct Path Column Array and Direct Path Function Column Array
These handles are used to present an array of rows to the direct path interface. A
row is represented by three arrays: column values, column lengths, and column
flags. Methods used on a column array include: allocate the array handle and set or
get values corresponding to an array entry.

Both handles share the same data structure, OCIDirPathColArray. But these
column array handles differ in parent handles and handle types.

A direct path column array handle is allocated with OCIHandleAlloc(). The
following code fragment shows explicit allocation of the direct path column array
handle:

OCIDirPathCtx *dpctx; /* direct path context */
OCIDirPathColArray *dpca; /* direct path column array */
sword error;
error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpca,
 OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 (size_t)0, (dvoid **)0);

A direct path column array handle is freed with OCIHandleFree().

error = OCIHandleFree(dpca, OCI_HTYPE_DIRPATH_COLUMN_ARRAY);

A direct path function column array handle is allocated in almost the same way:

Direct Path Loading Overview

Direct Path Loading 12-7

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;
error = OCIHandleAlloc((dvoid *)dpfnctx, (dvoid **)&dpfnca,
 (ub4)OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (dvoid **)0);

A direct path function column array is freed with OCIHandleFree():

error = OCIHandleFree(dpfnca, OCI_HTYPE_DIRPATH_FN_COL_ARRAY);

Freeing a OCIDirPathColArray handle also frees the column array associated
with the handle.

Direct Path Stream
This handle is used by the conversion operation,
OCIDirPathColArrayToStream(), and by the load operation,
OCIDirPathLoadStream().

Direct path stream handles is allocated by the client with OCIHandleAlloc(). The
structure of a OCIDirPathStream handle can be thought of as a pair in the form
(buffer, buffer length).

A direct path stream is a linear representation of Oracle table data. The conversion
operations always append to the end of the stream. Load operations always start
from the beginning of the stream. After a stream is completely loaded, the stream
must be reset by calling OCIDirPathStreamReset().

The following example shows a direct path stream handle allocated with
OCIHandleAlloc(). The parent handle is always an OCIDirPathCtx handle:

OCIDirPathCtx *dpctx; /* direct path context */
OCIDirPathStream *dpstr; /* direct path stream */
sword error;
error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpstr,
 OCI_HTYPE_DIRPATH_STREAM, (size_t)0,(dvoid **)0);

A direct path stream handle is freed using OCIHandleFree().

error = OCIHandleFree(dpstr, OCI_HTYPE_DIRPATH_STREAM);

Freeing an OCIDirPathStream handle also frees the stream buffer associated with
the handle.

Direct Path Loading Overview

12-8 Oracle Call Interface Programmer's Guide

Direct Path Interface Functions
The functions listed in this section are used with the direct path load interface.

Operations on the direct path context are performed by the functions in Table 12–1,
"Direct Path Context Functions".

Operations on the direct path column array are performed by the functions in
Table 12–2, "Direct Path Column Array Functions".

Operations on the direct path stream are performed by the function
OCIDirPathStreamReset() which resets the direct stream state.

See Also: Detailed descriptions of each function can be found in
"Direct Path Loading Functions" on page 16-149

Table 12–1 Direct Path Context Functions

Function Purpose

OCIDirPathAbort() Aborts a direct path operation

OCIDirPathDataSave() Executes a data savepoint

OCIDirPathFinish() Commits the loaded data

OCIDirPathFlushRow() Flushes a partial row from the database server

OCIDirPathLoadStream() Loads data that has been converted to direct path stream
format

OCIDirPathPrepare() Prepares direct path interface to convert or load rows

Table 12–2 Direct Path Column Array Functions

Function Purpose

OCIDirPathColArrayEntryGet() Gets a specified entry in a column array

OCIDirPathColArrayEntrySet() Sets a specified entry in a column array to a
specific value

OCIDirPathColArrayRowGet() Gets the base row pointers for a specified row
number

OCIDirPathColArrayReset() Resets the row array state

OCIDirPathColArrayToStream() Converts from a column array format to a direct
path stream format

Direct Path Loading Overview

Direct Path Loading 12-9

Limitations and Restrictions of the Direct Path Load Interface
The direct path load interface has the following limitations that are the same as
SQL*Loader:

■ Triggers are not supported.

■ Referential integrity constraints are not supported.

■ Clustered tables are not supported.

■ Loading of remote objects is not supported.

■ LONGs must be specified last.

■ SQL strings that return LOBs, objects, or collections are not supported.

■ Loading of varray columns is not supported.

■ All partitioning columns must come before any LOBs. This is because we need
to determine what partition the LOB will go into before we start writing to it.

Direct Path Load Example for Scalar Columns

Data Structures Used in Direct Path Loading Example
The following data structure is used in the example.

/* load control structure */
struct loadctl
{
 ub4 nrow_ctl; /* number of rows in column array */
 ub2 ncol_ctl; /* number of columns in column array */
 OCIEnv *envhp_ctl; /* environment handle */
 OCIServer *srvhp_ctl; /* server handle */
 OCIError *errhp_ctl; /* error handle */
 OCIError *errhp2_ctl; /* yet another error handle */
 OCISvcCtx *svchp_ctl; /* service context */
 OCISession *authp_ctl; /* authentication context */
 OCIParam *colLstDesc_ctl; /* column list parameter handle */
 OCIDirPathCtx *dpctx_ctl; /* direct path context */
 OCIDirPathColArray *dpca_ctl; /* direct path column array handle */
 OCIDirPathColArray *dpobjca_ctl; /* dp column array handle for obj*/
 OCIDirPathColArray *dpnestedobjca_ctl; /* dp col array hndl for nested obj*/
 OCIDirPathStream *dpstr_ctl; /* direct path stream handle */
 ub1 *buf_ctl; /* pre-alloc'd buffer for out-of-line data */
 ub4 bufsz_ctl; /* size of buf_ctl in bytes */

Direct Path Loading Overview

12-10 Oracle Call Interface Programmer's Guide

 ub4 bufoff_ctl; /* offset into buf_ctl */
 ub4 *otor_ctl; /* Offset to Recnum mapping */
 ub1 *inbuf_ctl; /* buffer for input records */
 struct pctx pctx_ctl; /* partial field context */
 boolean loadobjcol_ctl; /* load to obj col(s)? T/F */
};

The header file cdemodp.h, which is from the demo directory, defines several
structs:

#ifndef cdemodp_ORACLE
define cdemodp_ORACLE

include <oratypes.h>

ifndef externdef
define externdef
endif

/* External column attributes */
struct col
{
 text *name_col; /* column name */
 ub2 id_col; /* column load id */
 ub2 exttyp_col; /* external type */
 text *datemask_col; /* datemask, if applicable */
 ub1 prec_col; /* precision, if applicable */
 sb1 scale_col; /* scale, if applicable */
 ub2 csid_col; /* character set id */
 ub1 date_col; /* is column a chrdate or date? 1=TRUE. 0=FALSE */
 struct obj * obj_col; /* description of object, if applicable */
#define COL_OID 0x1 /* col is an OID */
 ub4 flag_col;
};

/* Input field descriptor
 * For this example (and simplicity),
 * fields are strictly positional.
 */
struct fld
{
 ub4 begpos_fld; /* 1-based beginning position */
 ub4 endpos_fld; /* 1-based ending position */
 ub4 maxlen_fld; /* max length for out of line field */
 ub4 flag_fld;

Direct Path Loading Overview

Direct Path Loading 12-11

#define FLD_INLINE 0x1
#define FLD_OUTOFLINE 0x2
#define FLD_STRIP_LEAD_BLANK 0x4
#define FLD_STRIP_TRAIL_BLANK 0x8
};

struct obj
{
 text *name_obj; /* type name*/
 ub2 ncol_obj; /* number of columns in col_obj*/
 struct col *col_obj; /* column attributes*/
 struct fld *fld_obj; /* field descriptor*/
 ub4 rowoff_obj; /* current row offset in the column array*/
 ub4 nrows_obj; /* number of rows in col array*/
 OCIDirPathFuncCtx *ctx_obj; /* Function context for this obj column*/
 OCIDirPathColArray *ca_obj; /* column array for this obj column*/
 ub4 flag_obj; /* type of obj */
#define OBJ_OBJ 0x1 /* obj col */
#define OBJ_OPQ 0x2 /* opaque/sql str col */
#define OBJ_REF 0x4 /* ref col */
};

struct tbl
{
 text *owner_tbl; /* table owner */
 text *name_tbl; /* table name */
 text *subname_tbl; /* subname, if applicable */
 ub2 ncol_tbl; /* number of columns in col_tbl */
 text *dfltdatemask_tbl; /* table level default date mask */
 struct col *col_tbl; /* column attributes */
 struct fld *fld_tbl; /* field descriptor */
 ub1 parallel_tbl; /* parallel: 1 for true */
 ub1 nolog_tbl; /* no logging: 1 for true */
 ub4 xfrsz_tbl; /* transfer buffer size in bytes */
 text *objconstr_tbl; /* obj constr/type if loading a derived obj */
};

struct sess /* options for a direct path load session */
{
 text *username_sess; /* user */
 text *password_sess; /* password */
 text *inst_sess; /* remote instance name */
 text *outfn_sess; /* output filename */
 ub4 maxreclen_sess; /* max size of input record in bytes */
};

Direct Path Loading Overview

12-12 Oracle Call Interface Programmer's Guide

#endif /* cdemodp_ORACLE */

Outline of an Example of a Direct Path Load for Scalar Columns
The following sample code illustrates the use of several of the OCI direct path
interfaces. It is not a complete code example.

The init_load function performs a direct path load using the direct path API on
the table described by tblp. The loadctl structure given by ctlp has an
appropriately initialized environment and service context. A connection has been
made to the server.

STATICF void
init_load(ctlp, tblp)
struct loadctl *ctlp;
struct tbl *tblp;
{
 struct col *colp;
 struct fld *fldp;
 sword ociret; /* return code from OCI calls */
 OCIDirPathCtx *dpctx; /* direct path context */
 OCIParam *colDesc; /* column parameter descriptor */
 ub1 parmtyp;
 ub1 *timestamp = (ub1 *)0;
 ub4 size;
 ub4 i;
 ub4 pos;

 /* allocate and initialize a direct path context */
 /* See cdemodp.c for the definition of OCI_CHECK */
 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((dvoid *)ctlp->envhp_ctl,
 (dvoid **)&ctlp->dpctx_ctl,
 (ub4)OCI_HTYPE_DIRPATH_CTX,
 (size_t)0, (dvoid **)0));

 dpctx = ctlp->dpctx_ctl; /* shorthand */

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)dpctx, (ub4)OCI_HTYPE_DIRPATH_CTX,
 (dvoid *)tblp->name_tbl,
 (ub4)strlen((const char *)tblp->name_tbl),
 (ub4)OCI_ATTR_NAME, ctlp->errhp_ctl));

Direct Path Loading Overview

Direct Path Loading 12-13

Additional attributes, such as OCI_ATTR_SUB_NAME and
OCI_ATTR_SCHEMA_NAME, are also set here. After the attributes have been set,
prepare the load.

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIDirPathPrepare(dpctx, ctlp->svchp_ctl, ctlp->errhp_ctl));

Allocate the Column Array and Stream Handles.

Note that the direct path context handle is the parent handle for the column array
and stream handles. Also note that errors are returned with the environment handle
associated with the direct path context.

 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((dvoid *)ctlp->dpctx_ctl, (dvoid **)&ctlp->dpca_ctl,
 (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 (size_t)0, (dvoid **)0));

 OCI_CHECK(ctlp->envhp_ctl, OCI_HTYPE_ENV, ociret, ctlp,
 OCIHandleAlloc((dvoid *)ctlp->dpctx_ctl,(dvoid **)&ctlp->dpstr_ctl,
 (ub4)OCI_HTYPE_DIRPATH_STREAM,
 (size_t)0, (dvoid **)0));

Get Number of Rows and Columns

Get number of rows and columns in the column array just allocated.

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet(ctlp->dpca_ctl, (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 &ctlp->nrow_ctl, 0, OCI_ATTR_NUM_ROWS,
 ctlp->errhp_ctl));

 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet(ctlp->dpca_ctl, (ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 &ctlp->ncol_ctl, 0, OCI_ATTR_NUM_COLS,
 ctlp->errhp_ctl));

Set Input Data Fields

Set the input data fields to their corresponding data columns.

ub4 rowoff; /* column array row offset */
ub4 clen; /* column length */
ub1 cflg; /* column state flag */

Direct Path Loading Overview

12-14 Oracle Call Interface Programmer's Guide

ub1 *cval; /* column character value */

OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIDirPathColArrayEntrySet(ctlp->dpca_ctl, ctlp->errhp_ctl,
 rowoff, colp->id_col,
 cval, clen, cflg));

Reset Column Array State

Reset column array state in case a previous conversion needed to be continued or a
row is expecting more data.

(void) OCIDirPathColArrayReset(ctlp->dpca_ctl, ctlp->errhp_ctl);

Reset the Stream State

Reset the stream state to start a new stream. Otherwise, data in the stream is
appended to existing data.

(void) OCIDirPathStreamReset(ctlp->dpstr_ctl, ctlp->errhp_ctl);

Convert Data to Stream Format

After inputting the data, convert the data in the column array to stream format and
filter out any bad records.

ub4 rowcnt; /* number of rows in column array */
ub4 startoff; /* starting row offset into column array */

/* convert array to stream, filter out bad records */
ocierr = OCIDirPathColArrayToStream(ctlp->dpca_ctl, ctlp->dpctx_ctl,
 ctlp->dpstr_ctl, ctlp->errhp_ctl,
 rowcnt, startoff);

Load the Stream.

Note that the position in the stream is maintained internally to the stream handle,
along with offset information for the column array which produced the stream.
When the conversion to stream format is done, the data is appended to the stream.
It is the responsibility of the caller to reset the stream when appropriate. On errors,
the position is moved to the next row, or the end of the stream if the error occurs on
the last row. The next OCIDirPathLoadStream() call starts on the next row, if
any. If a OCIDirPathLoadStream() call is made, and the end of a stream has
been reached, OCI_NO_DATA is returned.

/* load the stream */
ociret = OCIDirPathLoadStream(ctlp->dpctx_ctl, ctlp->dpstr_ctl,

Direct Path Loading Overview

Direct Path Loading 12-15

 ctlp->errhp_ctl);

Finish the Direct Path Load

/* free up server data structures for the load */
OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIDirPathFinish(ctlp->dpctx_ctl, ctlp->errhp_ctl));

Free the Direct Path Handles
Free all the direct path handles allocated. Note that direct path column array and
stream handles are freed before the parent direct path context handle is freed.

ociret = OCIHandleFree((dvoid *)ctlp->dpca_ctl,
 OCI_HTYPE_DIRPATH_COLUMN_ARRAY);
ociret = OCIHandleFree((dvoid *)ctlp->dpstr_ctl,
 OCI_HTYPE_DIRPATH_STREAM);
ociret = OCIHandleFree((dvoid *)ctlp->dpctx_ctl,
 OCI_HTYPE_DIRPATH_CTX);

Using a Date Cache in Direct Path Loading of Dates in OCI
The date cache feature provides improved performance when loading Oracle date
and timestamp values that require datatype conversions in order to be stored in the
table.

This feature is specifically targeted to loads where the same input date values are
loaded over and over again. Date conversions are very expensive and can account
for a large percentage of the total load time, especially if there are multiple date
columns loaded. This feature can significantly improve performance by reducing
the actual number of date conversions done when many duplicate date values occur
in the input data. However, date cache will only improve performance when many
duplicate input date values are loaded into date columns (the word date in this
chapter applies to all the date and timestamp datatypes).

When you explicitly specify the date cache size, the date cache feature will not be
disabled, by default. To override this behavior, set
OCI_ATTR_DIRPATH_DCACHE_DISABLE to 1. Otherwise, the cache will continue
to be searched to avoid date conversions. However any misses will be converted the
hard way.

Query the attributes OCI_ATTR_DIRPATH_DCACHE_NUM,
OCI_ATTR_DIRPATH_DCACHE_MISSES, OCI_ATTR_DIRPATH_DCACHE_HITS
and then tune the cache size for future loads.

Direct Path Loading Overview

12-16 Oracle Call Interface Programmer's Guide

You can lower the cache size when there are no misses and the number of elements
in the cache is less than the cache size. The cache size can be increased if there are
many cache misses and relatively few hits. Note that increasing the cache size too
much can cause other problems, like paging or exhausting memory. If increasing the
cache size does not improve performance, the feature should not be used.

The date cache feature can be explicitly and totally disabled by setting the date
cache size to 0.

The following OCI direct path context attributes support this functionality:

OCI_ATTR_DIRPATH_DCACHE_SIZE
This attribute, when not equal to 0, sets the date cache size (in elements) for a table.
For example, if the date cache size is set to 200, then at most 200 unique date or
timestamp values can be stored in the cache. The date cache size cannot be changed
once OCIDirPathPrepare() has been called. The default value is 0, meaning a
date cache will not be created for a table. A date cache will be created for a table
only if one or more date or timestamp values are loaded that require datatype
conversions and the attribute value is nonzero.

OCI_ATTR_DIRPATH_DCACHE_NUM
This attribute is used to query the current number of entries in a date cache.

OCI_ATTR_DIRPATH_DCACHE_MISSES
This attribute is used to query the current number of date cache misses. If this
number is high, consider tuning the application with a larger date cache size. If
increasing the date cache size doesn't cause this number to decrease significantly,
the date cache should probably not be used. Date cache misses are expensive, due to
hashing and look up times.

OCI_ATTR_DIRPATH_DCACHE_HITS
This attribute is used to query the number of date cache hits. This number should
be relatively large in order to see any benefit of using the date cache support.

OCI_ATTR_DIRPATH_DCACHE_DISABLE
Setting this attribute to 1 indicates that the date cache should be disabled if the size
is exceeded. Note that this attribute cannot be changed or set after
OCIDirPathPrepare() has been called.

Direct Path Loading of Object Types

Direct Path Loading 12-17

The default (= 0) is to not disable a cache on overflow. When not disabled, the cache
is searched to avoid conversions, but overflow input date value entries will not be
added to the date cache, and will be converted using expensive date conversion
functions. Again, excessive date cache misses can cause the application to run
slower than not using the date cache at all.

This attribute can also be queried to see if a date cache has been disabled due to
overflow.

Direct Path Loading of Object Types
The use of the direct path function contexts to load various non-scalar types is
discussed in this section.

The non-scalar types are:

■ nested tables

■ object tables (FINAL and NOT FINAL)

■ column objects (FINAL and NOT FINAL)

■ REF columns (FINAL and NOT FINAL)

■ SQL string columns

Direct Path Loading of Nested Tables
Nested tables are stored in a separate table. Using the direct path loading API, a
nested table is loaded separately from its parent table with a foreign key, called a
SETID, to link the two tables together.

See Also: "Direct Path Context Handle (OCIDirPathCtx)
Attributes" on page A-60

See Also: Table B–1, "OCI Demonstration Programs" for a listing
of the programs demonstrating direct path loading that are
available with your Oracle installation.

Direct Path Loading of Object Types

12-18 Oracle Call Interface Programmer's Guide

Describing a Nested Table Column and Its Nested Table

Loading the parent table with a nested table column is a separate action from
loading the child nested table.

■ To load the parent table with a nested-table column:

1. Describe the parent table and its columns as usual, except:

2. When describing the nested-table column, this is the column that stores the
SETIDs. Its external datatype is SQLT_CHR if the SETIDs in the data file are in
characters, SQLT_BIN if binary.

■ To load the nested table (child):

1. Describe the nested table and its columns as usual.

2. The SETID column is required.

* Set its OCI_ATTR_NAME using a dummy name (for example "setid")
because the API does not expect you to know its system name.

* Set the column attribute with OCI_ATTR_DIRPATH_SID to indicate that
this is a SETID column:

ub1 flg = 1;
sword error;

Note:

■ Currently, the SETIDs must be user-supplied, and are not
system-generated.

■ When loading the parent and child tables separately, it is
possible that orphaned children can be created when the rows
are inserted in the child table, but the corresponding parent
row is not inserted in the parent table. It is also possible to
insert a parent row in the parent table, but that the child rows
are not inserted in the child table and therefore it will have
missing children.

Note: Steps that are different from loading scalar data are in
italics.

Direct Path Loading of Object Types

Direct Path Loading 12-19

error = OCIAttrSet((dvoid *)colDesc,
 OCI_DTYPE_PARAM,
 (dvoid *)&flg, (ub4)0,
 OCI_ATTR_DIRPATH_SID, ctlp->errhp_ctl);

Direct Path Loading of Column Objects
A column object is a table column that is defined as an object. Currently only the
default constructor, which consists of all of the constituent attributes, is supported.

Describing a Column Object
To describe a column object and its object attributes, use a direct path function
context. Describing a column object requires setting its object constructor.
Describing object attributes is similar to describing a list of scalar columns.

To describe a column object:

1. Allocate a parameter handle on the column object with OCI_DTYPE_PARAM.
This parameter handle is used to set the column's external attributes.

2. Set the column name and its other external column attributes (for example,
maximum data size, precision, scale).

3. Set the external type as SQLT_NTY (named type) with OCI_ATTR_DATA_TYPE.

4. Allocate a direct path function context handle. This context will be used to describe the
column's object type and attributes:

OCIDirPathFuncCtx *dpfnctx /* direct path function context */;
sword error;
error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (dvoid **)0);

5. Set the column's object type name (for example, "Employee") with OCI_ATTR_NAME
in the function context:

Note:

■ Nested column objects are supported.

■ The steps here are similar to that of describing a list of scalar
columns to be loaded for a table. Steps that are new are in
italics.

Direct Path Loading of Object Types

12-20 Oracle Call Interface Programmer's Guide

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
text *obj_type; /* column object's object type */
sword error;

error = OCIAttrSet((dvoid *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (dvoid *)obj_type, (ub4)strlen((const char *)obj_type),
 OCI_ATTR_NAME, ctlp->errhp_ctl);

6. Set the expression type, OCI_ATTR_DIRPATH_EXPR_TYPE, to be
OCI_DIRPATH_EXPR_OBJ_CONSTR. This indicates that the expression set with
OCI_ATTR_NAME will be used as the default object constructor:

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
ub1 expr_type = OCI_DIRPATH_EXPR_OBJ_CONSTR;
sword error;

error = OCIAttrSet((dvoid *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (dvoid *)&expr_type, (ub4)0,
 OCI_ATTR_DIRPATH_EXPR_TYPE,
 ctlp->errhp_ctl);

7. Set the number of columns or object attributes that will be loaded for this column object
using OCI_ATTR_NUM_COLS.

8. Get the column/attribute parameter list for the function context
OCIDirPathFuncCtx.

9. For each object attribute:

a. Get the column descriptor for the object attribute with
OCI_DTYPE_PARAM.

b. Set the attribute's column name with OCI_ATTR_NAME.

c. Set the external column type (the type of the data that will be passed to the
direct path API) with OCI_ATTR_DATA_TYPE.

d. Set any other external column attributes (maximum data size, precision,
scale, and so on.)

e. If this attribute column is a column object, then do steps 3-10 for its object
attributes.

f. Free the handle to the column descriptor.

Direct Path Loading of Object Types

Direct Path Loading 12-21

10. Set the function context OCIDirPathFuncCtx that was created in step 4 into the
parent column object's parameter handle with OCI_ATTR_DIRPATH_FN_CTX.

Allocating the Array Column for the Column Object
When loading a column object, the data for its object attributes will be loaded into a
separate column array created just for that object. A child column array is allocated
for each column object, whether it is nested or not. Each row of object attributes in
the child column array maps back to the corresponding non-NULL row of its parent
column object in the parent column array.

Use the column object's direct path function context handle and column array type
OCI_HTYPE_DIRPATH_FN_COL_ARRAY.

To allocate a child column array for a column object:

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((dvoid *)dpfnctx, (dvoid **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (dvoid **)0);

Loading Column Object Data into the Column Array
If a column is scalar, its value is set in the column array by passing the address of its
value to OCIDirPathColArrayEntrySet(). And if a column is an object, the
address of its child column array handle is passed instead. The child column array
will contain the data of the object attributes.

To load data into a column object:

(Start.) For each column object:

1. If the column is non-NULL:

a. For each of its object attribute columns:

If an object attribute is a nested column object, then go to (Start.) and do this entire
procedure recursively.

Note: Steps that are different from loading scalar data are in
italics.

Direct Path Loading of Object Types

12-22 Oracle Call Interface Programmer's Guide

Set the data in the child column array using
OCIDirPathColArrayEntrySet().

b. Set the column object's data in the column array by passing the address of its child
column array handle to OCIDirPathColArrayEntrySet().

2. Else if the column is NULL:

■ Set the column object's data in the column array by passing a NULL
address for the data, a length of 0, and an OCI_DIRPATH_COL_NULL flag
to OCIDirPathColArrayEntrySet().

Direct Path Loading of SQL String Columns
A column value can be computed by a SQL string. SQL strings can be used for
scalar column types. SQL strings cannot be used for object types, but can be used
for object attributes of scalar column types. They cannot be used for nested tables
and LONGs.

A SQL expression is represented to the direct path API using the
OCIDirPathFuncCtx. Its OCI_ATTR_NAME value will be the SQL string with the
parameter list of the named bind variables for the expression.

A SQL string example is:

substr(substr(:string, :offset, :length), :offset, :length)

Things to note about this example are:

■ SQL expressions can be nested.

■ Bind variable names can be repeated within the expression.

Describing a SQL String Column

1. Allocate a parameter handle on the SQL string column with
OCI_DTYPE_PARAM. This parameter handle is used to set the column's
external attributes.

Note: Steps that are different from loading scalar data are in
italics.

Direct Path Loading of Object Types

Direct Path Loading 12-23

2. Set the column name and its other external column attributes (for example,
maximum data size, precision, scale).

3. Set the SQL string column's external type as SQLT_NTY with
OCI_ATTR_DATA_TYPE.

4. Allocate a direct path function context handle. This context will be used to describe the
arguments of the SQL string.

OCIDirPathFuncCtx *dpfnctx /* direct path function context */;
sword error;
error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (dvoid **)0);

5. Set the column's SQL string in OCI_ATTR_NAME in the function context.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
text *sql_str; /* column's SQL string expression */
sword error;

error = OCIAttrSet((dvoid *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (dvoid *)sql_str, (ub4)strlen((const char *)sql_str),
 OCI_ATTR_NAME, ctlp->errhp_ctl);

6. Set the expression type, OCI_ATTR_DIRPATH_EXPR_TYPE, to be
OCI_DIRPATH_EXPR_SQL. This indicates that the expression set with
OCI_ATTR_NAME will be used as the SQL string to derive the value from.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
ub1 expr_type = OCI_DIRPATH_EXPR_SQL;
sword error;

error = OCIAttrSet((dvoid *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (dvoid *)&expr_type, (ub4)0,
 OCI_ATTR_DIRPATH_EXPR_TYPE, ctlp->errhp_ctl);

7. Set the number of arguments that will be passed to the SQL string with
OCI_ATTR_NUM_COLS.

8. Get the column/attribute parameter list for the function context.

9. For each SQL string argument:

Direct Path Loading of Object Types

12-24 Oracle Call Interface Programmer's Guide

* Get the column descriptor for the object attribute with
OCI_DTYPE_PARAM.

* Set the attribute's column name with OCI_ATTR_NAME.

* The order in which the SQL string arguments are defined does not matter. The
order does not have to match the order used in the SQL string.

* There is a naming convention for SQL string arguments.

* The argument names must match the bind variable names used in the SQL
string in content but not in case. For example, if the SQL string is
"substr(:INPUT_STRING, 3, 5)", then it is acceptable if you give the
argument name as "input_string".

* If an argument is used multiple times in an SQL string, declaring it once and
counting it as one argument only is correct.

* Set the external column type (the type of the data that will be passed to
the direct path API) with OCI_ATTR_DATA_TYPE.

* Set any other external column attributes (maximum data size, precision,
scale, and so on).

* Free the handle to the column descriptor.

10. Set the function context OCIDirPathFuncCtx that was created in step 4 into the
parent column object's parameter handle with OCI_ATTR_DIRPATH_FN_CTX.

Allocating the Column Array for SQL String Columns
When loading a SQL string column, the data for its arguments will be loaded into a
separate column array created just for that SQL string column. A child column
array is allocated for each SQL string column. Each row of arguments in the child
column array maps back to the corresponding non-NULL row of its parent SQL
string column in the parent column array.

To allocate a child column array for a SQL string column:

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((dvoid *)dpfnctx, (dvoid **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (dvoid **)0);

Direct Path Loading of Object Types

Direct Path Loading 12-25

Loading the SQL String Data into the Column Array
If a column is scalar, its value would be set in the column array by passing the
address of its value to OCIDirPathColArrayEntrySet(). If a column is of a
SQL string type, the address of its child column array handle would be passed
instead. The child column array would contain the SQL string's argument data.

To load data into a SQL string column:

For each SQL string column:

1. If the column is non-NULL:

a. For each of its function argument columns:

Set the data in the child column array using
OCIDirPathColArrayEntrySet().

b. Set the SQL string column's data into the column array by passing the address of
its child column array handle to OCIDirPathColArrayEntrySet().

2. Else if the column is NULL:

Set the SQL string column data into the column array by passing a NULL
address for the data, a length of 0, and an OCI_DIRPATH_COL_NULL flag
to OCIDirPathColArrayEntrySet().

This process is similar to that for column objects.

Direct Path Loading of REF Columns
The REF type is a pointer, or reference, to a row object in an object table.

Describing the REF Column
Describing the arguments to a REF column is similar to describing the list of
columns to be loaded for a table.

Note: Steps that are different from loading scalar data are in
italics.

Direct Path Loading of Object Types

12-26 Oracle Call Interface Programmer's Guide

1. Get a parameter handle on the REF column with OCI_DTYPE_PARAM. This
parameter handle is used to set the column's external attributes.

2. Set the column name and its other external column attributes (for example,
maximum data size, precision, scale).

3. Set the REF column's external type as SQLT_REF with OCI_ATTR_DATA_TYPE.

4. Allocate a direct path function context handle. This context is used to describe the REF
column's arguments.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
sword error;

error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (size_t)0, (dvoid **)0);

5. OPTIONAL: Set the REF column's table name in OCI_ATTR_NAME in the function
context. See the next step for more details.

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
text *ref_tbl; /* column's reference table */
sword error;

error = OCIAttrSet((dvoid *)dpfnctx,
 OCI_HTYPE_DIRPATH_FN_CTX,
 (dvoid *)ref_tbl, (ub4)strlen((const char *)ref_tbl),
 OCI_ATTR_NAME, ctlp->errhp_ctl);

6. OPTIONAL: Set the expression type, OCI_ATTR_DIRPATH_EXPR_TYPE, to be
OCI_DIRPATH_EXPR_REF_TBLNAME. Set this only if step 5 was done. This
indicates that the expression set with OCI_ATTR_NAME will be used as the object
table to reference row objects from. This parameter is optional. The behavior for this
parameter varies for the REF type.

* Unscoped REF columns (unscoped, system-OID-based):

Note: A REF column can be a top-table-level column or nested as
an object attribute to a column object.

Steps that are different from loading scalar data are in italics.

Direct Path Loading of Object Types

Direct Path Loading 12-27

If not set, then by the definition of an "unscoped" REF column, this REF col-
umn is required to have a reference table name as its argument for every data
row.

If set, this REF column can only refer to row objects from this specified object
table for the duration of the load. And the REF column is not allowed to have a
reference table name as its argument. (The direct path API is providing this
parameter as a short cut to users who will be loading to an unscoped REF col-
umn that refers to the same reference object table during the entire load.)

* Scoped REF columns (scoped, system-OID-based and primary-key-based):

If not set, the direct path API will use the reference table specified in the
schema.

If set, the reference table name must match the object table specified in the
schema for this scoped REF column. An error occurs if the table names do not
match.

Whether this parameter is set or not, it does not matter to the API whether this
reference table name is in the data row or not. If the name is in the data row, it
has to match the table name specified in the schema. If it is not in the data row,
the API will use the reference table specified in the schema.

7. Set the number of REF arguments that will be used to reference a row object. with
OCI_ATTR_NUM_COLS. The number of arguments required varies for the REF
column type. This number is derived from step 6 earlier.

■ Unscoped REF columns (unscoped, system-OID-based REF columns):

One if OCI_DIRPATH_EXPR_REF_TBLNAME is used. None for the reference
table name, and one for the OID value.

Two if OCI_DIRPATH_EXPR_REF_TBLNAME is not used. One for the reference
table name, and one for the OID value.

■ Scoped REF columns (scoped, system-OID-based and primary-key-based):

N or N+1 are acceptable, where N is the number of columns making up the object
id, regardless if OCI_DIRPATH_EXPR_REF_TBLNAME is used or not.
Minimum is N if the reference table name is not in the data row. It's N+1 if the
reference table name is in the data row. Note: If the REF is system-OID-based, then
N is one. If the REF is primary-key-based, then N is the number of component
columns that make up the primary key. If the reference table name is in the data
row, then add one to N.

Direct Path Loading of Object Types

12-28 Oracle Call Interface Programmer's Guide

8. Get the column/attribute parameter list for the function context.

9. For each REF argument or attribute:

a. Get the column descriptor for the REF argument using
OCI_DTYPE_PARAM.

b. Set the attribute's column name using OCI_ATTR_NAME.

The order of the REF arguments given matter.

The reference table name comes first, if given.

The object id, whether it is system-generated or primary-key-based, comes
next.

There is a naming convention for the REF arguments.

Since the reference table name is not a table column, you can use any dummy
names for its column name, such as "ref-tbl".

For a system-generated OID column, you can use any dummy names for its
column name, such as. "sys-OID".

For a primary-key-based object id, list all the primary-key columns to load into.
There is no need to create a dummy name for OID. The component column
names, if given (see short cut note later), can be given in any order.

Do not set the attribute column name(s) for the object id if you want to use the
short cut.

Short cut. If loading a system-OID-based REF column, do not set the column
name with a name. The API will figure it out. But you will still have to set
other column attributes, such as external datatype.

If loading a primary-key REF column and its primary key consists of multiple
columns, the short cut is not to set their column names. But you will still have
to set other column attributes, such as external datatype.

Note: To simplify the error message if you were to pass in a
number of REF arguments other than N or N+1, the error message
will say that it found so-and-so number of arguments when it
expects N. Although N+1 is not stated in the message, N+1 is
acceptable (even though the reference table name is not needed)
and will not invoke an error message.

Direct Path Loading of Object Types

Direct Path Loading 12-29

c. Set the external column type (the type of the data that will be passed to the
direct path API) using OCI_ATTR_DATA_TYPE.

d. Set any other external column attributes (max data size, precision, scale,
and so on).

e. Free the handle to the column descriptor.

f. Set the function context OCIDirPathFuncCtx that was created in step 4 in the
parent column object's parameter handle using OCI_ATTR_DIRPATH_FN_CTX.

Allocating the Column Array for a REF Column
To allocate a child column array for a REF column:

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((dvoid *)dpfnctx, (dvoid **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (dvoid **)0);

Loading the REF Data Into The Column Array
If a column is scalar, its value would be set in the column array by passing the
address of its value to OCIDirPathColArrayEntrySet(). If a column is a REF,
the address of its child column array handle would be passed instead. The child
column array will contain the REF arguments' data.

To load data into a REF column:

For each REF column:

Note: If the component column names are NULL, then the API
code determines the column names in the position or order in
which they were defined for the primary key. So, when you set
column attributes other than the name, make sure the attributes are
set for the component columns in the correct order.

Note: Steps that are different from loading scalar data are in
italics.

Direct Path Loading of Object Types

12-30 Oracle Call Interface Programmer's Guide

1. If the column is non-NULL:

a. For each of its REF argument columns:

Set its data in the child column array using OCIDirPathColArrayEn-
trySet().

b. Set the REF column's data into the column array by passing the address of its child
column array handle to OCIDirPathColArrayEntrySet().

2. Else if the column is NULL:

Set the REF column's data into the column array by passing a NULL
address for the data, length of 0, and a OCI_DIRPATH_COL_NULL flag to
OCIDirPathColArrayEntrySet().

NOT FINAL Object and REF Columns
An example of an inheritance hierarchy is shown in the following section.

Inheritance Hierarchy Diagram
 In this example, Person is at the top of the hierarchy. It has two sub-types,
Employee and Student. ParttimeEmployee is a sub-type of Employee.
Therefore, the types which can be stored in a Person column are shown in this
diagram:

 Person (Name, Address)
 | |
 | |
 Student(Units, GPA) Employee (Manager, Deptid)
 |
 |
 ParttimeEmployee (Hours)

When loading a table which contains a column of type Person, the actual set of
types could include any of these four: the NOT FINAL type Person, and its three
sub-types: Student, Employee, and ParttimeEmployee. The direct path API
only supports the loading of one fixed, derived type to this NOT FINAL column for
the duration of this load. Thus, the API needs to know which one of these types will
be loaded, the attributes to load for this type, and the function used to create this
type.

Direct Path Loading of Object Types

Direct Path Loading 12-31

Describing a Fixed, Derived Type to be Loaded
To describe a NOT FINAL or substitutable object and REF columns of a fixed,
derived type:

To describe a NOT FINAL column of type X (where X is object or REF), refer to
previous sections to describe a FINAL column of this type. Because the derived type
(could be a supertype or a subtype) is fixed for the duration of the load, the client
interface for describing a NOT FINAL column is the same as for a FINAL column.

A subtype can be thought of as a flattened representation of all the object attributes
that are unique to this type plus all the attributes of its ancestors. Therefore, any of
these attribute columns that are to be loaded into will have to be described and
counted.

Allocating the Column Array
This is the same as for a FINAL column of the same type.

Loading the Data into the Column Array
This is the same as for a FINAL column of the same type.

Note:

■ A NOT FINAL column in a table can only store one fixed,
derived type for the duration of the load.

■ When describing and loading a derived type, all of the
attributes for that type that are to be loaded must be specified.
Think of a subtype as a flattened representation of all the object
attributes that are unique to this type plus all the attributes of
its ancestors. Therefore, any of these attribute columns that are
to be loaded into will have to be described and counted.

■ For example, if loading to all columns in ParttimeEmployee,
there are 5 object attributes to load into: Name, Address,
Manager, Deptid, and Hours.

Note: The steps describing a NOT FINAL column of a fixed,
derived type is similar to describing its FINAL counterpart.

Direct Path Loading of Object Types

12-32 Oracle Call Interface Programmer's Guide

Direct Path Loading of Object Tables
An object table is a table in which each row is an object (or row object). Each column
in the table is an object attribute.

Describing an Object Table
Describing an object table is very similar to describing a non-object table. Each
object attribute is a column in the table. The only difference is that you may need to
describe the OID, which could be system-generated, user-generated, or primary-key
based.

To describe an object table:

For each object attribute column:

Describe each object attribute column as it needs to be described, depending on
its type (for example, NUMBER, REF):

For the object table OID:

1. If the object id is system-generated:

Nothing extra to do. The system will generate OIDs for each row object.

2. If the object id is user-generated:

a. Use a dummy name to represent the column name for the OID (for example,
"cust_oid").

b. Set the OID column attribute with OCI_ATTR_DIRPATH_OID.

3. If the object id is primary-key-based:

a. All of the primary-key columns making up the OID must be loaded.

b. Do not set OCI_ATTR_DIRPATH_OID, because no OID column with a dummy
name was created.

Allocating the Column Array for the Object Table
This is the same as allocating a column array for a non-object table.

OCIDirPathColArray *dpca; /* direct path column array */

Note: Steps that are different from loading a non-object table are
in italics.

Direct Path Loading of Object Types

Direct Path Loading 12-33

sword error;

error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpca,
 OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
 (size_t)0, (dvoid **)0);

Loading Data into the Column Array
This is the same as loading data into a non-object table.

Direct Path Loading a NOT FINAL Object Table
A NOT FINAL object table supports inheritance and a FINAL object table cannot.

Describing a NOT FINAL Object Table
Describing a NOT FINAL object table of a fixed derived type is very similar to
describing a FINAL object table.

To describe a NOT FINAL object table of a fixed derived type:

1. Set the object table's object type in the direct path context with
OCI_ATTR_DIRPATH_OBJ_CONSTR. This indicates that the object type, whether it
is a supertype or a derived type, will be used as the default object constructor when
loading to this table for the duration of the load.

text *obj_type; /* the object type to load into this NOT FINAL */
 /* object table */
sword error;

error = OCIAttrSet((dvoid *)dpctx,
 OCI_HTYPE_DIRPATH_CTX,
 (dvoid *) obj_type,
 (ub4)strlen((const char *) obj_type),
 OCI_ATTR_DIRPATH_OBJ_CONSTR, ctlp->errhp_ctl);

2. For each of the object attribute columns to be loaded, describe them according
to their datatypes. Describe the object id, if needed. This is the same as
describing a FINAL object table.

Note: Steps that are different from loading a FINAL object table
are in italics.

Direct Path Loading in Pieces

12-34 Oracle Call Interface Programmer's Guide

Allocating the Column Array for the NOT FINAL Object Table
This is the same as for a FINAL object table.

Direct Path Loading in Pieces
To support loading data that will not all fit in memory at one time, use loading in
pieces.

The direct path API already supports loading LONGs and LOBs incrementally. This
is accomplished through the following sequence of steps:

1. Set the first piece into the column array using
OCIDirPathColArrayEntrySet() and passing in the
OCI_DIRPATH_COL_PARTIAL flag to indicate that all the data for this column
has not been loaded yet.

2. Convert the column array to a stream.

3. Load the stream.

4. Set the next piece of that data into the column array. If it is not complete, set the
partial flag and go back to step 2. If it is complete, then set the
OCI_DIRPATH_COL_COMPLETE flag and continue on to the next column.

This approach is essentially the same for dealing with large attributes for column
objects and large arguments for SQL string types.

Loading Object Types in Pieces
Objects are loaded into a separate column array from the parent table which
contains them. Therefore, when they need to be loaded in pieces you must set the
elements in the child column array up to and including the pieced element.

The general steps are:

1. For the pieced element, set the OCI_DIRPATH_COL_PARTIAL flag.

Note: Collections are not loaded in pieces, as such. Nested tables
are loaded separately and are loaded like a top-level table. Nested
tables can be loaded incrementally and can have columns which are
loaded in pieces. Therefore, do not set the
OCI_DIRPATH_COL_PARTIAL flag for the column containing the
collection.

Direct Path Context Handles and Attributes for Object Types

Direct Path Loading 12-35

2. Set the child column array handle into the parent column array and mark that
entry with the OCI_DIRPATH_COL_PARTIAL flag as well.

3. At this point, convert the parent column array to a stream. This will convert the
child column array as well.

4. Then load the stream.

5. Go back to step one and continue loading the remaining data for that element
until it is complete.

Here are some rules about loading in pieces:

■ There can only be one partial element at a time at any level. Once one partial
element is marked complete then another one at that level could be partial.

■ If an element is partial and it is not top-level, then all of its ancestors up the
containment hierarchy must be marked partial as well.

■ If there are multiple levels of nesting, it is necessary to go up to a level where
the data can be converted into a stream. This will be a top-level table.

Direct Path Context Handles and Attributes for Object Types
The following discussion gives the supplemental details of the handles and
attributes that are listed in the appendix A.

Direct Path Context Attributes

OCI_ATTR_DIRPATH_OBJ_CONSTR
Indicates the object type to load into a NOT FINAL object table.

ttext *obj_type; /* the object type to load into this NOT FINAL */
 /* object table */
sword error;

error = OCIAttrSet((dvoid *)dpctx,
 OCI_HTYPE_DIRPATH_CTX,
 (dvoid *) obj_type,
 (ub4)strlen((const char *) obj_type),
 OCI_ATTR_DIRPATH_OBJ_CONSTR, ctlp->errhp_ctl);

Direct Path Context Handles and Attributes for Object Types

12-36 Oracle Call Interface Programmer's Guide

Direct Path Function Context and Attributes
Here is a summary of the attributes for function context handles.

OCI_ATTR_DIRPATH_OBJ_CONSTR
Indicates the object type to load into a substitutable object table.

text *obj_type; /* stores an object type name */
sword error;

error = OCIAttrSet((dvoid *)dpctx,
 OCI_HTYPE_DIRPATH_CTX,
 (dvoid *) obj_type,
 (ub4)strlen((const char *) obj_type),
 OCI_ATTR_DIRPATH_OBJ_CONSTR, ctlp->errhp_ctl);

OCI_ATTR_NAME
When a function context is created, set OCI_ATTR_NAME equal to the expression
that describes the non-scalar column. Then set an OCI attribute to indicate the type
of the expression. The expression type varies as follows:

1. Column objects:

a. This required expression is the object type name. The object type will be
used as the default object constructor.

b. Set the expression type OCI_ATTR_DIRPATH_EXPR_TYPE to
OCI_DIRPATH_EXPR_OBJ_CONSTR to indicate this expression is an object
type name.

2. REF columns:

a. This optional expression is the reference table name. This table is the object
table from which the REF column will be referencing row objects.

b. Set the expression type OCI_ATTR_DIRPATH_EXPR_TYPE to
OCI_DIRPATH_EXPR_REF_TBLNAME to indicate this expression is a
reference object table.

c. The behavior for this parameter, set or not set, varies for each REF type.

– Unscoped REF columns (unscoped, system-OID-based):

See Also: "Direct Path Context Handle (OCIDirPathCtx)
Attributes" on page A-60

Direct Path Context Handles and Attributes for Object Types

Direct Path Loading 12-37

– If not set, then by the definition of an "unscoped" REF column, this REF
column is required to have a reference table name as its argument for
every data row.

– If set, this REF column can only refer to row objects from this specified
object table for the duration of the load. And the REF column is not
allowed to have a reference table name as its argument. (Direct path
API is providing this parameter as a short cut to the users who will be
loading to an unscoped REF column that refers to the same reference
object table during the entire load.)

– Scoped REF columns (scoped, system-OID-based and
primary-key-based):

– If not set, the direct path API will use the reference table specified in the
schema.

– If set, the reference table name must match the object table specified in
the schema for this scoped REF column. An error occurs if the table
names do not match.

– Whether this parameter is set or not, it will not matter to the API
whether this reference table name is in the data row or not. If the name
is in the data row, it has to match the table name specified in the
schema. If it is not in the data row, the API will use the reference table
defined in the schema.

3. SQL string columns:

This mandatory expression contains a SQL string to derive the value that
will be stored in the column.

Set the expression type OCI_ATTR_DIRPATH_EXPR_TYPE to
OCI_DIRPATH_EXPR_SQL to indicate that this expression is a SQL string.

OCI_ATTR_DIRPATH_EXPR_TYPE
This attribute is used to indicate the type of the expression specified in
OCI_ATTR_NAME for the non-scalar column's function context.

If OCI_ATTR_NAME is set, then OCI_ATTR_DIRPATH_EXPR_TYPE is required.

The possible values for OCI_ATTR_DIRPATH_EXPR_TYPE are:

1. OCI_DIRPATH_EXPR_OBJ_CONSTR

Direct Path Context Handles and Attributes for Object Types

12-38 Oracle Call Interface Programmer's Guide

■ Indicates that the expression is an object type name and will be used as the
default object constructor for a column object.

■ Required for column objects.

2. OCI_DIRPATH_EXPR_REF_TBLNAME

■ Indicates that the expression is a reference object table name. This table is
the object table from which the REF column will be referencing row objects.

■ Optional for REF columns.

3. OCI_DIRPATH_EXPR_SQL

■ Indicates that the expression is a SQL string, which is executed to derive a
value to be stored in the column.

■ Required for SQL string columns.

The following pseudocode example illustrates the preceding rules:

OCIDirPathFuncCtx *dpfnctx; /* function context for this non-scalar column */
ub1 expr_type; /* expression type */
sword error;

if (...) /* (column type is an object) */
expr_type = OCI_DIRPATH_EXPR_OBJ_CONSTR;
...
if (...) /* (column_type is a REF && function context name exists) */
expr_type = OCI_DIRPATH_EXPR_REF_TBLNAME;
...
if (...) /* (column_type is a SQL string) */
expr_type = OCI_DIRPATH_EXPR_SQL;
...
error = OCIAttrSet((dvoid *)(dpfnctx),
 OCI_HTYPE_DIRPATH_FN_CTX,
 (dvoid *)&expr_type, (ub4)0,
 OCI_ATTR_DIRPATH_EXPR_TYPE, ctlp->errhp_ctl);

OCI_ATTR_NUM_COLS
This attribute describes the number of attributes or arguments that will be loaded or
processed for a non-scalar column. This parameter must be set before the column
list can be retrieved.

1. Column objects:

The number of object attribute columns to be loaded for this column object.

Direct Path Context Handles and Attributes for Object Types

Direct Path Loading 12-39

2. SQL string columns:

a. The number of arguments to be passed to the SQL string.

b. If an argument is used multiple times in the function, counting it as one is
correct.

3. REF columns:

a. The number of REF arguments to identify the row object the REF column
should point to.

b. The number of arguments required varies for the REF column type:

■ Unscoped REF columns (unscoped, system-OID-based REF columns):

If OCI_DIRPATH_EXPR_REF_TBLNAME is used. None for the refer-
ence table name, and one for the OID value. (Only the OID values will
be in the data rows.)

If OCI_DIRPATH_EXPR_REF_TBLNAME is not used. One for the refer-
ence table name, and one for the OID value. (Both the reference table
names and the OID values will be in the data rows.)

■ Scoped REF columns (scoped, system-OID-based and primary-key-based):

N or N+1 are acceptable, where N is the number of columns making up
the object id, regardless if OCI_DIRPATH_EXPR_REF_TBLNAME is
used or not. The minimum is N if the reference table name is not in the
data row. Use N+1 if the reference table name is in the data row.

If the REF is system-OID-based, then N is one. If the REF is pri-
mary-key-based, then N is the number of component columns that
make up the primary key. If the reference table name is in the data row,
then add one to N.

Note: To simplify the error message if you pass in a number of
REF arguments other than N or N+1, the error message will say
that it found so-and-so number of arguments when it expects N.
Although N+1 is not stated in the message, N+1 is acceptable (even
though the reference table name is not needed) and will not invoke
an error message.

Direct Path Context Handles and Attributes for Object Types

12-40 Oracle Call Interface Programmer's Guide

OCI_ATTR_NUM_ROWS
This attribute, when used for a OCI_HTYPE_DIRPATH_FN_CTX (function context),
is retrievable only, and cannot be set by the user. You can only use this attribute in
OCIAttrGet() and not OCIAttrSet(). When called with OCIAttrGet(), the
number of rows loaded so far is returned.

However, the attribute OCI_ATTR_NUM_ROWS, when used for a
OCI_HTYPE_DIRPATH_CTX (table-level context), can be set and can be retrieved
by the user.

Calling OCIAttrSet() with OCI_ATTR_NUM_ROWS and
OCI_HTYPE_DIRPATH_CTX sets the number of rows to be allocated for the
table-level column array. If not set, the direct path API code will derive a
"reasonable" number based on the maximum record size and the transfer buffer
size. To see how many rows were allocated, call OCIAttrGet() with
OCI_ATTR_NUM_ROWS on OCI_HTYPE_DIRPATH_COLUMN_ARRAY for a
table-level column array, and with OCI_HTYPE_DIRPATH_FN_COL_ARRAY for a
function column array.

Calling OCIAttrGet() with OCI_ATTR_NUM_ROWS and
OCI_HTYPE_DIRPATH_CTX returns the number of rows loaded so far.

This attribute cannot be set by the user for a function context. You are not allowed
to specify the number of rows desired in a function column array through
OCI_ATTR_NUM_ROWS with OCIAttrSet() because then all function column
arrays will have the same number of rows as the table-level column array. Thus this
attribute can only be set for a table-level context and not for a function context.

Direct Path Column Parameter Attributes
When describing an object, SQL string, or REF column, one of its column attributes
is a function context.

If a column is an object, then its function context describes its object type and object
attributes. If a SQL string, the expression to be called. If REF, its reference table
name and row object identifiers.

When setting a function context as a column attribute,
OCI_ATTR_DIRPATH_FN_CTX is used in OCIAttrSet():

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
sword error;

error = OCIAttrSet((dvoid *)colDesc,
 OCI_DTYPE_PARAM,

Direct Path Context Handles and Attributes for Object Types

Direct Path Loading 12-41

 (dvoid *)(dpfnctx), (ub4)0,
 OCI_ATTR_DIRPATH_FN_CTX, ctlp->errhp_ctl);

Attributes for column parameter context handles follow.

OCI_ATTR_NAME
The naming conventions when loading nested tables, object tables, SQL string
columns, and REF columns are described in the following paragraphs.

In general, a dummy column name is used if are loading data into a column that is a
system column with a system name that you are not aware of (for example, an
object table's system-generated object id (OID) column or a nested table's SETID
(SID) column) or if a column is an argument that doesn't have a database table
column (for example, SQL string and REF arguments).

If the column is a database table column, but a dummy name was used, then a
column attribute has to be set so that the function can identify the column even
though it's not under the name known to the database.

The naming rules are:

1. Child nested tables's SETID (SID) column:

The SETID column is required. Set its OCI_ATTR_NAME using a dummy
name, because the API doesn't expect the user to know its system name. Then
set the column attribute with OCI_ATTR_DIRPATH_SID to indicate that this is
a SID column.

2. Object table's object id (OID) column:

An object id is required if:

a. If the object id is system-generated:

Use a dummy name as its column name (for example, "cust_oid").

Set its column attribute with OCI_ATTR_DIRPATH_OID. So if you have
multiple columns with dummy names, you know which one represents the
system-generated OID.

b. If the object id is primary-key-based:

You cannot use a dummy name as its column name. Therefore, you do not
need to set its column attribute with OCI_ATTR_DIRPATH_OID.

See Also: "Direct Path Column Parameter Attributes" on
page A-71

Direct Path Context Handles and Attributes for Object Types

12-42 Oracle Call Interface Programmer's Guide

3. SQL string argument:

Set the attribute's column name with OCI_ATTR_NAME.

The order of the SQL string arguments given does not matter. The order does
not have to match the order used in the SQL string.

There is a naming convention for SQL string arguments.

a. The argument names must match the bind variable names used in the SQL
string in content but not in case. For example, if the SQL string is
substr(:INPUT_STRING, 3, 5), then you can give the argument name
as "input_string".

b. If an argument is used multiple times in an SQL string, then you can
declare it once and count it as only one argument.

4. REF argument:

a. Set the attribute's column name using OCI_ATTR_NAME.

The order of the REF arguments does matter.

– The reference table name comes first, if given.

– The object id, whether it is system-generated or primary-key-based, comes
next.

b. There is a naming convention for the REF arguments.

– For the reference table name argument, use any dummy names for its
column name, for example, "ref-tbl".

– For the system-generated OID argument, use any dummy names for its
column name, such as "sys-OID". Note: Since this column is used as an
argument and not as a column to load into, do not set this column with
OCI_ATTR_DIRPATH_OID.

– For a primary-key-based object id, list all the primary-key columns to load
into. There is no need to create a dummy name for OID. The component
column names, if given (see step for short cut later), can be given in any
order.

c. Do not set the attribute column name(s) for the object id if you want to use
the short cut.

– Short cut. If loading a system-OID-based REF column, do not set the
column name with a name. The API will figure it out. But you still have to
set other column attributes, such as external datatype.

Direct Path Context Handles and Attributes for Object Types

Direct Path Loading 12-43

– If loading a primary-key REF column and its primary key consists of
multiple columns, the short cut is not to set their column names. But user
will still have to set other column attributes, such as external datatype.

OCI_ATTR_DIRPATH_SID
Indicates that a column is a nested table's SETID column. Required if loading to a
nested table.

ub1 flg = 1;
sword error;

error = OCIAttrSet((dvoid *)colDesc,
 OCI_DTYPE_PARAM,
 (dvoid *)&flg, (ub4)0,
 OCI_ATTR_DIRPATH_SID, ctlp->errhp_ctl);

OCI_ATTR_DIRPATH_OID
Indicates that a column is an object table's object id column.

ub1 flg = 1;
sword error;

error = OCIAttrSet((dvoid *)colDesc,
 OCI_DTYPE_PARAM,
 (dvoid *)&flg, (ub4)0,
 OCI_ATTR_DIRPATH_OID, ctlp->errhp_ctl);

Direct Path Function Column Array Handle for Non-scalar Columns

Note: If the component column names are NULL, then the API
code determines the column names in the position or order in
which they were defined for the primary key. So, when you set
column attributes other than the name, make sure the attributes are
set for the component columns in the correct order.

See Also: "Direct Path Function Column Array Handle
(OCIDirPathColArray) Attributes" on page A-69

Direct Path Context Handles and Attributes for Object Types

12-44 Oracle Call Interface Programmer's Guide

The handle type OCI_HTYPE_DIRPATH_FN_COL_ARRAY is used if the column is
an object, SQL string, or REF. The structure OCIDirPathColArray is the same for
both scalar and non-scalar columns.

To allocate a child column array for a function context:

OCIDirPathFuncCtx *dpfnctx; /* direct path function context */
OCIDirPathColArray *dpfnca; /* direct path function column array */
sword error;

error = OCIHandleAlloc((dvoid *)dpfnctx, (dvoid **)&dpfnca,
 OCI_HTYPE_DIRPATH_FN_COL_ARRAY,
 (size_t)0, (dvoid **)0);

OCI_ATTR_NUM_ROWS Attribute
This attribute, when used for a OCI_HTYPE_DIRPATH_FN_COL_ARRAY (function
column array), is retrievable only, and cannot be set by the user. When called with
the function OCIAttrGet(), the number of rows allocated for the function column
array is returned.

Object Advanced Topics in OCI 13-1

13
Object Advanced Topics in OCI

This chapter introduces OCI's facility for working with objects in an Oracle
database server. It also discusses OCI's object navigational function calls, type
evolution, and support for XML.

This chapter contains these topics:

■ The Object Cache and Memory Management

■ Object Navigation

■ OCI Navigational Functions

■ Type Evolution and the Object Cache

■ OCI Support for XML

The Object Cache and Memory Management

13-2 Oracle Call Interface Programmer's Guide

The Object Cache and Memory Management
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks object instances that have been
fetched by an OCI application. The object cache provides memory management.

When objects are fetched by the application through a SQL SELECT statement, or
through an OCI pin operation, a copy of the object is stored in the object cache.
Objects that are fetched directly through a SELECT statement are fetched by value,
and they are non-referenceable objects which cannot be pinned. Only referenceable
objects may be pinned.

If an object is being pinned, and an appropriate version already exists in the cache,
it does not need to be fetched from the server.

Every client program that uses OCI to dereference REFs to retrieve objects utilizes
the object cache. A client-side object cache is allocated for every OCI environment
handle initialized in object mode. Multiple threads of a process can share the same
client-side cache by sharing the same OCI environment handle.

Exactly one copy of each referenceable object exists in the cache for each connection.
The object cache is logically partitioned by the connection.

Dereferencing a REF many times or dereferencing several equivalent REFs in the
same connection returns the same copy of the object.

If you modify a copy of an object in the cache, you must flush the changes to the
server before they are visible to other processes. Objects that are no longer needed
can be unpinned or freed; they can then be swapped out of the cache, freeing the
memory space they occupied.

When database objects are loaded into the cache, they are transparently mapped
into the C language structures. The object cache maintains the association between
all object copies in the cache and their corresponding objects in the database. When
the transaction is committed, changes made to the object copy in the cache are
automatically propagated to the database.

The cache does not manage the contents of object copies; it does not automatically
refresh object copies. The application must ensure the correctness and consistency
of the contents of object copies. For example, if the application marks an object copy
for insert, update, or delete, then terminates the transaction, the cache simply
unmarks the object copy but does not purge or invalidate the copy. The application
must pin recent or latest, or refresh the object copy in the next transaction. If it pins
any, it may get the same object copy with its uncommitted changes from the
previous terminated transaction.

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-3

The object cache is created when the OCI environment is initialized using
OCIEnvCreate() with mode set to OCI_OBJECT.

The object cache maintains a fast look-up table for mapping REFs to objects. When
an application de-references a REF and the corresponding object is not yet cached in
the object cache, the object cache automatically sends a request to the server to fetch
the object from the database and load it into the object cache.

Subsequent de-references of the same REF will be faster since they become local
cache access and do not incur network round trips. To notify the object cache that an
application is accessing an object in the cache, the application pins the object; when
it is done with the object, it should unpin it. The object cache maintains a pin count
for each object in the cache, the count is incremented upon a pin call and unpin call
decrements it. When the pin count goes to zero, that means the object is no longer
needed by the application.

The object cache uses an least-recently used (LRU) algorithm to manage the size of
the cache. The LRU algorithm frees candidate objects when the cache reaches the
maximum size. The candidate objects are objects with a pin count of zero.

Each application processes running against the same server has its own object
cache, as shown in Figure 13–1, "The Object Cache".

See Also: For more information about pin options, see "Pinning
an Object Copy" on page 13-7

The Object Cache and Memory Management

13-4 Oracle Call Interface Programmer's Guide

Figure 13–1 The Object Cache

The object cache tracks the objects that are currently in memory, maintains
references to the objects, manages automatic object swapping, and tracks object
meta-attributes.

Cache Consistency and Coherency
The object cache does not automatically maintain value coherency or consistency
between object copies and their corresponding objects in the database. In other
words, if an application makes changes to an object copy, the changes are not
automatically applied to the corresponding object in the database, and vice versa.
The cache provides operations such as flushing a modified object copy to the

Application 1
Object Cache

Application 2
Object Cache

System Global
Area (SGA)

Oracle
Database

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-5

database and refreshing a stale object copy with the latest value from the database
to enable the program to maintain some coherency.

Object Cache Parameters
The object cache has two important parameters associated with it, which are
attributes of the environment handle:

■ OCI_ATTR_CACHE_MAX_SIZE - the maximum cache size

■ OCI_ATTR_CACHE_OPT_SIZE - the optimal cache size

These parameters refer to levels of cache memory usage, and they help to determine
when the cache automatically ages out eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the
maximum cache size, the cache automatically begins to free (or ages out) unmarked
objects which have a pin count of zero. The cache continues freeing such objects
until memory usage in the cache reaches the optimal size, or until it runs out of
objects eligible for freeing. Note that the cache can grow beyond the specified
maximum cache size.

OCI_ATTR_CACHE_MAX_SIZE is specified as a percentage of
OCI_ATTR_CACHE_OPT_SIZE. The maximum object cache size (in bytes) is
computed by incrementing OCI_ATTR_CACHE_OPT_SIZE by
OCI_ATTR_CACHE_MAX_SIZE percentage, as follows:

maximum_cache_size = optimal_size + optimal_size * max_size_percentage / 100

or

maximum_cache_size = OCI_ATTR_CACHE_OPT_SIZE + OCI_ATTR_CACHE_OPT_SIZE *
 OCI_ATTR_CACHE_MAX_SIZE / 100

Note: Oracle does not support automatic cache coherency with
the server's buffer cache or database. Automatic cache coherency
refers to the mechanism by which the object cache refreshes local
object copies when the corresponding objects have been modified
in the server's buffer cache. This mechanism happens when the
object cache flushes the changes made to local object copies to the
buffer cache before any direct access of corresponding objects in the
server. Direct access includes using SQL, triggers, or stored
procedures to read or modify objects in the server.

The Object Cache and Memory Management

13-6 Oracle Call Interface Programmer's Guide

Set the value of OCI_ATTR_CACHE_MAX_SIZE at 110% of the
OCI_ATTR_CACHE_OPT_SIZE. The default value for
OCI_ATTR_CACHE_OPT_SIZE is 8M bytes.

The cache size attributes of the environment handle can be set with the
OCIAttrSet() call and retrieved with the OCIAttrGet() function.

Object Cache Operations
This section describes the most important functions the object cache provides to
operate on object copies.

Pinning and Unpinning
Pinning an object copy enables the application to access it in the cache by
dereferencing the REF to it.

Unpinning an object indicates to the cache that the object currently is not being
used. Objects should be unpinned when they are no longer needed to make them
eligible for implicit freeing by the cache, thus freeing up memory.

Freeing
Freeing an object copy removes it from the cache and frees its memory.

Marking and Unmarking
Marking an object notifies the cache that an object copy has been updated in the
cache and the corresponding object must be updated in the server when the object
copy is flushed.

Unmarking an object removes the indication that the object has been updated.

Flushing
Flushing an object writes local changes made to marked object copies in the cache to
the corresponding objects in the server. When this happens, the copies in the object
cache are unmarked.

See Also: See the section "Environment Handle Attributes" on
page A-3 for more information.

See Also: All of the OCI's navigational and cache/object
management functions are listed in the section "OCI Navigational
Functions" on page 13-20.

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-7

Refreshing
Refreshing an object copy in the cache replaces it with the latest value of the
corresponding object in the server.

Loading and Removing Object Copies
Pin, unpin, and free functions are discussed in this section.

Pinning an Object Copy
When an application needs to dereference a REF in the object cache, it calls
OCIObjectPin(). This call dereferences the REF and pins the object copy in the
cache. As long as the object copy is pinned, it is guaranteed to be accessible by the
application. OCIObjectPin() takes a pin option, any, recent, or latest. The
datatype of the pin option is OCIPinOpt.

■ If the any (OCI_PIN_ANY) option is specified, the object cache immediately
returns the object copy that is already in the cache, if there is one. If no copy is
in the cache, the object cache loads the latest object copy from the database and
then returns the object copy. The any option is appropriate for read-only,
informational, fact, or meta objects, such as products, salesmen, vendors,
regions, parts, or offices. These objects usually do not change often, and even if
they change, the change does not affect the application.

Note that the object cache looks for the object copy only within the logical
partition of the cache for the specified connection. If there is no copy in the
partition, the latest copy of the object is loaded from the server.

■ If the latest (OCI_PIN_LATEST) option is specified, the object cache loads into
the cache the latest object copy from the database. It returns that copy unless the
object copy is locked in the cache, in which case the marked object copy is
returned immediately. If the object is already in the cache and not locked, the
latest object copy is loaded and overwrites the existing one. The latest option is
appropriate for operational objects, such as purchase orders, bugs, line items,
bank accounts, or stock quotes. These objects usually change often, and the
program cares to access these objects at their latest possible state.

■ If the recent (OCI_PIN_RECENT) option is specified, there are two possibilities:

Note: Pointers to top-level object memory are valid after a refresh.
Pointers to secondary-level memory (for example, string text
pointers, collections, and so on) may become invalid after a refresh.

The Object Cache and Memory Management

13-8 Oracle Call Interface Programmer's Guide

■ If in the same transaction the object copy has been previously pinned using
the latest or recent option, the recent option becomes equivalent to the any
option.

■ If the previous condition does not apply, the recent option becomes
equivalent to the latest option.

When the program pins an object, the program also specifies one of two possible
values for the pin duration: session or transaction. The datatype of the duration is
OCIDuration.

■ If the pin duration is session (OCI_DURATION_SESSION), the object copy
remains pinned until the end of session (that is, end of connection) or until it is
unpinned explicitly by the program (by calling OCIObjectUnpin()).

■ If the pin duration is transaction (OCI_DURATION_TRANS), the object copy
remains pinned until the end of transaction or until it is unpinned explicitly.

When loading an object copy into the cache from the database, the cache effectively
executes

SELECT VALUE(t) FROM t WHERE REF(t) = :r

where t is the object table storing the object, and r is the REF, and the fetched value
becomes the value of the object copy in the cache.

Since the object cache effectively executes a separate SELECT statement to load each
object copy into the cache, in a read-committed transaction, object copies are not
guaranteed to be read-consistent with each other.

In a serializable transaction, object copies pinned recent or latest are read-consistent
with each other because the SELECT statements to load these object copies are
executed based on the same database snapshot.

The object cache model is orthogonal to or independent of the Oracle transaction
model. The behavior of the object cache does not change based on the transaction
model, even though the objects that are retrieved from the server through the object
cache can be different when running the same program under different transaction
models (for example, read committed versus serializable).

Note: For OCIObjectArrayPin()the pin option has no effect,
because objects are always retrieved from the database. If a REF is
to an object in the cache, OCIObjectArrayPin() will fail with:

Ora-22881: dangling REF.

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-9

Unpinning an Object Copy
An object copy can be unpinned when it is no longer used by the program. It then
becomes available to be freed. An object copy must be both completely unpinned
and unmarked in order to become eligible to be implicitly freed by the cache when
the cache begins to run out of memory. To be completely unpinned, an object copy
that has been pinned N times must be unpinned N times.

An unpinned but marked object copy is not eligible for implicit freeing until the
object copy is flushed or explicitly unmarked by the user. However, the object cache
implicitly frees object copies only when it begins to run out of memory, so an
unpinned object copy need not necessarily be freed. If it has not been implicitly
freed and is pinned again (with the any or recent options), the program gets the
same object copy.

An application calls OCIObjectUnpin() or OCIObjectPinCountReset() to
unpin an object copy. In addition, a program can call OCICacheUnpin() to
completely unpin all object copies in the cache for a specific connection.

Freeing an Object Copy
Freeing an object copy removes it from the object cache and frees up its memory.
The cache supports two methods for freeing up memory:

1. Explicit freeing - A program explicitly frees or removes an object copy from the
cache by calling OCIObjectFree() which takes an option to (forcefully) free
either a marked or pinned object copy. The program can also call
OCICacheFree() to free all object copies in the cache.

2. Implicit freeing - Should the cache begin to run out of memory, it implicitly
frees object copies that are both unpinned and unmarked. Unpinned objects
that are marked are eligible for implicitly freeing only when the object copy is
flushed or unmarked.

For memory management reasons, it is important that applications unpin objects
when they are no longer needed. This makes these objects available for aging out of
the cache, and makes it easier for the cache to free memory when necessary.

OCI does not provide a function to free unreferenced objects in the client-side cache.

See Also: For more information, see the section "Object Cache
Parameters" on page 13-5.

The Object Cache and Memory Management

13-10 Oracle Call Interface Programmer's Guide

Making Changes to Object Copies
Functions for marking and unmarking object copies are discussed in this section.

Marking an Object Copy
 An object copy can be created, updated, and deleted locally in the cache. If the
object copy is created in the cache (by calling OCIObjectNew()), the object copy is
marked for insert by the object cache, so that the object will be inserted in the server
when the object copy is flushed.

If the object copy is updated in the cache, the user has to notify the object cache by
marking the object copy for update (by calling OCIObjectMarkUpdate()). When
the object copy is flushed, the corresponding object in the server is updated with the
value in the object copy.

If the object copy is deleted, the object copy is marked for delete in the object cache
(by calling OCIObjectMarkDelete()). When the object copy is flushed, the
corresponding object in the server is deleted. The memory of the marked object
copy is not freed until it is flushed and unpinned. When pinning an object marked
for delete, the program receives an error, as if the program is dereferencing a
dangling reference.

When a user makes multiple changes to an object copy, it is the final results of these
changes which are applied to the object in the server when the copy is flushed. For
example, if the user updates and deletes an object copy, the object in the server is
simply deleted when the object copy is flushed. Similarly, if an attribute of an object
copy is updated multiple times, it is the final value of this attribute which is
updated in the server when the object copy is flushed.

The program can mark an object copy as updated or deleted only if the object copy
has been loaded into the object cache.

Unmarking an Object Copy
A marked object copy can be unmarked in the object cache. By unmarking a marked
object copy, the changes that are made to the object copy are not flushed to the
server. The object cache does not undo the local changes that are already made to
the object copy.

A program calls OCIObjectUnmark() to unmark an object. In addition, a program
can call OCICacheUnmark() to unmark all object copies in the cache for a specific
connection.

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-11

Synchronizing Object Copies with Server
Cache/server synchronization operations (flushing, refreshing) are discussed in this
section.

Flushing Changes to Server
The local changes made to a marked object copy in the cache are written to the
server when the object copy is flushed. The program can call OCIObjectFlush()
to flush a single object copy or OCICacheFlush() to flush all marked object copies
in the cache or a list of selected marked object copies. OCICacheFlush() flushes
objects associated with a specific service context. See OCICacheFlush() on
page 17-9.

After flushing an object copy, the object copy is unmarked. (Note that the object is
locked in the server after it is flushed; the object copy is therefore marked as locked
in the cache.)

If an application wishes to flush only dirty objects of a certain type, this
functionality is available through the callback function which is an optional
argument to the OCICacheFlush() call. The application can define a callback
which returns only the desired objects. In this case the operation still incurs only a
single server round trip for the flush.

In the default mode during OCICacheFlush(), the objects are flushed in the order
that they are marked dirty. The performance of this flush operation can be
considerably improved by setting the OCI_ATTR_CACHE_ARRAYFLUSH attribute
in the environment handle.

However, OCI_ATTR_CACHE_ARRAYFLUSH mode should be used only if the
order in which the objects are flushed is not important. During this mode, the dirty
objects are grouped together and sent to the server in a manner that enables the
server to efficiently update its tables. When this mode is enabled, it is not
guaranteed that the order in which the objects are marked dirty is preserved.

Note: The OCICacheFlush() operation incurs only a single
server round trip even if multiple objects are being flushed.

See Also: See OCI_ATTR_CACHE_ARRAYFLUSH on page A-4

The Object Cache and Memory Management

13-12 Oracle Call Interface Programmer's Guide

Refreshing an Object Copy
When refreshed, an object copy is reloaded with the latest value of the
corresponding object in the server. The latest value may contain changes made by
other committed transactions and changes made directly (not through the object
cache) in the server by the transaction. The program can change objects directly in
the server using SQL DML, triggers, or stored procedures.

To refresh a marked object copy, the program must first unmark the object copy. An
unpinned object copy is simply freed when it is refreshed (that is, when the whole
cache is refreshed).

The program can call OCIObjectRefresh() to refresh a single object copy or
OCICacheRefresh() to refresh all object copies in the cache, all object copies that
are loaded in a transaction (that is, object copies that are pinned recent or pinned
latest), or a list of selected object copies.

When an object is flushed to the server, triggers can be fired to modify more objects
in the server. The same objects (modified by the triggers) in the object cache become
out-of-date, and must be refreshed before they can be locked or flushed.

The various meta-attribute flags and durations of an object are modified as
described in Table 13–1 after being refreshed:

During refresh, the object cache loads the new data into the top-level memory of an
object copy, thus reusing the top level memory. The top-level memory of an object
copy contains the in-line attributes of the object. On the other hand, the memory for
the out-of-line attributes of an object copy may be freed and relocated, since the
out-of-line attributes can vary in size.

Table 13–1 Object Attributes After Refresh

Object Attribute Status After Refresh

existent set to appropriate value

pinned unchanged

flushed reset

allocation duration unchanged

pin duration unchanged

See Also: See the section "Memory Layout of an Instance" on
page 13-17 for more information about object memory

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-13

Object Locking
OCI functions related to object locking are discussed in this section.

Lock Options
When pinning an object you can specify whether the object should be locked or not
through lock options. When an object is locked a server side lock is acquired and
this prevents any other user from modifying the object. The lock is released when
the transaction commits or rollbacks. The different lock options are:

■ The lock option OCI_LOCK_NONE instructs the cache to pin the object without
locking.

■ The lock option OCI_LOCK_X instructs the cache to pin the object only after
acquiring a lock. If the object is currently locked by another user, the pin call
with this option will wait until it can acquire the lock before returning to the
caller. This is equivalent to executing a SELECT FOR UPDATE statement.

■ The lock option OCI_LOCK_X_NOWAIT instructs the cache to pin the object
only after acquiring a lock. Unlike the OCI_LOCK_X option, the pin call with
OCI_LOCK_X_NOWAIT option will not wait if the object is currently locked by
another user. This is equivalent to executing a SELECT FOR UPDATE WITH
NOWAIT statement.

Locking Objects For Update
The program can optionally call OCIObjectLock() to lock an object for update.
This call instructs the object cache to get a row lock on the object in the database.
This is similar to executing

SELECT NULL FROM t WHERE REF(t) = :r FOR UPDATE

where t is the object table storing the object to be locked and r is the REF
identifying the object. The object copy is marked locked in the object cache after
OCIObjectLock() is called.

To lock a graph or set of objects, several OCIObjectLock() calls are required, one
for each object, or the array pin OCIObjectArrayPin() call can be used for better
performance.

By locking an object, the application is guaranteed that the object in the cache is
up-to-date. No other transaction can modify the object while the application has it
locked.

The Object Cache and Memory Management

13-14 Oracle Call Interface Programmer's Guide

At the end of a transaction, all locks are released automatically by the server. The
locked indicator in the object copy is reset.

Locking with the NOWAIT Option
In some cases, an application may attempt to lock an object which is currently
locked by another user. In this case the application is blocked.

In order to avoid blocking when trying to lock an object, an application can use the
OCIObjectLockNoWait() call instead of OCIObjectLock(). This function
returns an error if it is unable to lock an object immediately because it is locked by
another user.

The NOWAIT option is also available to pin calls by passing a value of
OCI_LOCK_X_NOWAIT as the lock option parameter.

Implementing Optimistic Locking
There are two options available for implementing optimistic locking in an OCI
application.

Optimistic Locking Option 1
The first optimistic locking option is for OCI applications that run transactions at
the serializable level.

OCI supports calls that allow you to dereference and pin objects in the object cache
without locking them, modify them in the cache (again without locking them), and
then flush them (the dirtied objects) to the database.

During the flush, if a dirty object has been modified by another committed
transaction since the beginning of your transaction, a non-serializable transaction
error is returned. If none of the dirty objects has been modified by any other any
other transaction since the beginning of your transaction, then the changes are
written to the database successfully.

The preceding mechanism effectively implements an optimistic locking model.

Note: OCITransCommit() first flushes dirty objects into the
database before committing a transaction.

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-15

Optimistic Locking Option2
Alternately, an application can enable object change detection mode. To do this, set
the OCI_ATTR_OBJECT_DETECTCHANGE attribute of the environment handle to
a value of TRUE.

When this mode has been activated, the application receives an ORA-08179 error
("concurrency check failed") when attempting to flush an object that has been
changed in the server by another committed transaction. The application can then
handle this error in an appropriate manner.

Commit and Rollback in Object Applications
When a transaction is committed (OCITransCommit()), all marked objects are
flushed to the server. If an object copy is pinned with a transaction duration, the
object copy is unpinned.

When a transaction is rolled back, all marked objects are unmarked. If an object
copy is pinned with a transaction duration, the object copy is unpinned.

Object Duration
In order to maintain free space in memory, the object cache attempts to reuse
objects' memory whenever possible. The object cache reuses an object's memory
when the object's lifetime (allocation duration) expires or when the object's pin
duration expires. The allocation duration is set when an object is created with
OCIObjectNew(), and the pin duration is set when an object is pinned with
OCIObjectPin(). The datatype of the duration value is OCIDuration.

When an object reaches the end of its allocation duration, it is automatically deleted
and its memory can be reused. The pin duration indicates when an object's memory
can be reused, and memory is reused when the cache is full.

OCI supports two predefined durations:

1. transaction (OCI_DURATION_TRANS)

2. session (OCI_DURATION_SESSION)

Note: The pin duration for an object cannot be longer than the
object's allocation duration.

The Object Cache and Memory Management

13-16 Oracle Call Interface Programmer's Guide

The transaction duration expires when the containing transaction ends (commits or
terminates). The session duration expires when the containing session/connection
ends.

The application can explicitly unpin an object using OCIObjectUnpin(). To
minimize explicit unpinning of individual objects, the application can unpin all
objects currently pinned in the object cache using the function OCICacheUnpin().
By default, all objects are unpinned at the end of the pin duration.

Durations Example
Table 13–2 illustrates the use of the different durations in an application. Four
objects are created or pinned in this application over the course of one connection
and three transactions. The first column indicates the action performed by the
database, and the second column indicates the function which performs the action.
The remaining columns indicate the states of the various objects at each point in the
application.

For example, Object 1 comes into existence at T2 when it is created with a
connection duration, and it exists until T19 when the connection is terminated.
Object 2 is pinned at T7 with a transaction duration, after being fetched at T6, and it
remains pinned until T9 when the transaction is committed.

Table 13–2 Example of Allocation and Pin Durations

Time Application Action Function Object 1 Object 2 Object 3 Object 4

T1 Establish connection - - - - -

T2 Create object 1 - allocation
duration = connection

OCIObjectNew() exists - - -

T5 Start Transaction1 OCITransStart() exists - - -

T6 SQL - fetch REF to object 2 - exists - - -

T7 Pin object 2 - pin duration =
transaction

OCIObjectPin() exists pinned - -

T8 Process application data - exists pinned - -

T9 Commit Transaction1 OCITransCommit() exists unpinned - -

T10 Start Transaction2 OCITransStart() exists - - -

T11 Create object 3 - allocation
duration = transaction

OCIObjectNew() exists - exists -

T12 SQL - fetch REF to object 4 - exists - exists -

The Object Cache and Memory Management

Object Advanced Topics in OCI 13-17

Memory Layout of an Instance
An instance in memory is composed of a top-level memory chunk of the instance, a
top-level memory of the null indicator structure and optionally, a number of
secondary memory chunks. Consider a DEPARTMENT row type,

CREATE TYPE department AS OBJECT
(dep_name varchar2(20),
 budget number,
 manager person, /* person is an object type */
 employees person_array); /* varray of person objects */

and its C representation

struct department
{
OCIString * dep_name;

T13 Pin object 4 - pin duration =
connection

OCIObjectPin() exists - exists pinned

T14 Commit Transaction2 OCITransCommit() exists - deleted pinned

T15 Terminate session1 OCIDurationEnd() exists - - pinned

T16 Start Transaction3 OCITransStart() exists - - pinned

T17 Process application data - exists - - pinned

T18 Commit Transaction3 OCITransCommit() exists - - pinned

T19 Terminate connection - deleted - - unpinned

See Also:

■ See the descriptions of OCIObjectNew() and
OCIObjectPin() in Chapter 17, "OCI Navigational and Type
Functions" for specific information about parameter values
which can be passed to these functions

■ See the section "Creating Objects" on page 10-33 for information
about freeing up an object's memory before its allocation
duration has expired

Table 13–2 Example of Allocation and Pin Durations (Cont.)

Time Application Action Function Object 1 Object 2 Object 3 Object 4

Object Navigation

13-18 Oracle Call Interface Programmer's Guide

OCINumber budget;
struct person manager;
OCIArray * employees;
);
typedef struct department department;

Each instance of DEPARTMENT has a top-level memory chunk which contains the
top-level attributes such as dep_name, budget, manager and employees. The
attributes dep_name and employees are themselves actually pointers to the
additional memory (the secondary memory chunks). The secondary memory is
used to contain the actual data for the embedded instances (for example,
employees varray and dep_name string).

The top-level memory of the null indicator structure contains the null statuses of the
attributes in the top level memory chunk of the instance. From the preceding
example, the top level memory of the null structure contains the null statuses of the
attributes dep_name, budget, manager and the atomic nullness of employees.

Object Navigation
This section discusses how OCI applications can navigate through graphs of objects
in the object cache.

Simple Object Navigation
In the example in the previous sections, the object retrieved by the application was a
simple object, whose attributes were all scalar values. If an application retrieves an
object with an attribute which is a REF to another object, the application can use
OCI calls to traverse the object graph and access the referenced instance.

As an example, consider the following declaration for a new type in the database:

CREATE TYPE person_t AS OBJECT
(name VARCHAR2(30),
 mother REF person_t,
 father REF person_t);

An object table of person_t objects is created with the following statement:

CREATE TABLE person_table OF person_t;

Instances of the person_t type can now be stored in the typed table. Each instance
of person_t includes references to two other objects, which would also be stored

Object Navigation

Object Advanced Topics in OCI 13-19

in the table. A NULL reference could represent a parent about whom information is
not available.

An object graph is a graphical representation of the REF links between object
instances. For example, Figure 13–2, "Object Graph of person_t Instances" on the
following page depicts an object graph of person_t instances, showing the links
from one object to another. The circles represent objects, and the arrows represent
references to other objects.

Figure 13–2 Object Graph of person_t Instances

In this case, each object has links to two other instances of the same object. This
need not always be the case. Objects may have links to other object types. Other
types of graphs are also possible. For example, if a set of objects is implemented as a
linked list, the object graph could be viewed as a simple chain, where each object
references the previous and/or next objects in the linked list.

You can use the methods described earlier in this chapter to retrieve a reference to a
person_t instance and then pin that instance. OCI provides functionality which

person1

M F

person2

M F

person3

M F

person4

M F

person5

M F

person6

M F

NULL

OCI Navigational Functions

13-20 Oracle Call Interface Programmer's Guide

enables you to traverse the object graph by following a reference from one object to
another.

As an example, assume that an application fetches the person1 instance in the
preceding graph and pins it as pers_1. Once that has been done, the application
can access the mother instance of person1 and pin it into pers_2 through a
second pin operation:

OCIObjectPin(env, err, pers_1->mother, OCI_PIN_ANY, OCI_DURATION_TRANS,
 OCI_LOCK_X, (OCIComplexObject *) 0, &pers_2);
In this case, an OCI fetch operation is not required to retrieve the second instance.

The application could then pin the father instance of person1, or it could operate
on the reference links of person2.

OCI Navigational Functions
This section provides a brief summary of the available OCI navigational functions.
The functions are grouped according to their general functionality.

The use of these functions is described in the earlier sections of this chapter.

The navigational functions follow a naming scheme which uses different prefixes
for different types of functionality:

OCICache*() - these functions are Cache operations

OCIObject*() - these functions are individual Object operations

Pin/Unpin/Free Functions
The following functions are available to pin, unpin, or free objects:

Note: Attempting to pin a NULL or dangling REF results in an
error on the OCIObjectPin() call.

See Also: More detailed descriptions of each of these functions
can be found in Chapter 17, "OCI Navigational and Type
Functions"

OCI Navigational Functions

Object Advanced Topics in OCI 13-21

Flush and Refresh Functions
The following functions are available to flush modified objects to the server:

Mark and Unmark Functions
The following functions allow an application to mark or unmark an object by
modifying one of its meta-attributes:

Table 13–3 Pin, Free, and Unpin Functions

Function Purpose

OCICacheFree() Free all instances in the cache

OCICacheUnpin() Unpin persistent objects in cache or connection

OCIObjectArrayPin() Pin an array of references

OCIObjectFree() Free and unpin a standalone instance

OCIObjectPin() Pin an object

OCIObjectPinCountReset() Unpin an object to zero pin count

OCIObjectPinTable() Pin a table object with a given duration

OCIObjectUnpin() Unpin an object

Table 13–4 Flush and Rfresh Functions

Function Purpose

OCICacheFlush() Flush modified persistent objects in cache to server

OCIObjectFlush() Flush a modified persistent object to the server

OCICacheRefresh() Refresh pinned persistent objects in the cache

OCIObjectRefresh() Refresh a single persistent object

Table 13–5 Mark and Unmark Functions

Function Purpose

OCIObjectMarkDelByRef() Mark an object deleted given a REF

OCIObjectMarkUpd() Mark an object as updated/dirty

OCIObjectMarkDel() Mark an object deleted / delete a value instance

OCICacheUnmark() Unmarks all objects in the cache

OCI Navigational Functions

13-22 Oracle Call Interface Programmer's Guide

Object Meta-Attribute Accessor Functions
The following functions allow an application to access the meta-attributes of an
object:

Other Functions
The following functions provide additional object functionality for OCI
applications:

OCIObjectUnmark() Marks a given object as updated

OCIObjectUnmarkByRef() Marks an object as updated, given a REF

Table 13–6 Object Meta-Attributes Functions

Function Purpose

OCIObjectExists() Get existence status of an instance

OCIObjectFlushStatus() Get the flush status of an instance

OCIObjectGetInd() Get null structure of an instance

OCIObjectIsDirtied() Has an object been marked as updated?

OCIObjectIsLocked() Is an object locked?

Table 13–7 Other Object Functions

Function Purpose

OCIObjectCopy() Copy one instance to another

OCIObjectGetObjectRef() Return reference to a given object

OCIObjectGetTypeRef() Get a reference to a TDO of an instance

OCIObjectLock() Lock a persistent object

OCIObjectLockNoWait() Lock an object in NOWAIT mode

OCIObjectNew() Create a new instance

Table 13–5 Mark and Unmark Functions (Cont.)

Function Purpose

OCI Support for XML

Object Advanced Topics in OCI 13-23

Type Evolution and the Object Cache
When type information is requested based on the type name, OCI returns the type
descriptor object (TDO) corresponding to the latest version of the type. Since there
is no synchronization between the server and the object cache, the TDO in the object
cache may not be current.

It is possible that when pinning an object, the version of the image differs from the
TDO's version. Then, an error will be issued. It is up to you to stop the application
or refresh the TDO and re-pin the object. Continuing with the application may
cause the application to fail because even if the image and the TDO are at the same
version, there is no guarantee that the object structure (that is, C struct) defined in
the application is compatible with the new type version, especially for the case
when an attribute has been dropped from the type in the server.

Thus, when the structure of a type is altered, you must regenerate the header files of
the changed type, modify their application, re-compile and re-link before executing
the program again.

OCI Support for XML
Oracle XML DB provides support for storing and manipulating XML instances by
using the XMLType datatype. You can access these XML instances by means of OCI,
in conjunction with the C DOM API for XML.

An application program must initialize the usual OCI handles such as the server
handle, the statement handle, and it must then initialize the XML context. The
program can either operate on XML instances in the backend or create new
instances in the client side. The initialized XML context can be used with all the C
DOM functions.

XML data stored in Oracle XML DB can be accessed on the client side by means of
the C DOM structure xmldocnode.You can use this structure for binding, defining,
and operating on XML values in OCI statements.

See Also: "Type Evolution" on page 10-41

OCI Support for XML

13-24 Oracle Call Interface Programmer's Guide

XML Context
An XML context is a required parameter in all the C DOM API functions. This
opaque context encapsulates information pertaining to data encoding, error
message language, and so on. The contents of this context are different for XDK and
for Oracle XML DB applications.

For Oracle XML DB, there are two OCI functions provided to initialize and free an
XML context:

xmlctx *OCIXmlDbInitXmlCtx (OCIEnv *envhp, OCISvcCtx *svchp, OCIError *errhp,
 ocixmldbparam *params, ub4 num_params);

void OCIXmlDbFreeXmlCtx (xmlctx *xctx);

XML Data on the Server
XML data on the server can be operated on by means of OCI statement calls. You
can bind and define XMLType values using xmldocnode, as with other object
instances. OCI statements are used to select XML data from the server. This data can
be used in the C DOM functions directly. Similarly, the values can be bound back to
SQL statements directly.

Using OCI XML DB Functions
To initialize and terminate the XML context, use the functions
OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx() respectively. The header
file ocixmldb.h is used with the unified C API:

typedef enum {
 XCTXINIT_OCIDUR = 1,
 XCTXINIT_ERRHDL = 2
} ocixmldbpname;

typdef struct ocixmldbparam {

See Also: For information about the XML support in C, see

■ Chapter 22, "OCI XML DB Functions"

■ Oracle XML DB Developer's Guide, chapter on "C API for XML"

■ Oracle XML Developer's Kit Programmer's Guide, chapter on
"XML Parser for C"

■ Oracle XML API Reference , the DOM C API HTML

OCI Support for XML

Object Advanced Topics in OCI 13-25

 OCIXmlDbXmlCtxParamName name_xmlctx_param;
 void *value_xmlctx_param;
} ocixmldbparam;

The next example shows how to perform operations with the C API:

{
OCIStmt *stmthp = (OCIStmt *)0;
xmlctx *xctx = (xmlctx *)0;
ocixmldbparam params[NUM_PARAMS];
OCIType *xmltdo = (OCIType *)0;
OCIDuration dur = OCI_DURATION_SESSION;
text *sel_xml_stmt = (text*)"SELECT xml_col FROM tkpgxucm_tab";
OraText *xpathexpr = (OraText *)"/name";
sword status = 0;

/* Allocate statement handle for SQL executions */
if (status=OCIHandleAlloc((dvoid *)ctxptr->envhp, (dvoid **)&stmthp,
 (ub4)OCI_HTYPE_STMT, (CONST size_t)0, (dvoid **)0))
{
 return OCI_ERROR;
}

/* Get an XML context */
params[0].name_xmlctx_param = XCTXINIT_OCIDUR;
params[0].value_xmlctx_param = &dur;

/* Initialize an XML context */
xctx = OCIXmlDbInitXmlCtx (ctxptr->envhp, ctxptr->svchp, ctxptr->errhp,
 params, 1);

/* Do unified C API operations next */
...

/* Free the allocations associated with the context */
OCIXmlDbFreeXmlCtx(xctx);
}

OCI Support for XML

13-26 Oracle Call Interface Programmer's Guide

Using the Object Type Translator with OCI 14-1

14
 Using the Object Type Translator with OCI

This chapter discusses the Object Type Translator (OTT), which is used to map
database object types and named collection types to C structs for use in OCI
applications.

This chapter contains these topics:

■ OTT Overview

■ What Is the Object Type Translator?

■ The OTT Command Line

■ The Intype File

■ OTT Datatype Mappings

■ The Outtype File

■ Using OTT with OCI Applications

■ OTT Reference

OTT Overview

14-2 Oracle Call Interface Programmer's Guide

OTT Overview
The OTT (Object Type Translator) assists in the development of C language
applications that make use of user-defined types in an Oracle server.

Through the use of SQL CREATE TYPE statements, you can create object types. The
definitions of these types are stored in the database, and can be used in the creation
of database tables. Once these tables are populated, an OCI programmer can access
objects stored in the tables.

An application that accesses object data needs to be able to represent the data in a
host language format. This is accomplished by representing object types as C
structs. It would be possible for a programmer to code struct declarations by hand
to represent database object types, but this can be very time-consuming and
error-prone if many types are involved. The OTT simplifies this step by
automatically generating appropriate struct declarations. In OCI, the application
also needs to call an initialization function generated by OTT.

In addition to creating structs which represent stored datatypes, OTT also generates
parallel indicator structs which indicate whether an object type or its fields are
NULL.

What Is the Object Type Translator?
The Object Type Translator (OTT) converts database definitions of object types and
named collection types into C struct declarations which can be included in an OCI
application.

You must explicitly invoke OTT to translate database types to C representations.

On most operating systems, OTT is invoked on the command line. It takes as input
an intype file, and it generates an outtype file and one or more C header files and an
optional implementation file. The following is an example of a command which
invokes the OTT:

ott userid=scott/tiger intype=demoin.typ outtype=demoout.typ code=c
hfile=demo.h\
 initfile=demov.c

This command causes OTT to connect to the database with username 'scott' and
password 'tiger'.

The implementation file (demov.c) contains the function to initialize the type
version table with information about the user-defined types translated.

What Is the Object Type Translator?

Using the Object Type Translator with OCI 14-3

Each of these parameters is described in more detail in later sections of this chapter.

Sample demoin.typ file:

CASE=LOWER
TYPE emptype

Sample demoout.typ file:

CASE = LOWER
TYPE SCOTT.EMPTYPE AS emptype
 VERSION = "$8.0"
 HFILE = demo.h

In this example, the demoin.typ file contains the type to be translated, preceded
by TYPE (for example, TYPE emptype). The structure of the outtype file is similar
to the intype file, with the addition of information obtained by the OTT.

Once the OTT has completed the translation, the header file contains a C struct
representation of each type specified in the intype file, and a NULL indicator struct
corresponding to each type. For example, if the employee type listed in the intype
file was defined as

CREATE TYPE emptype AS OBJECT
(
 name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER
);

the header file generated by the OTT (demo.h) includes, among other items, the
following declarations:

struct emptype
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};
typedef struct emptype emptype;

struct emptype_ind

What Is the Object Type Translator?

14-4 Oracle Call Interface Programmer's Guide

{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct employee_ind employee_ind;

A sample implementation file, demov.c produced by this command contains:

#ifndef OCI_ORACLE
#include <oci.h>
#endif

sword demov(OCIEnv *env, OCIError *err)
{
 sword status = OCITypeVTInit(env, err);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "HR", 2,
 "EMPTYPE", 7,
 "$8.0", 4);
 return status;
}

Parameters in the intype file control the way generated structs are named. In this
example, the struct name emptype matches the database type name emptype. The
struct name is in lower case because of the line CASE=lower in the intype file.

The datatypes which appear in the struct declarations (for example, OCIString,
OCIInd) are special datatypes.

The following sections describe these aspects of using the OTT:

■ Creating Types in the Database

■ Invoking OTT

■ The OTT Command Line

■ The Intype File

See Also: For more information about these types, see the section
"OTT Datatype Mappings" on page 14-10

What Is the Object Type Translator?

Using the Object Type Translator with OCI 14-5

■ OTT Datatype Mappings

■ Null Indicator Structs

■ The Outtype File

The remaining sections of the chapter discuss the use of the OTT with OCI,
followed by a reference section which describes command line syntax, parameters,
intype file structure, nested #include file generation, schema names usage, default
name mapping, and restrictions.

Creating Types in the Database
The first step in using OTT is to create object types or named collection types and
store them in the database. This is accomplished through the use of the SQL
CREATE TYPE statement.

Invoking OTT
The next step is to invoke OTT. OTT parameters can be specified on the command
line, or in a file called a configuration file. Certain parameters can also be specified
in the intype file.

If a parameter is specified in more than one place, its value on the command line
will take precedence over its value in the intype file, which takes precedence over
its value in a user-defined configuration file, which takes precedence over its value
in the default configuration file.

For global options -- that is, options on the command line or options at the
beginning of the intype file before any TYPE statements -- the value on the
command line overrides the value in the intype file. (The options that can be
specified globally in the intype file are CASE, CODE, INITFILE, and INITFUNC,
but not HFILE.) Anything in the intype file in a TYPE specification applies to a
particular type only, and overrides anything on the command line that would
otherwise apply to the type. So if you enter TYPE person HFILE=p.h, it applies
to person only and overrides the HFILE on the command line. The statement is
not considered a command-line parameter.

See Also: For information about the CREATE TYPE statement,
refer to the Oracle Database SQL Reference.

The OTT Command Line

14-6 Oracle Call Interface Programmer's Guide

Command Line
Parameters (also called options) set on the command line override any set
elsewhere.

Configuration File
A configuration file is a text file that contains OTT parameters. Each non-blank line
in the file contains one parameter, with its associated value or values. If more than
one parameter is put on a line, only the first one will be used. No whitespace may
occur on any non-blank line of a configuration file.

A configuration file may be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist,
but can be empty. The name of the default configuration file is ottcfg.cfg, and
the location of the file is system-specific. For example, on Solaris, the file
specification is $ORACLE_HOME/precomp/admin/ottcfg.cfg. See your
operating system-specific documentation for further information.

INTYPE File
The intype file gives a list of user defined types for OTT to translate.

The parameters CASE, HFILE, INITFUNC, and INITFILE can appear in the
intype file.

The OTT Command Line
On most operating systems, OTT is invoked on the command line. You can specify
the input and output files, and the database connection information, among other
things. Consult your operating system-specific documentation to see how to invoke
OTT.

OTT Command Line Invocation Example
The following is an example of an OTT invocation from the command line:

ott userid=bren/bigkitty intype=demoin.typ outtype=demoout.typ code=c \
 hfile=demo.h initfile=demov.c

See Also: See "The OTT Command Line" on page 14-6, for more
information.

See Also: See "The Intype File" on page 14-9 for more
information

The OTT Command Line

Using the Object Type Translator with OCI 14-7

The following sections describe the elements of the command line used in this
example.

OTT
Causes OTT to be invoked. It must be the first item on the command line.

USERID
Specifies the database connection information which OTT will use.

In Example 1, OTT will attempt to connect with username 'bren' and password
'bigkitty'.

INTYPE
Specifies the name of the intype file which will be used.

In Example 1, the name of the intype file is specified as demoin.typ.

OUTTYPE
Specifies the name of the outtype file. When OTT generates the C header file, it also
writes information about the translated types into the outtype file. This file
contains an entry for each of the types which is translated, including its version
string, and the header file to which its C representation was written.

In "OTT Command Line Invocation Example" on page 14-6, the name of the
outtype file is specified as demoout.typ.

Note: No spaces are permitted around the equals sign (=).

See Also: For a detailed discussion of the various OTT command
line options, please refer to the section "OTT Reference" on
page 14-26

Note: If the file specified by the outtype keyword already exists,
it is overwritten when OTT runs. If the name of the outtype file is
the same as the name of the intype file, the outtype information
overwrites the intype file.

The OTT Command Line

14-8 Oracle Call Interface Programmer's Guide

CODE
Specifies the target language for the translation. The following options are available:

■ C (equivalent to ANSI_C)

■ ANSI_C (for ANSI C)

■ KR_C (for Kernighan & Ritchie C)

There is currently no default option, so this parameter is required.

Struct declarations are identical in both C dialects. The style in which the
initialization function defined in the INITFILE file is defined depends on whether
KR_C is used. If the INITFILE option is not used, all three options are equivalent.

HFILE
Specifies the name of the C header file to which the generated structs should be
written.

In "OTT Command Line Invocation Example" on page 14-6, the generated structs
will be stored in a file called demo.h.

INITFILE
Specifies the name of the C source file into which the type initialization function is
to be written.

Note: If the file specified by the hfile keyword already exists, it
will be overwritten when OTT runs, with one exception: if the
contents of the file as generated by OTT are identical to the
previous contents of the file, OTT will not actually write to the file.
This preserves the modification time of the file so that UNIX make
and similar facilities on other operating systems do not perform
unnecessary recompilations.

Note: If the file specified by the initfile keyword already
exists, it will be overwritten when OTT runs, with one exception: if
the contents of the file as generated by OTT are identical to the
previous contents of the file, OTT will not actually write to the file.
This preserves the modification time of the file so that UNIX make
and similar facilities on other operating systems do not perform
unnecessary recompilations.

The Intype File

Using the Object Type Translator with OCI 14-9

The Intype File
When running OTT, the intype file tells OTT which database types should be
translated, and it can also control the naming of the generated structs. The intype
file can be a user-created file, or it may be the outtype file of a previous invocation
of OTT. If the intype parameter is not used, all types in the schema to which OTT
connects are translated.

The following is a simple example of a user-created intype file:

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

The first line, with the CASE keyword, indicates that generated C identifiers should
be in lower case. However, this CASE option is only applied to those identifiers that
are not explicitly mentioned in the intype file. Thus, employee and ADDRESS would
always result in C structures employee and ADDRESS, respectively. The members
of these structures would be named in lower case.

The lines which begin with the TYPE keyword specify which types in the database
should be translated: in this case, the EMPLOYEE, ADDRESS, ITEM, PERSON,
and PURCHASE_ORDER types.

The TRANSLATE...AS keywords specify that the name of an object attribute
should be changed when the type is translated into a C struct. In this case, the
SALARY$ attribute of the employee type is translated to salary.

The AS keyword in the final line specifies that the name of an object type should be
changed when it is translated into a struct. In this case, the purchase_order
database type is translated into a struct called p_o.

If AS is not used to translate a type or attribute name, the database name of the type
or attribute will be used as the C identifier name, except that the CASE option will
be observed, and any characters that cannot be mapped to a legal C identifier
character will be replaced by an underscore. Reasons for translating a type or
attribute name include:

See Also: See the description of "CASE" on page 14-32 for further
information regarding the CASE option

OTT Datatype Mappings

14-10 Oracle Call Interface Programmer's Guide

■ The name contains characters other than letters, digits, and underscores

■ The name conflicts with a C keyword

■ The type name conflicts with another identifier in the same scope. This may
happen, for example, if the program uses two types with the same name from
different schemas.

■ The programmer prefers a different name

The OTT may need to translate additional types which are not listed in the intype
file. This is because the OTT analyzes the types in the intype file for type
dependencies before performing the translation, and translates other types as
necessary. For example, if the ADDRESS type were not listed in the intype file, but
the "Person" type had an attribute of type ADDRESS, OTT would still translate
ADDRESS because it is required to define the "Person" type.

If you specify FALSE as the value of the TRANSITIVE parameter, then OTT will not
generate types that are not specified in the intype file.

A normal case-insensitive SQL identifier can be spelled in any combination of
upper and lower case in the intype file, and is not quoted.

Use quotation marks, such as TYPE "Person", to reference SQL identifiers that
have been created in a case-sensitive manner, for example, CREATE TYPE
"Person". A SQL identifier is case-sensitive if it was quoted when it was declared.
Quotation marks can also be used to refer to a SQL identifier that is an
OTT-reserved word, for example, TYPE "CASE". When a name is quoted for this
reason, the quoted name must be in upper case if the SQL identifier was created in a
case-insensitive manner, for example, CREATE TYPE Case. If an OTT-reserved
word is used to refer to the name of a SQL identifier but is not quoted, the OTT will
report a syntax error in the intype file.

OTT Datatype Mappings
When OTT generates a C struct from a database type, the struct contains one
element corresponding to each attribute of the object type. The datatypes of the
attributes are mapped to types which are used in Oracle's object datatypes. The
datatypes found in Oracle include a set of predefined, primitive types, and provide
for the creation of user-defined types, such as object types and collections.

See Also: For a more detailed specification of the structure of the
intype file and the available options, refer to the section "Structure
of the Intype File" on page 14-34

OTT Datatype Mappings

Using the Object Type Translator with OCI 14-11

Oracle also includes a set of predefined types which are used to represent object
type attributes in C structs. As an example, consider the following object type
definition, and its corresponding OTT-generated struct declarations:

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary$ NUMBER);

The OTT output, assuming CASE=LOWER and no explicit mappings of type or
attribute names, is:

struct employee
{ OCIString * name;
 OCINumber empno;
 OCINumber department;
 OCIDate hiredate;
 OCINumber salary_;
};
typedef struct emp_type emp_type;
struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd department;
 OCIInd hiredate;
 OCIInd salary_;
}
typedef struct employee_ind employee_ind;

The datatypes in the struct declarations—OCIString, OCINumber, OCIDate,
OCIInd—are used here to map the datatypes of the object type attributes. The
NUMBER datatype of the empno attribute, maps to the OCINumber datatype, for
example. These datatypes can also be used as the types of bind and define variables.

See Also: The indicator struct (struct employee_ind) is
explained in the section, "Null Indicator Structs" on page 14-16

OTT Datatype Mappings

14-12 Oracle Call Interface Programmer's Guide

Mapping Object Datatypes to C
This section describes the mappings of Oracle object attribute types to C types
generated by OTT. The following section, "OTT Type Mapping Example" on
page 14-13, includes examples of many of these different mappings. The following
table lists the mappings from types which can be used as attributes to object
datatypes which are generated by OTT.

Table 14–1 Object Datatype Mappings for Object Type Attributes

Object Attribute Types C Mapping

BFILE OCIBFileLocator*

BLOB OCILobLocator * or
OCIBlobLocator *

CHAR(N), CHARACTER(N), NCHAR(N) OCIString *

CLOB, NCLOB OCILobLocator * or
OCIClobLocator *

DATE OCIDate

ANSI DATE OCIDateTime *

TIMESTAMP, TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE

OCIDateTime *

INTERVAL YEAR TO MONTH, INTERVAL DAY TO
SECOND

OCIInterval *

DEC, DEC(N), DEC(N,N) OCINumber

DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber

FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber

BINARY_FLOAT float

BINARY_DOUBLE double

INT, INTEGER, SMALLINT OCINumber

Nested Object Type C name of the nested object type

Nested Table OCITable *

NUMBER, NUMBER(N), NUMBER(N,N) OCINumber

NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber

RAW(N) OCIRaw *

OTT Datatype Mappings

Using the Object Type Translator with OCI 14-13

If an object type includes an attribute of a REF or collection type, a typedef for the
REF or collection type is first generated. Then the struct declaration corresponding
to the object type is generated. The struct includes an element whose type is a
pointer to the REF or collection type.

If an object type includes an attribute whose type is another object type, OTT first
generates the nested type (if TRANSITIVE=TRUE). It then maps the object type
attribute to a nested struct of the type of the nested object type.

The Oracle C datatypes to which the OTT maps non-object database attribute types
are structures, which, except for OCIDate, are opaque.

OTT Type Mapping Example
The following example is presented to demonstrate the various type mappings
created by OTT.

Given the following database types

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
(object_name VARCHAR2(20));

CREATE TYPE my_table AS TABLE OF object_type;

REAL OCINumber

REF OCIRef *

VARCHAR(N) OCIString *

VARCHAR2(N), NVARCHAR2(N) OCIString *

VARRAY OCIArray *

Note: For REF, varray, and nested table types, OTT
generates a typedef. The type declared in the typedef is then used
as the type of the data member in the struct declaration. For
examples, see the next section, "OTT Type Mapping Example".

Table 14–1 Object Datatype Mappings for Object Type Attributes (Cont.)

Object Attribute Types C Mapping

OTT Datatype Mappings

14-14 Oracle Call Interface Programmer's Guide

CREATE TYPE other_type AS OBJECT (object_number NUMBER);

CREATE TYPE many_types AS OBJECT
(the_varchar VARCHAR2(30),
 the_char CHAR(3),
 the_blob BLOB,
 the_clob CLOB,
 the_object object_type,
 another_ref REF other_type,
 the_ref REF many_types,
 the_varray my_varray,
 the_table my_table,
 the_date DATE,
 the_num NUMBER,
 the_raw RAW(255));

and an intype file which includes

CASE = LOWER
TYPE many_types

OTT would generate the following C structs:

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray; /* used in many_types */
typedef OCITable my_table; /* used in many_types*/
typedef OCIRef other_type_ref;
struct object_type /* used in many_types */
{
 OCIString * object_name;

Note: Comments are provided here to help explain the structs.
These comments are not part of actual OTT output.

OTT Datatype Mappings

Using the Object Type Translator with OCI 14-15

};
typedef struct object_type object_type;

struct object_type_ind /*indicator struct for*/
{ /*object_types*/
 OCIInd _atomic;
 OCIInd object_name;
};
typedef struct object_type_ind object_type_ind;

struct many_types
{
 OCIString * the_varchar;
 OCIString * the_char;
 OCIBlobLocator * the_blob;
 OCIClobLocator * the_clob;
 struct object_type the_object;
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 OCIDate the_date;
 OCINumber the_num;
 OCIRaw * the_raw;
};
typedef struct many_types many_types;

struct many_types_ind /*indicator struct for*/
{ /*many_types*/
 OCIInd _atomic;
 OCIInd the_varchar;
 OCIInd the_char;
 OCIInd the_blob;
 OCIInd the_clob;
 struct object_type_ind the_object; /*nested*/
 OCIInd another_ref;
 OCIInd the_ref;
 OCIInd the_varray;
 OCIInd the_table;
 OCIInd the_date;
 OCIInd the_num;
 OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;

OTT Datatype Mappings

14-16 Oracle Call Interface Programmer's Guide

#endif

Notice that even though only one item was listed for translation in the intype file,
two object types and two named collection types were translated. This is because
the OTT parameter TRANSITIVE on page 14-33, has the default value of TRUE. As
described in that section, when TRANSITIVE=TRUE, OTT automatically translates
any types which are used as attributes of a type being translated, in order to
complete the translation of the listed type.

This is not the case for types which are only accessed by a pointer or ref in an object
type attribute. For example, although the many_types type contains the attribute
another_ref REF other_type, a declaration of struct other_type was not
generated.

This example also illustrates how typedefs are used to declare varray, nested
table, and REF types.

The typedefs occur near the beginning:

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray;
typedef OCITable my_table;
typedef OCIRef other_type_ref;

In the struct many_types, the varray, nested table, and REF attributes are
declared:

struct many_types
{ ...
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 ...
}

Null Indicator Structs
Each time OTT generates a C struct to represent a database object type, it also
generates a corresponding NULL indicator struct. When an object type is selected
into a C struct, NULL indicator information may be selected into a parallel struct.

For example, the following NULL indicator struct was generated in the example in
the previous section:

OTT Datatype Mappings

Using the Object Type Translator with OCI 14-17

struct many_types_ind
{
OCIInd _atomic;
OCIInd the_varchar;
OCIInd the_char;
OCIInd the_blob;
OCIInd the_clob;
struct object_type_ind the_object;
OCIInd another_ref;
OCIInd the_ref;
OCIInd the_varray;
OCIInd the_table;
OCIInd the_date;
OCIInd the_num;
OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;

The layout of the NULL struct is important. The first element in the struct (_atomic)
is the atomic null indicator. This value indicates the NULL status for the object type as
a whole. The atomic null indicator is followed by an indicator element
corresponding to each element in the OTT-generated struct representing the object
type.

Notice that when an object type contains another object type as part of its definition
(in the preceding example it is the object_type attribute), the indicator entry for
that attribute is the NULL indicator struct (object_type_ind) corresponding to
the nested object type (if TRANSITIVE=TRUE).

varrays and nested tables contain the NULL information for their elements.

The datatype for all other elements of a NULL indicator struct is OCIInd.

OTT Support for Type Inheritance
To support type inheritance of objects, OTT generates a C struct to represent an
object subtype by declaring the inherited attributes in an encapsulated struct with
the special name '_super', before declaring the new attributes. Thus, for an object
subtype that inherits from a supertype, the first element in the struct is named
'_super', followed by elements corresponding to each attribute of the subtype.The
type of the element named '_super' is the name of the supertype.

See Also: For more information about atomic nullness, refer to
the section "NULL Indicator Structure" on page 10-30

OTT Datatype Mappings

14-18 Oracle Call Interface Programmer's Guide

For example, given the type Person_t, with subtype Student_t and subtype
Employee_t, which are created as follows:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;

CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,
 mgr VARCHAR2(30));

and, given an intype file which includes:

CASE=SAME
TYPE EMPLOYEE_T
TYPE STUDENT_T
TYPE PERSON_T

OTT generates the following C structs for Person_t, Student_t, and
Employee_t and their NULL indicator structs:

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef EMPLOYEE_T_ref;
typedef OCIRef STUDENT_T_ref;
typedef OCIRef PERSON_T_ref;

struct PERSON_T
{
 OCINumber SSN;
 OCIString * NAME;
 OCIString * ADDRESS;
};
typedef struct PERSON_T PERSON_T;

struct PERSON_T_ind

OTT Datatype Mappings

Using the Object Type Translator with OCI 14-19

{
 OCIInd _atomic;
 OCIInd SSN;
 OCIInd NAME;
 OCIInd ADDRESS;
};
typedef struct PERSON_T_ind PERSON_T_ind;

struct EMPLOYEE_T
{
 PERSON_T _super;
 OCINumber EMPID;
 OCIString * MGR;
};
typedef struct EMPLOYEE_T EMPLOYEE_T;

struct EMPLOYEE_T_ind
{
 PERSON_T _super;
 OCIInd EMPID;
 OCIInd MGR;
};
typedef struct EMPLOYEE_T_ind EMPLOYEE_T_ind;

struct STUDENT_T
{
 PERSON_T _super;
 OCINumber DEPTID;
 OCIString * MAJOR;
};
typedef struct STUDENT_T STUDENT_T;

struct STUDENT_T_ind
{
 PERSON_T _super;
 OCIInd DEPTID;
 OCIInd MAJOR;
};
typedef struct STUDENT_T_ind STUDENT_T_ind;

#endif

The preceding C mapping convention allows simple up-casting from an instance of
a subtype to an instance of a supertype in C to work properly. For example:

OTT Datatype Mappings

14-20 Oracle Call Interface Programmer's Guide

STUDENT_T *stu_ptr = some_ptr; /* some STUDENT_T instance */
PERSON_T *pers_ptr = (PERSON_T *)stu_ptr; /* up-casting */

The NULL indicator structs are generated similarly. Note that for the supertype
Person_t NULL indicator struct, the first element is '_atomic', and that for the
subtypes Employee_t and Student_t NULL indicator structs, the first element is
'_super' (no atomic element is generated for subtypes).

Substitutable Object Attributes
For attributes of NOT FINAL types (and therefore potentially substitutable), the
embedded attribute is represented as a pointer.

Consider a type Book_t created as:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),
 author Person_t /* substitutable */);

The corresponding C struct generated by OTT contains a pointer to Person_t:

struct Book_t
{
 OCIString *title;
 Person_t *author; /* pointer to Person_t struct */
}

The NULL indicator struct corresponding to the preceding type is:

struct Book_t_ind
{
 OCIInd _atomic;
 OCIInd title;
 OCIInd author;
}

Note that the NULL indicator struct corresponding to the author attribute can be
obtained from the author object itself. See OCIObjectGetInd().

If a type is defined to be FINAL, it cannot have any subtypes. An attribute of a
FINAL type is therefore not substitutable. In such cases, the mapping is as before:
the attribute struct is inline. Now, if the type is altered and defined to be NOT
FINAL, the mapping will have to change. The new mapping is generated by
running OTT again.

The Outtype File

Using the Object Type Translator with OCI 14-21

The Outtype File
The outtype file is named on the OTT command line. When OTT generates the C
header file, it also writes the results of the translation into the outtype file. This file
contains an entry for each of the types which is translated, including its version
string, and the header file to which its C representation was written.

The outtype file from one OTT run can be used as the intype file for a
subsequent OTT invocation.

For example, given the simple intype file used earlier in this chapter:

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

the user has chosen to specify the case for the OTT-generated C identifiers, and has
provided a list of types which should be translated. In two of these types, naming
conventions are specified.

The following is an example of what the outtype file might look like after running
OTT:

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS AS ADDRESS
 VERSION = "$8.0"
 HFILE = demo.h
TYPE ITEM AS item
 VERSION = "$8.0"
 HFILE = demo.h
TYPE "Person" AS Person
 VERSION = "$8.0"
 HFILE = demo.h
TYPE PURCHASE_ORDER AS p_o
 VERSION = "$8.0"
 HFILE = demo.h

Using OTT with OCI Applications

14-22 Oracle Call Interface Programmer's Guide

When examining the contents of the outtype file, you might discover types listed
which were not included in the intype specification. For example, if the intype
file only specified that the person type was to be translated

CASE = LOWER
TYPE PERSON

and the definition of the person type includes an attribute of type address, then
the outtype file will include entries for both PERSON and ADDRESS. The person
type cannot be translated completely without first translating address.

When the parameter TRANSITIVE has been set to TRUE (it is the default), OTT
analyzes the types in the intype file for type dependencies before performing the
translation, and translates other types as necessary.

Using OTT with OCI Applications
C header and implementation files that have been generated by OTT can be used by
an OCI application that accesses objects in an Oracle server. The header file is
incorporated into the OCI code with an #include statement.

Once the header file has been included, the OCI application can access and
manipulate object data in the host language format.

Figure 14–1, "Using OTT with OCI" shows the steps involved in using OTT with the
OCI for the simplest applications:

1. SQL is used to create type definitions in the database.

2. OTT generates a header file containing C representations of object types and
named collection types. It also generates an implementation file, as named with
the INITFILE option.

3. The application is written. User-written code in the OCI application declares
and calls the INITFUNC function.

4. The header file is included in an OCI source code file.

5. The OCI application, including the implementation file generated by OTT, is
compiled and linked with the OCI libraries.

6. The OCI executable is run against the Oracle server.

Using OTT with OCI Applications

Using the Object Type Translator with OCI 14-23

Figure 14–1 Using OTT with OCI

Accessing and Manipulating Objects with OCI
Within the application, the OCI program can perform bind and define operations
using program variables declared to be of types which appear in OTT-generated
header file.

For example, an application might fetch a REF to an object using a SQL SELECT
statement and then pin that object using the appropriate OCI function. Once the
object has been pinned, its attribute data can be accessed and manipulated with
other OCI functions.

SQL DDL

Object File

OCI library

Executable

Object File

Linker

ORACLE
Database

Type
Definitions

Compiler

OTT

Implementation
File

Header
File

OCI source
File

#include

Using OTT with OCI Applications

14-24 Oracle Call Interface Programmer's Guide

OCI includes a set of datatype mapping and manipulation functions which are
specifically designed to work on attributes of object types and named collection
types.

The following are examples of the available functions:

■ OCIStringSize() gets the size of an OCIString string.

■ OCINumberAdd() adds two OCINumber numbers together.

■ OCILobIsEqual() compares two LOB locators for equality.

■ OCIRawPtr() gets a pointer to an OCIRaw raw datatype.

■ OCICollAppend() appends an element to a collection type (OCIArray or
OCITable).

■ OCITableFirst() returns the index for the first existing element of a nested
table (OCITable).

■ OCIRefIsNull() tests if a REF (OCIRef) is NULL

These functions are described in detail in other chapters of this guide.

Calling the Initialization Function
OTT generates a C initialization function if requested. The initialization function
tells the environment, for each object type used in the program, which version of
the type is used. You may specify a name for the initialization function when
invoking OTT with the INITFUNC option, or may allow OTT to select a default
name based on the name of the implementation file (INITFILE) containing the
function.

The initialization function takes two arguments, an environment handle pointer and
an error handle pointer. There is typically a single initialization function, but this is
not required. If a program has several separately compiled pieces requiring
different types, you may want to execute OTT separately for each piece requiring,
for each piece, one initialization file, containing an initialization function.

After an environment handle is created by an explicit OCI object call, for example,
by calling OCIEnvCreate(), you must also explicitly call the initialization
functions. All the initialization functions must be called for each explicitly created
environment handle. This gives each handle access to all the Oracle datatypes used
in the entire program.

If an environment handle is implicitly created by embedded SQL statements, such
as EXEC SQL CONTEXT USE and EXEC SQL CONNECT, the handle is initialized

Using OTT with OCI Applications

Using the Object Type Translator with OCI 14-25

implicitly, and the initialization functions need not be called. This is only relevant
when Pro*C/C++ is being combined with OCI applications.

The following example shows an initialization function.

Given an intype file, ex2c.typ, containing

TYPE BREN.PERSON
TYPE BREN.ADDRESS

and the command line

ott userid=bren/bigkitty intype=ex2c outtype=ex2co hfile=ex2ch.h
initfile=ex2cv.c

OTT generates the following file, ex2cv.c:

#ifndef OCI_ORACLE
#include <oci.h>
#endif

sword ex2cv(OCIEnv *env, OCIError *err)
{
 sword status = OCITypeVTInit(env, err);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "PERSON", 6,
 "$8.0", 4);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "ADDRESS", 7,
 "$8.0", 4);
 return status;
}

The function ex2cv() creates the type version table and inserts the types
BREN.PERSON and BREN.ADDRESS.

If a program explicitly creates an environment handle, all the initialization functions
must be generated, compiled, and linked, because they must be called for each
explicitly created handle. If a program does not explicitly create any environment
handles, initialization functions are not required.

A program that uses an OTT-generated header file must also use the initialization
function generated at the same time. When a header file is generated by OTT and an

OTT Reference

14-26 Oracle Call Interface Programmer's Guide

environment handle is explicitly created in the program, then the implementation
file must also be compiled and linked into the executable.

Tasks of the Initialization Function
The C initialization function supplies version information about the types processed
by OTT. It adds to the type-version table the name and version identifier of every
OTT-processed object datatype.

The type-version table is used by Oracle's type manager to determine which version
of a type a particular program uses. Different initialization functions generated by
OTT at different times may add some of the same types to the type version table.
When a type is added more than once, Oracle ensures the same version of the type
is registered each time.

It is the OCI programmer's responsibility to declare a function prototype for the
initialization function, and to call the function.

OTT Reference
The behavior of the OTT is controlled by parameters which can appear on the OTT
command line or in a CONFIG file. Certain parameters may also appear in the
intype file.

This section provides detailed information about the following topics:

■ OTT Command Line Syntax

■ OTT Parameters

■ Where OTT Parameters Can Appear

■ Structure of the Intype File

■ Nested Included File Generation

■ SCHEMA_NAMES Usage

■ Default Name Mapping

■ OTT Restriction on File Name Comparison

Note: In the current release of Oracle, each type has only one
version. Initialization of the type version table is required only for
compatibility with future releases of Oracle.

OTT Reference

Using the Object Type Translator with OCI 14-27

The following conventions are used in this chapter to describe OTT syntax:

■ Italic strings are variables or parameters to be supplied by the user.

■ Strings in UPPERCASE are entered as shown, except that case is not significant.

■ OTT keywords are listed in a lower-case monospaced font in examples and
headings, but are printed in upper-case in text to make them more distinctive.

■ Square brackets [...] enclose optional items.

■ An ellipsis (...) immediately following an item (or items enclosed in brackets)
means that the item can be repeated any number of times.

■ Punctuation symbols other than those described earlier are entered as shown.
These include '.', '@', and so on.

OTT Command Line Syntax
The OTT command-line interface is used when explicitly invoking OTT to translate
database types into C structs. This is always required when developing OCI
applications that use objects.

An OTT command line statement consists of the keyword OTT, followed by a list of
OTT parameters.

The parameters which can appear on an OTT command line statement are as
follows:

[userid=username/password[@db_name]]

[intype=in_filename]

outtype=out_filename

code=C|ANSI_C|KR_C

[hfile=filename]

[errtype=filename]

[config=filename]

[initfile=filename]

[initfunc=filename]

OTT Reference

14-28 Oracle Call Interface Programmer's Guide

[case=SAME|LOWER|UPPER|OPPOSITE]

[schema_name=ALWAYS|IF_NEEDED|FROM_INTYPE]

[transitive=TRUE|FALSE]

[URL=url]

The HFILE parameter is almost always used. If omitted, HFILE must be specified
individually for each type in the intype file. If OTT determines that a type not
listed in the intype file must be translated, an error will be reported. Therefore, it
is safe to omit the HFILE parameter only if the INTYPE file was previously
generated as an OTT OUTTYPE file.

If the intype file is omitted, the entire schema will be translated. See the parameter
descriptions in the following section for more information.

The following is an example of an OTT command line statement:

OTT userid=marc/cayman intype=in.typ outtype=out.typ code=c hfile=demo.h
errtype=demo.tls case=lower

Each of the OTT command line parameters is described in the following sections.

OTT Parameters
Enter parameters on the OTT command line using the following format:

parameter=value

where parameter is the literal parameter string and value is a valid parameter
setting. The literal parameter string is not case sensitive.

Separate command-line parameters using either spaces or tabs.

Parameters can also appear within a configuration file, but, in that case, no
whitespace is permitted within a line, and each parameter must appear on a
separate line. Additionally, the parameters CASE, HFILE,INITFUNC, and
INITFILE can appear in the intype file.

Note: Generally, the order of the parameters following the OTT
command does not matter, and only the OUTTYPE and CODE
parameters are always required.

OTT Reference

Using the Object Type Translator with OCI 14-29

USERID
The USERID parameter specifies the Oracle username, password, and optional
database name (Oracle Net Services database specification string). If the database
name is omitted, the default database is assumed. The syntax of this parameter is:

userid=username/password[@db_name]

If this is the first parameter, "USERID=" may be omitted as shown here:

OTT username/password...

The USERID parameter is optional. If omitted, OTT automatically attempts to
connect to the default database as user OPS$username, where username is the
user's operating system user name.

INTYPE
The INTYPE parameter specifies the name of the file from which to read the list of
object type specifications. OTT translates each type in the list.

The syntax for this parameter is

intype=filename

"INTYPE=" may be omitted if USERID and INTYPE are the first two parameters, in
that order, and "USERID=" is omitted. If INTYPE is not specified, all types in the
user's schema will be translated.

OTT username/password filename...

The intype file can be thought of as a makefile for type declarations. It lists the
types for which C struct declarations are needed.

If the file name on the command line or in the intype file does not include an
extension, a operating system-specific extension such as "TYP" or ".typ" will be
added.

OUTTYPE
The name of a file into which OTT will write type information for all the object
datatypes it processes. This includes all types explicitly named in the intype file,
and may include additional types that are translated because they are used in the

See Also: The format of the intype file is described in section
"Structure of the Intype File" on page 14-34

OTT Reference

14-30 Oracle Call Interface Programmer's Guide

declarations of other types that need to be translated (if TRANSITIVE=TRUE). This
file may be used as an intype file in a future invocation of OTT.

outtype=filename

If the INTYPE and OUTTYPE parameters refer to the same file, the new INTYPE
information replaces the old information in the intype file. This provides a
convenient way for the same intype file to be used repeatedly in the cycle of
altering types, generating type declarations, editing source code, precompiling,
compiling, and debugging.

OUTTYPE must be specified.

If the file name on the command line or in the intype file does not include an
extension, a operating system-specific extension such as "TYP" or ".typ" will be
added.

CODE
This is the desired host language for OTT output, which may be specified as
CODE=C, CODE=KR_C, or CODE=ANSI_C. "CODE=C" is equivalent to
"CODE=ANSI_C".

CODE=C|KR_C|ANSI_C

There is no default value for this parameter; it must be supplied.

INITFILE
The INITFILE parameter specifies the name of the file where the OTT-generated
initialization file is to be written. The initialization function will not be generated if
this parameter is omitted.

For Pro*C/C++ programs, the INITFILE is not necessary, because the SQLLIB
run-time library performs the necessary initializations. An OCI program user must
compile and link the INITFILE file(s), and must call the initialization function(s)
when an environment handle is created.

If the file name of an INITFILE on the command line or in the intype file does not
include an extension, a operating system-specific extension such as "C" or ".c" will
be added.

initfile=filename

OTT Reference

Using the Object Type Translator with OCI 14-31

INITFUNC
The INITFUNC parameter is only used in OCI programs. It specifies the name of the
initialization function generated by OTT. If this parameter is omitted, the name of
the initialization function is derived from the name of the INITFILE.

initfunc=filename

HFILE
The name of the include (.h) file to be generated by OTT for the declarations of
types that are mentioned in the intype file but whose include files are not specified
there. This parameter is required unless the include file for each type is specified
individually in the intype file. This parameter is also required if a type not
mentioned in the intype file must be generated because other types require it, and
these other types are declared in two or more different files, and
TRANSITIVE=TRUE.

If the file name of an HFILE on the command line or in the intype file does not
include an extension, a operating system-specific extension such as "H" or ".h" will
be added.

hfile=filename

CONFIG
The CONFIG parameter specifies the name of the OTT configuration file, which lists
commonly used parameter specifications. Parameter specifications are also read
from a system configuration file in a operating system-dependent location. All
remaining parameter specifications must appear on the command line, or in the
intype file.

config=filename

ERRTYPE
If this parameter is supplied, a listing of the intype file is written to the ERRTYPE
file, along with all informational and error messages. Informational and error
messages are sent to the standard output whether or not ERRTYPE is specified.

Essentially, the ERRTYPE file is a copy of the intype file with error messages
added. In most cases, an error message will include a pointer to the text which
caused the error.

Note: ACONFIG parameter is not allowed in the CONFIG file.

OTT Reference

14-32 Oracle Call Interface Programmer's Guide

If the file name of an ERRTYPE on the command line or in the INTYPE file does not
include an extension, a operating system-specific extension such as "TLS" or ".tls"
will be added.

errtype=filename

CASE
This parameter affects the case of certain C identifiers generated by OTT. The
possible values of CASE are SAME, LOWER, UPPER, and OPPOSITE. If CASE =
SAME, the case of letters is not changed when converting database type and
attribute names to C identifiers. If CASE=LOWER, all uppercase letters are converted
to lowercase. If CASE=UPPER, all lowercase letters are converted to uppercase. If
CASE=OPPOSITE, all uppercase letters are converted to lower-case, and vice-versa.

CASE=[SAME|LOWER|UPPER|OPPOSITE]

This option affects only those identifiers (attributes or types not explicitly listed) not
mentioned in the intype file. Case conversion takes place after a legal identifier
has been generated.

Note that the case of the C struct identifier for a type specifically mentioned in the
INTYPE option is the same as its case in the intype file. For example, if the
intype file includes the following line:

TYPE Worker

then the OTT generates

struct Worker {...};

On the other hand, if the intype file were written as

TYPE wOrKeR

the OTT generates

struct wOrKeR {...};

following the case of the intype file.

Case-insensitive SQL identifiers not mentioned in the intype file will appear in
upper case if CASE=SAME, and in lower case if CASE=OPPOSITE. A SQL identifier is
case-insensitive if it was not quoted when it was declared.

OTT Reference

Using the Object Type Translator with OCI 14-33

SCHEMA_NAMES
This option offers control in qualifying the database name of a type from the default
schema with a schema name in the outtype file. The outtype file generated by
OTT contains information about the types processed by OTT, including the type
names.

TRANSITIVE
Takes the values TRUE (the default) or FALSE. Indicates whether type dependencies
not explicitly listed in the intype file are to be translated, or not.

If TRANSITIVE=TRUE is specified, then types needed by other types but not
mentioned in the intype file are generated.

If TRANSITIVE=FALSE is specified, then types not mentioned in the intype file
are not generated, even if they were used as attribute types of other generated
types.

URL
OTT uses JDBC (Java Database Connectivity), the Java interface for connecting to
the database. The default value of parameter URL is:

URL=jdbc:oracle:oci8:@

The OCI8 driver is for client-side use with an Oracle installation. To specify the Thin
driver (the Java driver for client-side use without an Oracle installation):

URL=jdbc:oracle:thin:@host:port:sid

where host is the name of the host on which the database is running, port is the
port number, and sid is the Oracle SID.

Where OTT Parameters Can Appear
OTT parameters can appear on the command line, in a CONFIG file named on the
command line, or both. Some parameters are also allowed in the intype file.

OTT is invoked as follows:

OTT username/password parameters

See Also: See "SCHEMA_NAMES Usage" on page 14-38 for
further information

OTT Reference

14-34 Oracle Call Interface Programmer's Guide

If one of the parameters on the command line is

config=filename

additional parameters are read from the configuration file filename.

In addition, parameters are also read from a default configuration file in a operating
system-dependent location. This file must exist, but can be empty. Parameters in a
configuration file must appear one per line, with no whitespace on the line.

If OTT is executed without any arguments, an on-line parameter reference is
displayed.

The types for OTT to translate are named in the file specified by the INTYPE
parameter. The parameters CASE, INITFILE, INITFUNC, and HFILE may also
appear in the intype file. outtype files generated by OTT include the CASE
parameter, and include the INITFILE, and INITFUNC parameters if an
initialization file was generated. The outtype file specifies the HFILE individually
for each type.

The case of the OTT command is operating system-dependent.

Structure of the Intype File
The intype and outtype files list the types translated by OTT, and provide all the
information needed to determine how a type or attribute name is translated to a
legal C identifier. These files contain one or more type specifications. These files also
may contain specifications of the following options:

■ CASE

■ HFILE

■ INITFILE

■ INITFUNC

If the CASE, INITFILE, or INITFUNC options are present, they must precede any
type specifications. If these options appear both on the command line and in the
intype file, the value on the command line is used.

See Also: For an example of a simple user-defined intype file,
and of the full outtype file that the OTT generates from it, see
"The Outtype File" on page 14-21

OTT Reference

Using the Object Type Translator with OCI 14-35

Intype File Type Specifications
A type specification in the INTYPE names an object datatype that is to be translated.
A type specification in the outtype file names an object datatype that has been
translated,

TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows, where [] indicates optional inputs
inside:

TYPE type_name [AS type_identifier]
[VERSION [=] version_string]
[HFILE [=] hfile_name]
[TRANSLATE{member_name [AS identifier]}...]

The syntax of type_name is:

[schema_name.]type_name

where schema_name is the name of the schema which owns the given object
datatype, and type_name is the name of the type. The default schema is that of the
user running OTT. The default database is the local database.

The components of a type specification are described next.

■ type_name is the name of an Oracle object datatype.

■ type_identifier is the C identifier used to represent the type. If omitted, the
default name mapping algorithm will be used.

■ version_string is the version string of the type which was used when the
code was generated by a previous invocation of OTT. The version string is
generated by OTT and written to the outtype file, which may later be used as
the intype file when OTT is later executed. The version string does not affect
the operation of OTT, but will eventually be used to select which version of the
object datatype should be used in the running program.

type_identifier is the C identifier used to represent the type. If omitted, the
default type mapping algorithm will be used.

See Also: "Default Name Mapping" on page 14-41

OTT Reference

14-36 Oracle Call Interface Programmer's Guide

■ hfile_name is the name of the header file in which the declarations of the
corresponding struct or class appears or will appear. If hfile_name is omitted,
the file named by the command-line HFILE parameter will be used if a
declaration is generated.

■ member_name is the name of an attribute (data member) which is to be
translated to the following identifier.

■ identifier is the C identifier used to represent the attribute in the user
program. Identifiers may be specified in this way for any number of attributes.
The default name mapping algorithm will be used for the attributes that are not
mentioned.

An object datatype may need to be translated for one of two reasons:

■ It appears in the intype file.

■ It is required to declare another type that must be translated, and
TRANSITIVE=TRUE.

If a type that is not mentioned explicitly is required by types declared in exactly one
file, the translation of the required type is written to the same file(s) as the explicitly
declared types that require it.

If a type that is not mentioned explicitly is required by types declared in two or
more different files, the translation of the required type is written to the global
HFILE file.

Nested Included File Generation
Every HFILE generated by OTT #includes other necessary files, and #defines
a symbol constructed from the name of the file, which may be used to determine if
the HFILE has already been included. Consider, for example, a database with the
following types:

create type px1 AS OBJECT (col1 number, col2 integer);
create type px2 AS OBJECT (col1 px1);
create type px3 AS OBJECT (col1 px1);

where the intype file contains:

CASE=lower
type pxl
 hfile tott95a.h
type px3
 hfile tott95b.h

OTT Reference

Using the Object Type Translator with OCI 14-37

If we invoke OTT with

ott scott/tiger tott95i.typ outtype=tott95o.typ code=c

then it will generate the two following header files.

File tott95b.h is:

#ifndef TOTT95B_ORACLE
#define TOTT95B_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#ifndef TOTT95A_ORACLE
#include "tott95a.h"
#endif
typedef OCIRef px3_ref;
struct px3
{
 struct px1 col1;
};
typedef struct px3 px3;
struct px3_ind
{
 OCIInd _atomic;
 struct px1_ind col1
};
typedef struct px3_ind px3_ind;
#endif

File tott95a.h is:

#ifndef TOTT95A_ORACLE
#define TOTT95A_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
typedef OCIRef px1_ref;
struct px1
{
 OCINumber col1;
 OCINumber col2;
}
typedef struct px1 px1;
struct px1_ind
{

OTT Reference

14-38 Oracle Call Interface Programmer's Guide

 OCIInd _atomic;
 OCIInd col1;
 OCIInd col2;
}
typedef struct px1_ind px1_ind;
#endif

In this file, the symbol TOTT95B_ORACLE is defined first so that the programmer
may conditionally include tott95b.h without having to worry whether
tott95b.h depends on the include file using the following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

Using this technique, the programmer may include tott95b.h from some file, say
foo.h, without having to know whether some other file included by foo.h also
includes tott95b.h.

After the definition of the symbol TOTT95B_ORACLE, the file oci.h is #included.
Every HFILE generated by OTT includes oci.h, which contains type and function
declarations that the Pro*C/C++ or OCI programmer will find useful. This is the
only case in which OTT uses angle brackets in a #include.

Next, the file tott95a.h is included. This file is included because it contains the
declaration of "struct px1", which tott95b.h requires. When the user's
intype file requests that type declarations be written to more than one file, OTT
determines which other files each HFILE must include, and will generate the
necessary #includes.

Note that OTT uses quotes in this #include. When a program including
tott95b.h is compiled, the search for tott95a.h will begin where the source
program was found, and will thereafter follow an implementation-defined search
rule. If tott95a.h cannot be found in this way, a complete file name (for example,
a UNIX absolute path name beginning with /) should be used in the intype file to
specify the location of tott95a.h.

SCHEMA_NAMES Usage
This parameter affects whether the name of a type from the default schema to
which OTT is connected is qualified with a schema name in the outtype file.

The name of a type from a schema other that the default schema is always qualified
with a schema name in the outtype file.

OTT Reference

Using the Object Type Translator with OCI 14-39

The schema name, or its absence, determines in which schema the type is found
during program execution.

There are three settings:

■ schema_names=ALWAYS (default)

All type names in the outtype file are qualified with a schema name.

■ schema_names=IF_NEEDED

The type names in the OUTTYPE file that belong to the default schema are not
qualified with a schema name. As always, type names belonging to other
schemas are qualified with the schema name.

■ schema_names=FROM_INTYPE

A type mentioned in the intype file is qualified with a schema name in the
OUTTYPE file if, and only if, it was qualified with a schema name in the intype
file. A type in the default schema that is not mentioned in the intype file but
that has to be generated because of type dependencies will be written with a
schema name only if the first type encountered by OTT that depends on it was
written with a schema name. However, a type that is not in the default schema
to which OTT is connected will always be written with an explicit schema
name.

The outtype file generated by OTT is an input parameter to Pro*C/C++. From the
point of view of Pro*C/C++, it is the Pro*C/C++ intype file. This file matches
database type names to C struct names. This information is used at run-time to
make sure that the correct database type is selected into the struct. If a type appears
with a schema name in the outtype file (Pro*C/C++ intype file), the type will be
found in the named schema during program execution. If the type appears without
a schema name, the type will be found in the default schema to which the program
connects, which may be different from the default schema OTT used.

Example: Schema_Names Usage
If SCHEMA_NAMES is set to FROM_INTYPE, and the intype file reads:

TYPE Person
TYPE david.Dept
TYPE sam.Company

then the Pro*C/C++ application that uses the OTT-generated structs will use the
types sam.Company, david.Dept, and Person. Using Person without a schema

OTT Reference

14-40 Oracle Call Interface Programmer's Guide

name refers to the Person type in the schema to which the application is
connected.

If OTT and the application both connect to schema david, the application will use
the same type (david.Person) that OTT used. If OTT connected to schema david
but the application connects to schema jana, the application will use the type
jana.Person. This behavior is appropriate only if the same "CREATE TYPE
Person" statement has been executed in schema david and schema jana.

On the other hand, the application will use type david.Dept regardless of to
which schema the application is connected. If this is the behavior you want, be sure
to include schema names with your type names in the intype file.

In some cases, OTT translates a type that the user did not explicitly name. For
example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(street VARCHAR2(40),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(10));

CREATE TYPE Person AS OBJECT
(name CHAR(20),
 age NUMBER,
 addr ADDRESS);

Now suppose that OTT connects to schema david,
SCHEMA_NAMES=FROM_INTYPE is specified, and the user's intype files include
either

TYPE Person or TYPE david.Person

but do not mention the type david.Address, which is used as a nested object type
in type david.Person. If "TYPE david.Person" appeared in the intype file,
"TYPE david.Person" and "TYPE david.Address" will appear in the outtype
file. If "Type Person" appeared in the intype file, "TYPE Person" and "TYPE
Address" will appear in the outtype file.

If the david.Address type is embedded in several types translated by OTT, but is
not explicitly mentioned in the intype file, the decision of whether to use a schema
name is made the first time OTT encounters the embedded david.Address type.
If, for some reason, the user wants type david.Address to have a schema name
but does not want type Person to have one, the user should explicitly request

TYPE david.Address

OTT Reference

Using the Object Type Translator with OCI 14-41

in the intype file.

The main point is that in the usual case in which each type is declared in a single
schema, it is safest for the user to qualify all type names with schema names in the
intype file.

Default Name Mapping
When OTT creates a C identifier name for an object type or attribute, it translates
the name from the database character set to a legal C identifier. First, the name is
translated from the database character set to the character set used by OTT. Next, if
a translation of the resulting name is supplied in the intype file, that translation is
used. Otherwise, OTT translates the name character-by-character to the compiler
character set, applying the CASE option. The following describes this process in
more detail.

When OTT reads the name of a database entity, the name is automatically translated
from the database character set to the character set used by OTT. In order for OTT to
read the name of the database entity successfully, all the characters of the name
must be found in the OTT character set, although a character may have different
encodings in the two character sets.

The easiest way to guarantee that the character set used by OTT contains all the
necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character
set. That is, if the compiler character set is 7-bit ASCII, the OTT character set must
include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC,
the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the
character set that OTT uses by setting the NLS_LANG environment variable, or by
some other operating system-specific mechanism.

Once OTT has read the name of a database entity, it translates the name from the
character set used by OTT to the compiler's character set. If a translation of the
name appears in the INTYPE file, OTT uses that translation.

Otherwise, OTT attempts to translate the name as follows:

1. First, if the OTT character set is a multibyte character set, all multibyte
characters in the name that have single-byte equivalents are converted to those
single-byte equivalents.

2. Next, the name is converted from the OTT character set to the compiler
character set. The compiler character set is a single-byte character set such as
US7ASCII.

OTT Reference

14-42 Oracle Call Interface Programmer's Guide

3. Finally, the case of letters is set according to the CASE option in effect, and any
character that is not legal in a C identifier, or that has no translation in the
compiler character set, is replaced by an underscore. If at least one character is
replaced by an underscore, OTT gives a warning message. If all the characters
in a name are replaced by underscores, OTT gives an error message.

Character-by-character name translation does not alter underscores, digits, or
single-byte letters that appear in the compiler character set, so legal C identifiers are
not altered.

Name translation may, for example, translate accented single-byte characters such
as "o" with an umlaut or "a" with an accent grave to "o" or "a", and may translate a
multibyte letter to its single-byte equivalent. Name translation will typically fail if
the name contains multibyte characters that lack single-byte equivalents. In this
case, the user must specify name translations in the intype file.

OTT will not detect a naming clash caused by two or more database identifiers
being mapped to the same C name, nor will it detect a naming problem where a
database identifier is mapped to a C keyword.

OTT Restriction on File Name Comparison
Currently, the OTT determines if two files are the same by comparing the file names
provided by the user on the command line or in the intype file. But one potential
problem can occur when the OTT needs to know if two file names refer to the same
file. For example, if the OTT-generated file foo.h requires a type declaration
written to foo1.h, and another type declaration written to
/private/elias/foo1.h, OTT should generate one #include if the two files
are the same, and two #includes if the files are different. In practice, though, it
would conclude that the two files are different, and would generate two
#includes, as follows:

#ifndef FOO1_ORACLE
#include "foo1.h"
#endif
#ifndef FOO1_ORACLE
#include "/private/elias/foo1.h"
#endif

If foo1.h and /private/elias/foo1.h are different files, only the first one will
be included. If foo1.h and /private/elias/foo1.h are the same file, a
redundant #include will be written.

OTT Reference

Using the Object Type Translator with OCI 14-43

Therefore, if a file is mentioned several times on the command line or in the
intype file, each mention of the file should use exactly the same file name.

OTT Reference

14-44 Oracle Call Interface Programmer's Guide

Part III
 OCI Reference

This part contains these chapters and appendixes:

■ Chapter 15, "OCI Relational Functions"

■ Chapter 16, "More OCI Relational Functions"

■ Chapter 17, "OCI Navigational and Type Functions"

■ Chapter 18, "OCI Datatype Mapping and Manipulation Functions"

■ Chapter 19, "OCI Cartridge Functions"

■ Chapter 20, "OCI Any Type and Data Functions"

■ Chapter 21, "OCI Globalization Support Functions"

■ Chapter 22, "OCI XML DB Functions"

This part of the book also contains the appendixes:

■ Appendix A, "Handle and Descriptor Attributes", lists the attributes of the OCI
handles.

■ Appendix B, "OCI Demonstration Programs", lists important demonstration
programs that provide code examples of OCI features.

■ Appendix C, "OCI Function Server Round Trips", provides information about
the server round trips required by most OCI functions.

■ Appendix D, "Getting Started with OCI for Windows", provides introductory
information to help you get started with OCI for Windows.

OCI Relational Functions 15-1

15
OCI Relational Functions

This chapter begins to describe the Oracle OCI relational functions for C. It includes
information about calling OCI functions in your application, along with detailed
descriptions of each function call.

This chapter contains these topics:

■ Introduction to the Relational Functions

■ Connect, Authorize, and Initialize Functions

■ Handle and Descriptor Functions

■ Bind, Define, and Describe Functions

See Also: For code examples, see the demonstration programs
included with your Oracle installation. For additional information,
refer to Appendix B, "OCI Demonstration Programs".

Introduction to the Relational Functions

15-2 Oracle Call Interface Programmer's Guide

Introduction to the Relational Functions

This chapter describes the OCI relational function calls. This chapter and the next,
cover the functions in the basic OCI.

Function Syntax
For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
The function declaration.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described next.

Comments
More detailed information about the function (if available). This may include
restrictions on the use of the function, or other information that might be useful
when using the function in an application.

See Also: For information about return codes and error handling,
refer to the section "Error Handling in OCI" on page 2-26

Table 15–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction to the Relational Functions

OCI Relational Functions 15-3

Returns
This optional section describes the possible values that can be returned. It can be
found either before or after the Comments section.

Example
A complete or partial code example demonstrating the use of the function call being
described. Not all function descriptions include an example.

Related Functions
A list of related function calls.

Calling OCI Functions
Unlike earlier versions of the OCI, in and after release 8, you cannot pass -1 for the
string length parameter of a NULL-terminated string.When you pass string lengths
as parameters, do not include the NULL terminator byte in the length. The OCI does
not expect strings to be NULL-terminated.

Buffer lengths that are OCI parameters are in bytes, except:

■ the amount parameters in some LOB calls are in characters,

■ when UTF-16 encoding of text is used in function parameters, the length is in
character points.

Server Round Trips for LOB Functions
For a table showing the number of server round trips required for individual OCI
LOB functions, refer to Appendix C, "OCI Function Server Round Trips".

Connect, Authorize, and Initialize Functions

15-4 Oracle Call Interface Programmer's Guide

Connect, Authorize, and Initialize Functions

This section describes the OCI connect, authorize, and initialize functions.

Table 15–2 Connect, Authorize, and Initialize Functions

Function Purpose

OCIConnectionPoolCreate() on page 15-5 Initializes the connection pool.

OCIConnectionPoolDestroy() on page 15-8 Destroys the connection pool.

OCIEnvCreate() on page 15-9 Creates and initializes an OCI environment.

OCIEnvNlsCreate() on page 15-14 Creates and initializes an environment for OCI
functions to work under. Allows you to set character
set id and national character set id at environment
creation time.

OCIEnvInit() on page 15-12 Initialize an environment handle.

OCIInitialize() on page 15-18 Initialize OCI process environment.

OCILogon() on page 15-22 Simplified single-session logon.

OCILogon2() on page 15-24 This function is used to create a logon session in
various modes.

OCIServerAttach() on page 15-27 Attach to a server; initialize server context handle.

OCIServerDetach() on page 15-30 Detach from a server; uninitialize server context
handle.

OCISessionBegin() on page 15-31 Authenticate a user.

OCISessionEnd() on page 15-35 Terminate a user session.

OCISessionGet() on page 15-36 Get a session from a session pool.

OCISessionPoolCreate() on page 15-40 Initializes a session pool.

OCISessionPoolDestroy() on page 15-44 Destroys a session pool.

OCISessionRelease() on page 15-45 Releases a session.

OCITerminate() on page 15-47 Detaches from a shared memory subsystem.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-5

OCIConnectionPoolCreate()

Purpose
Initializes the connection pool.

Syntax
sword OCIConnectionPoolCreate (OCIEnv *envhp,
 OCIError *errhp,
 OCICPool *poolhp,
 OraText **poolName,
 sb4 *poolNameLen,
 CONST OraText *dblink,
 sb4 dblinkLen,
 ub4 connMin,
 ub4 connMax,
 ub4 connIncr,
 CONST OraText *poolUsername,
 sb4 poolUserLen,
 CONST OraText *poolPassword,
 sb4 poolPassLen,
 ub4 mode);

Parameters

envhp (IN)
A pointer to the environment where the connection pool is to be created

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet().

poolhp (IN)
An allocated pool handle.

poolName (OUT)
The name of the connection pool connected to.

poolNameLen (OUT)
The length of the string pointed to by poolName.

dblink (IN)
Specifies the database (server) to connect to.

OCIConnectionPoolCreate()

15-6 Oracle Call Interface Programmer's Guide

dblinkLen (IN)
The length of the string pointed to by dblink.

connMin (IN)
Specifies the minimum number of connections in the connection pool. Valid values
are 0 and higher.

These number of connections are opened to the server by
OCIConnectionPoolCreate(). After this, connections are opened only when
necessary. Generally, it should be set to the number of concurrent statements the
application is planning or expecting to run.

connMax (IN)
Specifies the maximum number of connections that can be opened to the database.
Once this value is reached, no more connections are opened. Valid values are 1 and
higher.

connIncr (IN)
Allows the application to set the next increment for connections to be opened to the
database if the current number of connections are less than connMax. Valid values
are 0 and higher.

poolUsername (IN)
Connection pooling requires an implicit primary session and this attribute provides
a username for that session.

poolUserLen (IN)
The length of poolUsername.

poolPassword (IN)
The password for the username poolUsername.

poolPassLen (IN)
The length of poolPassword.

mode (IN)
The modes supported are

■ OCI_DEFAULT

■ OCI_CPOOL_REINITIALIZE.

Ordinarily, OCIConnectionPoolCreate() will be called with mode set to
OCI_DEFAULT.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-7

If you wish to change the pool attributes dynamically (for example: change the
connMin, connMax, and connIncr parameters), call
OCIConnectionPoolCreate() with mode set to OCI_CPOOL_REINITIALIZE.
When this is done, the other parameters are ignored.

Comments
The OUT parameters poolName and poolNameLen will contain values to be used
in subsequent OCIServerAttach() and OCILogon2() calls in place of the
database name and the database name length arguments.

Related Functions
OCIConnectionPoolDestroy(), OCILogon2(), OCIServerAttach()

See Also: "Connection Pool Handle Attributes" on page A-22

OCIConnectionPoolDestroy()

15-8 Oracle Call Interface Programmer's Guide

OCIConnectionPoolDestroy()

Purpose
Destroys the connection pool.

Syntax
sword OCIConnectionPoolDestroy (OCICPool *poolhp,
 OCIError *errhp,
 ub4 mode);

 Parameters

poolhp (IN)
A pool handle for which a pool has been created.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet().

mode (IN)
Currently, this function will support only the OCI_DEFAULT mode.

Related Functions
OCIConnectionPoolCreate()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-9

OCIEnvCreate()

Purpose
Creates and initializes an environment for OCI functions to work under.

Syntax
sword OCIEnvCreate (OCIEnv **envhpp,
 ub4 mode,
 CONST dvoid *ctxp,
 CONST dvoid *(*malocfp)
 (dvoid *ctxp,
 size_t size),
 CONST dvoid *(*ralocfp)
 (dvoid *ctxp,
 dvoid *memptr,
 size_t newsize),
 CONST void (*mfreefp)
 (dvoid *ctxp,
 dvoid *memptr))
 size_t xtramemsz,
 dvoid **usrmempp);

Parameters

envhpp (OUT)
A pointer to an environment handle whose encoding setting is specified by mode.
The setting will be inherited by statement handles derived from envhpp.

mode (IN)
Specifies initialization of the mode. Valid modes are:

■ OCI_DEFAULT- the default value, which is non-UTF-16 encoding.

■ OCI_THREADED - uses threaded environment. Internal data structures not
exposed to the user are protected from concurrent accesses by multiple threads.

■ OCI_OBJECT - uses object features.

■ OCI_EVENTS - utilizes publish-subscribe notifications.

■ OCI_NO_UCB - suppresses the calling of the dynamic callback routine
OCIEnvCallback. The default behavior is to allow calling of
OCIEnvCallback at the time that the environment is created.

OCIEnvCreate()

15-10 Oracle Call Interface Programmer's Guide

■ OCI_ENV_NO_MUTEX - no mutexing in this mode. All OCI calls done on the
environment handle, or on handles derived from the environment handle, must
be serialized.

■ OCI_NEW_LENGTH_SEMANTICS - byte-length semantics is used consistently
for all handles, regardless of character sets.

ctxp (IN)
Specifies the user-defined context for the memory callback routines.

malocfp (IN)
Specifies the user-defined memory allocation function. If mode is
OCI_THREADED, this memory allocation routine must be thread safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory allocation function.

size (IN)
Specifies the size of memory to be allocated by the user-defined memory allocation
function.

ralocfp (IN)
Specifies the user-defined memory re-allocation function. If the mode is
OCI_THREADED, this memory allocation routine must be thread safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory reallocation function.

memp (IN)
Pointer to memory block.

newsize (IN)
Specifies the new size of memory to be allocated

mfreefp (IN)
Specifies the user-defined memory free function. If mode is OCI_THREADED, this
memory free routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory free function.

See Also: "Dynamic Callback Registrations" on page 9-35

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-11

memptr (IN)
Pointer to memory to be freed

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the
environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for
the user.

Comments
This call creates an environment for all the OCI calls using the modes specified by
the user.

This call returns an environment handle which is then used by the remaining OCI
functions. There can be multiple environments in OCI, each with its own
environment modes. This function also performs any process level initialization if
required by any mode. For example if the user wants to initialize an environment as
OCI_THREADED, then all libraries that are used by OCI are also initialized in the
threaded mode.

If you are writing a DLL or a shared library using OCI library then this call should
definitely be used instead of OCIInitialize() and OCIEnvInit() call.

Related Functions
OCIHandleAlloc(),OCIHandleFree(),OCIEnvInit(),
OCIEnvNlsCreate(),OCITerminate()

Note: This call should be invoked before any other OCI call and
should be used instead of the OCIInitialize() and
OCIEnvInit() calls. OCIInitialize() and OCIEnvInit()
calls will be supported for backward compatibility.

See Also: For more information about the xtramemsz parameter
and user memory allocation, refer to "User Memory Allocation" on
page 2-18

OCIEnvInit()

15-12 Oracle Call Interface Programmer's Guide

OCIEnvInit()

Purpose
Allocates and initializes an OCI environment handle.

Syntax
sword OCIEnvInit (OCIEnv **envhpp,
 ub4 mode,
 size_t xtramemsz,
 dvoid **usrmempp);

Parameters

envhpp (OUT)
A pointer to a handle to the environment.

mode (IN)
Specifies initialization of an environment mode. Valid modes are:

■ OCI_DEFAULT

■ OCI_NO_MUTEX

■ OCI_ENV_NO_UCB

In OCI_DEFAULT mode, the OCI library always mutexes handles. In
OCI_NO_MUTEX modes, there is no mutexing in this environment.

In OCI_NO_MUTEX mode, all OCI calls done on the environment handle, or on
handles derived from the environment handle, must be serialized. This can be done
by either doing your own mutexing or by having only one thread operating on the
environment handle.

The OCI_ENV_NO_UCB mode is used to suppress the calling of the dynamic
callback routine OCIEnvCallback() at environment initialization time. The
default behavior is to allow such a call to be made.

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the
environment.

See Also: "Dynamic Callback Registrations" on page 9-35

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-13

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for
the user for the duration of the environment.

Comments

This call allocates and initializes an OCI environment handle. No changes are done
to an already initialized handle. If OCI_ERROR or OCI_SUCCESS_WITH_INFO is
returned, the environment handle can be used to obtain ORACLE specific errors
and diagnostics.

This call is processed locally, without a server round trip.

The environment handle can be freed using OCIHandleFree().

Related Functions
OCIHandleAlloc(),OCIHandleFree(),OCIEnvCreate(),OCITerminate()

Note: OCIEnvCreate() should be used instead of the
OCIInitialize() and OCIEnvInit() calls.
OCIInitialize() and OCIEnvInit() calls will be supported
for backward compatibility.

See Also: For more information about the xtramemsz parameter
and user memory allocation, refer to "User Memory Allocation" on
page 2-18.

OCIEnvNlsCreate()

15-14 Oracle Call Interface Programmer's Guide

OCIEnvNlsCreate()

Purpose
Creates and initializes an environment handle for OCI functions to work under. It is
an enhanced version of the OCIEnvCreate() function.

Syntax
sword OCIEnvNlsCreate (OCIEnv **envhpp,
 ub4 mode,
 dvoid *ctxp,
 dvoid *(*malocfp)
 (dvoid *ctxp,
 size_t size),
 dvoid *(*ralocfp)
 (dvoid *ctxp,
 dvoid *memptr,
 size_t newsize),
 void (*mfreefp)
 (dvoid *ctxp,
 dvoid *memptr))
 size_t xtramemsz,
 dvoid **usrmempp
 ub2 charset,
 ub2 ncharset);

Parameters

envhpp (OUT)
A pointer to an environment handle whose encoding setting is specified by mode.
The setting will be inherited by statement handles derived from envhpp.

mode (IN)
Specifies initialization of the mode. Valid modes are:

■ OCI_DEFAULT- the default value, which is non-UTF-16 encoding.

■ OCI_THREADED - uses threaded environment. Internal data structures not
exposed to the user are protected from concurrent accesses by multiple threads.

■ OCI_OBJECT - uses object features.

■ OCI_EVENTS - utilizes publish-subscribe notifications.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-15

■ OCI_NO_UCB - suppresses the calling of the dynamic callback routine
OCIEnvCallback. The default behavior is to allow calling of
OCIEnvCallback at the time that the environment is created.

■ OCI_ENV_NO_MUTEX - no mutexing in this mode. All OCI calls done on the
environment handle, or on handles derived from the environment handle, must
be serialized.

ctxp (IN)
Specifies the user-defined context for the memory callback routines.

malocfp (IN)
Specifies the user-defined memory allocation function. If mode is OCI_THREADED,
this memory allocation routine must be thread-safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory allocation function.

size (IN)
Specifies the size of memory to be allocated by the user-defined memory allocation
function.

ralocfp (IN)
Specifies the user-defined memory re-allocation function. If the mode is
OCI_THREADED, this memory allocation routine must be thread safe.

ctxp (IN)
Specifies the context pointer for the user-defined memory reallocation function.

memp (IN)
Pointer to memory block.

newsize (IN)
Specifies the new size of memory to be allocated

mfreefp (IN)
Specifies the user-defined memory free function. If mode is OCI_THREADED, this
memory free routine must be thread-safe.

See Also: "Dynamic Callback Registrations" on page 9-35

OCIEnvNlsCreate()

15-16 Oracle Call Interface Programmer's Guide

ctxp (IN)
Specifies the context pointer for the user-defined memory free function.

memptr (IN)
Pointer to memory to be freed

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the
environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for
the user.

charset (IN)
The client-side character set for the current environment handle. If it is 0, the
NLS_LANG setting is used. OCI_UTF16ID is a valid setting; it is used by the
metadata and the CHAR data.

ncharset (IN)
The client-side national character set for the current environment handle. If it is 0,
NLS_NCHAR setting is used. OCI_UTF16ID is a valid setting; it is used by the
NCHAR data.

Returns
OCI_SUCCESS - environment handle has been successfully created.

OCI_ERROR - an error occurred.

Comments
This call creates an environment for all the OCI calls using the modes specified by
the user.

After using OCIEnvNlsCreate() to create the environment handle, the actual
lengths and returned lengths of bind and define handles are always in number of
bytes. This applies to the following calls:

■ OCIBindByName()

■ OCIBindByPos()

■ OCIBindDynamic()

■ OCIDefineByPos()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-17

■ OCIDefineDynamic()

This function enables you to set charset and ncharset ids at environment
creation time. It is an enhanced version of the OCIEnvCreate() function.

This function sets nonzero charset and ncharset as client side database and
national character sets, replacing the ones specified by NLS_LANG and NLS_NCHAR.
When charset and ncharset are 0, it behaves exactly the same as
OCIEnvCreate(). Specifically, charset controls the encoding for metadata and
data with implicit form attribute and ncharset controls the encoding for data with
SQLCS_NCHAR form attribute.

Although OCI_UTF16ID can be set by OCIEnvNlsCreate(), it cannot be set in
NLS_LANG or NLS_NCHAR. To access the character set ids in NLS_LANG and
NLS_NCHAR, use OCINlsEnvironmentVariableGet().

This call returns an environment handle which is then used by the remaining OCI
functions. There can be multiple environments in OCI, each with its own
environment modes. This function also performs any process level initialization if
required by any mode. For example if the user wants to initialize an environment as
OCI_THREADED, then all libraries that are used by OCI are also initialized in the
threaded mode.

If you are writing a DLL or a shared library using OCI library then this call should
definitely be used instead of OCIInitialize() and OCIEnvInit() calls.

Related Functions
OCIHandleAlloc(), OCIHandleFree(), OCITerminate(),
OCINlsEnvironmentVariableGet()

See Also: For more information about the xtramemsz parameter
and user memory allocation, refer to "User Memory Allocation" on
page 2-18

OCIInitialize()

15-18 Oracle Call Interface Programmer's Guide

OCIInitialize()

Purpose
Initializes the OCI process environment.

Syntax
sword OCIInitialize (ub4 mode,
 CONST dvoid *ctxp,
 CONST dvoid *(*malocfp)
 (/* dvoid *ctxp,
 size_t size _*/),
 CONST dvoid *(*ralocfp)
 (/*_ dvoid *ctxp,
 dvoid *memptr,
 size_t newsize _*/),
 CONST void (*mfreefp)
 (/*_ dvoid *ctxp,
 dvoid *memptr _*/));

Parameters

mode (IN)
Specifies initialization of the mode. The valid modes are:

■ OCI_DEFAULT - default mode.

■ OCI_THREADED - threaded environment. In this mode, internal data
structures not exposed to the user are protected from concurrent accesses by
multiple threads.

■ OCI_OBJECT - will use object features.

■ OCI_EVENTS - will utilize publish-subscribe notifications.

ctxp (IN)
User defined context for the memory call back routines.

malocfp (IN)
User-defined memory allocation function. If mode is OCI_THREADED, this
memory allocation routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory allocation function.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-19

size (IN)
Size of memory to be allocated by the user-defined memory allocation function

ralocfp (IN)
User-defined memory re-allocation function. If mode is OCI_THREADED, this
memory allocation routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory reallocation function.

memptr (IN/OUT)
Pointer to memory block

newsize (IN)
New size of memory to be allocated

mfreefp (IN)
User-defined memory free function. If mode is OCI_THREADED, this memory free
routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory free function.

memptr (IN/OUT)
Pointer to memory to be freed

Comments

This call initializes the OCI process environment. OCIInitialize() must be
invoked before any other OCI call.

This function provides the ability for the application to define its own memory
management functions through callbacks. If the application has defined such
functions (that is, memory allocation, memory re-allocation, memory free), they
should be registered using the callback parameters in this function.

Note: OCIEnvCreate() should be used instead of the
OCIInitialize() and OCIEnvInit() calls.
OCIInitialize() and OCIEnvInit() calls will be supported
for backward compatibility.

OCIInitialize()

15-20 Oracle Call Interface Programmer's Guide

These memory callbacks are optional. If the application passes NULL values for the
memory callbacks in this function, the default process memory allocation
mechanism is used.

Example
The following statement shows an example of how to call OCIInitialize() in
both threaded and object mode, with no user-defined memory functions:

OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)()) 0, (dvoid * (*)()) 0, (void (*)()) 0);

Related Functions
OCIHandleAlloc(),OCIHandleFree(),OCIEnvCreate(),OCIEnvInit(),
OCITerminate()

See Also:

■ For information about using the OCI to write multithreaded
applications, refer to "Overview of OCI Multithreaded
Development" on page 9-2.

■ For information about OCI programming with objects, refer to
Chapter 10, "OCI Object-Relational Programming".

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-21

OCILogoff()

Purpose
This function is used to release a session that was retrieved using OCILogon2() or
OCILogon().

Syntax
sword OCILogoff (OCISvcCtx *svchp
 OCIError *errhp);

Parameters

svchp (IN)
The service context handle which was used in the call to OCILogon() or
OCILogon2().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
This function is used to release a session that was retrieved using OCILogon2() or
OCILogon(). If OCILogon() was used, then this function terminates the
connection and session. If OCILogon2() was used, then the exact behavior of this
call is determined by the mode in which the corresponding OCILogon2() function
was called. In the default case, it will close the session/connection. For connection
pooling, it closes the session and returns the connection to the pool. For session
pooling, it returns the session/connection pair to the pool.

Related Functions
OCILogon(),OCILogon2()

See Also: For more information on logging on and off in an
application, refer to the section "Application Initialization,
Connection, and Session Creation" on page 2-21.

OCILogon()

15-22 Oracle Call Interface Programmer's Guide

OCILogon()

Purpose
This function is used to create a simple logon session.

Syntax
sword OCILogon (OCIEnv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 CONST OraText *username,
 ub4 uname_len,
 CONST OraText *password,
 ub4 passwd_len,
 CONST OraText *dbname,
 ub4 dbname_len);

Parameters

envhp (IN)
The OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

svchp (IN/OUT)
The service context pointer.

username (IN)
The username. Must be in the encoding specified by the charset parameter of a
previous call to OCIEnvNlsCreate().

uname_len (IN)
The length of username, in number of bytes, regardless of the encoding.

password (IN)
The user's password. Must be in the encoding specified by the charset parameter
of a previous call to OCIEnvNlsCreate().

passwd_len (IN)
The length of password, in number of bytes, regardless of the encoding.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-23

dbname (IN)
The name of the database to connect to. Must be in the encoding specified by the
charset parameter of a previous call to OCIEnvNlsCreate().

dbname_len (IN)
The length of dbname, in number of bytes, regardless of the encoding.

Comments
This function is used to create a simple logon session for an application.

This call allocates the service context handles that are passed to it. This call also
implicitly allocates server and user session handles associated with the session.
These handles can be retrieved by calling OCIAttrGet() on the service context
handle.

Related Functions
OCILogoff()

Note: Users requiring more complex sessions, such as TP monitor
applications, should refer to the section "Application Initialization,
Connection, and Session Creation" on page 2-21.

OCILogon2()

15-24 Oracle Call Interface Programmer's Guide

OCILogon2()

Purpose
Get a session. This session may be a new one with a new underlying connection, or
one that is started over a virtual connection from an existing connection pool, or one
from an existing session pool. The mode that the function is called with determines
its behavior.

Syntax
sword OCILogon2 (OCIEnv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 CONST OraText *username,
 ub4 uname_len,
 CONST OraText *password,
 ub4 passwd_len,
 CONST OraText *dbname,
 ub4 dbname_len);
 ub4 mode);

Parameters

envhp (IN)
The OCI environment handle. For connection pooling and session pooling, this
must be the one that the respective pool was created in.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

svchp (IN/OUT)
Address of an OCI service context pointer. This will be filled with a server and
session handle.

In the default case, a new session and server handle will be allocated, the
connection and session will be started, and the service context will be populated
with these handles.

For connection pooling, a new session handle will be allocated, and the session will
be started over a virtual connection from the connection pool.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-25

For session pooling, the service context will be populated with an existing
session/server handle pair from the session pool.

Note that the user must not change any attributes of the server and user/session
handles associated with the service context pointer. Doing so will result in an error
being returned by the OCIAttrSet() call.

The only attribute of the service context that can be altered is
OCI_ATTR_STMTCACHESIZE.

username (IN)
The username used to authenticate the session. Must be in the encoding specified
by the charset parameter of a previous call to OCIEnvNlsCreate().

uname_len (IN)
The length of username, in number of bytes, regardless of the encoding.

password (IN)
The user's password. For connection pooling, if this parameter is NULL then
OCILogon2() assumes that the logon is for a proxy user. It implicitly creates a
proxy connection in such a case, using the pool user to authenticate the proxy user.
Must be in the encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate().

passwd_len (IN)
The length of password, in number of bytes, regardless of the encoding.

dbname (IN)
For the default case, this indicates the connect string to use to connect to the Oracle
database server.

For connection pooling, it indicates the connection pool to retrieve the virtual
connection from, in order to start up the session. This value is returned by the
OCIConnectionPoolCreate() call.

For session pooling, it indicates the pool to get the session from. It is returned by the
OCISessionPoolCreate() call.

 Must be in the encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate().

dbname_len (IN)
The length of dbname. For session pooling and connection pooling, this value is
returned by the OCISessionPoolCreate() or OCIConnectionPoolCreate()
call respectively.

OCILogon2()

15-26 Oracle Call Interface Programmer's Guide

mode (IN)
The values accepted are

■ OCI_DEFAULT

■ OCI_LOGON2_CPOOL

■ OCI_LOGON2_SPOOL

■ OCI_LOGON2_STMTCACHE

■ OCI_LOGON2_PROXY

For the default (non-pooling case), the following modes are valid:

OCI_DEFAULT - Equivalent to calling OCILogon().

OCI_LOGON2_STMTCACHE - Enable statement caching.

For connection pooling, the following modes are valid:

OCI_LOGON2_CPOOL or OCI_CPOOL - This must be set in order to use
connection pooling.

OCI_LOGON2_STMTCACHE - Enable statement caching.

In order to use proxy authentication for connection pooling, the password must be
set to NULL. The user will then be given a session that is authenticated by the
username provided in the OCILogon2() call, through the proxy credentials
supplied in the OCIConnectionPoolCreate() call.

For session pooling, the following modes are valid:

OCI_LOGON2_SPOOL - This must be set in order to use session pooling.

OCI_LOGON2_STMTCACHE - Enable statement caching.

OCI_LOGON2_PROXY - Use proxy authentication.The user is given a session that
is authenticated by the username provided in the OCILogon2() call, through the
proxy credentials supplied in the OCISessionPoolCreate() call.

Comments
None.

Related Functions
OCILogon(),OCILogoff(),OCISessionGet(),OCISessionRelease()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-27

OCIServerAttach()

Purpose
Creates an access path to a data source for OCI operations.

Syntax
sword OCIServerAttach (OCIServer *srvhp,
 OCIError *errhp,
 CONST text *dblink,
 sb4 dblink_len,
 ub4 mode);

Parameters

srvhp (IN/OUT)
An uninitialized server handle, which gets initialized by this call. Passing in an
initialized server handle causes an error.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

dblink (IN)
Specifies the database server to use. This parameter points to a character string
which specifies a connect string or a service point. If the connect string is NULL, then
this call attaches to the default host. The string itself could be in UTF-16 or not,
depending on mode or the setting in application's environment handle. The length
of dblink is specified in dblink_len. The dblink pointer may be freed by the
caller on return.

The name of the connection pool to connect to when mode = OCI_CPOOL. This
must be the same as the poolName parameter of the connection pool created by
OCIConnectionPoolCreate(). Must be in the encoding specified by the
charset parameter of a previous call to OCIEnvNlsCreate().

dblink_len (IN)
The length of the string pointed to by dblink. For a valid connect string name or
alias, dblink_len must be nonzero. Its value is in number of bytes.

The length of poolName, in number of bytes, regardless of the encoding, when
mode = OCI_CPOOL.

OCIServerAttach()

15-28 Oracle Call Interface Programmer's Guide

mode (IN)
Specifies the various modes of operation. The valid modes are:

■ OCI_DEFAULT. For encoding, this value tells the server handle to use the
setting in the environment handle.

■ OCI_CPOOL - use connection pooling,

Since an attached server handle can be set for any connection session handle, the
mode value here does not contribute to any session handle.

Comments
This call is used to create an association between an OCI application and a
particular server.

This call assumes that OCIConnectionPoolCreate() has already been called,
giving poolName, when connection pooling is in effect.

This call initializes a server context handle, which must have been previously
allocated with a call to OCIHandleAlloc(). The server context handle initialized
by this call can be associated with a service context through a call to
OCIAttrSet(). Once that association has been made, OCI operations can be
performed against the server.

If an application is operating against multiple servers, multiple server context
handles can be maintained. OCI operations are performed against whichever server
context is currently associated with the service context.

When OCIServerAttach() is successfully completed, an Oracle shadow process
is started. OCISessionEnd() and OCIServerDetach() should be called to clean
up the Oracle shadow process. Otherwise, the shadow processes accumulate and
cause the Unix system to run out of processes. If the database is restarted and there
are not enough processes, the database may not startup.

Example
The following example demonstrates the use of OCIServerAttach(). This code
segment allocates the server handle, makes the attach call, allocates the service
context handle, and then sets the server context into it.

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)
 OCI_HTYPE_SERVER, 0, (dvoid **) 0);
OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4)
 OCI_HTYPE_SVCCTX, 0, (dvoid **) 0);
/* set attribute server context in the service context */

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-29

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) srvhp,
 (ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

Related Functions
OCIServerDetach()

OCIServerDetach()

15-30 Oracle Call Interface Programmer's Guide

OCIServerDetach()

Purpose
Deletes an access to a data source for OCI operations.

Syntax
sword OCIServerDetach (OCIServer *srvhp,
 OCIError *errhp,
 ub4 mode);

Parameters

srvhp (IN)
A handle to an initialized server context, which gets reset to uninitialized state. The
handle is not de-allocated.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

mode (IN)
Specifies the various modes of operation. The only valid mode is OCI_DEFAULT
for the default mode.

Comments
This call deletes an access to data source for OCI operations, which was established
by a call to OCIServerAttach().

Related Functions
OCIServerAttach()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-31

OCISessionBegin()

Purpose
Creates a user session and begins a user session for a given server.

Syntax
sword OCISessionBegin (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 credt,
 ub4 mode);

Parameters

svchp (IN)
A handle to a service context. There must be a valid server handle set in svchp.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

usrhp (IN/OUT)
A handle to an user session context, which is initialized by this call.

credt (IN)
Specifies the type of credentials to use for establishing the user session. Valid values
for credt are:

■ OCI_CRED_RDBMS - authenticate using a database username and password
pair as credentials. The attributes OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD should be set on the user session context before this
call.

■ OCI_CRED_EXT - authenticate using external credentials. No username or
password is provided.

mode (IN)
Specifies the various modes of operation. Valid modes are:

■ OCI_DEFAULT - in this mode, the user session context returned may only ever
be set with the same server context specified in svchp. For encoding, the server
handle uses the setting in the environment handle.

OCISessionBegin()

15-32 Oracle Call Interface Programmer's Guide

■ OCI_MIGRATE - in this mode, the new user session context may be set in a
service handle with a different server handle. This mode establishes the user
session context. To create a migratable session, the service handle must already
be set with a non-migratable user session, which becomes the "creator" session
of the migratable session. That is, a migratable session must have a
non-migratable parent session.

■ OCI_SYSDBA - in this mode, the user is authenticated for SYSDBA access.

■ OCI_SYSOPER - in this mode, the user is authenticated for SYSOPER access.

■ OCI_PRELIM_AUTH - this mode may only be used with OCI_SYSDBA or
OCI_SYSOPER to authenticate for certain administration tasks.

Comments
The OCISessionBegin() call is used to authenticate a user against the server set
in the service context handle.

For release 8.1 or later, OCISessionBegin() must be called for any given server
handle before requests can be made against it. OCISessionBegin() only supports
authenticating the user for access to the Oracle server specified by the server handle
in the service context. In other words, after OCIServerAttach() is called to
initialize a server handle, OCISessionBegin() must be called to authenticate the
user for that given server.

When using Unicode, when the mode or the environment handle has the
appropriate setting, the username and password that have been set in the session
handle usrhp should already be in Unicode. Before calling this function to start a
session with a username and password, you must have called OCIAttrSet() to
set these two Unicode strings into the session handle with corresponding length in
bytes, because OCIAttrSet() only takes dvoid pointers. The string buffers then
will be interpreted by OCISessionBegin().

When OCISessionBegin() is called for the first time for a given server handle,
the user session may not be created in migratable (OCI_MIGRATE) mode.

After OCISessionBegin() has been called for a server handle, the application
may call OCISessionBegin() again to initialize another user session handle with

Note: Check for any errors returned when trying to start a session.
For example, if the password for the account has expired, an
ORA-28001 error is returned.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-33

different (or the same) credentials and different (or the same) operation modes. If an
application wants to authenticate a user in OCI_MIGRATE mode, the service
handle must already be associated with a non-migratable user handle. The user ID
of that user handle becomes the ownership ID of the migratable user session. Every
migratable session must have a non-migratable parent session.

If the OCI_MIGRATE mode is not specified, then the user session context can only
be used with the same server handle set in svchp. If OCI_MIGRATE mode is
specified, then the user authentication may be set with different server handles.
However, the user session context may only be used with server handles which
resolve to the same database instance. Security checking is done during session
switching. A session can migrate to another process only if there is a non-migratable
session currently connected to that process whose userid is the same as that of the
creator's userid or its own userid.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH may only be used with a
primary user session context.

To provide credentials for a call to OCISessionBegin(), one of two methods are
supported. The first is to provide a valid username and password pair for database
authentication in the user session handle passed to OCISessionBegin(). This
involves using OCIAttrSet() to set the OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD attributes on the user session handle. Then
OCISessionBegin() is called with OCI_CRED_RDBMS.

The second type of credentials supported are external credentials. No attributes
need to be set on the user session handle before calling OCISessionBegin(). The
credential type is OCI_CRED_EXT. This is equivalent to the Oracle7 'connect /'
syntax. If values have been set for OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD, then these are ignored if OCI_CRED_EXT is used.

Another way of setting credentials is to use the session Id of an already
authenticated user with the OCI_MIGSESSION attribute. This Id can be extracted
from the session handle of an authenticated user using the OCIAttrGet() call.

Note: When the user session handle is terminated using
OCISessionEnd(), the username and password attributes remain
unchanged and thus can be re-used in a future call to
OCISessionBegin(). Otherwise, they must be reset to new
values before the next OCISessionBegin() call.

OCISessionBegin()

15-34 Oracle Call Interface Programmer's Guide

Example
The following example demonstrates the use of OCISessionBegin(). This code
segment allocates the user session handle, sets the username and password
attributes, calls OCISessionBegin(), and then sets the user session into the
service context.

/* allocate a user session handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4)
 OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"hr",
 (ub4)strlen("hr"), OCI_ATTR_USERNAME, errhp);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"hr",
 (ub4)strlen("hr"), OCI_ATTR_PASSWORD, errhp);
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_DEFAULT));
OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (dvoid *)usrhp,
 (ub4)0, OCI_ATTR_SESSION, errhp);

Related Functions
OCISessionEnd()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-35

OCISessionEnd()

Purpose
Terminates a user session context created by OCISessionBegin()

Syntax
sword OCISessionEnd (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 mode);

Parameters

svchp (IN/OUT)
The service context handle. There must be a valid server handle and user session
handle associated with svchp.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

usrhp (IN)
De-authenticate this user. If this parameter is passed as NULL, the user in the service
context handle is de-authenticated.

mode (IN)
The only valid mode is OCI_DEFAULT.

Comments
The user security context associated with the service context is invalidated by this
call. Storage for the user session context is not freed. The transaction specified by
the service context is implicitly committed. The transaction handle, if explicitly
allocated, may be freed if not being used. Resources allocated on the server for this
user are freed. The user session handle may be reused in a new call to
OCISessionBegin().

Related Functions
OCISessionBegin()

OCISessionGet()

15-36 Oracle Call Interface Programmer's Guide

OCISessionGet()

Purpose
Get a session. This session may be a new one with a new underlying connection, or
one that is started over a virtual connection from an existing connection pool, or one
from an existing session pool. The mode that the function is called with determines
its behavior.

Syntax
sword OCISessionGet (OCIenv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 OCIAuthInfo *authInfop,
 OraText *dbName,
 ub4 dbName_len,
 CONST OraText *tagInfo,
 ub4 tagInfo_len,
 OraText **retTagInfo,
 ub4 *retTagInfo_len,
 boolean *found,
 ub4 mode);

Parameters

envhp (IN/OUT)
OCI environment handle. For connection pooling and session pooling, this should
be the one that the respective pool was created in.

errhp (IN/OUT)
OCI error handle.

svchp (OUT)
Address of an OCI service context pointer. This will be filled with a server and
session handle.

In the default case, a new session and server handle will be allocated, the
connection and session will be started, and the service context will be populated
with these handles.

For connection pooling, a new session handle will be allocated, and the session will
be started over a virtual connection from the connection pool.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-37

For session pooling, the service context will be populated with an existing session
and server handle pair from the session pool.

Do not change any attributes of the server and user and session handles associated
with the service context pointer. Doing so will result in an error being returned by
the OCIAttrSet() call.

The only attribute of the service context that can be altered is
OCI_ATTR_STMTCACHESIZE.

authInfop (IN)
Authentication Information handle to be used while getting the session.

In the default and connection pooling cases, this handle can take all the attributes of
the session handle.

For session pooling, the authentication information handle is considered only if the
session pool mode is not set to OCI_SPC_HOMOGENEOUS. In this case, this
handle can have the following attributes set:

OCI_ATTR_USERNAME

OCI_ATTR_PASSWORD

OCI_ATTR_INITIAL_CLIENT_ROLES

Please refer to user handle attributes for more information.

dbName (IN)
For the default case, this indicates the connect string to use to connect to the Oracle
database server.

For connection pooling, it indicates the connection pool to retrieve the virtual
connection from, in order to start up the session. This value is returned by the
OCIConnectionPoolCreate() call.

For session pooling, it indicates the pool to get the session from. It is returned by the
OCISessionPoolCreate() call.

dbname_len (IN)
The length of dbName. For session pooling and connection pooling, this value is
returned by the call to OCISessionPoolCreate() or
OCIConnectionPoolCreate(), respectively.

See Also: "User Session Handle Attributes" on page A-16

OCISessionGet()

15-38 Oracle Call Interface Programmer's Guide

tagInfo (IN)
This parameter is only used for session pooling.

This indicates the type of session that the user wants. If the user wants a default
session, the user must set this to NULL. Please refer to the Comments for a detailed
usage of this parameter.

tagInfo_len (IN)
The length in bytes, of tagInfo. Used for session pooling only.

retTagInfo (OUT)
This parameter is only used for session pooling. This indicates the type of session
that is returned to the user. Please refer to the Comments for a detailed usage of this
parameter.

retTagInfo_len (OUT)
The length in bytes, of retTagInfo. Used for session pooling only.

found (OUT)
This parameter is only used for session pooling. If the type of session that the user
requested was returned (that is, the value of tagInfo and retTagInfo is the
same), then found is set to TRUE, else, found is set to FALSE.

mode (IN)
The valid modes are

■ OCI_DEFAULT

■ OCI_SESSGET_CPOOL

■ OCI_SESSGET_SPOOL

■ OCI_SESSGET_CREDPROXY

■ OCI_SESSGET_CREDEXT

■ OCI_SESSGET_SPOOL_MATCHANY

■ OCI_SESSGET_STMTCACHE.

In the default (non-pooling) case, the following modes are valid:

OCI_SESSGET_STMTCACHE - This will enable statement caching in the session.

OCI_SESSGET_CREDEXT - This will return a session authenticated with external
credentials.

For connection pooling, the following modes are valid:

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-39

OCI_SESSGET_CPOOL - This must be set in order to use connection pooling.

OCI_SESSGET_STMTCACHE - This will enable statement caching in the session.

OCI_SESSGET_CREDPROXY - This will return a proxy session. The user is given a
session that is authenticated by the username provided in the OCISessionGet()
call, through the proxy credentials supplied in the OCIConnectionPoolCreate()
call.

OCI_SESSGET_CREDEXT - This will return a session authenticated with external
credentials.

For session pooling, the following modes are valid:

OCI_SESSGET_SPOOL - This must be set in order to use session pooling.

 OCI_SESSGET_CREDPROXY - In this case, the user is given a session that is
authenticated by the username provided in the OCISessionGet() call, through
the proxy credentials supplied in the OCISessionPoolCreate() call.

OCI_SESSGET_SPOOL_MATCHANY - This refers to the tagging behavior. If this
mode is set, then a session which has a different tag than what was asked for, may
be returned. Please refer to the Comments section.

Comments
The tags provide a way for users to customize sessions in the pool. A client can get
a default or untagged session from a pool, set certain attributes on the session (such
as Globalization settings), and return the session to the pool, labeling it with an
appropriate tag in the OCISessionRelease() call.

The user, or some other user, can request for a session with the same attributes, and
can do so by providing the same tag in the OCISessionGet() call.

If a user asks for a session with tag 'A', and a matching session is not available, an
appropriately authenticated untagged session (session with a NULL tag) will be
returned, if such a session is free. If even an untagged session is not free and
OCI_SESSGET_SPOOL_MATCHANY has been specified, then an appropriately
authenticated session with a different tag will be returned. If
OCI_SESSGET_SPOOL_MATCHANY is not set, then a session with a different tag
is never returned.

Related Functions
OCISessionRelease(), OCISessionPoolCreate(),
OCISessionPoolDestroy()

OCISessionPoolCreate()

15-40 Oracle Call Interface Programmer's Guide

OCISessionPoolCreate()

Purpose
Initializes a session pool. It starts up sessMin number of sessions and connections
to the database. Before making this call, make a call to OCIHandleAlloc() to
allocate memory for the session pool handle.

Syntax
sword OCISessionPoolCreate (OCIEnv *envhp,
 OCIError *errhp,
 OCISPool *spoolhp,
 OraText **poolName,
 ub4 *poolNameLen,
 CONST OraText *connStr,
 ub4 connStrLen,
 ub4 sessMin,
 ub4 sessMax,
 ub4 sessIncr,
 OraText *userid,
 ub4 useridLen,
 OraText *password,
 ub4 passwordLen,
 ub4 mode);

Parameters

envhp (IN)
A pointer to the environment handle in which the session pool needs to be created.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet().

spoolhp (IN/OUT)
A pointer to the session pool handle that is initialized.

poolName (OUT)
The name of the session pool returned. It is unique across all session pools in an
environment. This value must be passed to the OCISessionGet() call.

poolNameLen (OUT)
Length of poolName in bytes.

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-41

connStr (IN)
The TNS alias of the database to connect to.

connStrLen (IN)
The length of connStr in bytes.

sessMin (IN)
Specifies the minimum number of sessions in the session pool.

This number of sessions are started by OCISessionPoolCreate(). After this,
sessions are opened only when necessary.

This value is used when mode is set to OCI_SPC_HOMOGENEOUS. In all other
cases it is ignored.

sessMax (IN)
Specifies the maximum number of sessions that can be opened in the session pool.
Once this value is reached, no more sessions are opened. The valid values are 1 and
higher.

sessIncr (IN)
Allows applications to set the next increment for sessions to be started if the current
number of sessions are less than sessMax. The valid values are 0 and higher.

sessMin + sessIncr cannot be more than sessMax.

userid (IN)
Specifies the userid with which to start up the sessions.

useridLen (IN)
Length of the userid in bytes.

password (IN)
The password for the corresponding userid.

passwordLen (IN)
The length of the password in bytes.

mode (IN)
The modes supported are

See Also: For more information about this parameter see
"Authentication Note." on page 15-42

OCISessionPoolCreate()

15-42 Oracle Call Interface Programmer's Guide

■ OCI_DEFAULT - for a new session pool creation.

■ OCI_SPC_REINITIALIZE - After creating a session pool, if you wish to change
the pool attributes dynamically (change the sessMin, sessMax, and
sessIncr parameters), call OCISessionPoolCreate() with mode set to
OCI_SPC_REINITIALIZE. When mode is set to OCI_SPC_REINITIALIZE, then
connStr, userid, and password will be ignored.

OCI_SPC_STMTCACHE - an OCI statement cache will be created for the session
pool. If the pool is not created with OCI statement caching turned on, server-side
statement caching will automatically be used. Please note that in general, client-
side statement caching will give better performance.

■ OCI_SPC_HOMOGENEOUS - all sessions in the pool will be authenticated
with the username and password passed to OCISessionPoolCreate(). The
authentication handle (parameter authInfo) passed into OCISessionGet()
is ignored in this case. Moreover, the sessMin and the SessIncr values are
considered only in this case. No proxy session can be created in this mode.

Comments

Authentication Note.
Please note that a session pool may contain two types of connections to the
database: direct connections and proxy connections. To make a proxy connection, a
user must have Connect through Proxy privilege.

When the session pool is created, the userid and password may or may not be
specified. If these values are NULL, no proxy connections can exist in this pool. If
mode is set to OCI_SPC_HOMOGENEOUS, no proxy connection can exist.

A userid and password pair may also be specified through the authentication
handle in the OCISessionGet() call. If this call is made with mode set to
OCI_SESSGET_CREDPROXY, then the user is given a session that is authenticated
by the userid provided in the OCISessionGet() call, through the proxy
credentials supplied in the OCISessionPoolCreate() call. In this case, the
password in the OCISessionGet() call is ignored.

See Also: "Statement Caching in OCI" on page 9-27

See Also: For more information on proxy connections, see

■ Oracle Database SQL Reference

■ Oracle Database Concepts

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-43

If OCISessionGet() is called with mode not set to OCI_SESSGET_CREDPROXY,
then the user gets a direct session which is authenticated by the credentials
provided in the OCISessionGet() call. If none have been provided in this call, the
user gets a session authenticated by the credentials in the
OCISessionPoolCreate() call.

Related Functions
OCISessionRelease(), OCISessionGet(), OCISessionPoolDestroy()

OCISessionPoolDestroy()

15-44 Oracle Call Interface Programmer's Guide

OCISessionPoolDestroy()

Purpose
Destroys a session pool.

Syntax
sword OCISessionPoolDestroy (OCISPool *spoolhp,
 OCIError *errhp,
 ub4 mode);

Parameters

spoolhp (IN/OUT)
The session pool handle for the session pool to be destroyed.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet().

mode (IN)
Currently, OCISessionPoolDestroy() will support modes OCI_DEFAULT and
OCI_SPD_FORCE.

If this call is made with mode set to OCI_SPD_FORCE, and there are active sessions
in the pool, the sessions will be closed and the pool will be destroyed. However, if
this mode is not set, and there are busy sessions in the pool, an error will be
returned.

Related Functions
OCISessionPoolCreate(), OCISessionRelease(), OCISessionGet()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-45

OCISessionRelease()

Purpose
This function is used to release a session that was retrieved using
OCISessionGet(). The exact behavior of this call is determined by the mode in
which the corresponding OCISessionGet() function was called. In the default
case, it will close the session/connection. For connection pooling, it closes the
session and returns the connection to the pool. For session pooling, it returns the
session/connection pair to the pool.

Syntax
sword OCISessionRelease (OCISvcCtx *svchp,
 OCIError *errhp,
 OraText *tag,
 ub4 tag_len,
 ub4 mode);

Parameters

svchp (IN)
The service context that was populated during the corresponding
OCISessionGet() call.

In the default case, the session and connection associated with this handle will be
closed.

In the connection pooling case, the session will be closed and the connection
released to the pool.

For session pooling, the session/connection pair associated with this service context
will be released to the pool.

errhp (IN/OUT)
The OCI error handle.

tag (IN)
This parameter is only used for session pooling.

This parameter will be ignored unless mode OCI_SESSRLS_RETAG is specified. In
this case, the session is labelled with this tag and returned to the pool. If this is
NULL, then the session is not tagged.

OCISessionRelease()

15-46 Oracle Call Interface Programmer's Guide

tag_len (IN)
This parameter is only used for session pooling.

Length of the tag. This is ignored unless mode OCI_SESSRLS_RETAG is set.

mode (IN)
The supported modes are

■ OCI_DEFAULT

■ OCI_SESSRLS_DROPSESS

■ OCI_SESSRLS_RETAG

For the default case and for connection pooling, only OCI_DEFAULT can be used.

OCI_SESSRLS_DROPSESS and OCI_SESSRLS_RETAG are only used for session
pooling.

When OCI_SESSRLS_DROPSESS is specified, the session will be removed from the
session pool.

If and only if OCI_SESSRLS_RETAG is set, will the tag on the session be altered. If
this mode is not set, the tag and tag_len parameters will be ignored.

Comments
In this call the user be careful to pass in the correct tag. If a default session is
requested and the user sets certain properties on this session (probably through an
ALTER SESSION command), then the user must label this session appropriately by
tagging it as such.

If on the other hand, the user requested a tagged session and got one, and has
changed the properties on the session, then the user must pass in a different tag if
appropriate.

For the correct working of the session pool layer the application developer must be
very careful to pass in the correct tag to the OCISessionGet() and
OCISessionRelease() calls.

Related Functions
OCISessionGet(), OCISessionPoolCreate(),
OCISessionPoolDestroy(),OCILogon2()

Connect, Authorize, and Initialize Functions

OCI Relational Functions 15-47

OCITerminate()

Purpose
Detaches the process from the shared memory subsystem and releases the shared
memory.

Syntax
sword OCITerminate (ub4 mode);

Parameters

mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Comments
OCITerminate() should be called only once for each process and is the counter-
part of OCIInitialize() call. The call will try to detach the process from the
shared memory subsystem and shut it down. It also performs additional process
cleanup operations. When two or more processes connecting to the same shared
memory are calling OCITerminate() simultaneously, the fastest one will release
the shared memory subsystem completely and the slower ones will have to termi-
nate.

Related Functions
OCIInitialize()

Handle and Descriptor Functions

15-48 Oracle Call Interface Programmer's Guide

Handle and Descriptor Functions

This section describes the OCI handle and descriptor functions.

Table 15–3 Handle and Descriptor Functions

Function Purpose

OCIAttrGet() on page 15-49 Get the attributes of a handle

OCIAttrSet() on page 15-52 Set an attribute of a handle or descriptor

OCIDescriptorAlloc() on page 15-54 Allocate and initialize a descriptor or LOB locator

OCIDescriptorFree() on page 15-57 Free a previously allocated descriptor

OCIHandleAlloc() on page 15-59 Allocate and initialize a handle

OCIHandleFree() on page 15-62 Free a previously allocated handle

OCIParamGet() on page 15-64 Get a parameter descriptor

OCIParamSet() on page 15-66 Set parameter descriptor in COR handle

Handle and Descriptor Functions

OCI Relational Functions 15-49

OCIAttrGet()

Purpose
This call is used to get a particular attribute of a handle.

Syntax
sword OCIAttrGet (CONST dvoid *trgthndlp,
 ub4 trghndltyp,
 dvoid *attributep,
 ub4 *sizep,
 ub4 attrtype,
 OCIError *errhp);

Parameters

trgthndlp (IN)
Pointer to a handle type. The actual handle can be a statement handle, a session
handle, and so on. When this call is used to get encoding, users are allowed to check
against either an environment or statement handle.

trghndltyp (IN)
The handle type. Valid types are:

■ OCI_DTYPE_PARAM, for a parameter descriptor

■ OCI_HTYPE_STMT, for a statement handle

■ Any handle type in Table 2–1, "OCI Handle Types".

attributep (OUT)
Pointer to the storage for an attribute value. Will be in the encoding specified by the
charset parameter of a previous call to OCIEnvNlsCreate().

sizep (OUT)
 The size of the attribute value, always in bytes because attributep is a dvoid
pointer. This can be passed as NULL for most attributes because the sizes of
non-string attributes are already known by the OCI library. For text* parameters,
a pointer to a ub4 must be passed in to get the length of the string.

attrtype (IN)
The type of attribute being retrieved. The types are listed in this document at:

OCIAttrGet()

15-50 Oracle Call Interface Programmer's Guide

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
This call is used to get a particular attribute of a handle. OCI_DTYPE_PARAM is
used to do implicit and explicit describes. The parameter descriptor is also used in
direct path loading. For implicit describes, the parameter descriptor has the column
description for each select list. For explicit describes, the parameter descriptor has
the describe information for each schema object we are trying to describe. If the
top-level parameter descriptor has an attribute which is itself a descriptor, use
OCI_ATTR_PARAM as the attribute type in the subsequent call to
OCIAttrGet()to get the Unicode information in an environment or statement
handle.

A function closely related to OCIAttrGet() is OCIDescribeAny(), which is a
generic describe call that describes existing schema objects: tables, views,
synonyms, procedures, functions, packages, sequences, and types. As a result of this
call, the describe handle is populated with the object-specific attributes which can
be obtained through an OCIAttrGet() call.

Then an OCIParamGet() on the describe handle returns a parameter descriptor for
a specified position. Parameter positions begin with 1. Calling OCIAttrGet() on
the parameter descriptor returns the specific attributes of a stored procedure or
function parameter or a table column descriptor as the case may be. These
subsequent calls do not need an extra round trip to the server because the entire
schema object description is cached on the client side by OCIDescribeAny().
Calling OCIAttrGet() on the describe handle can also return the total number of
positions.

In UTF-16 mode, particularly when executing a loop, try to reuse the same pointer
variable corresponding to an attribute and copy the contents to local variables after
OCIAttrGet() is called. If multiple pointers are used for the same attribute, a
memory leak can occur.

See Also: See Appendix A, "Handle and Descriptor Attributes",
for a list of handle types and their readable attributes

See Also: "Examples Using OCIDescribeAny()" on page 6-25 and
"Describing Select-list Items" on page 4-11

Handle and Descriptor Functions

OCI Relational Functions 15-51

Related Functions
OCIAttrSet()

OCIAttrSet()

15-52 Oracle Call Interface Programmer's Guide

OCIAttrSet()

Purpose
This call is used to set a particular attribute of a handle or a descriptor.

Syntax
sword OCIAttrSet (dvoid *trgthndlp,
 ub4 trghndltyp,
 dvoid *attributep,
 ub4 size,
 ub4 attrtype,
 OCIError *errhp);

Parameters

trgthndlp (IN/OUT)
Pointer to a handle type whose attribute gets modified.

trghndltyp (IN/OUT)
The handle type.

attributep (IN)
Pointer to an attribute value. The attribute value is copied into the target handle. If
the attribute value is a pointer, then only the pointer is copied, not the contents of
the pointer. String attributes must be in the encoding specified by the charset
parameter of a previous call to OCIEnvNlsCreate().

size (IN)
The size of an attribute value. This can be passed in as 0 for most attributes as the
size is already known by the OCI library. For text* attributes, a ub4 must be
passed in set to the length of the string in bytes, regardless of encoding.

attrtype (IN)
The type of attribute being set.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Handle and Descriptor Functions

OCI Relational Functions 15-53

Comments
See Appendix A, "Handle and Descriptor Attributes", for a list of handle types and
their writable attributes.

Related Functions
OCIAttrGet()

OCIDescriptorAlloc()

15-54 Oracle Call Interface Programmer's Guide

OCIDescriptorAlloc()

Purpose
Allocates storage to hold descriptors or LOB locators.

Syntax
sword OCIDescriptorAlloc (CONST dvoid *parenth,
 dvoid **descpp,
 ub4 type,
 size_t xtramem_sz,
 dvoid **usrmempp);

Parameters

parenth (IN)
An environment handle.

descpp (OUT)
Returns a descriptor or LOB locator of desired type.

type (IN)
Specifies the type of descriptor or LOB locator to be allocated:

■ OCI_DTYPE_SNAP - specifies generation of snapshot descriptor of C type
OCISnapshot

■ OCI_DTYPE_LOB - specifies generation of a LOB value type locator (for a BLOB
or CLOB) of C type OCILobLocator

■ OCI_DTYPE_FILE - specifies generation of a FILE value type locator of C type
OCILobLocator.

■ OCI_DTYPE_ROWID - specifies generation of a ROWID descriptor of C type
OCIRowid.

■ OCI_DTYPE_DATE - specifies generation of an ANSI DATE descriptor of C type
OCIDateTime

■ OCI_DTYPE_TIMESTAMP - specifies generation of a TIMESTAMP descriptor of
C type OCIDateTime

■ OCI_DTYPE_TIMESTAMP_TZ - specifies generation of a TIMESTAMP WITH
TIME ZONE descriptor of C type OCIDateTime

Handle and Descriptor Functions

OCI Relational Functions 15-55

■ OCI_DTYPE_TIMESTAMP_LTZ - specifies generation of a TIMESTAMP WITH
LOCAL TIME ZONE descriptor of C type OCIDateTime

■ OCI_DTYPE_INTERVAL_YM - specifies generation of an INTERVAL YEAR TO
MONTH descriptor of C type OCIInterval

■ OCI_DTYPE_INTERVAL_DS - specifies generation of an INTERVAL DAY TO
SECOND descriptor of C type OCIInterval

■ OCI_DTYPE_COMPLEXOBJECTCOMP - specifies generation of a complex
object retrieval descriptor of C type OCIComplexObjectComp.

■ OCI_DTYPE_AQENQ_OPTIONS - specifies generation of an Advanced
Queuing enqueue options descriptor of C type OCIAQEnqOptions.

■ OCI_DTYPE_AQDEQ_OPTIONS - specifies generation of an Advanced
Queuing dequeue options descriptor of C type OCIAQDeqOptions.

■ OCI_DTYPE_AQMSG_PROPERTIES - specifies generation of an Advanced
Queuing message properties descriptor of C type OCIAQMsgProperties.

■ OCI_DTYPE_AQAGENT - specifies generation of an Advanced Queuing agent
descriptor of C type OCIAQAgent.

xtramem_sz (IN)
Specifies an amount of user memory to be allocated for use by the application for
the lifetime of the descriptor.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for
the user for the lifetime of the descriptor.

Comments
Returns a pointer to an allocated and initialized descriptor, corresponding to the
type specified in type. A non-NULL descriptor or LOB locator is returned on
success. No diagnostics are available on error.

This call returns OCI_SUCCESS if successful, or OCI_INVALID_HANDLE if an
out-of-memory error occurs.

See Also: For more information about the xtramem_sz
parameter and user memory allocation, refer to "User Memory
Allocation" on page 2-18

OCIDescriptorAlloc()

15-56 Oracle Call Interface Programmer's Guide

Related Functions
OCIDescriptorFree()

Handle and Descriptor Functions

OCI Relational Functions 15-57

OCIDescriptorFree()

Purpose
Deallocates a previously allocated descriptor.

Syntax
sword OCIDescriptorFree (dvoid *descp,
 ub4 type);

Parameters

descp (IN)
An allocated descriptor.

type (IN)
Specifies the type of storage to be freed. The specific types are:

■ OCI_DTYPE_SNAP - snapshot descriptor

■ OCI_DTYPE_LOB - a LOB value type descriptor

■ OCI_DTYPE_FILE - a FILE value type descriptor

■ OCI_DTYPE_ROWID - a ROWID descriptor

■ OCI_DTYPE_DATE - an ANSI DATE descriptor

■ OCI_DTYPE_PARAM - a parameter descriptor

■ OCI_DTYPE_TIMESTAMP - a TIMESTAMP descriptor

■ OCI_DTYPE_TIMESTAMP_TZ - a TIMESTAMP WITH TIME ZONE descriptor

■ OCI_DTYPE_TIMESTAMP_LTZ - a TIMESTAMP WITH LOCAL TIME ZONE
descriptor

■ OCI_DTYPE_INTERVAL_YM - an INTERVAL YEAR TO MONTH descriptor

■ OCI_DTYPE_INTERVAL_DS - an INTERVAL DAY TO SECOND descriptor

■ OCI_DTYPE_COMPLEXOBJECTCOMP - a complex object retrieval descriptor

■ OCI_DTYPE_AQENQ_OPTIONS - an AQ enqueue options descriptor

■ OCI_DTYPE_AQDEQ_OPTIONS - an AQ dequeue options descriptor

■ OCI_DTYPE_AQMSG_PROPERTIES - an AQ message properties descriptor

OCIDescriptorFree()

15-58 Oracle Call Interface Programmer's Guide

■ OCI_DTYPE_AQAGENT - an AQ agent descriptor

Comments
This call frees storage associated with a descriptor. Returns OCI_SUCCESS or
OCI_INVALID_HANDLE. All descriptors may be explicitly deallocated, however
the OCI will deallocate a descriptor if the environment handle is deallocated.

Related Functions
OCIDescriptorAlloc()

Handle and Descriptor Functions

OCI Relational Functions 15-59

OCIHandleAlloc()

Purpose
This call returns a pointer to an allocated and initialized handle.

Syntax
sword OCIHandleAlloc (CONST dvoid *parenth,
 dvoid **hndlpp,
 ub4 type,
 size_t xtramem_sz,
 dvoid **usrmempp);

Parameters

parenth (IN)
An environment handle.

hndlpp (OUT)
Returns a handle.

type (IN)
Specifies the type of handle to be allocated. The allowed types are:

■ OCI_HTYPE_AUTHINFO - specifies generation of a authentication information
handle of C type OCIAuthInfo

■ OCI_HTYPE_COMPLEXOBJECT - specifies generation of a complex object
retrieval handle of C type OCIComplexObject

■ OCI_HTYPE_SECURITY - specifies generation of a security handle of C type
OCISecurity

■ OCI_HTYPE_CPOOL - specifies generation of a connection pooling handle of C
type OCICPool

■ OCI_HTYPE_DIRPATH_CTX - specifies a generation of a direct path context
handle of C type OCIDirPathCtx

■ OCI_HTYPE_DIRPATH_COLUMN_ARRAY - specifies a generation of a direct
path column array handle of C type OCIDirPathColArray

■ OCI_HTYPE_DIRPATH_STREAM - specifies a generation of a direct path
stream handle of C type OCIDirPathStream

OCIHandleAlloc()

15-60 Oracle Call Interface Programmer's Guide

■ OCI_HTYPE_ENV - specifies generation of an environment handle of C type
OCIEnv

■ OCI_HTYPE_ERROR - specifies generation of an error report handle of C type
OCIError

■ OCI_HTYPE_SVCCTX - specifies generation of a service context handle of C
type OCISvcCtx

■ OCI_HTYPE_STMT - specifies generation of a statement (application request)
handle of C type OCIStmt

■ OCI_HTYPE_DESCRIBE - specifies generation of a select list description handle
of C type OCIDescribe

■ OCI_HTYPE_SERVER - specifies generation of a server context handle of C
type OCIServer

■ OCI_HTYPE_SESSION - specifies generation of a user session handle of C type
OCISession

■ OCI_HTYPE_TRANS - specifies generation of a transaction context handle of C
type OCITrans

■ OCI_HTYPE_SPOOL - specifies generation of a session pool handle of type
OCISPool

■ OCI_HTYPE_SUBSCR - specifies a generation of a subscription handle of C
type OCISubscription

■ OCI_HTYPE_PROCESS - specifies a generation of a process handle of C type
OCIProcess

xtramem_sz (IN)
Specifies an amount of user memory to be allocated.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for
the user.

Comments
Returns a pointer to an allocated and initialized handle, corresponding to the type
specified in type. A non-NULL handle is returned on success. All handles are
allocated with respect to an environment handle which is passed in as a parent
handle.

Handle and Descriptor Functions

OCI Relational Functions 15-61

No diagnostics are available on error. This call returns OCI_SUCCESS if successful,
or OCI_INVALID_HANDLE if an error occurs.

Handles must be allocated using OCIHandleAlloc() before they can be passed
into an OCI call.

To allocate and initialize an environment handle, call OCIEnvInit().

Related Functions
OCIHandleFree(), OCIEnvInit()

See Also: For more information about using the xtramem_sz
parameter for user memory allocation, refer to "User Memory
Allocation" on page 2-18

OCIHandleFree()

15-62 Oracle Call Interface Programmer's Guide

OCIHandleFree()

Purpose
This call explicitly deallocates a handle.

Syntax
sword OCIHandleFree (dvoid *hndlp,
 ub4 type);

Parameters

hndlp (IN)
A handle allocated by OCIHandleAlloc().

type (IN)
Specifies the type of storage to be freed. The specific types are:

■ OCI_HTYPE_CPOOL - a connection pool handle

■ OCI_HTYPE_ENV - an environment handle

■ OCI_HTYPE_ERROR - an error report handle

■ OCI_HTYPE_SVCCTX - a service context handle

■ OCI_HTYPE_STMT - a statement (application request) handle

■ OCI_HTYPE_DESCRIBE - a select list description handle

■ OCI_HTYPE_SERVER - a server handle

■ OCI_HTYPE_SESSION - a user session handle

■ OCI_HTYPE_TRANS - a transaction handle

■ OCI_HTYPE_COMPLEXOBJECT - a complex object retrieval handle

■ OCI_HTYPE_SECURITY - a security handle

■ OCI_HTYPE_SUBSCR - a subscription handle

■ OCI_HTYPE_DIRPATH_CTX - direct path context handle

■ OCI_HTYPE_DIRPATH_COLUMN_ARRAY - direct path column array handle

■ OCI_HTYPE_DIRPATH_STREAM - direct path stream handle

Handle and Descriptor Functions

OCI Relational Functions 15-63

■ OCI_HTYPE_PROCESS - process handle

Comments
This call frees up storage associated with a handle, corresponding to the type
specified in the type parameter.

This call returns either OCI_SUCCESS or OCI_INVALID_HANDLE.

All handles may be explicitly deallocated. The OCI will deallocate a child handle if
the parent is deallocated.

Related Functions
OCIHandleAlloc(), OCIEnvInit()

OCIParamGet()

15-64 Oracle Call Interface Programmer's Guide

OCIParamGet()

Purpose
Returns a descriptor of a parameter specified by position in the describe handle or
statement handle.

Syntax
sword OCIParamGet (CONST dvoid *hndlp,
 ub4 htype,
 OCIError *errhp,
 dvoid **parmdpp,
 ub4 pos);

Parameters

hndlp (IN)
A statement handle or describe handle. The OCIParamGet() function will return a
parameter descriptor for this handle.

htype (IN)
The type of the handle passed in the hndlp parameter. Valid types are:

■ OCI_DTYPE_PARAM, for a parameter descriptor

■ OCI_HTYPE_COMPLEXOBJECT, for a complex object retrieval handle

■ OCI_HTYPE_STMT, for a statement handle

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

parmdpp (OUT)
A descriptor of the parameter at the position given in the pos parameter, of handle
type OCI_DTYPE_PARAM.

pos (IN)
Position number in the statement handle or describe handle. A parameter
descriptor will be returned for this position.

Handle and Descriptor Functions

OCI Relational Functions 15-65

Comments
This call returns a descriptor of a parameter specified by position in the describe
handle or statement handle. Parameter descriptors are always allocated internally
by the OCI library. They can be freed using OCIDescriptorFree(). For example,
if you fetch the same column metadata for every execution of a statement, then the
program will leak memory unless you explicitly free the parameter descriptor
between each call to OCIParamGet().

Related Functions
OCIAttrGet(), OCIAttrSet(), OCIParamSet(), OCIDescriptorFree()

Note: OCI_ERROR is returned if there are no parameter
descriptors for this position.

See Also: See Appendix A, "Handle and Descriptor Attributes",
for more detailed information about parameter descriptor
attributes.

OCIParamSet()

15-66 Oracle Call Interface Programmer's Guide

OCIParamSet()

Purpose
Used to set a complex object retrieval (COR) descriptor into a COR handle.

Syntax
sword OCIParamSet (dvoid *hndlp,
 ub4 htype,
 OCIError *errhp,
 CONST dvoid *dscp,
 ub4 dtyp,
 ub4 pos);

Parameters

hndlp (IN/OUT)
Handle pointer.

htype (IN)
Handle type.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

dscp (IN)
Complex object retrieval descriptor pointer.

dtyp (IN)
Descriptor type. The descriptor type for a COR descriptor is
OCI_DTYPE_COMPLEXOBJECTCOMP.

pos (IN)
Position number.

Comments
The COR handle must have been previously allocated using OCIHandleAlloc(),
and the descriptor must have been previously allocated using
OCIDescriptorAlloc(). Attributes of the descriptor are set using
OCIAttrSet().

Handle and Descriptor Functions

OCI Relational Functions 15-67

Related Functions
OCIParamGet()

See Also: For more information about complex object retrieval,
see "Complex Object Retrieval" on page 10-21.

Bind, Define, and Describe Functions

15-68 Oracle Call Interface Programmer's Guide

Bind, Define, and Describe Functions

This section describes the bind, define, and describe functions.

Table 15–4 Bind, Define, and Describe Functions

Function Purpose

OCIBindArrayOfStruct() on page 15-69 Set skip parameters for static array bind

OCIBindByName() on page 15-71 Bind by name

OCIBindByPos() on page 15-77 Bind by position

OCIBindDynamic() on page 15-82 Sets additional attributes after bind with
OCI_DATA_AT_EXEC mode

OCIBindObject() on page 15-87 Set additional attributes for bind of named datatype

OCIDefineArrayOfStruct() on page 15-90 Set additional attributes for static array define

OCIDefineByPos() on page 15-92 Define an output variable association

OCIDefineDynamic() on page 15-97 Sets additional attributes for define in
OCI_DYNAMIC_FETCH mode

OCIDefineObject() on page 15-100 Set additional attributes for define of named datatype

OCIDescribeAny() on page 15-102 Describe existing schema objects

OCIStmtGetBindInfo() on page 15-105 Get bind and indicator variable names and handle

Bind, Define, and Describe Functions

OCI Relational Functions 15-69

OCIBindArrayOfStruct()

Purpose
This call sets up the skip parameters for a static array bind.

Syntax
sword OCIBindArrayOfStruct (OCIBind *bindp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 alskip,
 ub4 rcskip);

Parameters

bindp (IN/OUT)
The handle to a bind structure.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator value or structure.

alskip (IN)
Skip parameter for the next actual length value.

rcskip (IN)
Skip parameter for the next column-level return code value.

Comments
This call sets up the skip parameters necessary for a static array bind. It follows a
call to OCIBindByName() or OCIBindByPos(). The bind handle returned by that
initial bind call is used as a parameter for the OCIBindArrayOfStruct() call.

OCIBindArrayOfStruct()

15-70 Oracle Call Interface Programmer's Guide

Related Functions
OCIBindByName(), OCIBindByPos()

See Also: For information about skip parameters, see the section
"Binding and Defining Arrays of Structures in OCI" on page 5-23.

Bind, Define, and Describe Functions

OCI Relational Functions 15-71

OCIBindByName()

Purpose
Creates an association between a program variable and a placeholder in a SQL
statement or PL/SQL block.

Syntax
sword OCIBindByName (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 CONST text *placeholder,
 sb4 placeh_len,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
A pointer to save the pointer of a bind handle which is implicitly allocated by this
call. The bind handle maintains all the bind information for this particular input
value. The default encoding for the call depends on the UTF-16 setting in stmtp
unless the mode parameter has a different value. The handle is freed implicitly
when the statement handle is deallocated. On input, the value of the pointer must
be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

OCIBindByName()

15-72 Oracle Call Interface Programmer's Guide

placeholder (IN)
The placeholder, specified by its name, which maps to a variable in the statement
associated with the statement handle. The encoding of placeholder should
always be consistent with that of the environment. That is, if the statement is
prepared in UTF-16, so is the placeholder. As a string type parameter, it should be
cast as (text *) and terminated with NULL.

placeh_len (IN)
The length of the name specified in placeholder, in number of bytes regardless of the
encoding.

valuep (IN/OUT)
The pointer to a data value or an array of data values of the type specified in the
dty parameter. This data could be a UTF-16 (formerly known as UCS-2) string, if an
OCIAttrSet() function has been called to set OCI_ATTR_CHARSET_ID as
OCI_UTF16ID or the deprecated OCI_UCS2ID. OCI_UTF16ID is the new
designation for OCI_UCS2ID.

Furthermore, as pointed out for OCIStmtPrepare(), the default encoding for the
string type valuep will be in the encoding specified by the charset parameter of
a previous call to OCIEnvNlsCreate(), unless users call OCIAttrSet() to
manually reset the character set for the bind handle.

An array of data values can be specified for mapping into a PL/SQL table or for
providing data for SQL multiple-row operations. When an array of bind values is
provided, this is called an array bind in OCI terms.

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers
to OUT buffers are set in the pgvpp parameter initialized by OCIBindObject().

value_sz(IN)
The size in bytes of the data value pointed to by dvoid pointer valuep. Although
the bind buffer valuep could be of string type, the length is measured in number of
bytes because the pointer passed down is of (dvoid *) type. In the case of an
array bind, this is the maximum size of any element possible with the actual sizes
being specified in the alenp parameter.

For descriptors, locators, or REFs, whose size is unknown to client applications use
the size of the structure you are passing in; sizeof(OCILobLocator *).

See Also: Refer to OCI_ATTR_CHARSET_ID on page A-36.

Bind, Define, and Describe Functions

OCI Relational Functions 15-73

dty (IN)
The datatype of the value(s) being bound. Named datatypes (SQLT_NTY) and REFs
(SQLT_REF) are valid only if the application has been initialized in object mode. For
named datatypes, or REFs, additional calls must be made with the bind handle to
set up the datatype-specific attributes.

indp (IN/OUT)
Pointer to an indicator variable or array. For all datatypes except SQLT_NTY, this is
a pointer to sb2 or an array of sb2s.

For SQLT_NTY, this pointer is ignored and the actual pointer to the indicator
structure or an array of indicator structures is initialized in a subsequent call to
OCIBindObject(). This parameter is ignored for dynamic binds.

alenp (IN/OUT)
Pointer to array of actual lengths of array elements. Each element in alenp is the
length of the data in the corresponding element in the bind value array before and
after the execute. The length should be in bytes for strings passed in as a text type.
This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to array of column level return codes. This parameter is ignored for
dynamic binds.

maxarr_len (IN)
The maximum possible number of elements of type dty in a PL/SQL binds. This
parameter is not required for non-PL/SQL binds. If maxarr_len is nonzero, then
either OCIBindDynamic() or OCIBindArrayOfStruct() can be invoked to set
up additional bind attributes.

curelep (IN/OUT)
A pointer to the actual number of elements. This parameter is only required for
PL/SQL binds.

mode (IN)
To maintain coding consistency, theoretically, this parameter can take all three
possible values used by OCIStmtPrepare(). Since the encoding of bind variables
should always be same as that of the statement containing this variable, an error
will be raised if the user specify an encoding other than that of the statement. So the

See Also: "Indicator Variables" on page 2-30

OCIBindByName()

15-74 Oracle Call Interface Programmer's Guide

recommended setting for mode is OCI_DEFAULT, which will make the bind
variable have the same encoding as its statement.

The valid modes are:

■ OCI_DEFAULT - The default mode. The statement handle stmtp uses
whatever is specified by its parent environment handle.

■ OCI_BIND_SOFT - Soft bind mode. This mode increases the performance of the
call. If this is the first bind or some input value like dty or value_sz is
changed from the previous bind, this mode is ignored. An error is returned if
the statement is not executed. Unexpected behavior results if the bind handle
passed is not valid.

■ OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter
defines the maximum size of the data that can ever be provided at runtime. The
application must be ready to provide the OCI library runtime IN data buffers at
any time and any number of times. Runtime data is provided in one of these
two ways:

■ Callbacks using a user-defined function which must be registered with a
subsequent call to OCIBindDynamic().

■ A polling mechanism using calls supplied by the OCI. This mode is
assumed if no callbacks are defined.

When mode is set to OCI_DATA_AT_EXEC, do not provide values for valuep,
indp, alenp, and rcodep in the main call. Pass zeroes for indp and alenp.
Provide the values through the callback function registered using
OCIBindDynamic().

When the allocated buffers are not required any more, they should be freed by
the client.

Comments
This call is used to perform a basic bind operation. The bind creates an association
between the address of a program variable and a placeholder in a SQL statement or
PL/SQL block. The bind call also specifies the type of data which is being bound,
and may also indicate the method by which data will be provided at runtime.

See Also: For more information about using the
OCI_DATA_AT_EXEC mode, see the section "Runtime Data
Allocation and Piecewise Operations in OCI" on page 5-40.

Bind, Define, and Describe Functions

OCI Relational Functions 15-75

Encoding is determined by either the bind handle using the setting in the statement
handle as default, or you can override the setting by specifying the mode parameter
explicitly.

This function also implicitly allocates the bind handle indicated by the bindpp
parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that this
points to a valid handle that has been previously allocated with a call to
OCIHandleAlloc() or OCIBindByName().

Data in an OCI application can be bound to placeholders statically or dynamically.
Binding is static when all the IN bind data and the OUT bind buffers are
well-defined just before the execute. Binding is dynamic when the IN bind data and
the OUT bind buffers are provided by the application on demand at execute time to
the client library. Dynamic binding is indicated by setting the mode parameter of
this call to OCI_DATA_AT_EXEC.

Both OCIBindByName() and OCIBindByPos() take as a parameter a bind
handle, which is implicitly allocated by the bind call A separate bind handle is
allocated for each placeholder the application is binding.

Additional bind calls may be required to specify particular attributes necessary
when binding certain datatypes or handling input data in certain ways:

■ If arrays of structures are being utilized, OCIBindArrayOfStruct() must be
called to set up the necessary skip parameters.

■ If data is being provided dynamically at runtime, and the application will be
using user-defined callback functions, OCIBindDynamic() must be called to
register the callbacks.

■ If lengths in alenp greater than 64 Kbytes are required, use
OCIBindDynamic().

■ If a named datatype is being bound, OCIBindObject() must be called to
specify additional necessary information.

Note: After using OCIEnvNlsCreate() to create the
environment handle, the actual lengths and returned lengths of
bind and define handles are always in number of bytes.

See Also: For more information about dynamic binding, see the
section "Runtime Data Allocation and Piecewise Operations in
OCI" on page 5-40

OCIBindByName()

15-76 Oracle Call Interface Programmer's Guide

■ If a statement with RETURNING clause is used, a call to OCIBindDynamic()
must follow this call.

Related Functions
OCIBindDynamic(), OCIBindObject(), OCIBindArrayOfStruct()

Bind, Define, and Describe Functions

OCI Relational Functions 15-77

OCIBindByPos()

Purpose
Creates an association between a program variable and a placeholder in a SQL
statement or PL/SQL block.

Syntax
sword OCIBindByPos (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 ub4 position,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
An address of a bind handle which is implicitly allocated by this call. The bind
handle maintains all the bind information for this particular input value. The
handle is freed implicitly when the statement handle is deallocated. On input, the
value of the pointer must be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

position (IN)
The placeholder attributes are specified by position if OCIBindByPos() is being
called.

OCIBindByPos()

15-78 Oracle Call Interface Programmer's Guide

valuep (IN/OUT)
An address of a data value or an array of data values of the type specified in the
dty parameter. An array of data values can be specified for mapping into a PL/SQL
table or for providing data for SQL multiple-row operations. When an array of bind
values is provided, this is called an array bind in OCI terms.

For a LOB, the buffer pointer must be a pointer to a LOB locator of type
OCILobLocator. Give the address of the pointer.

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers
to OUT buffers are set in the pgvpp parameter initialized by OCIBindObject().

If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the
deprecated OCI_UCS2ID, which is retained for backward compatibility), all data
passed to and received with the corresponding bind call is assumed to be in UTF-16
encoding.

value_sz (IN)
The size of a data value. In the case of an array bind, this is the maximum size of
any element possible with the actual sizes being specified in the alenp parameter.

For descriptors, locators, or REFs, whose size is unknown to client applications, use
the size of the structure you are passing in: for example, sizeof (OCILobLocator
*).

For a PL/SQL block, a value_sz greater than the width of a CHAR column will
cause an error, because of how PL/SQL processes the CHAR dataype.

dty (IN)
The datatype of the value(s) being bound. Named datatypes (SQLT_NTY) and REFs
(SQLT_REF) are valid only if the application has been initialized in object mode. For
named datatypes, or REFs, additional calls must be made with the bind handle to
set up the datatype-specific attributes.

indp (IN/OUT)
Pointer to an indicator variable or array. For all datatypes, this is a pointer to sb2 or
an array of sb2s. The only exception is SQLT_NTY, when this pointer is ignored and
the actual pointer to the indicator structure or an array of indicator structures is
initialized by OCIBindObject(). Ignored for dynamic binds.

See Also: OCI_ATTR_CHARSET_ID on page A-36.

See Also: See the section "Indicator Variables" on page 2-30

Bind, Define, and Describe Functions

OCI Relational Functions 15-79

alenp (IN/OUT)
Pointer to array of actual lengths of array elements. Each element in alenp is the
length (in bytes, unless the data in valuep is in Unicode, when it is in codepoints)
of the data in the corresponding element in the bind value array before and after the
execute. This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to array of column level return codes. This parameter is ignored for
dynamic binds.

maxarr_len (IN)
The maximum possible number of elements of type dty in a PL/SQL binds. This
parameter is not required for non-PL/SQL binds. If maxarr_len is nonzero, then
either OCIBindDynamic() or OCIBindArrayOfStruct() can be invoked to set
up additional bind attributes.

curelep (IN/OUT)
A pointer to the actual number of elements. This parameter is only required for
PL/SQL binds.

mode (IN)
The valid modes for this parameter are:

■ OCI_DEFAULT - This is default mode.

■ OCI_BIND_SOFT - Soft bind mode. This mode increases the performance of the
call. If this is the first bind or some input value like dty or value_sz is
changed from the previous bind, this mode is ignored. An error is returned if
the statement is not executed. Unexpected behavior results if the bind handle
passed is not valid.

■ OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter
defines the maximum size of the data that can ever be provided at runtime. The
application must be ready to provide the OCI library runtime IN data buffers at
any time and any number of times. Runtime data is provided in one of the two
ways:

■ Callbacks using a user-defined function which must be registered with a
subsequent call to OCIBindDynamic().

Note: If alenp is less than value_sz, data will be skipped.

OCIBindByPos()

15-80 Oracle Call Interface Programmer's Guide

■ A polling mechanism using calls supplied by the OCI. This mode is
assumed if no callbacks are define.

When mode is set to OCI_DATA_AT_EXEC, do not provide values for valuep,
indp, alenp, and rcodep in the main call. Pass zeroes for indp and alenp.
Provide the values through the callback function registered using
OCIBindDynamic().

When the allocated buffers are not required any more, they should be freed by
the client.

Comments
This call is used to perform a basic bind operation. The bind creates an association
between the address of a program variable and a placeholder in a SQL statement or
PL/SQL block. The bind call also specifies the type of data which is being bound,
and may also indicate the method by which data will be provided at runtime.

This function also implicitly allocates the bind handle indicated by the bindpp
parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that this
points to a valid handle that has been previously allocated with a call to
OCIHandleAlloc() or OCIBindByPos().

Data in an OCI application can be bound to placeholders statically or dynamically.
Binding is static when all the IN bind data and the OUT bind buffers are
well-defined just before the execute. Binding is dynamic when the IN bind data and
the OUT bind buffers are provided by the application on demand at execute time to
the client library. Dynamic binding is indicated by setting the mode parameter of
this call to OCI_DATA_AT_EXEC.

See Also: For more information about using the
OCI_DATA_AT_EXEC mode, see the section "Runtime Data
Allocation and Piecewise Operations in OCI" on page 5-40.

Note: After using OCIEnvNlsCreate() to create the
environment handle, the actual lengths and returned lengths of
bind and define handles are always in number of bytes.

See Also: For more information about dynamic binding, see the
section "Runtime Data Allocation and Piecewise Operations in
OCI" on page 5-40.

Bind, Define, and Describe Functions

OCI Relational Functions 15-81

Both OCIBindByName() and OCIBindByPos() take as a parameter a bind
handle, which is implicitly allocated by the bind call A separate bind handle is
allocated for each placeholder the application is binding.

Additional bind calls may be required to specify particular attributes necessary
when binding certain datatypes or handling input data in certain ways:

■ If arrays of structures are being utilized, OCIBindArrayOfStruct() must be
called to set up the necessary skip parameters.

■ If data is being provided dynamically at runtime, and the application will be
using user-defined callback functions, OCIBindDynamic() must be called to
register the callbacks.

■ If lengths in alenp greater than 64Kbytes are required, use
OCIBindDynamic().

■ If a named datatype is being bound, OCIBindObject() must be called to
specify additional necessary information.

■ If a statement with RETURNING clause is used, a call to OCIBindDynamic()
must follow this call.

Related Functions
OCIBindDynamic(), OCIBindObject(), OCIBindArrayOfStruct()

OCIBindDynamic()

15-82 Oracle Call Interface Programmer's Guide

OCIBindDynamic()

Purpose
This call is used to register user callbacks for dynamic data allocation.

Syntax
sword OCIBindDynamic (OCIBind *bindp,
 OCIError *errhp,
 dvoid *ictxp,
 OCICallbackInBind (icbfp)(/*_
 dvoid *ictxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 dvoid **bufpp,
 ub4 *alenp,
 ub1 *piecep,
 dvoid **indpp */),
 dvoid *octxp,
 OCICallbackOutBind (ocbfp)(/*_
 dvoid *octxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 dvoid **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 dvoid **indpp,
 ub2 **rcodepp _*/));

Parameters

bindp (IN/OUT)
A bind handle returned by a call to OCIBindByName() or OCIBindByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

ictxp (IN)
The context pointer required by the call back function icbfp.

Bind, Define, and Describe Functions

OCI Relational Functions 15-83

icbfp (IN)
The callback function which returns a pointer to the IN bind value or piece at run
time. The callback takes in the following parameters:

ictxp (IN/OUT)
The context pointer for this callback function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
0-based execute iteration value.

index (IN)
Index of the current array, for an array bind in PL/SQL. For SQL it is the row
index. The value is 0-based and not greater than curelep parameter of the
bind call.

bufpp (OUT)
The pointer to the buffer or storage. For descriptors, *bufpp contains a pointer
to the descriptor. For example if you define

OCILOBLocator *lobp;

then you would set *bufpp to lobp not *lobp.

For REFs, pass the address of the ref; that is, pass &my_ref for *bufpp.

If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the
deprecated OCI_UCS2ID, which is retained for backward compatibility), all data
passed to and received with the corresponding bind call is assumed to be in UTF-16
encoding.

alenp (OUT)
A pointer to a storage for OCI to fill in the size of the bind value/piece after it
has been read. For descriptors, pass the size of the pointer to the descriptor; for
example, sizeof(OCILobLocator *).

piecep (OUT)
Which piece of the bind value. This can be one of the following values
OCI_ONE_PIECE, OCI_FIRST_PIECE, OCI_NEXT_PIECE and

See Also: OCI_ATTR_CHARSET_ID on page A-36.

OCIBindDynamic()

15-84 Oracle Call Interface Programmer's Guide

OCI_LAST_PIECE. For datatypes that do not support piecewise operations, you
must pass OCI_ONE_PIECE or an error will be generated.

indp (OUT)
Contains the indicator value. This is a pointer to either an sb2 value or a pointer
to an indicator structure for binding named datatypes.

octxp (IN)
The context pointer required by the callback function ocbfp.

ocbfp (IN)
The callback function which returns a pointer to the OUT bind value or piece at run
time. The callback takes in the following parameters:

octxp (IN/OUT)
The context pointer for this call back function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
0-based execute iteration value.

index (IN)
For PL/SQL index of the current array, for an array bind. For SQL, the index is
the row number in the current iteration. It is 0-based, and must not be greater
than curelep parameter of the bind call.

bufpp (OUT)
A pointer to a buffer to write the bind value/piece.

If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the
deprecated OCI_UCS2ID, which is retained for backward compatibility), all
data passed to and received with the corresponding bind call is assumed to be
in UTF-16 encoding. For more information, refer to OCI_ATTR_CHARSET_ID
on page A-36.

alenpp (IN/OUT)
A pointer to a storage for OCI to fill in the size of the bind value/piece after it
has been read. It is in bytes except for Unicode encoding (if the
OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID), when it is in
codepoints.

Bind, Define, and Describe Functions

OCI Relational Functions 15-85

piecep (IN/OUT)
Returns a piece value from the callback (application) to Oracle, as follows:

■ IN - The value can be OCI_ONE_PIECE or OCI_NEXT_PIECE.

■ OUT - Depends on the IN value:

If IN value is OCI_ONE_PIECE, then OUT value can be
OCI_ONE_PIECE or OCI_FIRST_PIECE

If IN value is OCI_NEXT_PIECE then OUT value can be
OCI_NEXT_PIECE or OCI_LAST_PIECE

indpp (OUT)
Returns a pointer to contain the indicator value which either an sb2 value or a
pointer to an indicator structure for named datatypes.

rcodepp (OUT)
Returns a pointer to contains the return code.

Comments
This call is used to register user-defined callback functions for providing or
receiving data if OCI_DATA_AT_EXEC mode was specified in a previous call to
OCIBindByName() or OCIBindByPos().

The callback function pointers must return OCI_CONTINUE if it the call is
successful. Any return code other than OCI_CONTINUE signals that the client
wishes to terminate processing immediately.

When passing the address of a storage area, make sure that the storage area will
exist even after the application returns from the callback. This means that you
should not allocate such storage on the stack.

See Also: For more information about the OCI_DATA_AT_EXEC
mode, see the section "Runtime Data Allocation and Piecewise
Operations in OCI" on page 5-40.

Note: After using OCIEnvNlsCreate() to create the
environment handle, the actual lengths and returned lengths of
bind and define handles are always in number of bytes.

OCIBindDynamic()

15-86 Oracle Call Interface Programmer's Guide

Related Functions
OCIBindByName(), OCIBindByPos()

Bind, Define, and Describe Functions

OCI Relational Functions 15-87

OCIBindObject()

Purpose
This function sets up additional attributes which are required for a named datatype
(object) bind.

Syntax
sword OCIBindObject (OCIBind *bindp,
 OCIError *errhp,
 CONST OCIType *type,
 dvoid **pgvpp,
 ub4 *pvszsp,
 dvoid **indpp,
 ub4 *indszp,);

Parameters

bindp (IN/OUT)
The bind handle returned by the call to OCIBindByName() or OCIBindByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

type (IN)
Points to the TDO which describes the type of the program variable being bound.
Retrieved by calling OCITypeByName(). Optional for REFs in SQL, but required
for REFs in PL/SQL.

pgvpp (IN/OUT)
Address of the program variable buffer. For an array, pgvpp points to an array of
addresses. When the bind variable is also an OUT variable, the OUT Named
Datatype value or REF is allocated in the Object Cache, and a REF is returned.

pgvpp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the Named
Datatype buffers are requested at runtime. For static array binds, skip factors may
be specified using the OCIBindArrayOfStruct() call. The skip factors are used
to compute the address of the next pointer to the value, the indicator structure and
their sizes.

OCIBindObject()

15-88 Oracle Call Interface Programmer's Guide

pvszsp (OUT) [optional]
Points to the size of the program variable. The size of the named datatype is not
required on input. For an array, pvszsp is an array of ub4s. On return, for OUT
bind variables, this points to size(s) of the Named Datatypes and REFs received.
pvszsp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the size of the
buffer is taken at runtime.

indpp (IN/OUT) [optional]
Address of the program variable buffer containing the parallel indicator structure.
For an array, points to an array of pointers. When the bind variable is also an OUT
bind variable, memory is allocated in the object cache, to store the OUT indicator
values. At the end of the execute when all OUT values have been received, indpp
points to the pointers to these newly allocated indicator structures. Required only
for SQLT_NTY binds. indpp is ignored if the OCI_DATA_AT_EXEC mode is set.
Then the indicator is requested at runtime.

indszp (IN/OUT)
Points to the size of the IN indicator structure program variable. For an array, it is
an array of sb2s. On return for OUT bind variables, this points to sizes of the
received OUT indicator structures. indszp is ignored if the OCI_DATA_AT_EXEC
mode is set. Then the indicator size is requested at runtime.

Comments
This function sets up additional attributes which binding a named datatype or a
REF. An error will be returned if this function is called when the OCI environment
has been initialized in non-object mode.

This call takes as a parameter a type descriptor object (TDO) of datatype OCIType
for the named datatype being defined. The TDO can be retrieved with a call to
OCITypeByName().

If the OCI_DATA_AT_EXEC mode was specified in OCIBindByName() or
OCIBindByPos(), the pointers to the IN buffers are obtained either using the
callback icbfp registered in the OCIBindDynamic() call or by the
OCIStmtSetPieceInfo() call.

The buffers are dynamically allocated for the OUT data. The pointers to these
buffers are returned either by

■ calling ocbfp() registered by the OCIBindDynamic()

Bind, Define, and Describe Functions

OCI Relational Functions 15-89

■ or, by setting the pointer to the buffer in the buffer passed in by
OCIStmtSetPieceInfo() called when OCIStmtExecute() returned
OCI_NEED_DATA.

 The memory of these client library-allocated buffers must be freed when not in use
anymore by using the OCIObjectFree() call.

Related Functions
OCIBindByName(), OCIBindByPos()

OCIDefineArrayOfStruct()

15-90 Oracle Call Interface Programmer's Guide

OCIDefineArrayOfStruct()

Purpose
This call specifies additional attributes necessary for a static array define, used in an
array of structures (multi-row, multi-column) fetch.

Syntax
sword OCIDefineArrayOfStruct (OCIDefine *defnp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 rlskip,
 ub4 rcskip);

Parameters

defnp (IN/OUT)
The handle to the define structure which was returned by a call to
OCIDefineByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator location.

rlskip (IN)
Skip parameter for the next return length value.

rcskip (IN)
Skip parameter for the next return code.

Comments
This call follows a call to OCIDefineByPos(). If the application is binding an
array of structures involving objects, it must call OCIDefineObject() first, and
then call OCIDefineArrayOfStruct().

Bind, Define, and Describe Functions

OCI Relational Functions 15-91

Related Functions
OCIDefineByPos(), OCIDefineObject()

See Also: "Skip Parameters" on page 5-23.

OCIDefineByPos()

15-92 Oracle Call Interface Programmer's Guide

OCIDefineByPos()

Purpose
Associates an item in a select-list with the type and output data buffer.

Syntax
sword OCIDefineByPos (OCIStmt *stmtp,
 OCIDefine **defnpp,
 OCIError *errhp,
 ub4 position,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *rlenp,
 ub2 *rcodep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
A handle to the requested SQL query operation.

defnpp (IN/OUT)
A pointer to a pointer to a define handle. If this parameter is passed as NULL, this
call implicitly allocates the define handle. In the case of a redefine, a non-NULL
handle can be passed in this parameter. This handle is used to store the define
information for this column.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Note: The user must keep track of this pointer. If a second call to
OCIDefineByPos() is made for the same column position, there
is no guarantee that the same pointer is returned.

Bind, Define, and Describe Functions

OCI Relational Functions 15-93

position (IN)
The position of this value in the select list. Positions are 1-based and are numbered
from left to right.

valuep (IN/OUT)
A pointer to a buffer or an array of buffers of the type specified in the dty
parameter. A number of buffers can be specified when results for more than one
row are desired in a single fetch call.

For a LOB, the buffer pointer must be a pointer to a LOB locator of type
OCILobLocator. Give the address of the pointer.

value_sz (IN)
The size of each valuep buffer in bytes. If the data is stored internally in
VARCHAR2 format, the number of characters desired, if different from the buffer
size in bytes, may be additionally specified by using OCIAttrSet().

In a multibyte conversion environment, a truncation error will be generated if the
number of bytes specified is insufficient to handle the number of characters desired.

If the OCI_ATTR_CHARSET_ID attribute is set to OCI_UTF16ID (replaces the
deprecated OCI_UCS2ID, which is retained for backward compatibility), all data
passed to and received with the corresponding define call is assumed to be in
UTF-16 encoding.

dty (IN)
The datatype. Named datatype (SQLT_NTY) and REF (SQLT_REF) are valid only if
the environment has been initialized in object mode.

SQLT_CHAR and SQLT_LNG can be specified for CLOB columns, and SQLT_BIN
sand SQLT_LBI for BLOB columns.

indp (IN)
pointer to an indicator variable or array. For scalar datatypes, pointer to sb2 or an
array of sb2s. Ignored for SQLT_NTY defines. For SQLT_NTY defines, a pointer to
a named datatype indicator structure or an array of named datatype indicator
structures is associated by a subsequent OCIDefineObject() call.

See Also: OCI_ATTR_CHARSET_ID on page A-40

See Also: For a listing of datatype codes and values, refer to
Chapter 3, "Datatypes"

OCIDefineByPos()

15-94 Oracle Call Interface Programmer's Guide

rlenp (IN/OUT)
Pointer to array of length of data fetched. Each element in rlenp is the length of the
data (in bytes, unless the data in valuep is in Unicode, when it is in codepoints) in
the corresponding element in the row after the fetch.

rcodep (OUT)
Pointer to array of column-level return codes

mode (IN)
The valid modes are:

■ OCI_DEFAULT - This is the default mode.

■ OCI_DEFINE_SOFT - Soft define mode. This mode increases the performance
of the call. If this is the first define or some input parameter like dty or
value_sz is changed from the previous define, this mode is ignored.
Unexpected behavior results if a non-valid define handle is passed. An error is
returned if the statement is not executed.

■ OCI_DYNAMIC_FETCH - For applications requiring dynamically allocated
data at the time of fetch, this mode must be used. You can define a callback
using the OCIDefineDynamic() call. The value_sz parameter defines the
maximum size of the data that will be provided at runtime. When the client
library needs a buffer to return the fetched data, the callback will be invoked to
provide a run-time buffer into which a piece or the whole data will be returned.

Comments
This call defines an output buffer which will receive data retrieved from Oracle. The
define is a local step which is necessary when a SELECT statement returns data to
your OCI application.

This call also implicitly allocates the define handle for the select-list item. If a
non-NULL pointer is passed in *defnpp, the OCI assumes that this points to a valid
handle that has been previously allocated with a call to OCIHandleAlloc() or
OCIDefineByPos(). This would be true in the case of an application which is

See Also: "Indicator Variables" on page 2-30

Note: After using OCIEnvNlsCreate() to create the
environment handle, the actual lengths and returned lengths of
bind and define handles are always in number of bytes.

Bind, Define, and Describe Functions

OCI Relational Functions 15-95

redefining a handle to a different addresses so it can reuse the same define handle
for multiple fetches.

Defining attributes of a column for a fetch is done in one or more calls. The first call
is to OCIDefineByPos(), which defines the minimal attributes required to specify
the fetch.

Following the call to OCIDefineByPos() additional define calls may be necessary
for certain datatypes or fetch modes:

■ A call to OCIDefineArrayOfStruct() is necessary to set up skip parameters
for an array fetch of multiple columns.

■ A call to OCIDefineObject() is necessary to set up the appropriate attributes
of a named datatype (that is, object or collection) or REF fetch. In this case the
data buffer pointer in OCIDefineByPos() is ignored.

■ Both OCIDefineArrayOfStruct() and OCIDefineObject() must be
called after OCIDefineByPos() in order to fetch multiple rows with a column
of named datatypes.

For a LOB define, the buffer pointer must be a pointer to a LOB locator of type
OCILobLocator, allocated by the OCIDescriptorAlloc() call. LOB locators,
and not LOB values, are always returned for a LOB column. LOB values can then be
fetched using OCI LOB calls on the fetched locator. This same mechanism is true for
all descriptor datatypes.

For NCHAR (fixed and varying length), the buffer pointer must point to an array of
bytes sufficient for holding the required NCHAR characters.

Nested table columns are defined and fetched like any other named datatype.

When defining an array of descriptors or locators, you should pass in an array of
pointers to descriptors or locators.

When doing an array define for character columns, you should pass in an array of
character buffers.

If the mode parameter is this call is set to OCI_DYNAMIC_FETCH, the client
application can fetch data dynamically at runtime. Runtime data can be provided in
one of two ways:

■ callbacks using a user-defined function which must be registered with a
subsequent call to OCIDefineDynamic(). When the client library needs a
buffer to return the fetched data, the callback will be invoked and the runtime
buffers provided will return a piece or the whole data.

OCIDefineByPos()

15-96 Oracle Call Interface Programmer's Guide

■ a polling mechanism using calls supplied by the OCI. This mode is
assumed if no callbacks are defined. In this case, the fetch call returns the
OCI_NEED_DATA error code, and a piecewise polling method is used to
provide the data.

Related Functions
OCIDefineArrayOfStruct(), OCIDefineDynamic(),
OCIDefineObject()

See Also:

■ For more information about using the OCI_DYNAMIC_FETCH
mode, see the section "Runtime Data Allocation and Piecewise
Operations in OCI" on page 5-40.

■ For more information about defines, see "Overview of Defining
in OCI" on page 5-17.

Bind, Define, and Describe Functions

OCI Relational Functions 15-97

OCIDefineDynamic()

Purpose
This call is used to set the additional attributes required if the
OCI_DYNAMIC_FETCH mode was selected in OCIDefineByPos().

Syntax
sword OCIDefineDynamic (OCIDefine *defnp,
 OCIError *errhp,
 dvoid *octxp,
 OCICallbackDefine (ocbfp)(/*_
 dvoid *octxp,
 OCIDefine *defnp,
 ub4 iter,
 dvoid **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 dvoid **indpp,
 ub2 **rcodep _*/));

Parameters

defnp (IN/OUT)
The handle to a define structure returned by a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

octxp (IN)
Points to a context for the callback function.

ocbfp (IN)
Points to a callback function. This is invoked at runtime to get a pointer to the
buffer into which the fetched data or a piece of it will be retrieved. The callback also
specifies the indicator, the return code and the lengths of the data piece and
indicator.

OCIDefineDynamic()

15-98 Oracle Call Interface Programmer's Guide

The callback parameters are listed next:

octxp (IN/OUT)
A context pointer passed as an argument to all the callback functions.

defnp (IN)
The define handle.

iter (IN)
Which row of this current fetch; 0-based.

bufpp (OUT)
Returns a pointer to a buffer to store the column value, that is, *bufpp points to
some appropriate storage for the column value.

alenpp (IN/OUT)
Used by the application to set the size of the storage it is providing in *bufpp.
After data is fetched into the buffer, alenpp indicates the actual size of the data
in bytes.

piecep (IN/OUT)
Returns a piece value from the callback (application) to Oracle, as follows:

■ IN - The value can be OCI_ONE_PIECE or OCI_NEXT_PIECE.

■ OUT - Depends on the IN value:

If IN value is OCI_ONE_PIECE, then OUT value can be
OCI_ONE_PIECE or OCI_FIRST_PIECE

If IN value is OCI_NEXT_PIECE then OUT value can be
OCI_NEXT_PIECE or OCI_LAST_PIECE

indpp (IN)
Indicator variable pointer

Caution: When working with callback parameters, it is important
to keep in mind what is meant by IN and OUT for the parameter
mode. Normally, in an OCI function, an IN parameter refers to data
being passed to Oracle, and an OUT parameter refers to data
coming back from Oracle. In the case of callbacks, this is reversed.
IN means data is coming from Oracle into the callback, and OUT
means data is coming out of the callback and going to Oracle.

Bind, Define, and Describe Functions

OCI Relational Functions 15-99

rcodep (IN)
Return code variable pointer

Comments
This call is used to set the additional attributes required if the
OCI_DYNAMIC_FETCH mode has been selected in a call to OCIDefineByPos().
If OCI_DYNAMIC_FETCH mode was selected, and the call to
OCIDefineDynamic() is skipped, then the application can fetch data piecewise
using OCI calls (OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()). For
more information about OCI_DYNAMIC_FETCH mode, see the section "Runtime
Data Allocation and Piecewise Operations in OCI" on page 5-40.

Related Functions
OCIDefineByPos()

Note: After using OCIEnvNlsCreate() to create the
environment handle, the actual lengths and returned lengths of
bind and define handles are always in number of bytes.

See Also: Oracle Database Application Developer's Guide -
Fundamentals, the chapter on Establishing Security Policies

OCIDefineObject()

15-100 Oracle Call Interface Programmer's Guide

OCIDefineObject()

Purpose
Sets up additional attributes necessary for a named datatype or REF define.

Syntax
sword OCIDefineObject (OCIDefine *defnp,
 OCIError *errhp,
 CONST OCIType *type,
 dvoid **pgvpp,
 ub4 *pvszsp,
 dvoid **indpp,
 ub4 *indszp);

Parameters

defnp (IN/OUT)
A define handle previously allocated in a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

type (IN) [optional]
Points to the Type Descriptor Object (TDO) which describes the type of the program
variable. Only used for program variables of type SQLT_NTY. This parameter is
optional, and may be passed as NULL if it is not being used.

pgvpp (IN/OUT)
Points to a pointer to a program variable buffer. For an array, pgvpp points to an
array of pointers. Memory for the fetched named datatype instance(s) is
dynamically allocated in the object cache. At the end of the fetch when all the values
have been received, pgvpp points to the pointer(s) to these newly allocated named
datatype instance(s). The application must call OCIObjectFree() to deallocate
the named datatype instance(s) when they are no longer needed.

Note: If the application wants the buffer to be implicitly allocated
in the cache, *pgvpp should be passed in as NULL.

Bind, Define, and Describe Functions

OCI Relational Functions 15-101

pvszsp (IN/OUT)
Points to the size of the program variable. For an array, it is an array of ub4s.

indpp (IN/OUT)
Points to a pointer to the program variable buffer containing the parallel indicator
structure. For an array, points to an array of pointers. Memory is allocated to store
the indicator structures in the object cache. At the end of the fetch when all values
have been received, indpp points to the pointer(s) to these newly allocated
indicator structure(s).

indszp (IN/OUT)
Points to the size(s) of the indicator structure program variable. For an array, it is an
array of ub4s.

Comments
This function follows a call to OCIDefineByPos() to set initial define information.
This call sets up additional attributes necessary for a Named Datatype define. An
error will be returned if this function is called when the OCI environment has been
initialized in non-Object mode.

This call takes as a parameter a type descriptor object (TDO) of datatype OCIType
for the named datatype being defined. The TDO can be retrieved with a call to
OCIDescribeAny().

Related Functions
OCIDefineByPos()

See Also: See the description of OCIInitialize() on
page 15-18 for more information about initializing the OCI process
environment.

OCIDescribeAny()

15-102 Oracle Call Interface Programmer's Guide

OCIDescribeAny()

Purpose
Describes existing schema and subschema objects.

Syntax
sword OCIDescribeAny (OCISvcCtx *svchp,
 OCIError *errhp,
 dvoid *objptr,
 ub4 objptr_len,
 ub1 objptr_typ,
 ub1 info_level,
 ub1 objtyp,
 OCIDescribe *dschp);

Parameters

svchp (IN)
A service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

objptr (IN)
This parameter can be:

1. A string containing the name of the object to be described. Must be in the
encoding specified by the charset parameter of a previous call to
OCIEnvNlsCreate().

2. A pointer to a REF to the TDO (for a type).

3. A pointer to a TDO (for a type).

These cases are distinguished by passing the appropriate value for objptr_typ.
This parameter must be non-NULL.

In case 1, the string containing the object name should be in the format
name1[.name2 ...][@linkname], such as
hr.employees.employee_id@mydb. Database links are only allowed to Oracle8i
or later databases. The object name is interpreted by the following SQL rules:

Bind, Define, and Describe Functions

OCI Relational Functions 15-103

■ If only name1 is entered and objtyp is equal to OCI_PTYPE_SCHEMA, then
the name refers to the named schema. The Oracle database must be release 8.1
or later.

■ If only name1 is entered and objtyp is equal to OCI_PTYPE_DATABASE, then
the name refers to the named database. When describing a remote database
with database_name@db_link_name, the remote Oracle database must be
release 8.1 or later.

■ If only name1 is entered and objtyp is not equal to OCI_PTYPE_SCHEMA or
OCI_PTYPE_DATABASE, then the name refers to the named object (of type
table, view, procedure, function, package, type, synonym, sequence) in the
current schema of the current user. When connected to an Oracle7 Server, the
only valid types are procedure and function.

■ If name1.name2.name3 ... is entered, the object name refers to a schema or
subschema object in the schema named name1. For example, in the string
scott.emp.deptno, scott is the name of the schema, emp is the name of a
table in the schema, and deptno is the name of a column in the table.

objnm_len (IN)
The length of the name string pointed to by objptr. Must be nonzero if a name is
passed. Can be zero if objptr is a pointer to a TDO or its REF.

objptr_typ (IN)
The type of object passed in objptr. Valid values are:

■ OCI_OTYPE_NAME, if objptr points to the name of a schema object

■ OCI_OTYPE_REF, if objptr is a pointer to a REF to a TDO

■ OCI_OTYPE_PTR, if objptr is a pointer to a TDO

info_level (IN)
Reserved for future extensions. Pass OCI_DEFAULT.

objtyp (IN)
The type of schema object being described. Valid values are:

■ OCI_PTYPE_TABLE, for tables

■ OCI_PTYPE_VIEW, for views

■ OCI_PTYPE_PROC, for procedures

■ OCI_PTYPE_FUNC, for functions

OCIDescribeAny()

15-104 Oracle Call Interface Programmer's Guide

■ OCI_PTYPE_PKG, for packages

■ OCI_PTYPE_TYPE, for types

■ OCI_PTYPE_SYN, for synonyms

■ OCI_PTYPE_SEQ, for sequences

■ OCI_PTYPE_SCHEMA, for schemas

■ OCI_PTYPE_DATABASE, for databases

■ OCI_PTYPE_UNK, for unknown schema objects

dschp (IN/OUT)
A describe handle that is populated with describe information about the object after
the call. Must be non-NULL.

Comments
This is a generic describe call that describes existing schema objects: tables, views,
synonyms, procedures, functions, packages, sequences, types, schemas, and
databases. This call also describes subschema objects, such as a column in a table.
This call populates the describe handle with the object-specific attributes which can
be obtained through an OCIAttrGet() call.

An OCIParamGet() on the describe handle returns a parameter descriptor for a
specified position. Parameter positions begin with 1. Calling OCIAttrGet() on the
parameter descriptor returns the specific attributes of a stored procedure or
function parameter, or a table column descriptor. These subsequent calls do not
need an extra round trip to the server because the entire schema object description
is cached on the client side by OCIDescribeAny(). Calling OCIAttrGet() on the
describe handle also returns the total number of positions.

If the OCI_ATTR_DESC_PUBLIC attribute is set on the describe handle, then the
object named is looked up as a public synonym when the object does not exist in the
current schema and only name1 is specified.

Related Functions
OCIAttrGet(), OCIParamGet()

See Also: For more information about describe operations, see
Chapter 6, "Describing Schema Metadata"

Bind, Define, and Describe Functions

OCI Relational Functions 15-105

OCIStmtGetBindInfo()

Purpose
Gets the bind and indicator variable names.

Syntax
sword OCIStmtGetBindInfo (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 size,
 ub4 startloc,
 sb4 *found,
 text *bvnp[],
 ub1 bvnl[],
 text *invp[],
 ub1 inpl[],
 ub1 dupl[],
 OCIBind *hndl[]);

Parameters

stmtp (IN)
The statement handle prepared by OCIStmtPrepare().

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

size (IN)
The number of elements in each array.

startloc (IN)
Position of the bind variable at which to start getting bind information.

found (IN)
abs(found) gives the total number of bind variables in the statement irrespective of
the start position. Positive value if the number of bind variables returned is less
than the size provided, otherwise negative.

bvnp (OUT)
Array of pointers to hold bind variable names. Will be in the encoding specified by
the charset parameter of a previous call to OCIEnvNlsCreate().

OCIStmtGetBindInfo()

15-106 Oracle Call Interface Programmer's Guide

bvnl (OUT)
Array to hold the length of the each bvnp element. The length is in bytes.

invp (OUT)
Array of pointers to hold indicator variable names. Must be in the encoding
specified by the charset parameter of a previous call to OCIEnvNlsCreate().

inpl (OUT)
Array of pointers to hold the length of the each invp element. In number of bytes.

dupl (OUT)
An array whose element value is 0 or 1 depending on whether the bind position is
duplicate of another.

hndl (OUT)
An array which returns the bind handle if binds have been done for the bind
position. No handle is returned for duplicates.

Comments
This call returns information about bind variables after a statement has been
prepared. This includes bind names, indicator names, and whether or not binds are
duplicate binds. This call also returns an associated bind handle if there is one. The
call sets the found parameter to the total number of bind variables and not just the
number of distinct bind variables.

OCI_NO_DATA will be returned if the statement has no bind variables or if the
starting bind position specified by the you in the invocation does not exist in the
statement.

This function does not include SELECT INTO list variables, because they are not
considered to be binds.

The statement must have been prepared with a call to OCIStmtPrepare() prior to
this call. The encoding setting in the statement handle will determine whether
Unicode strings will be retrieved.

This call is processed locally.

Related Functions
OCIStmtPrepare()

More OCI Relational Functions 16-1

16
More OCI Relational Functions

This chapter completes description of the OCI relational functions started in the last
chapter. It includes information about calling OCI functions in your application,
along with detailed descriptions of each function call.

This chapter contains these topics:

■ Introduction to More Relational Functions

■ Statement Functions

■ LOB Functions

■ Streams Advanced Queuing and Publish-Subscribe Functions

■ Direct Path Loading Functions

■ Thread Management Functions

■ Transaction Functions

■ Miscellaneous Functions

See Also: For code examples, see the demonstration programs
included with your Oracle installation. For additional information,
refer to Appendix B, "OCI Demonstration Programs".

Introduction to More Relational Functions

16-2 Oracle Call Interface Programmer's Guide

Introduction to More Relational Functions

This chapter completes descriptions of the OCI relational function calls. It continues
from the last chapter. The function calls for manipulating objects are described in
the next three chapters.

Function Syntax
For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
The function declaration.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described next.

Comments
More detailed information about the function (if available). This may include
restrictions on the use of the function, or other information that might be useful
when using the function in an application.

See Also: For information about return codes and error handling,
refer to the section "Error Handling in OCI" on page 2-26

Table 16–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction to More Relational Functions

More OCI Relational Functions 16-3

Example
A complete or partial code example demonstrating the use of the function call being
described. Not all function descriptions include an example.

Related Functions
A list of related function calls.

Calling OCI Functions
Unlike earlier versions of the OCI, in release 8 you cannot pass -1 for the string
length parameter of a NULL-terminated string.

When you pass string lengths as parameters, do not include the NULL terminator
byte in the length. The OCI does not expect strings to be NULL-terminated.

Buffer lengths that are OCI parameters are in bytes, except the amount parameters
in some LOB calls, which are in characters.

Server Round trips for LOB Functions
For a table showing the number of server round trips required for individual OCI
LOB functions, refer to Appendix C, "OCI Function Server Round Trips".

Statement Functions

16-4 Oracle Call Interface Programmer's Guide

Statement Functions

This section describes the statement functions.

Table 16–2 Statement Functions

Function Purpose

OCIStmtExecute() on page 16-5 Send statements to server for execution

OCIStmtFetch() on page 16-9 Fetch rows from a query (deprecated)

OCIStmtFetch2() on page 16-11 Fetch rows from a query

OCIStmtGetPieceInfo() on page 16-14 Get piece information for piecewise operations

OCIStmtPrepare() on page 16-16 Prepares a SQL or PL/SQL statement for execution.

OCIStmtPrepare2() on page 16-18 Prepares a SQL or PL/SQL statement for execution.

OCIStmtRelease() on page 16-20 Releases the statement handle.

OCIStmtSetPieceInfo() on page 16-21 Set piece information for piecewise operations

Statement Functions

More OCI Relational Functions 16-5

OCIStmtExecute()

Purpose
This call associates an application request with a server.

Syntax
sword OCIStmtExecute (OCISvcCtx *svchp,
 OCIStmt *stmtp,
 OCIError *errhp,
 ub4 iters,
 ub4 rowoff,
 CONST OCISnapshot *snap_in,
 OCISnapshot *snap_out,
 ub4 mode);

Parameters

svchp (IN/OUT)
Service context handle.

stmtp (IN/OUT)
An statement handle. It defines the statement and the associated data to be executed
at the server. It is invalid to pass in a statement handle that has bind of datatypes
only supported in release 8.x or later when svchp points to an Oracle7 server.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

iters (IN)
For non-SELECT statements, the number of times this statement is executed is equal
to iters - rowoff.

For SELECT statements, if iters is nonzero, then defines must have been done for
the statement handle. The execution fetches iters rows into these predefined
buffers and prefetches more rows depending upon the prefetch row count. If you
do not know how many rows the SELECT statement will retrieve, set iters to
zero.

This function returns an error if iters=0 for non-SELECT statements.

OCIStmtExecute()

16-6 Oracle Call Interface Programmer's Guide

rowoff (IN)
The starting index from which the data in an array bind is relevant for this multiple
row execution.

snap_in (IN)
This parameter is optional. if supplied, must point to a snapshot descriptor of type
OCI_DTYPE_SNAP. The contents of this descriptor must be obtained from the
snap_out parameter of a previous call. The descriptor is ignored if the SQL is not a
SELECT. This facility allows multiple service contexts to ORACLE to see the same
consistent snapshot of the database's committed data. However, uncommitted data
in one context is not visible to another context even using the same snapshot.

snap_out (OUT)
This parameter optional. if supplied, must point to a descriptor of type
OCI_DTYPE_SNAP. This descriptor is filled in with an opaque representation
which is the current ORACLE "system change number" suitable as a snap_in input
to a subsequent call to OCIStmtExecute(). This descriptor should not be used
longer than necessary in order to avoid "snapshot too old" errors.

mode (IN)
The modes are:

■ OCI_BATCH_ERRORS - See "Batch Error Mode" on page 4-8, for information
about this mode.

■ OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode, the
current transaction is committed after execution, provided that execution
completes successfully.

■ OCI_DEFAULT - Calling OCIStmtExecute() in this mode executes the
statement. It also implicitly returns describe information about the select-list.

■ OCI_DESCRIBE_ONLY - This mode is for users who wish to describe a query
prior to execution. Calling OCIStmtExecute() in this mode does not execute
the statement, but it does return the select-list description. To maximize
performance, it is recommended that applications execute the statement in
default mode and use the implicit describe which accompanies the execution.

■ OCI_EXACT_FETCH - Used when the application knows in advance exactly
how many rows it will be fetching. This mode turns prefetching off for Oracle

Note: For array DML operations, set iters <= 32767 to get better
performance.

Statement Functions

More OCI Relational Functions 16-7

release 8 or later mode, and requires that defines be done before the execute
call. Using this mode cancels the cursor after the desired rows are fetched and
may result in reduced server-side resource usage.

■ OCI_PARSE_ONLY - This mode allows the user to parse the query prior to
execution. Executing in this mode parses the query and returns parse errors in
the SQL, if any. Users must note that this will involve an additional round trip
to the server. To maximize performance, it is recommended that the user
execute the statement in the default mode which, as part of a bundled
operation, parses the statement.

■ OCI_STMT_SCROLLABLE_READONLY - Required for the result set to be
scrollable. The result set cannot be updated. See "Fetching Results" on
page 4-16. Cannot be used with any other mode.

The modes are not mutually exclusive and can be used together, except for
OCI_STMT_SCROLLABLE_READONLY.

Comments
This function is used to execute a prepared SQL statement. Using an execute call,
the application associates a request with a server.

If a SELECT statement is executed, the description of the select-list is available
implicitly as a response. This description is buffered on the client side for describes,
fetches and define type conversions. Hence it is optimal to describe a select list only
after an execute.

Also for SELECT statements, some results are available implicitly. Rows will be
received and buffered at the end of the execute. For queries with small row count, a
prefetch causes memory to be released in the server if the end of fetch is reached, an
optimization that may result in memory usage reduction. Set attribute call has been
defined to set the number of rows to be prefetched for each result set.

For SELECT statements, at the end of the execute, the statement handle implicitly
maintains a reference to the service context on which it is executed. It is the user's
responsibility to maintain the integrity of the service context. The implicit reference
is maintained until the statement handle is freed or the fetch is cancelled or an end
of fetch condition is reached.

See Also: "Describing Select-list Items" on page 4-11

OCIStmtExecute()

16-8 Oracle Call Interface Programmer's Guide

Related Functions
OCIStmtPrepare()

Note: If output variables are defined for a SELECT statement
before a call to OCIStmtExecute(), the number of rows specified
by iters will be fetched directly into the defined output buffers
and additional rows equivalent to the prefetch count will be
prefetched. If there are no additional rows, then the fetch is
complete without calling OCIStmtFetch().

Statement Functions

More OCI Relational Functions 16-9

OCIStmtFetch()

Purpose
Fetches rows from a query. Users are encouraged to use the new fetch call
OCIStmtFetch2(). This call is deprecated.

Syntax
sword OCIStmtFetch (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 nrows,
 ub2 orientation,
 ub4 mode);

Parameters

stmtp (IN)
A statement (application request) handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

nrows (IN)
Number of rows to be fetched from the current position.

orientation (IN)
Prior to release 9.0, the only acceptable value is OCI_FETCH_NEXT, which is also
the default value.

mode (IN)
Pass as OCI_DEFAULT.

Comments
The fetch call is a local call, if prefetched rows suffice. However, this is transparent
to the application.

If LOB columns are being read, LOB locators are fetched for subsequent LOB
operations to be performed on these locators. Prefetching is turned off if LONG
columns are involved.

OCIStmtFetch()

16-10 Oracle Call Interface Programmer's Guide

This function can return OCI_NO_DATA on EOF and OCI_SUCCESS_WITH_INFO
when one of the following errors occur:

■ ORA-24344 Success with compilation error

■ ORA-24345 A truncation or NULL fetch error occurred

■ ORA-24347 Warning of a NULL column in an aggregate function

 If you call OCIStmtFetch() with the nrows parameter set to 0, this cancels the
cursor.

Use OCI_ATTR_ROWS_FETCHED to find the number of rows that were
successfully fetched into the user's buffers in the last fetch call.

Related Functions
OCIStmtExecute()

Statement Functions

More OCI Relational Functions 16-11

OCIStmtFetch2()

Purpose
This fetches a row from the (scrollable) result set. You are encouraged to use this
fetch call instead of the deprecated call OCIStmtFetch().

Syntax
sword OCIStmtFetch2 (OCIStmt *stmthp,
 OCIError *errhp,
 ub4 nrows,
 ub2 orientation,
 sb4 fetchOffset,
 ub4 mode);

Parameters

stmthp (IN/OUT)
This is the statement handle of the (scrollable) result set.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in
event of an error.

nrows (IN)
Number of rows to be fetched from the current position.

orientation (IN)
The acceptable values are:

■ OCI_DEFAULT - has the same effect as OCI_FETCH_NEXT

■ OCI_FETCH_CURRENT - gets the current row.

■ OCI_FETCH_NEXT - gets the next row from the current position. It is the
default (has the same effect as OCI_DEFAULT). Use for a non-scrollable
statement handle.

■ OCI_FETCH_FIRST - gets the first row in the result set.

■ OCI_FETCH_LAST - gets the last row in the result set.

OCIStmtFetch2()

16-12 Oracle Call Interface Programmer's Guide

■ OCI_FETCH_PRIOR - positions the result set on the previous row from the
current row in the result set. You can fetch multiple rows using this mode, from
the "previous row" also.

■ OCI_FETCH_ABSOLUTE will fetch the row number (specified by
fetchOffset parameter) in the result set using absolute positioning.

■ OCI_FETCH_RELATIVE will fetch the row number (specified by
fetchOffset parameter) in the result set using relative positioning.

fetchOffset (IN)
The offset to be used with the orientation parameter for changing the current row
position.

mode (IN)
Pass in OCI_DEFAULT.

Comments
The fetch call works similarly to the OCIStmtFetch() call with the addition of the
fetchOffset parameter. It can be used on any statement handle, whether it is
scrollable or not. For a non-scrollable statement handle, the only acceptable value of
orientation is OCI_FETCH_NEXT, and the fetchOffset parameter will be
ignored.

For new applications you are encouraged to use this new call, OCIStmtFetch2().

A fetchOffset with orientation set to OCI_FETCH_RELATIVE is equivalent
to all of the following:

■ OCI_FETCH_CURRENT with a value of fetchOffset equal to 0,

■ OCI_FETCH_NEXT with a value of fetchOffset equal to 1,

■ OCI_FETCH_PRIOR with a value of fetchOffset equal to -1.

OCI_ATTR_ROW_COUNT contains the highest absolute row value that was
fetched.

All other orientation modes besides OCI_FETCH_ABSOLUTE and
OCI_FETCH_RELATIVE will ignore the fetchOffset value.

This call can also be used to find out the number of rows in the result set by using
OCI_FETCH_LAST, and then calling OCIAttrGet() on
OCI_ATTR_CURRENT_POSITION. But the response time of this call can be high.

Statement Functions

More OCI Relational Functions 16-13

The return codes are the same as for OCIStmtFetch(), except that OER(1403) with
return code OCI_NO_DATA will be returned every time a fetch on a scrollable
statement handle (or execute) is made and not all rows requested by the application
could be fetched.

If you call OCIStmtFetch2() with the nrows parameter set to 0, this cancels the
cursor.

The scrollable statement handle will need to be explicitly cancelled (that is, fetch
with 0 rows) or freed in order to release server-side resources for the scrollable
cursor. A non-scrollable statement handle is implicitly cancelled on receiving the
OER(1403).

Use OCI_ATTR_ROWS_FETCHED to find the number of rows that were
successfully fetched into the user's buffers in the last fetch call.

Related Functions
OCIStmtExecute(), OCIBindByPos()

See Also: "Scrollable Cursors in OCI" on page 4-18 for more
information on this topic

OCIStmtGetPieceInfo()

16-14 Oracle Call Interface Programmer's Guide

OCIStmtGetPieceInfo()

Purpose
Returns piece information for a piecewise operation.

Syntax
sword OCIStmtGetPieceInfo(CONST OCIStmt *stmtp,
 OCIError *errhp,
 dvoid **hndlpp,
 ub4 *typep,
 ub1 *in_outp,
 ub4 *iterp,
 ub4 *idxp,
 ub1 *piecep);

Parameters

stmtp (IN)
The statement when executed returned OCI_NEED_DATA.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

hndlpp (OUT)
Returns a pointer to the bind or define handle of the bind or define whose runtime
data is required or is being provided.

typep (OUT)
The type of the handle pointed to by hndlpp: OCI_HTYPE_BIND (for a bind
handle) or OCI_HTYPE_DEFINE (for a define handle).

in_outp (OUT)
Returns OCI_PARAM_IN if the data is required for an IN bind value. Returns
OCI_PARAM_OUT if the data is available as an OUT bind variable or a define
position value.

iterp (OUT)
Returns the row number of a multiple row operation.

Statement Functions

More OCI Relational Functions 16-15

idxp (OUT)
The index of an array element of a PL/SQL array bind operation.

piecep (OUT)
Returns one of the following defined values OCI_ONE_PIECE, OCI_FIRST_PIECE,
OCI_NEXT_PIECE and OCI_LAST_PIECE.

Comments
When an execute or fetch call returns OCI_NEED_DATA to get or return a dynamic
bind or define value or piece, OCIStmtGetPieceInfo() returns the relevant
information: bind or define handle, iteration, index number and which piece.

Related Functions
OCIAttrGet(), OCIAttrSet(), OCIStmtExecute(), OCIStmtFetch(),
OCIStmtSetPieceInfo()

See Also: See the section "Runtime Data Allocation and Piecewise
Operations in OCI" on page 5-40 for more information about using
OCIStmtGetPieceInfo().

OCIStmtPrepare()

16-16 Oracle Call Interface Programmer's Guide

OCIStmtPrepare()

Purpose
This call prepares a SQL or PL/SQL statement for execution.

Syntax
sword OCIStmtPrepare (OCIStmt *stmtp,
 OCIError *errhp,
 CONST text *stmt,
 ub4 stmt_len,
 ub4 language,
 ub4 mode);

Parameters

stmtp (IN)
A statement handle associated with the statement to be executed. By default, it
contains the encoding setting in the environment handle from which it is derived. A
statement can be prepared in UTF-16 encoding only in a UTF-16 environment.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

stmt (IN)
SQL or PL/SQL statement to be executed. Must be a NULL-terminated string. That
is, the ending character is a number of NULL bytes, depending on the encoding.
The statement must be in the encoding specified by the charset parameter of a
previous call to OCIEnvNlsCreate().

Always cast the parameter to (text *). After a statement has been prepared in
UTF-16, the character set for the bind and define buffers will default to UTF-16. The
pointer to the text of the statement must be available as long as the statement is
executed, or data is fetched from it.

stmt_len (IN)
Length of the statement in characters or in number of bytes, depending on the
encoding. Must not be zero.

language (IN)
Specifies V7, or native syntax. Possible values are:

Statement Functions

More OCI Relational Functions 16-17

■ OCI_V7_SYNTAX - V7 ORACLE parsing syntax

■ OCI_NTV_SYNTAX - syntax depends upon the version of the server.

mode (IN)
Similar to the mode in the OCIEnvCreate() call, but this one has higher priority
because it can override the "naturally" inherited mode setting.

The only possible value is:

■ OCI_DEFAULT - default mode. The statement handle stmtp uses whatever is
specified by its parent environment handle.

Comments
An OCI application uses this call to prepare a SQL or PL/SQL statement for
execution. The OCIStmtPrepare() call defines an application request.

The mode parameter determines whether the statement content is encoded as
UTF-16 or not. The statement length is in number of codepoints or in number of
bytes, depending on the encoding.

While the statement handle inherits the encoding setting from the parent
environment handle, the mode for this call can also change the encoding setting for
the statement handle itself.

Data values for this statement initialized in subsequent bind calls will be stored in a
bind handle which use settings in this statement handle as default.

This call does not create an association between this statement handle and any
particular server.

Related Functions
OCIAttrGet(), OCIStmtExecute()

See Also: See the section "Preparing Statements" on page 4-4 for
more information about using this call.

OCIStmtPrepare2()

16-18 Oracle Call Interface Programmer's Guide

OCIStmtPrepare2()

Purpose
This call prepares a SQL or PL/SQL statement for execution. The user has the
option of using the statement cache, if it has been enabled.

Syntax
sword OCIStmtPrepare2 (OCISvcCtx *svchp,
 OCIStmt **stmthp,
 OCIError *errhp,
 CONST OraText *stmttext,
 ub4 stmt_len,
 CONST OraText *key,
 ub4 keylen,
 ub4 language,
 ub4 mode);

Parameters

svchp (IN)
The service context to be associated with the statement.

errhp (IN)
A pointer to the error handle for diagnostics.

stmthp (OUT)
Pointer to the statement handle returned.

 stmttext (IN)
The statement text. The semantics of the stmttext are same as that of
OCIStmtPrepare, i.e, the string should be NULL-terminated.

stmt_len (IN)
The statement text length.

key (IN)
For statement caching only. The key to the returned statement in the cache. This can
be used for future calls to OCIStmtPrepare2(), in which case there is no need to
pass in the statement text and related parameters. If the key is passed in, then the
statement text and other parameters are ignored and the search is solely based on
the key.

Statement Functions

More OCI Relational Functions 16-19

keylen (IN)
For statement caching only. The length of the key.

language (IN)
Specifies V7, or native syntax. Possible values are:

■ OCI_V7_SYNTAX - V7 ORACLE parsing syntax

■ OCI_NTV_SYNTAX - syntax depends upon the version of the server.

mode (IN)
This function can be used with and without statement caching. This is determined
at the time of connection or session pool creation. If caching is enabled for a session,
then all statements in the session will have caching enabled, and if caching is not
enabled, then all statements will not be cached.

The valid modes are:

■ OCI_DEFAULT - For non-caching, this is the only valid setting. If the statement
is not found in the cache, it allocates a new statement handle and prepares the
statement handle for execution. If it is not found and

■ (a) Only the text has been supplied: a new statement will be allocated and
prepared and returned. The tag will be NULL. OCI_SUCCESS will be
returned.

■ (b) Only the tag has been supplied: stmthp will be NULL. OCI_ERROR
will be returned.

■ (c) Both text and key were supplied: a new statement will be allocated and
prepared and returned. The tag will be NULL. OCI_SUCCESS_WITH_INFO
will be returned, as the returned statement differs from the requested
statement in that the tag is NULL.

■ OCI_PREP2_CACHE_SEARCHONLY - In this case, if the statement is not
found (a NULL statement handle is returned), you must take further action. If
the statement is found, OCI_SUCCESS will be returned. Otherwise,
OCI_ERROR will be returned.

Related Functions
OCIStmtRelease()

OCIStmtRelease()

16-20 Oracle Call Interface Programmer's Guide

OCIStmtRelease()

Purpose
Releases the statement handle obtained by a call to OCIStmtPrepare2().

Syntax
sword OCIStmtRelease (OCIStmt *stmthp,
 OCIError *errhp,
 CONST OraText *key,
 ub4 keylen,
 ub4 mode);

Parameters

stmthp (IN/OUT)
The statement handle returned by OCIStmtPrepare2()

errhp (IN)
The error handle used for diagnostics.

key (IN)
Only valid for statement caching. The key to be associated with the statement in the
cache. This can be the key returned by OCIStmtPrepare2() or can be a new key.
If a NULL key is passed in the statement will not be tagged.

keylen (IN)
Only valid for statement caching. The length of the key.

mode (IN)
The valid modes are

■ OCI_DEFAULT

■ OCI_STRLS_CACHE_DELETE - Only valid for statement caching. The
statement will not be kept in the cache any more.

Related Functions
OCIStmtPrepare2()

Statement Functions

More OCI Relational Functions 16-21

OCIStmtSetPieceInfo()

Purpose
Sets piece information for a piecewise operation.

Syntax
sword OCIStmtSetPieceInfo (dvoid *hndlp,
 ub4 type,
 OCIError *errhp,
 CONST dvoid *bufp,
 ub4 *alenp,
 ub1 piece,
 CONST dvoid *indp,
 ub2 *rcodep);

Parameters

hndlp (IN/OUT)
The bind/define handle.

type (IN)
Type of the handle.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

bufp (IN/OUT)
A pointer to a storage containing the data value or the piece when it is an IN bind
variable, otherwise bufp is a pointer to storage for getting a piece or a value for
OUT binds and define variables. For named datatypes or REFs, a pointer to the
object or REF is returned.

alenp (IN/OUT)
The length of the piece or the value. Do not change this parameter between
executions of the same SQL statement.

piece (IN)
The piece parameter. Valid values:

■ OCI_ONE_PIECE

OCIStmtSetPieceInfo()

16-22 Oracle Call Interface Programmer's Guide

■ OCI_FIRST_PIECE

■ OCI_NEXT_PIECE

■ OCI_LAST_PIECE

This parameter is used for IN bind variables only.

indp (IN/OUT)
Indicator. A pointer to a sb2 value or pointer to an indicator structure for named
datatypes (SQLT_NTY) and REFs (SQLT_REF), that is, *indp is either an sb2 or a
dvoid * depending upon the datatype.

rcodep (IN/OUT)
Return code.

Comments
When an execute call returns OCI_NEED_DATA to get a dynamic IN/OUT bind
value or piece, OCIStmtSetPieceInfo() sets the piece information: the buffer,
the length, which piece is currently being processed, the indicator, and the return
code for this column.

Related Functions
OCIAttrGet(), OCIAttrSet(), OCIStmtExecute(), OCIStmtFetch(),
OCIStmtGetPieceInfo()

See Also: For more information about using
OCIStmtSetPieceInfo() see the section "Runtime Data
Allocation and Piecewise Operations in OCI" on page 5-40

LOB Functions

More OCI Relational Functions 16-23

LOB Functions

This section describes the LOB functions which use the LOB locator. Use functions
that end in "2" for all new applications.

Note: There is another way of accessing LOBs -- using the data
interface for LOBs. You can bind or define character data for a CLOB
column or RAW data for a BLOB column, as described in these
sections:

See Also:

■ "Binding LOB Data" on page 5-11 for usage and examples for
both INSERT and UPDATE statements

■ "Defining LOB Data" on page 5-21 for usage and examples of
SELECT statements

■ Chapter 7, "LOB and BFILE Operations"

Table 16–3 LOB Functions

Function Purpose

OCIDurationBegin() on page 16-26 Start user duration for temporary LOB

OCIDurationEnd() on page 16-28 End user duration for temporary LOB

OCILobAppend() on page 16-29 Append one LOB to another

OCILobAssign() on page 16-31 Assign one LOB locator to another

OCILobCharSetForm() on page 16-33 Get character set form from LOB locator

OCILobCharSetId() on page 16-34 Get character set ID from LOB locator

OCILobClose() on page 16-35 Close a previously opened LOB

OCILobCopy() on page 16-37 Copy all or part of one LOB to another

OCILobCopy2() on page 16-40 Copy all or part of one LOB to another.

OCILobCreateTemporary() on page 16-41 Create a temporary LOB

OCILobDisableBuffering() on page 16-43 Turn LOB buffering off

LOB Functions

16-24 Oracle Call Interface Programmer's Guide

OCILobEnableBuffering() on page 16-44 Turn LOB buffering on

OCILobErase() on page 16-45 Erase a portion of a LOB

OCILobErase2() on page 16-47 Erase a portion of a LOB.

OCILobFileClose() on page 16-48 Close a previously opened BFILE

OCILobFileCloseAll() on page 16-49 Close all previously opened files

OCILobFileExists() on page 16-50 Check if a file exists on the server

OCILobFileGetName() on page 16-51 Get directory alias and file name from the LOB locator

OCILobFileIsOpen() on page 16-53 Check if file on server is open using this locator

OCILobFileOpen() on page 16-55 Open a BFILE

OCILobFileSetName() on page 16-57 Set directory alias and file name in the LOB locator

OCILobFlushBuffer() on page 16-59 Flush the LOB buffer

OCILobFreeTemporary() on page 16-61 Free a temporary LOB

OCILobGetChunkSize() on page 16-62 Get the chunk size of a LOB

OCILobGetLength() on page 16-64 Get length of a LOB

OCILobGetLength2() on page 16-66 Get length of a LOB.

OCILobGetStorageLimit() on page 16-67 Get the maximum length of an internal LOB (BLOB,
CLOB, or NCLOB) in bytes.

OCILobIsEqual() on page 16-68 Compare two LOB locators for Equality

OCILobIsOpen() on page 16-69 Check to see if a LOB is open

OCILobIsTemporary() on page 16-71 Determine if a given LOB is temporary

OCILobLoadFromFile2() on page 16-74 Load a LOB from a BFILE.

OCILobLocatorAssign() on page 16-75 Assigns one LOB locator to another

OCILobLocatorIsInit() on page 16-77 Check to see if a LOB locator is initialized

OCILobOpen() on page 16-79 Open a LOB

OCILobRead() on page 16-81 Read a portion of a LOB

OCILobRead2() on page 16-87 Read a portion of a LOB.

OCILobTrim() on page 16-92 Truncate a LOB

OCILobTrim2() on page 16-94 Truncate a LOB.

Table 16–3 LOB Functions (Cont.)

Function Purpose

LOB Functions

More OCI Relational Functions 16-25

Note the following for parameters in the OCI LOB calls:

■ For fixed-width client-side character sets, the offset and amount parameters are
always in characters for CLOBs and NCLOBs, and in bytes for BLOBs and
BFILEs.

■ For varying-width client-side character sets, these rules generally apply:

■ amount (amtp) parameter - When the amount parameter refers to the
server-side LOB, the amount is in characters. When the amount parameter
refers to the client-side buffer, the amount is in bytes.

For more information, see individual LOB calls, such as
OCILobGetLength(), OCILobRead(), and OCILobWrite().

■ offset (offset) parameter - Regardless of whether the client-side character
set is varying-width, the offset parameter is always in characters for CLOBs
and NCLOBs and in bytes for BLOBs and BFILEs.

■ For many of the LOB operations, regardless of the client-side character set, the
amount parameter is in characters for CLOBs and NCLOBs. These LOB
operations include OCILobCopy(), OCILobErase(), OCILobGetLength(),
OCILobLoadFromFile(), and OCILobTrim(). All these operations refer to
the amount of LOB data on the server.

A streaming operation means that the LOB is read or written in pieces. Streaming can
be implemented using a polling mechanism or by registering a user-defined
callback.

OCILobWrite() on page 16-95 Write into a LOB

OCILobWrite2() on page 16-101 Wrie into a LOB.

OCILobWriteAppend() on page 16-106 Write data beginning at the end of a LOB

OCILobWriteAppend2() on page 16-110 Write data beginning at the end of a LOB.

Table 16–3 LOB Functions (Cont.)

Function Purpose

OCIDurationBegin()

16-26 Oracle Call Interface Programmer's Guide

OCIDurationBegin()

Purpose
Starts a user duration for a temporary LOB.

Syntax
sword OCIDurationBegin (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration parent,
 OCIDuration *duration);

Parameters

env (IN/OUT)
Pass as a NULL pointer.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

svc (IN)
An OCI service context handle. Must be non-NULL.

parent (IN)
The duration number of the parent duration. One of these:

■ OCI_DURATION_STATEMENT

■ OCI_DURATION_SESSION

duration (OUT)
An identifier unique to the newly created user duration.

Comments
This function starts an user duration. In release 8.1 or later, user durations can be
used when creating temporary LOBs. An user can have multiple active user
durations simultaneously. The user durations do not have to be nested. The dur
parameter is used to return a number which uniquely identifies the duration
created by this call.

LOB Functions

More OCI Relational Functions 16-27

Related Functions
OCIDurationEnd()

See Also: "Temporary LOB Durations" on page 7-19

OCIDurationEnd()

16-28 Oracle Call Interface Programmer's Guide

OCIDurationEnd()

Purpose
Terminates a user duration for a temporary LOB.

Syntax
sword OCIDurationEnd (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration duration,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
Pass as a NULL pointer.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

duration (IN)
A number to identify the user duration.

svc (IN)
OCI service context. This should be passed as NULL for cartridge services.

Comments
This function terminates an user duration. Temporary LOBs that are allocated for
the user duration are freed.

Related Functions
OCIDurationBegin()

See Also: "Temporary LOB Durations" on page 7-19

LOB Functions

More OCI Relational Functions 16-29

OCILobAppend()

Purpose
Appends a LOB value at the end of another LOB as specified.

Syntax
sword OCILobAppend (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator
must be a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must be
a locator that was obtained from the server specified by svchp.

Comments
Appends a LOB value at the end of another LOB as specified. The data is copied
from the source to the end of the destination. The source and destination LOBs must
already exist. The destination LOB is extended to accommodate the newly written
data. It is an error to extend the destination LOB beyond the maximum length
allowed (4 gigabytes) or to try to copy from a NULL LOB.

The source and the destination LOB locators must be of the same type (that is, they
must both be BLOBs or both be CLOBs). LOB buffering must not be enabled for
either type of locator. This function does not accept a BFILE locator as the source or
the destination.

OCILobAppend()

16-30 Oracle Call Interface Programmer's Guide

It is not mandatory that you wrap this LOB operation inside the Open or Close
calls. If you did not open the LOB prior to performing this operation, then the
functional and domain indexes on the LOB column are updated during this call.
However, if you did open the LOB prior to performing this operation, then you
must close it before you commit or rollback your transaction. When an internal LOB
is closed, it updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCILobTrim(), OCILobWrite(), OCILobCopy(), OCIErrorGet(),
OCILobWriteAppend()

LOB Functions

More OCI Relational Functions 16-31

OCILobAssign()

Purpose
Assigns one LOB or BFILE locator to another.

Syntax
sword OCILobAssign (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *src_locp,
 OCILobLocator **dst_locpp);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

src_locp (IN)
LOB or BFILE locator to copy from.

dst_locpp (IN/OUT)
LOB or BFILE locator to copy to. The caller must have allocated space for the
destination locator by calling OCIDescriptorAlloc().

Comments
Assign source locator to destination locator. After the assignment, both locators refer
to the same LOB value. For internal LOBs, the source locator's LOB value gets
copied to the destination locator's LOB value only when the destination locator gets
stored in the table. Therefore, issuing a flush of the object containing the destination
locator will copy the LOB value.

OCILobAssign() cannot be used for temporary LOBs; it will generate an
OCI_INVALID_HANDLE error. For temporary LOBs, use
OCILobLocatorAssign().

For BFILEs, only the locator that refers to the file is copied to the table. The
operating system file itself is not copied.

OCILobAssign()

16-32 Oracle Call Interface Programmer's Guide

It is an error to assign a BFILE locator to an internal LOB locator, and vice versa.

If the source locator is for an internal LOB that was enabled for buffering, and the
source locator has been used to modify the LOB data through the LOB buffering
subsystem, and the buffers have not been flushed since the write, then the source
locator may not be assigned to the destination locator. This is because only one
locator for each LOB may modify the LOB data through the LOB buffering
subsystem.

The value of the input destination locator must have already been allocated with a
call to OCIDescriptorAlloc(). For example, assume the following declarations:

OCILobLocator *source_loc = (OCILobLocator *) 0;
OCILobLocator *dest_loc = (OCILobLocator *) 0;

An application could allocate the source_loc locator as follows:

if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &source_loc,
 (ub4) OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
 handle_error;

Assume that it then selects a LOB from a table into the source_loc in order to
initialize it. The application must allocate the destination locator, dest_loc, before
issuing the OCILobAssign() call to assign the value of source_loc to
dest_loc. For example:

if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
 handle_error;
if (OCILobAssign(envhp, errhp, source_loc, &dest_loc))
 handle_error;

Related Functions
OCIErrorGet(), OCILobIsEqual(), OCILobLocatorAssign(),
OCILobLocatorIsInit(), OCILobEnableBuffering()

LOB Functions

More OCI Relational Functions 16-33

OCILobCharSetForm()

Purpose
Gets the character set form of the LOB locator, if any.

Syntax
sword OCILobCharSetForm (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 ub1 *csfrm);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN)
LOB locator for which to get the character set form.

csfrm (OUT)
Character set form of the input LOB locator. If the input locator, locp, is for a
BLOB or a BFILE, csfrm is set to 0 since there is no concept of a character set for
binary LOBs and BFILEs. The caller must allocate space for the csfrm (a ub1).

csfrm has two possible nonzero values:

■ SQLCS_IMPLICIT - database character set ID, the default

■ SQLCS_NCHAR - NCHAR character set ID

Comments
Returns the character set form of the input CLOB or NCLOB locator in the csfrm
output parameter.

Related Functions
OCIErrorGet(), OCILobCharSetId(), OCILobLocatorIsInit()

OCILobCharSetId()

16-34 Oracle Call Interface Programmer's Guide

OCILobCharSetId()

Purpose
Gets the LOB locator's database character set ID of the LOB locator, if any.

Syntax
sword OCILobCharSetId (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 ub2 *csid);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN)
LOB locator for which to get the character set ID.

csid (OUT)
Database character set ID of the input LOB locator. If the input locator is for a BLOB
or a BFILE, csid is set to 0 since there is no concept of a character set for binary
LOBs/FILEs. The caller must allocate space for the csid ub2.

Comments
Returns the character set ID of the input CLOB or NCLOB locator in the csid output
parameter.

Related Functions
OCIErrorGet(), OCILobCharSetForm(), OCILobLocatorIsInit()

LOB Functions

More OCI Relational Functions 16-35

OCILobClose()

Purpose
Closes a previously opened LOB or BFILE.

Syntax
sword OCILobClose (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
The LOB to close. The locator can refer to an internal or external LOB.

Comments
Closes a previously opened internal or external LOB. No error is returned if the
BFILE exists but is not opened. An error is returned if the internal LOB is not open.

Closing a LOB requires a round trip to the server for both internal and external
LOBs. For internal LOBs, close will trigger other code that relies on the close call
and for external LOBs (BFILEs), close actually closes the server-side operating
system file.

It is not mandatory that you wrap all LOB operations inside the open or close calls.
However, if you open a LOB, then you must close it before you commit or rollback
your transaction. When an internal LOB is closed, it updates the functional and
domain indexes on the LOB column. It is an error to commit the transaction before
closing all opened LOBs that were opened by the transaction.

When the error is returned, the LOB is no longer marked as open, but the
transaction is successfully committed. Hence, all the changes made to the LOB and
non-LOB data in the transaction are committed but the domain and function-based

OCILobClose()

16-36 Oracle Call Interface Programmer's Guide

indexing are not updated. If this happens, please rebuild your functional and
domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance, so if you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open/close
statements.

Related Functions
OCIErrorGet(), OCILobOpen(), OCILobIsOpen()

See Also: "Functions for Opening and Closing LOBs" on
page 7-12

LOB Functions

More OCI Relational Functions 16-37

OCILobCopy()

Purpose
Copies all or a portion of a LOB value into another LOB value.

Syntax
sword OCILobCopy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator
must be a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must be
a locator that was obtained from the server specified by svchp.

amount (IN)
The number of characters for CLOBs or NCLOBs; or bytes for BLOBs to be copied
from the source LOB to the destination LOB.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs it is the
number of characters from the beginning of the LOB at which to begin writing. For
binary LOBs it is the number of bytes from the beginning of the LOB from which to
begin writing. The offset starts at 1.

OCILobCopy()

16-38 Oracle Call Interface Programmer's Guide

src_offset (IN)
This is the absolute offset for the source LOB. For character LOBs it is the number of
characters from the beginning of the LOB, for binary LOBs it is the number of bytes.
Starts at 1.

Comments
Copies all or a portion of an internal LOB value into another internal LOB as
specified. The data is copied from the source to the destination. The source
(src_locp) and the destination (dst_locp) LOBs must already exist.

If the data already exists at the destination's start position, it is overwritten with the
source data. If the destination's start position is beyond the end of the current data,
zero-byte fillers (for BLOBs) or spaces (for CLOBs) are written into the destination
LOB from the end of the current data to the beginning of the newly written data
from the source. The destination LOB is extended to accommodate the newly
written data if it extends beyond the current length of the destination LOB. It is an
error to extend the destination LOB beyond the maximum length allowed (that is, 4
gigabytes) or to try to copy from a NULL LOB.

Both the source and the destination LOB locators must be of the same type (that is,
they must both be BLOBs or both be CLOBs). LOB buffering must not be enabled for
either locator.

This function does not accept a BFILE locator as the source or the destination.

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Note: You can call OCILobGetLength() to determine the length
of the source LOB.

LOB Functions

More OCI Relational Functions 16-39

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy2(),
OCILobWrite(), OCILobWriteAppend()

OCILobCopy2()

16-40 Oracle Call Interface Programmer's Guide

OCILobCopy2()

Purpose
Copies all or a portion of a LOB value into another LOB value. This function must
be used for LOBs of size greater than 4 GB. You can also use this function for LOBs
smaller than 4 GB.

Syntax
sword OCILobCopy2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 oraub8 amount,
 oraub8 dst_offset,
 oraub8 src_offset);

Parameters

See Also: OCILobCopy() on page 16-37

LOB Functions

More OCI Relational Functions 16-41

OCILobCreateTemporary()

Purpose
Create a temporary LOB

Syntax
sword OCILobCreateTemporary(OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub2 csid,
 ub1 csfrm,
 ub1 lobtype,
 boolean cache,
 OCIDuration duration);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
A locator which points to the temporary LOB. You must allocate the locator using
OCIDescriptorAlloc() before passing it to this function. It does not matter
whether or not this locator already points to a LOB, it will get overwritten either
way.

csid (IN)
The LOB character set ID. For Oracle8i or later, pass as OCI_DEFAULT.

csfrm (IN)
The LOB character set form of the buffer data. csfrm has two possible nonzero
values:

■ SQLCS_IMPLICIT - database character set ID, to create a CLOB. OCI_DEFAULT
can also be used to implicitly create a CLOB.

■ SQLCS_NCHAR - NCHAR character set ID, to create an NCLOB.

OCILobCreateTemporary()

16-42 Oracle Call Interface Programmer's Guide

The default value is SQLCS_IMPLICIT.

lobtype (IN)
The type of LOB to create. Valid values include:

■ OCI_TEMP_BLOB - for a temporary BLOB

■ OCI_TEMP_CLOB - for a temporary CLOB or NCLOB

cache (IN)
Pass TRUE if the temporary LOB should be read into the cache; FALSE, if it should
not. The default is FALSE for NOCACHE functionality.

duration (IN)
The duration of the temporary LOB. The following are valid values:

■ OCI_DURATION_SESSION

■ OCI_DURATION_CALL

Comments
This function creates a temporary LOB and its corresponding index in the user's
temporary tablespace.

When this function is complete, the locp parameter points to an empty temporary
LOB whose length is zero.

The lifetime of the temporary LOB is determined by the duration parameter. At
the end of its duration the temporary LOB is freed. An application can free a
temporary LOB sooner with the OCILobFreeTemporary() call.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Related Functions
OCILobFreeTemporary(), OCILobIsTemporary(),
OCIDescriptorAlloc(), OCIErrorGet()

See Also: For more information about temporary LOBs and their
durations, refer to "Temporary LOB Support" on page 7-17.

LOB Functions

More OCI Relational Functions 16-43

OCILobDisableBuffering()

Purpose
Disable LOB buffering for the input locator.

Syntax
sword OCILobDisableBuffering (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator uniquely referencing the LOB.

Comments
Disables LOB buffering for the input internal LOB locator. The next time data is
read from or written to the LOB through the input locator, the LOB buffering
subsystem is not used. Note that this call does not implicitly flush the changes made
in the buffering subsystem. The user must explicitly call OCILobFlushBuffer()
to do this.

This function does not accept a BFILE locator.

Related Functions
OCILobEnableBuffering(), OCIErrorGet(), OCILobFlushBuffer()

OCILobEnableBuffering()

16-44 Oracle Call Interface Programmer's Guide

OCILobEnableBuffering()

Purpose
Enable LOB buffering for the input locator.

Syntax
sword OCILobEnableBuffering (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator uniquely referencing the LOB.

Comments
Enables LOB buffering for the input internal LOB locator. The next time data is read
from or written to the LOB through the input locator, the LOB buffering subsystem
is used.

If LOB buffering is enabled for a locator and that locator is passed to one of the
following routines, an error is returned: OCILobAppend(), OCILobCopy(),
OCILobErase(), OCILobGetLength(), OCILobLoadFromFile(),
OCILobTrim(), or OCILobWriteAppend().

This function does not accept a BFILE locator.

Related Functions
OCILobDisableBuffering(), OCIErrorGet(), OCILobWrite(),
OCILobRead(), OCILobFlushBuffer(), OCILobWriteAppend()

LOB Functions

More OCI Relational Functions 16-45

OCILobErase()

Purpose
Erases a specified portion of the internal LOB data starting at a specified offset.

Syntax
sword OCILobErase (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amount,
 ub4 offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a
locator that was obtained from the server specified by svchp.

amount (IN/OUT)
The number of characters for CLOBs orNCLOBs, or bytes for BLOBs, to erase. On IN,
the value signifies the number of characters or bytes to erase. On OUT, the value
identifies the actual number of characters or bytes erased.

offset (IN)
Absolute offset in characters for CLOBs or NCLOBs, or bytes for BLOBs, from the
beginning of the LOB value from which to start erasing data. Starts at 1.

Comments
The actual number of characters or bytes erased is returned. For BLOBs, erasing
means that zero-byte fillers overwrite the existing LOB value. For CLOBs, erasing
means that spaces overwrite the existing LOB value.

This function is valid only for internal LOBs; BFILEs are not allowed.

OCILobErase()

16-46 Oracle Call Interface Programmer's Guide

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCIErrorGet(),OCILobErase2(), OCILobRead(), OCILobAppend(),
OCILobCopy(), OCILobWrite(), OCILobWriteAppend()

LOB Functions

More OCI Relational Functions 16-47

OCILobErase2()

Purpose
Erases a specified portion of the internal LOB data starting at a specified offset. This
function must be used for LOBs of size greater than 4 GB. You can also use this
function for LOBs smaller than 4 GB.

Syntax
sword OCILobErase2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *amount,
 oraub8 offset);

Parameters

See Also: OCILobErase() on page 16-45

OCILobFileClose()

16-48 Oracle Call Interface Programmer's Guide

OCILobFileClose()

Purpose
Closes a previously opened BFILE.

Syntax
sword OCILobFileClose (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

filep (IN/OUT)
A pointer to a BFILE locator that refers to the BFILE to be closed.

Comments
Closes a previously opened BFILE. It is an error if this function is called for an
internal LOB. No error is returned if the BFILE exists but is not opened.

This function is only meaningful the first time it is called for a particular BFILE
locator. Subsequent calls to this function using the same BFILE locator have no
effect.

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(),
OCILobFileExists(), OCILobFileIsOpen(), OCILobFileOpen(),
OCILobOpen(), OCILobIsOpen()

See Also: For more information about BFILEs, refer to the
description of BFILEs in the Oracle Database Application Developer's
Guide - Large Objects.

LOB Functions

More OCI Relational Functions 16-49

OCILobFileCloseAll()

Purpose
Closes all open BFILEs on a given service context.

Syntax
sword OCILobFileCLoseAll (OCISvcCtx *svchp,
 OCIError *errhp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
Closes all open BFILEs on a given service context.

Related Functions
OCILobFileClose(), OCIErrorGet(), OCILobFileExists(),
OCILobFileIsOpen()

See Also: For more information about BFILEs, refer to the
description of BBFILEs in the Oracle Database Application Developer's
Guide - Large Objects.

OCILobFileExists()

16-50 Oracle Call Interface Programmer's Guide

OCILobFileExists()

Purpose
Tests to see if the BFILE exists on the server's operating system.

Syntax
sword OCILobFileExists (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

filep (IN)
Pointer to the BFILE locator that refers to the file.

flag (OUT)
Returns TRUE if the BFILE exists on the server; FALSE if it does not.

Comments
Checks to see if the BFILE exists on the server's file system. It is an error to call this
function for an internal LOB.

Related Functions
OCIErrorGet(), OCILobFileClose(), OCILobFileCloseAll(),
OCILobFileIsOpen(), OCILobOpen(), OCILobIsOpen()

See Also: For more information about BFILEs, refer to the
description of BFILEs in the Oracle Database Application Developer's
Guide - Large Objects.

LOB Functions

More OCI Relational Functions 16-51

OCILobFileGetName()

Purpose
Gets the BFILE locator's directory alias and file name.

Syntax
sword OCILobFileGetName (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *filep,
 text *dir_alias,
 ub2 *d_length,
 text *filename,
 ub2 *f_length);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

filep (IN)
BFILE locator for which to get the directory alias and file name.

dir_alias (OUT)
Buffer into which the directory alias name is placed. This can be in UTF-16. You
must allocate enough space for the directory alias name. The maximum length for
the directory alias is 30 bytes.

d_length (IN/OUT)
Serves the following purposes (can be in codepoint for Unicode, or bytes):

■ IN: length of the input dir_alias string

■ OUT: length of the returned dir_alias string

filename (OUT)
Buffer into which the file name is placed. You must allocate enough space for the
file name. The maximum length for the file name is 255 bytes.

OCILobFileGetName()

16-52 Oracle Call Interface Programmer's Guide

f_length (IN/OUT)
Serves the following purposes (in number of bytes):

■ IN: length of the input filename buffer

■ OUT: length of the returned filename string

Comments
Returns the directory alias and file name associated with this BFILE locator. The
environment handle determines whether or not it is in Unicode. It is an error to call
this function for an internal LOB.

Related Functions
OCILobFileSetName(), OCIErrorGet()

See Also: For more information about BFILEs, refer to the
description of BFILEs in the Oracle Database Application Developer's
Guide - Large Objects.

LOB Functions

More OCI Relational Functions 16-53

OCILobFileIsOpen()

Purpose
Tests to see if the BFILE is open

Syntax
sword OCILobFileIsOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

filep (IN)
Pointer to the BFILE locator being examined.

flag (OUT)
Returns TRUE if the BFILE was opened using this particular locator; FALSE if it was
not.

Comments
Checks to see if a file on the server was opened with the filep BFILE locator. It is
an error to call this function for an internal LOB.

If the input BFILE locator was never passed to the OCILobFileOpen() or
OCILobOpen() command, the file is considered not to be opened by this locator.
However, a different locator may have the file open. Openness is associated with a
particular locator.

See Also: For more information about BFILEs, refer to the
description of BFILEs in the Oracle Database Application Developer's
Guide - Large Objects.

OCILobFileIsOpen()

16-54 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(),
OCILobFileExists(), OCILobFileClose(), OCILobFileOpen(),
OCILobOpen(), OCILobIsOpen()

LOB Functions

More OCI Relational Functions 16-55

 OCILobFileOpen()

Purpose
Opens a BFILE on the file system of the server for read-only access.

Syntax
sword OCILobFileOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 ub1 mode);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

filep (IN/OUT)
The BFILE to open. It is an error if the locator does not refer to a BFILE.

mode (IN)
Mode in which to open the file. The only valid mode is OCI_FILE_READONLY.

Comments
Opens a BFILE on the file system of the server. The BFILE can be opened for
read-only access. BFILEs may not be written through Oracle. It is an error to call this
function for an internal LOB.

This function is only meaningful the first time it is called for a particular BFILE
locator. Subsequent calls to this function using the same BFILE locator have no
effect.

See Also: For more information about BFILEs, refer to the
description of BFILEs in the Oracle Database Application Developer's
Guide - Large Objects.

OCILobFileOpen()

16-56 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(),
OCILobFileExists(), OCILobFileClose(), OCILobFileIsOpen(),
OCILobOpen(), OCILobIsOpen()

LOB Functions

More OCI Relational Functions 16-57

OCILobFileSetName()

Purpose
Sets the directory alias and file name in the BFILE locator.

Syntax
sword OCILobFileSetName (OCIEnv *envhp,
 OCIError *errhp,
 OCILobLocator **filepp,
 CONST text *dir_alias,
 ub2 d_length,
 CONST text *filename,
 ub2 f_length);

Parameters

envhp (IN/OUT)
OCI environment handle. Contains UTF-16 setting.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

filepp (IN/OUT)
Pointer to the BFILE locator for which to set the directory alias and file name.

dir_alias (IN)
Buffer that contains the directory alias name (must be in the encoding specified by
the charset parameter of a previous call to OCIEnvNlsCreate()) to set in the
BFILE locator.

d_length (IN)
Length of the input dir_alias parameter. In bytes.

filename (IN)
Buffer that contains the file name (must be in the encoding specified by the
charset parameter of a previous call to OCIEnvNlsCreate()) to set in the BFILE
locator.

f_length (IN)
Length of the input filename parameter. In bytes.

OCILobFileSetName()

16-58 Oracle Call Interface Programmer's Guide

Comments
It is an error to call this function for an internal LOB.

Related Functions
OCILobFileGetName(), OCIErrorGet()

See Also: For more information about BFILEs, refer to the
description of BFILEs in the Oracle Database Application Developer's
Guide - Large Objects.

LOB Functions

More OCI Relational Functions 16-59

OCILobFlushBuffer()

Purpose
Flush/write all buffers for this lob to the server.

Syntax
sword OCILobFlushBuffer (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp
 ub4 flag);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal locator uniquely referencing the LOB.

flag (IN)
When set to OCI_LOB_BUFFER_FREE, the buffer resources for the LOB are freed
after the flush. See Comments section.

Comments
Flushes to the server, changes made to the buffering subsystem that are associated
with the LOB referenced by the input locator. This routine will actually write the
data in the buffer to the LOB in the database. LOB buffering must have already been
enabled for the input LOB locator.

The flush operation, by default, does not free the buffer resources for reallocation to
another buffered LOB operation. However, if you want to free the buffer explicitly,
you can set the flag parameter to OCI_LOB_BUFFER_FREE.

If the client application intends to read the buffer value after the flush and knows in
advance that the current value in the buffer is the desired value, there is no need to
reread the data from the server.

OCILobFlushBuffer()

16-60 Oracle Call Interface Programmer's Guide

The effects of freeing the buffer are mostly transparent to the user, except that the
next access to the same range in the LOB involves a round trip to the server, and
also the cost of acquiring buffer resources and initializing it with the data read from
the LOB. This option is intended for client environments that have low on-board
memory.

Related Functions
OCILobEnableBuffering(), OCIErrorGet(), OCILobWrite(),
OCILobRead(), OCILobDisableBuffering(), OCILobWriteAppend()

LOB Functions

More OCI Relational Functions 16-61

OCILobFreeTemporary()

Purpose
Free a temporary LOB

Syntax
sword OCILobFreeTemporary(OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN/OUT)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
A locator uniquely referencing the LOB to be freed.

Comments
This function frees the contents of the temporary LOB to which this locator points.
Note that the locator itself is not freed until OCIDescriptorFree()is called.

This function returns an error if the LOB locator passed in the locp parameter does
not point to a temporary LOB, which might be due to any of the following:

■ It points to a permanent LOB

■ It pointed to a temporary LOB which has already been freed

■ It has never pointed to anything

Related functions
OCILobCreateTemporary(), OCILobIsTemporary(), OCIErrorGet()

OCILobGetChunkSize()

16-62 Oracle Call Interface Programmer's Guide

OCILobGetChunkSize()

Purpose
Gets the chunk size of a LOB.

Syntax
sword OCILobGetChunkSize (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *chunk_size);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
The internal LOB for which to get the usable chunk size.

chunk_size (OUT)
The amount of a chunk's space that is used to store the internal LOB value. This is
the amount that users should use when reading or writing the LOB value. If
possible, users should start their writes at chunk boundaries, such as the beginning
of a chunk, and write a chunk at a time.

chunk_size will be returned in terms of bytes for BLOBs and in terms of
characters for CLOBs and NCLOBs. For varying width character sets, the value will
be the number of Unicode characters that fit in a chunk.

Comments
When creating a table that contains an internal LOB, the user can specify the
chunking factor, which can be a multiple of Oracle blocks. This corresponds to the
chunk size used by the LOB data layer when accessing and modifying the LOB
value. Part of the chunk is used to store system-related information and the rest
stores the LOB value. This function returns the amount of space used in the LOB
chunk to store the LOB value. Performance will be improved if the application

LOB Functions

More OCI Relational Functions 16-63

issues read or write requests using a multiple of this chunk size. For writes, there is
an added benefit since LOB chunks are versioned and, if all writes are done on a
chunk basis, no extra or excess versioning is done nor duplicated. Users could batch
up the write until they have enough for a chunk instead of issuing several write
calls for the same chunk.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(),
OCILobWrite(), OCILobWriteAppend()

See Also: "Improving LOB Read/Write Performance" on
page 7-10

OCILobGetLength()

16-64 Oracle Call Interface Programmer's Guide

OCILobGetLength()

Purpose
Gets the length of a LOB.

Syntax
sword OCILobGetLength (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *lenp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN)
A LOB locator that uniquely references the LOB. For internal LOBs, this locator
must be a locator that was obtained from the server specified by svchp. For BFILEs,
the locator can be set by OCILobFileSetName(), by a SELECT statement, or by
OCIObjectPin().

lenp (OUT)
On output, it is the length of the LOB if the LOB is not NULL. For character LOBs, it
is the number of characters, for binary LOBs and BFILEs it is the number of bytes
in the LOB.

Comments
Gets the length of a LOB. If the LOB is NULL, the length is undefined. The length of
a BFILE includes the EOF, if it exists. The length of an empty internal LOB is zero.

Regardless of whether the client-side character set is varying-width, the output
length is in characters for CLOBs and NCLOBs, and in bytes for BLOBs and BFILEs.

LOB Functions

More OCI Relational Functions 16-65

Related Functions
OCIErrorGet(), OCILobFileSetName(),OCILobGetLength2(),
OCILobRead(), OCILobWrite(), OCILobCopy(), OCILobAppend(),
OCILobLoadFromFile(), OCILobWriteAppend()

Note: Any zero-byte or space fillers in the LOB written by
previous calls to OCILobErase() or OCILobWrite() are also
included in the length count.

OCILobGetLength2()

16-66 Oracle Call Interface Programmer's Guide

OCILobGetLength2()

Purpose
Gets the length of a LOB. This function must be used for LOBs of size greater than 4
GB. You can also use this function for LOBs smaller than 4 GB.

Syntax
sword OCILobGetLength2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *lenp);

Parameters

See Also: OCILobGetLength() on page 16-64

LOB Functions

More OCI Relational Functions 16-67

OCILobGetStorageLimit()

Purpose
Gets the maximum length of an internal LOB (BLOB, CLOB, or NCLOB) in bytes.

Syntax
sword OCILobGetStorageLimit (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *limitp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle that you can pass to OCIError() for diagnostic information in the
event iof an error.

locp (IN)
A LOB locator that uniquely references the LOB. The locator must be one that was
obtained from the server specified by svchp.

limitp (OUT)
The maximum length of the LOB (in bytes) that can be stored in the database.

Comments
The maximum size of an internal LOB (persistent or temporary) is (4GB *
db_block_size), where 4GB is defined as 4 gigabytes -1, or, 4,294,967,295 bytes.
Because block size ranges from 2KB to 32KB, the maximum LOB size ranges from 8
terabytes to 128 terabytes.

OCILobIsEqual()

16-68 Oracle Call Interface Programmer's Guide

OCILobIsEqual()

Purpose
Compares two LOB or BFILE locators for equality.

Syntax
sword OCILobIsEqual (OCIEnv *envhp,
 CONST OCILobLocator *x,
 CONST OCILobLocator *y,
 boolean *is_equal);

Parameters

envhp (IN)
The OCI environment handle.

x (IN)
LOB locator to compare.

y (IN)
LOB locator to compare.

is_equal (OUT)
TRUE, if the LOB locators are equal; FALSE if they are not.

Comments
Compares the given LOB or BFILE locators for equality. Two LOB or BFILE locators
are equal if and only if they both refer to the same LOB or BFILE value.

Two NULL locators are considered not equal by this function.

Related Functions
OCILobAssign(), OCILobLocatorIsInit()

LOB Functions

More OCI Relational Functions 16-69

OCILobIsOpen()

Purpose
Tests whether a LOB or BFILE is open.

Syntax
sword OCILobIsOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 boolean *flag);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic
information in the event of an error.

locp (IN)
Pointer to the LOB locator being examined. The locator can refer to an internal or
external LOB.

flag (OUT)
Returns TRUE if the internal LOB is open or if the BFILE was opened using the
input locator. Returns FALSE if it was not.

Comments
Checks to see if the internal LOB is open or if the BFILE was already opened using
the input locator.

For BFILES
If the input BFILE locator was never passed to OCILobOpen() or
OCILobFileOpen(), the BFILE is considered not to be opened by this BFILE
locator. However, a different BFILE locator may have opened the BFILE. More
than one open can be performed on the same BFILE using different locators. In
other words, openness is associated with a specific locator for BFILEs.

OCILobIsOpen()

16-70 Oracle Call Interface Programmer's Guide

For internal LOBs
Openness is associated with the LOB, not with the locator. If locator1 opened the
LOB then locator2 also sees the LOB as open.

For internal LOBs, this call requires a server round trip because it checks the state
on the server to see if the LOB is indeed open. For external LOBs (BFILEs), this call
also requires a round trip because the actual operating system file on the server
side must be checked to see if it is actually open.

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(),
OCILobFileExists(), OCILobFileClose(), OCILobFileIsOpen(),
OCILobFileOpen(), OCILobOpen()

See Also: "Functions for Opening and Closing LOBs" on
page 7-12

LOB Functions

More OCI Relational Functions 16-71

OCILobIsTemporary()

Purpose
 Tests if a locator points to a temporary LOB

Syntax
sword OCILobIsTemporary(OCIEnv *envhp,
 OCIError *errhp,
 OCILobLocator *locp,
 boolean *is_temporary);

Parameters

envhp (IN)
The OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN)
The locator to test.

is_temporary (OUT)
Returns TRUE if the LOB locator points to a temporary LOB; FALSE if it does not.

Comments
This function tests a locator to determine if it points to a temporary LOB. If so,
is_temporary is set to TRUE. If not, is_temporary is set to FALSE.

Related Functions
OCILobCreateTemporary(), OCILobFreeTemporary()

OCILobLoadFromFile()

16-72 Oracle Call Interface Programmer's Guide

OCILobLoadFromFile()

Purpose
Load and copy all or a portion of the file into an internal LOB.

Syntax
sword OCILobLoadFromFile (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

dst_locp (IN/OUT)
A locator uniquely referencing the destination internal LOB which may be of type
BLOB, CLOB, or NCLOB.

src_locp (IN/OUT)
A locator uniquely referencing the source BFILE.

amount (IN)
The number of bytes to be loaded.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs it is the
number of characters from the beginning of the LOB at which to begin writing. For
binary LOBs it is the number of bytes from the beginning of the LOB from which to
begin reading. The offset starts at 1.

LOB Functions

More OCI Relational Functions 16-73

src_offset (IN)
This is the absolute offset for the source BFILE. It is the number of bytes from the
beginning of the BFILE. The offset starts at 1.

Comments
Loads and copies a portion or all of a BFILE value into an internal LOB as specified.
The data is copied from the source BFILE to the destination internal LOB (BLOB or
CLOB). No character set conversions are performed when copying the BFILE data to
a CLOB or NCLOB. Also, when binary data is loaded into a BLOB, no character set
conversions are performed. Therefore, the BFILE data must already be in the same
character set as the LOB in the database. No error checking is performed to verify
this.

The source (src_locp) and the destination (dst_locp) LOBs must already exist.
If the data already exists at the destination's start position, it is overwritten with the
source data. If the destination's start position is beyond the end of the current data,
zero-byte fillers (for BLOBs) or spaces (for CLOBs) are written into the destination
LOB from the end of the data to the beginning of the newly written data from the
source. The destination LOB is extended to accommodate the newly written data if
it extends beyond the current length of the destination LOB.

It is an error to extend the destination LOB beyond the maximum length allowed (4
gigabytes) or to try to copy from a NULL BFILE.

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCIErrorGet(), OCILobAppend(), OCILobWrite(), OCILobTrim(),
OCILobCopy(), OCILobGetLength(), OCILobLoadFromFile2(),
OCILobWriteAppend()

OCILobLoadFromFile2()

16-74 Oracle Call Interface Programmer's Guide

OCILobLoadFromFile2()

Purpose
Load and copy all or a portion of the file into an internal LOB. This function must
be used for LOBs of size greater than 4 GB. You can also use this function for LOBs
smaller than 4 GB.

Syntax
sword OCILobLoadFromFile2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 oraub8 amount,
 oraub8 dst_offset,
 oraub8 src_offset);

Parameters

See Also: OCILobLoadFromFile() on page 16-72

LOB Functions

More OCI Relational Functions 16-75

OCILobLocatorAssign()

Purpose
Assigns one LOB or BFILE locator to another.

Syntax
sword OCILobLocatorAssign (OCISvcCtx *svchp,
 OCIError *errhp,
 CONST OCILobLocator *src_locp,
 OCILobLocator **dst_locpp);

Parameters

svchp (IN/OUT)
The OCI service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

src_locp (IN)
The LOB/BFILE locator to copy from.

dst_locpp (IN/OUT)
The LOB/BFILE locator to copy to. The caller must allocate space for the
OCILobLocator by calling OCIDescriptorAlloc().

Comments
This call assigns the source locator to the destination locator. After the assignment,
both locators refer to the same LOB data. For internal LOBs, the source locator's
LOB data gets copied to the destination locator's LOB data only when the
destination locator gets stored in the table. Therefore, issuing a flush of the object
containing the destination locator copies the LOB data. For BFILEs only the locator
that refers to the OS file is copied to the table; the OS file is not copied.

Note that this call is similar to OCILobAssign() but OCILobLocatorAssign()
takes an OCI service handle pointer instead of an OCI environment handle pointer.
Also, OCILobLocatorAssign() can be used for temporary LOBs and
OCILobAssign() cannot be used for temporary LOBs.

OCILobLocatorAssign()

16-76 Oracle Call Interface Programmer's Guide

If the destination locator is for a temporary LOB, the destination temporary LOB is
freed before assigning the source LOB locator to it.

If the source LOB locator refers to a temporary LOB, the destination will be made
into a temporary LOB too. The source and the destination will conceptually be
different temporary LOBs. In the OCI_DEFAULT mode, the source temporary LOB
is deep copied and a destination locator is created to refer to the new deep copy of
the temporary LOB. Hence OCILobIsEqual() will return FALSE after the
OCILobLocatorAssign() call. However, in the OCI_OBJECT mode, an
optimization is made to minimize the number of deep copies, so the source and
destination locators will point to the same LOB until any modification is made
through either LOB locator. Hence OCILobIsEqual() will return TRUE right after
OCILobLocatorAssign() until the first modification. In both these cases, after
the OCILobLocatorAssign(), any changes to the source or the destination will
not reflect in the other (that is, destination or source) LOB. If you want the source
and the destination to point to the same LOB and want your changes to reflect in
the other, then you must use the equal sign to ensure that two LOB locator pointers
refer to the same LOB locator.

Related Functions
OCIErrorGet(), OCILobAssign(), OCILobIsEqual(),
OCILobLocatorIsInit()

Note: If the OCILobLocatorAssign() function fails, the target
locator will not be restored to its previous state. The target locator
should not be used in subsequent operations unless it is
reinitialized.

LOB Functions

More OCI Relational Functions 16-77

OCILobLocatorIsInit()

Purpose
Tests to see if a given LOB or BFILE locator is initialized.

Syntax
sword OCILobLocatorIsInit (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 boolean *is_initialized);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN)
The LOB or BFILE locator being tested

is_initialized (OUT)
Returns TRUE if the given LOB or BFILE locator is initialized; FALSE if it is not.

Comments
Tests to see if a given LOB or BFILE locator is initialized.

Internal LOB locators can be initialized by one of the following methods:

■ selecting a non-NULL LOB into the locator,

■ pinning an object that contains a non-NULL LOB attribute by OCIObjectPin()

■ setting the locator to empty by OCIAttrSet()

BFILE locators can be initialized by one of the following methods:

■ selecting a non-NULL BFILE into the locator

See Also: "LOB Locator Attributes" on page A-42

OCILobLocatorIsInit()

16-78 Oracle Call Interface Programmer's Guide

■ pinning an object that contains a non-NULL BFILE attribute by
OCIObjectPin()

■ calling OCILobFileSetName()

Related Functions
OCIErrorGet(), OCILobIsEqual()

LOB Functions

More OCI Relational Functions 16-79

OCILobOpen()

Purpose
Opens a LOB, internal or external, in the indicated mode.

Syntax
sword OCILobOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub1 mode);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
The LOB to open. The locator can refer to an internal or external LOB.

mode (IN)
The mode in which to open the LOB or BFILE. In Oracle8i or later, valid modes for
LOBs are OCI_LOB_READONLY and OCI_LOB_READWRITE. Note that
OCI_FILE_READONLY exists as input to OCILobFileOpen().
OCI_FILE_READONLY can be used with OCILobOpen() if the input locator is for
a BFILE.

Comments
It is an error to open the same LOB twice. BFILEs cannot be opened in read-write
mode. Note that if the LOB or BFILE was opened in read-only mode and the user
tries to write to the LOB or BFILE, an error will be returned.

Opening a LOB requires a round trip to the server for both internal and external
LOBs. For internal LOBs, the open will trigger other code that relies on the open
call. For external LOBs (BFILEs), open requires a round trip because the actual
operating system file on the server side is being opened.

OCILobOpen()

16-80 Oracle Call Interface Programmer's Guide

It is not necessary to open a LOB in order to perform operations on it. When using
function-based indexes, extensible indexes or context, and making more than one
call to update or write to the LOB, you should first call OCILobOpen(), then
update the LOB as many times as you want, and finally call OCILobClose(). This
sequence

of operations will ensure that the indexes are only updated once at the end of all the
write operations instead of once for each write operation.

It is not mandatory that you wrap all LOB operations inside the Open and Close
calls. However, if you open a LOB, then you must close it before you commit or
rollback your transaction. When an internal LOB is closed, it updates the functional
and domain indexes on the LOB column. It is an error to commit the transaction
before closing all opened LOBs that were opened by the transaction.

When the error is returned, the LOB is no longer marked as open, but the
transaction is successfully committed. Hence, all the changes made to the LOB and
non-LOB data in the transaction are committed but the domain and function-based
indexing are not updated. If this happens, please rebuild your functional and
domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance, so if you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCIErrorGet(), OCILobClose(), OCILobFileCloseAll(),
OCILobFileExists(), OCILobFileClose(), OCILobFileIsOpen(),
OCILobFileOpen(), OCILobIsOpen()

See Also: "Functions for Opening and Closing LOBs" on
page 7-12

LOB Functions

More OCI Relational Functions 16-81

OCILobRead()

Purpose
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer.

Syntax
sword OCILobRead (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 dvoid *bufp,
 ub4 bufl,
 dvoid *ctxp,
 OCICallbackLobRead (cbfp)
 (dvoid *ctxp,
 CONST dvoid *bufp,
 ub4 len,
 ub1 piece
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN)
A LOB or BFILE locator that uniquely references the LOB or BFILE. This locator
must be a locator that was obtained from the server specified by svchp.

amtp (IN/OUT)
The value in amtp is the amount in either bytes or characters, as shown in this table:

OCILobRead()

16-82 Oracle Call Interface Programmer's Guide

(1) The input amount refers to the number of characters to be read from the
server-side CLOB or NCLOB. The output amount indicates how many bytes were
read into the buffer bufp.

*amtp is the total amount of data read if:

■ data is not read in streamed mode (only one piece read and there is no polling
or callback)

■ data is read in streamed mode with a callback

*amtp is the length of the last piece read if the data is read in streamed mode using
polling.

If the amount to be read is larger than the buffer length it is assumed that the LOB is
being read in a streamed mode from the input offset until the end of the LOB, or
until the specified number of bytes have been read, whichever comes first. On input
if this value is 0, then the data shall be read in streamed mode from the input offset
until the end of the LOB.

The streamed mode (implemented with either polling or callbacks) reads the LOB
value sequentially from the input offset.

If the data is read in pieces, *amtp always contains the length of the piece just read.

If a callback function is defined, then this callback function will be invoked each
time bufl bytes are read off the pipe. Each piece will be written into bufp.

If the callback function is not defined, then the OCI_NEED_DATA error code will be
returned. The application must call OCILobRead() over and over again to read
more pieces of the LOB until the OCI_NEED_DATA error code is not returned. The
buffer pointer and the length can be different in each call if the pieces are being read
into different sizes and locations.

Table 16–4 Characters or Bytes in amtp

LOB or BFILE Input
Output with fixed-width
client-side character set

Output with varying-width
client-side character set

BLOBs and
BFILEs

bytes bytes bytes

CLOBs and
NCLOBs

characters characters bytes (1)

LOB Functions

More OCI Relational Functions 16-83

offset (IN)
On input, this is the absolute offset from the beginning of the LOB value. For
character LOBs (CLOBs, NCLOBs) it is the number of characters from the beginning
of the LOB, for binary LOBs or BFILEs it is the number of bytes. The first position is
1.

If you use streaming (by polling or a callback), then, specify the offset in the first call
and in subsequent polling calls the offset parameter is ignored. When using a
callback there is no offset parameter.

bufp (IN/OUT)
The pointer to a buffer into which the piece will be read. The length of the allocated
memory is assumed to be bufl.

bufl (IN)
The length of the buffer in octets. This value will differ from the amtp value for
CLOBs and for NCLOBs (csfrm=SQLCS_NCHAR) if the amtp parameter is
specified in terms of characters, while the bufl parameter is specified in terms of
bytes.

ctxp (IN)
The context pointer for the callback function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece. If this is NULL, then
OCI_NEED_DATA will be returned for each piece.

The callback function must return OCI_CONTINUE for the read to continue. If any
other error code is returned, the LOB read is terminated.

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

len (IN)
The length in bytes of the current piece in bufp.

piece (IN)
Which piece: OCI_FIRST_PIECE, OCI_NEXT_PIECE, or OCI_LAST_PIECE.

OCILobRead()

16-84 Oracle Call Interface Programmer's Guide

csid (IN)
The character set ID of the buffer data. If this value is 0 then csid is set to the
client's NLS_LANG or NLS_CHAR value, depending on the value of csfrm. It is
never assumed to be the server's character set, unless the server and client have the
same settings.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent
with the type of the LOB.

csfrm has two possible nonzero values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT. If csfrm is not specified, the default is
assumed.

Comments
Reads a portion of a LOB or BFILE as specified by the call into a buffer. It is an error
to try to read from a NULL LOB or BFILE.

For BFILEs, the operating system file must already exist on the server, and it must
have been opened by OCILobFileOpen() or OCILobOpen() using the input
locator. Oracle must have permission to read the operating system file, and the user
must have read permission on the directory object.

When using the polling mode for OCILobRead(), the first call needs to specify
values for offset and amtp, but on subsequent polling calls to OCILobRead(),
the user need not specify these values.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

Note: When reading or writing LOBs, the character set form
(csfrm) specified should match the form of the locator itself.

Note: To terminate an OCILobRead() operation and free the
statement handle, use the OCIBreak() call.

LOB Functions

More OCI Relational Functions 16-85

The following apply to client-side varying-width character sets for CLOBs and
NCLOBs:

■ When using polling mode, be sure to specify the amtp and offset parameters
only in the first call to OCILobRead(). On subsequent polling calls, these
parameters are ignored.

■ When using callbacks, the len parameter, which is input to the callback,
indicates how many bytes are filled in the buffer. Check the len parameter
during your callback processing since the entire buffer may not be filled with
data.

The following applies to client-side fixed-width character sets and server-side
varying-width character sets for CLOBs and NCLOBs:

■ When reading a CLOB or NCLOB value, look at the amtp parameter after every
call to OCILobRead() to see how much of the buffer is filled. When the return
value is in characters (as when the client-side character set is fixed-width) then
convert this value to bytes and determine how much of the buffer is filled.
When using callbacks, always check the len parameter to see how much of the
buffer is filled. This value is always in bytes.

To read data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the
csid parameter is set, it overrides the NLS_LANG environment variable.

See Also:

■ For additional information on Unicode format, see "PL/SQL
REF CURSORs and Nested Tables in OCI" on page 5-39

■ For more information about BFILEs, refer to the description of
BFILEs in the Oracle Database Application Developer's Guide -
Large Objects

■ For a code sample showing the use of LOB reads and writes,
see the demonstration programs included with your Oracle
installation. For additional information, refer to Appendix B,
"OCI Demonstration Programs"

■ For general information about piecewise OCI operations, refer
to "Runtime Data Allocation and Piecewise Operations in OCI"
on page 5-40

OCILobRead()

16-86 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(),OCILobRead2(), OCILobWrite(),
OCILobFileSetName(), OCILobWriteAppend()

LOB Functions

More OCI Relational Functions 16-87

OCILobRead2()

Purpose
Reads a portion of a LOB or BFILE, as specified by the call, into a buffer. This
function must be used for LOBs of size greater than 4 GB. You can also use this
function for LOBs smaller than 4 GB.

Syntax
sword OCILobRead2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *byte_amtp,
 oraub8 *char_amtp,
 oraub8 offset,
 dvoid *bufp,
 oraub8 bufl,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobRead2 (cbfp)
 (
 dvoid *ctxp,
 CONST dvoid *bufp,
 oraub8 lenp,
 ub1 piecep
 dvoid **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

OCILobRead2()

16-88 Oracle Call Interface Programmer's Guide

locp (IN)
A LOB or BFILE locator that uniquely references the LOB or BFILE. This locator
must be a locator that was obtained from the server specified by svchp.

byte_amtp (IN/OUT)
IN - The number of bytes to read from the database. Used for BLOB and BFILE
always. For CLOB and NCLOB, it is used only when char_amtp is zero.

OUT - The number of bytes read into the user buffer.

char_amtp (IN/OUT)
IN - The maximum number of characters to read into the user buffer. Ignored for
BLOB and BFILE.

OUT - The number of characters read into the user buffer. Undefined for BLOB and
BFILE.

offset (IN)
On input, this is the absolute offset from the beginning of the LOB value. For
character LOBs (CLOBs, NCLOBs) it is the number of characters from the beginning
of the LOB, for binary LOBs or BFILEs it is the number of bytes. The first position is
1.

If you use streaming (by polling or a callback), then, specify the offset in the first call
and in subsequent polling calls the offset parameter is ignored. When using a
callback there is no offset parameter.

bufp (IN/OUT)
The pointer to a buffer into which the piece will be read. The length of the allocated
memory is assumed to be bufl.

bufl (IN)
The length of the buffer in octets. This value will differ from the amtp value for
CLOBs and for NCLOBs (csfrm=SQLCS_NCHAR) if the amtp parameter is
specified in terms of characters, while the bufl parameter is specified in terms of
bytes.

piece (IN)
OCI_ONE_PIECE - The call never assumes polling. If the amount indicated is more
than the buffer length then the buffer is filled as much as possible.

For polling, pass OCI_FIRST_PIECE the first time and OCI_NEXT_PIECE in
subsequent calls. OCI_FIRST_PIECE should be passed while using the callback.

LOB Functions

More OCI Relational Functions 16-89

ctxp (IN)
The context pointer for the callback function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece. If this is NULL, then
OCI_NEED_DATA will be returned for each piece.

The callback function must return OCI_CONTINUE for the read to continue. If any
other error code is returned, the LOB read is terminated.

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN)
The length in bytes of the current piece in bufp.

piecep (IN)
Which piece: OCI_FIRST_PIECE, OCI_NEXT_PIECE, or OCI_LAST_PIECE.

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a
new buffer for the next piece to read. The default old buffer bufp is used if this
parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

csid (IN)
The character set ID of the buffer data. If this value is 0 then csid is set to the
client's NLS_LANG or NLS_CHAR value, depending on the value of csfrm. It is
never assumed to be the server character set, unless the server and client have the
same settings.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent
with the type of the LOB.

csfrm has two possible nonzero values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

OCILobRead2()

16-90 Oracle Call Interface Programmer's Guide

The default value is SQLCS_IMPLICIT. If csfrm is not specified, the default is
assumed.

Comments
Reads a portion of a LOB or BFILE as specified by the call into a buffer. It is an error
to try to read from a NULL LOB or BFILE.

For BFILEs, the operating system file must already exist on the server, and it must
have been opened by OCILobFileOpen() or OCILobOpen() using the input
locator. Oracle must have permission to read the operating system file, and the user
must have read permission on the directory object.

When using the polling mode for OCILobRead2(), the first call needs to specify
values for offset and amtp, but on subsequent polling calls to OCILobRead2(),
the user need not specify these values.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

The following points applly to reading LOB data in streaming mode:

■ When using polling mode, be sure to specify the char_amtp and byte_amtp
and offset parameters only in the first call to OCILobRead2(). On subsequent
polling calls these parameters are ignored. If both byte_amtp and char_amtp
are set to point to zero and OCI_FIRST_PIECE is passed then polling mode is
assumed and data is read till the end of the LOB. On output, byte_amtp gives
the number of bytes read in the current piece. For CLOBs and NCLOBs,
char_amtp gives the number of characters read in the current piece.

■ When using callbacks, the len parameter, which is input to the callback,
indicates how many bytes are filled in the buffer. Check the len parameter
during your callback processing because the entire buffer may not be filled
with data.

Note: When reading or writing LOBs, the character set form
(csfrm) specified should match the form of the locator itself.

Note: To terminate an OCILobRead2() operation and free the
statement handle, use the OCIBreak() call.

LOB Functions

More OCI Relational Functions 16-91

■ When using polling, look at the byte_amtp parameter to see how much the
buffer is filled for the current piece. For CLOBs and NCLOBs, char_amtp
returns the number of characters read in the buffer as well.

To read data in UTF-16 format, set the csid parameter to OCI_UTF16ID. If the
csid parameter is set, it overrides the NLS_LANG environment variable.

Related Functions
OCIErrorGet(), OCILobWrite2(), OCILobFileSetName(),
OCILobWriteAppend2()

See Also:

■ For additional information on Unicode format, see "PL/SQL
REF CURSORs and Nested Tables in OCI" on page 5-39

■ For more information about BFILEs, refer to the description of
BFILEs in the Oracle Database Application Developer's Guide -
Large Objects

■ For a code sample showing the use of LOB reads and writes,
see the demonstration programs included with your Oracle
installation. For additional information, refer to Appendix B,
"OCI Demonstration Programs"

■ For general information about piecewise OCI operations, refer
to "Runtime Data Allocation and Piecewise Operations in OCI"
on page 5-40

OCILobTrim()

16-92 Oracle Call Interface Programmer's Guide

OCILobTrim()

Purpose
Truncates the LOB value to a shorter length.

Syntax
sword OCILobTrim (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 newlen);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a
locator that was obtained from the server specified by svchp.

newlen (IN)
The new length of the LOB value, which must be less than or equal to the current
length. For character LOBs, it is the number of characters, for binary LOBs and
BFILEs it is the number of bytes in the LOB.

Comments
This function trims the LOB data to a specified shorter length. The function returns
an error if newlen is greater than the current LOB length. This function is valid
only for internal LOBs. BFILEs are not allowed.

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

LOB Functions

More OCI Relational Functions 16-93

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(),
OCILobErase(),OCILobTrim2(), OCILobWrite(),
OCILobWriteAppend()

OCILobTrim2()

16-94 Oracle Call Interface Programmer's Guide

OCILobTrim2()

Purpose
Truncates the LOB value to a shorter length. This function must be used for LOBs of
size greater than 4 GB. You can also use this function for LOBs smaller than 4 GB.

Syntax
sword OCILobTrim2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 newlen);

Parameters

See Also: OCILobTrim() on page 16-92

LOB Functions

More OCI Relational Functions 16-95

OCILobWrite()

Purpose
Writes a buffer into a LOB

Syntax
sword OCILobWrite (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 dvoid *bufp,
 ub4 buflen,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobWrite (cbfp)
 (
 dvoid *ctxp,
 dvoid *bufp,
 ub4 *lenp,
 ub1 *piecep
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a
locator that was obtained from the server specified by svchp.

amtp (IN/OUT)
The value in amtp is the amount in either bytes or characters, as shown in this table:

OCILobWrite()

16-96 Oracle Call Interface Programmer's Guide

(1) The input amount refers to the number of bytes of data that the user wants
to write into the LOB and not the number of bytes in the bufp, which is
specified by buflen. In the case where data is written in pieces, the amount of
bytes to write may be larger than the buflen. The output amount refers to the
number of characters written into the server-side CLOB or NCLOB.

This should always be a non-NULL pointer. If you want to specify
write-until-end-of-file, then you must declare a variable, set it equal to zero, and
pass its address for this parameter.

If the amount is specified on input, and the data is written in pieces, *amtp will
contain the total length of the pieces written at the end of the call (last piece written)
and is undefined in between. Note that it is different from the piecewise read case.
An error is returned if that amount is not sent to the server.

If amtp is zero, then streaming mode is assumed, and data is written until the user
specifies OCI_LAST_PIECE.

offset (IN)
On input, it is the absolute offset from the beginning of the LOB value. For character
LOBs it is the number of characters from the beginning of the LOB, for binary LOBs
it is the number of bytes. The first position is 1.

If you use streaming (by polling or a callback), then, specify the offset in the first call
and in subsequent polling calls the offset parameter is ignored. When using a
callback there is no offset parameter.

bufp (IN)
The pointer to a buffer from which the piece will be written. The length of the data
in the buffer is assumed to be the value passed in buflen. Even if the data is being
written in pieces using the polling method, bufp must contain the first piece of the
LOB when this call is invoked. If a callback is provided, bufp must not be used to
provide data or an error will result.

Table 16–5 Characters or Bytes in amtp

LOB or BFILE
Input with fixed-width
client-side character set

Input with varying-width
client-side character set Output

BLOBs and BFILEs bytes bytes bytes

CLOBs and NCLOBs characters bytes (1) characters

LOB Functions

More OCI Relational Functions 16-97

buflen (IN)
The length, in bytes, of the data in the buffer. This value will differ from the amtp
value for CLOBs and NCLOBs if the amtp parameter is specified in terms of
characters, while the buflen parameter is specified in terms of bytes.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating the buffer will be written in a single piece.

The following other values are also possible for piecewise or callback mode:
OCI_FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece in a piecewise write. If
this is NULL, the standard polling method will be used.

The callback function must return OCI_CONTINUE for the write to continue. If any
other error code is returned, the LOB write is terminated. The callback takes the
following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece. This is the same as the bufp passed as an input to the
OCILobWrite() routine.

lenp (IN/OUT)
The length, in bytes, of the data in the buffer (IN), and the length in bytes of current
piece in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

Note: This parameter assumes an 8-bit byte. If your operating
system uses a longer byte, you must adjust the value of buflen
accordingly.

OCILobWrite()

16-98 Oracle Call Interface Programmer's Guide

csid (IN)
The character set ID of the data in the buffer. If this value is 0 then csid is set to the
client's NLS_LANG or NLS_CHAR value, depending on the value of csfrm.

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent
with the type of the LOB.

csfrm has two possible nonzero values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments
Writes a buffer into an internal LOB as specified. If LOB data already exists it is
overwritten with the data stored in the buffer. The buffer can be written to the LOB
in a single piece with this call, or it can be provided piecewise using callbacks or a
standard polling method.

When using the polling mode for OCILobWrite(), the first call needs to specify
values for offset and amtp, but on subsequent polling calls to OCILobWrite(),
the user need not specify these values.

If the value of the piece parameter is OCI_FIRST_PIECE, data may need to be
provided through callbacks or polling.

If a callback function is defined in the cbfp parameter, then this callback function
will be invoked to get the next piece after a piece is written to the pipe. Each piece
will be written from bufp. If no callback function is defined, then OCILobWrite()
returns the OCI_NEED_DATA error code. The application must call
OCILobWrite() again to write more pieces of the LOB. In this mode, the buffer
pointer and the length can be different in each call if the pieces are of different sizes
and from different locations.

A piece value of OCI_LAST_PIECE terminates the piecewise write, regardless of
whether the polling or callback method is used.

Note: When reading or writing LOBs, the character set form
(csfrm) specified should match the form of the locator itself.

LOB Functions

More OCI Relational Functions 16-99

If the amount of data passed to Oracle (through either input mechanism) is less
than the amount specified by the amtp parameter, an ORA-22993 error is returned.

This function is valid for internal LOBs only. BFILEs are not allowed, since they are
read-only. If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If the client-side character set is varying-width, then the input amount is in bytes
and the output amount is in characters for CLOBs and NCLOBs. The input amount
refers to the number of bytes of data that the user wants to write into the LOB and
not the number of bytes in the bufp, which is specified by buflen. In the case
where data is written in pieces, the amount of bytes to write may be larger than the
buflen. The output amount refers to the number of characters written into the
server-side CLOB or NCLOB.

To write data in UTF16 format, set the csid parameter to OCI_UTF16ID. If the
csid parameter is set, it overrides the NLS_LANG environment variable.

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

See Also:

■ For additional information on Unicode format, see "PL/SQL
REF CURSORs and Nested Tables in OCI" on page 5-39

■ For a code sample showing the use of LOB reads and writes,
see the demonstration programs included with your Oracle
installation. For additional information, refer to Appendix B,
"OCI Demonstration Programs"

■ For general information about piecewise OCI operations, refer
to "Runtime Data Allocation and Piecewise Operations in OCI"
on page 5-40

OCILobWrite()

16-100 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(),
OCILobWriteAppend(), OCILobWrite2()

LOB Functions

More OCI Relational Functions 16-101

OCILobWrite2()

Purpose
Writes a buffer into a LOB. This function must be used for LOBs of size greater than
4 GB. You can also use this function for LOBs smaller than 4 GB.

Syntax
sword OCILobWrite2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *byte_amtp,
 oraub8 *char_amtp,
 oraub8 offset,
 dvoid *bufp,
 oraub8 buflen,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobWrite2 (cbfp)
 (
 dvoid *ctxp,
 dvoid *bufp,
 oraub8 *lenp,
 ub1 *piecep
 dvoid **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a
locator that was obtained from the server specified by svchp.

OCILobWrite2()

16-102 Oracle Call Interface Programmer's Guide

byte_amtp (IN/OUT)
IN - The number of bytes to write to the database. Always used for BLOB. For CLOB
and NCLOB it is used only when char_amtp is zero.

OUT - The number of bytes written to the database. In polling mode, it is the length
of the piece, in bytes, just written.

char_amtp (IN/OUT)
IN - The maximum number of characters to write to the database. Ignored for
BLOB.

OUT - The number of characters written to the database. Undefined for BLOB. In
polling mode, it is the length of the piece, in characters, just written.

offset (IN)
On input, it is the absolute offset from the beginning of the LOB value. For character
LOBs it is the number of characters from the beginning of the LOB, for binary LOBs
it is the number of bytes. The first position is 1.

If you use streaming (by polling or a callback), then, specify the offset in the first call
and in subsequent polling calls the offset parameter is ignored. When using a
callback there is no offset parameter.

bufp (IN)
The pointer to a buffer from which the piece will be written. The length of the data
in the buffer is assumed to be the value passed in buflen. Even if the data is being
written in pieces using the polling method, bufp must contain the first piece of the
LOB when this call is invoked. If a callback is provided, bufp must not be used to
provide data or an error will result.

buflen (IN)
The length, in bytes, of the data in the buffer. This value will differ from the
char_amtp value for CLOBs and NCLOBs if the amount is specified in terms of
characters using the char_amtp parameter, while the buflen parameter is
specified in terms of bytes.

Note: This parameter assumes an 8-bit byte. If your operating
system uses a longer byte, you must adjust the value of buflen
accordingly.

LOB Functions

More OCI Relational Functions 16-103

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating the buffer will be written in a single piece.

The following other values are also possible for piecewise or callback mode:
OCI_FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.

ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece in a piecewise write. If
this is NULL, the standard polling method will be used.

The callback function must return OCI_CONTINUE for the write to continue. If any
other error code is returned, the LOB write is terminated. The callback takes the
following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece. This is the same as the bufp passed as an input
to the OCILobWrite() routine.

lenp (IN/OUT)
The length, in bytes, of the data in the buffer (IN), and the length in bytes of
current piece in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a
new buffer for next piece to read. The default old buffer bufp is used if this
parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

csid (IN)
The character set ID of the data in the buffer. If this value is 0 then csid is set to the
client's NLS_LANG or NLS_CHAR value, depending on the value of csfrm.

OCILobWrite2()

16-104 Oracle Call Interface Programmer's Guide

csfrm (IN)
The character set form of the buffer data. The csfrm parameter must be consistent
with the type of the LOB.

csfrm has two possible nonzero values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments
Writes a buffer into an internal LOB as specified. If LOB data already exists it is
overwritten with the data stored in the buffer. The buffer can be written to the LOB
in a single piece with this call, or it can be provided piecewise using callbacks or a
standard polling method.

When using the polling mode for OCILobWrite2(), the first call needs to specify
values for offset, byte_amtp, and char_amtp, but on subsequent polling calls
to OCILobWrite(), the user need not specify these values.

If the value of the piece parameter is OCI_FIRST_PIECE, data may need to be
provided through callbacks or polling.

If a callback function is defined in the cbfp parameter, then this callback function
will be invoked to get the next piece after a piece is written to the pipe. Each piece
will be written from bufp. If no callback function is defined, then
OCILobWrite2() returns the OCI_NEED_DATA error code. The application must
call OCILobWrite2() again to write more pieces of the LOB. In this mode, the
buffer pointer and the length can be different in each call if the pieces are of
different sizes and from different locations.

A piece value of OCI_LAST_PIECE terminates the piecewise write, regardless of
whether the polling or callback method is used.

If the amount of data passed to the database (through either input mechanism) is
less than the amount specified by the byte_amtp or the char_amtp parameter, an
ORA-22993 error is returned.

Note: When reading or writing LOBs, the character set form
(csfrm) specified should match the form of the locator itself.

LOB Functions

More OCI Relational Functions 16-105

This function is valid for internal LOBs only. BFILEs are not allowed, since they are
read-only. If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If both byte_amtp and char_amtp are set to point to zero amount and
OCI_FIRST_PIECE is given as input, then polling mode is assumed and data is
written until you specify OCI_LAST_PIECE. For CLOBs and NCLOBs, byte_amtp
and char_amtp return the data written by each piece in terms of number of bytes
and number of characters respectively. For BLOBs byte_amtp returns the number
of bytes written by each piece while char_amtp is undefined on output.

To write data in UTF16 format, set the csid parameter to OCI_UTF16ID. If the
csid parameter is set, it overrides the NLS_LANG environment variable.

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCIErrorGet(), OCILobRead2(), OCILobAppend(), OCILobCopy(),
OCILobWriteAppend2()

See Also:

■ For additional information on Unicode format, see "PL/SQL
REF CURSORs and Nested Tables in OCI" on page 5-39

■ For a code sample showing the use of LOB reads and writes,
see the demonstration programs included with your Oracle
installation. For additional information, refer to Appendix B,
"OCI Demonstration Programs"

■ For general information about piecewise OCI operations, refer
to "Runtime Data Allocation and Piecewise Operations in OCI"
on page 5-40

OCILobWriteAppend()

16-106 Oracle Call Interface Programmer's Guide

OCILobWriteAppend()

Purpose
Writes data starting at the end of a LOB.

Syntax
sword OCILobWriteAppend (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 dvoid *bufp,
 ub4 buflen,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobWrite (cbfp)
 (
 dvoid *ctxp,
 dvoid *bufp,
 ub4 *lenp,
 ub1 *piecep
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references a LOB.

amtp (IN/OUT)
The value in amtp is the amount in either bytes or characters, as shown in this table:

LOB Functions

More OCI Relational Functions 16-107

(1) The input amount refers to the number of bytes of data that the user wants
to write into the LOB and not the number of bytes in the bufp, which is
specified by buflen. In the case where data is written in pieces, the amount of
bytes to write may be larger than the buflen. The output amount refers to the
number of characters written into the server-side CLOB or NCLOB.

If the amount specified on input, and the data is written in pieces, *amtp will
contain the total length of the pieces written at the end of the call (last piece written)
and is undefined in between. (Note it is different from the piecewise read case). An
error is returned if that amount is not sent to the server. If amtp is zero, then
streaming mode is assumed, and data is written until the user specifies
OCI_LAST_PIECE.

If the client-side character set is varying-width, then the input amount is in bytes,
not characters, for CLOBs or NCLOBs.

bufp (IN)
The pointer to a buffer from which the piece will be written. The length of the data
in the buffer is assumed to be the value passed in buflen. Even if the data is being
written in pieces, bufp must contain the first piece of the LOB when this call is
invoked. If a callback is provided, bufp must not be used to provide data or an error
will result.

buflen (IN)
The length, in bytes, of the data in the buffer. Note that this parameter assumes an
8-bit byte. If your operating system uses a longer byte, the value of buflen must be
adjusted accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating the buffer will be written in a single piece. The
following other values are also possible for piecewise or callback mode:
OCI_FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.

Table 16–6 Characters or Bytes in amtp

LOB or BFILE
Input with fixed-width
client-side character set

Input with varying-width
client-side character set Output

BLOBs and BFILEs bytes bytes bytes

CLOBs and NCLOBs characters bytes (1) characters

OCILobWriteAppend()

16-108 Oracle Call Interface Programmer's Guide

ctxp (IN)
The context for the call back function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece in a piecewise write. If
this is NULL, the standard polling method will be used. The callback function must
return OCI_CONTINUE for the write to continue. If any other error code is
returned, the LOB write is terminated. The callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN/OUT)
The length, in bytes, of the data in the buffer (IN), and the length in bytes of current
piece in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The character set ID of the buffer data.

csfrm (IN)
The character set form of the buffer data.

csfrm has two possible nonzero values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments
The buffer can be written to the LOB in a single piece with this call, or it can be
provided piecewise using callbacks or a standard polling method. If the value of the
piece parameter is OCI_FIRST_PIECE, data must be provided through callbacks or
polling. If a callback function is defined in the cbfp parameter, then this callback
function will be invoked to get the next piece after a piece is written to the pipe.
Each piece will be written from bufp. If no callback function is defined, then
OCILobWriteAppend() returns the OCI_NEED_DATA error code.

LOB Functions

More OCI Relational Functions 16-109

The application must call OCILobWriteAppend() again to write more pieces of
the LOB. In this mode, the buffer pointer and the length can be different in each call
if the pieces are of different sizes and from different locations. A piece value of
OCI_LAST_PIECE terminates the piecewise write.

OCILobWriteAppend() is not supported if LOB buffering is enabled.

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If the client-side character set is varying-width, then the input amount is in bytes,
not characters, for CLOBs or NCLOBs.

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy(),
OCILobWrite(), OCILobWriteAppend2()

See Also: "Improving LOB Read/Write Performance" on
page 7-10

OCILobWriteAppend2()

16-110 Oracle Call Interface Programmer's Guide

OCILobWriteAppend2()

Purpose
Writes data starting at the end of a LOB. This function must be used for LOBs of
size greater than 4 GB. You can also use this function for LOBs smaller than 4 GB.

Syntax
sword OCILobWriteAppend2 (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 oraub8 *byte_amtp,
 oraub8 *char_amtp,
 dvoid *bufp,
 oraub8 buflen,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobWrite2 (cbfp)
 (
 dvoid *ctxp,
 dvoid *bufp,
 oraub8 *lenp,
 ub1 *piecep
 dvoid **changed_bufpp,
 oraub8 *changed_lenp
)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

locp (IN/OUT)
An internal LOB locator that uniquely references a LOB.

LOB Functions

More OCI Relational Functions 16-111

byte_amtp (IN/OUT)
IN - The number of bytes to write to the database. Used for BLOB. For CLOB and
NCLOB it is used only when char_amtp is zero.

OUT - The number of bytes written to the database.

char_amtp (IN/OUT)
IN - The maximum number of characters to write to the database. Ignored for BLOB.

OUT - The number of characters written to the database. Undefined for BLOB.

bufp (IN)
The pointer to a buffer from which the piece will be written. The length of the data
in the buffer is assumed to be the value passed in buflen. Even if the data is being
written in pieces, bufp must contain the first piece of the LOB when this call is
invoked. If a callback is provided, bufp must not be used to provide data or an error
will result.

buflen (IN)
The length, in bytes, of the data in the buffer. Note that this parameter assumes an
8-bit byte. If your operating system uses a longer byte, the value of buflen must be
adjusted accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating the buffer will be written in a single piece. The
following other values are also possible for piecewise or callback mode:
OCI_FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.

ctxp (IN)
The context for the call back function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece in a piecewise write. If
this is NULL, the standard polling method will be used. The callback function must
return OCI_CONTINUE for the write to continue. If any other error code is
returned, the LOB write is terminated. The callback takes the following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

OCILobWriteAppend2()

16-112 Oracle Call Interface Programmer's Guide

lenp (IN/OUT)
The length, in bytes, of the data in the buffer (IN), and the length in bytes of
current piece in bufp (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

changed_bufpp (OUT)
The callback function can put the address of a new buffer if it prefers to use a
new buffer for next piece to be written. The default old buffer bufp is used if
this parameter is set to NULL.

changed_lenp (OUT)
Length of the new buffer, if provided.

csid (IN)
The character set ID of the buffer data.

csfrm (IN)
The character set form of the buffer data.

csfrm has two possible nonzero values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

Comments
The buffer can be written to the LOB in a single piece with this call, or it can be
provided piecewise using callbacks or a standard polling method. If the value of the
piece parameter is OCI_FIRST_PIECE, data must be provided through callbacks or
polling. If a callback function is defined in the cbfp parameter, then this callback
function will be invoked to get the next piece after a piece is written to the pipe.
Each piece will be written from bufp. If no callback function is defined, then
OCILobWriteAppend2() returns the OCI_NEED_DATA error code.

The application must call OCILobWriteAppend2() again to write more pieces of
the LOB. In this mode, the buffer pointer and the length can be different in each call
if the pieces are of different sizes and from different locations. A piece value of
OCI_LAST_PIECE terminates the piecewise write.

OCILobWriteAppend2() is not supported if LOB buffering is enabled.

LOB Functions

More OCI Relational Functions 16-113

If the LOB is a BLOB, the csid and csfrm parameters are ignored.

If both byte_amtp and char_amtp are set to point to zero amount and
OCI_FIRST_PIECE is given as input, then polling mode is assumed and data is
written until you specify OCI_LAST_PIECE. For CLOBs and NCLOBs, byte_amtp
and char_amtp return the data written by each piece in terms of number of bytes
and number of characters respectively. For BLOBs byte_amtp returns the number
of bytes written by each piece while char_amtp is undefined on output.

It is not mandatory that you wrap this LOB operation inside the open or close calls.
If you did not open the LOB prior to performing this operation, then the functional
and domain indexes on the LOB column are updated during this call. However, if
you did open the LOB prior to performing this operation, then you must close it
before you commit or rollback your transaction. When an internal LOB is closed, it
updates the functional and domain indexes on the LOB column.

If you do not wrap your LOB operations inside the open or close API, then the
functional and domain indexes are updated each time you write to the LOB. This
can adversely affect performance. If you have functional or domain indexes, we
recommend that you enclose write operations to the LOB within the open or close
statements.

Related Functions
OCIErrorGet(), OCILobRead2(), OCILobAppend(), OCILobCopy(),
OCILobWrite2()

See Also: "Improving LOB Read/Write Performance" on
page 7-10

Streams Advanced Queuing and Publish-Subscribe Functions

16-114 Oracle Call Interface Programmer's Guide

Streams Advanced Queuing and Publish-Subscribe Functions

This section describes the Streams Advanced Queuing and publish-subscribe
functions.

Table 16–7 Advanced Queuing and Publish-Subscribe Functions

Function Purpose

OCIAQDeq() on page 16-115 Advanced Queuing dequeue

OCIAQDeqArray() on page 16-118 Dequeues an array of messages

OCIAQEnq() on page 16-121 Advanced Queuing enqueue

OCIAQEnqArray() on page 16-134 Enqueues an array of messages

OCIAQListen() on page 16-136 Listens on one or more queues on behalf of a list of agents

OCISubscriptionEnable() on page 16-140 Enables notifications on a subscription

OCISubscriptionPost() on page 16-142 Posts to a subscription to receive notifications

OCISubscriptionRegister() on page 16-144 Registers a subscription

OCISubscriptionUnRegister() on page 16-147 Unregisters a subscription

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-115

OCIAQDeq()

Purpose
This call is used for an Streams Advanced Queuing dequeue operation using the
OCI.

Syntax
sword OCIAQDeq (OCISvcCtx *svch,
 OCIError *errh,
 text *queue_name,
 OCIAQDeqOptions *dequeue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters

svch (IN)
OCI service context.

errh (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

queue_name (IN)
The target queue for the dequeue operation.

dequeue_options (IN)
The options for the dequeue operation; stored in an OCIAQDeqOptions descriptor.

message_properties (OUT)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter
should point to the TDO of SYS.RAW.

OCIAQDeq()

16-116 Oracle Call Interface Programmer's Guide

payload (IN/OUT)
A pointer to a pointer to a program variable buffer that is an instance of an object
type. For a raw queue, this parameter should point to an instance of OCIRaw.

Memory for the payload is dynamically allocated in the object cache. The
application can optionally call OCIObjectFree() to deallocate the payload
instance when it is no longer needed. If the pointer to the program variable buffer
(*payload) is passed as NULL, the buffer is implicitly allocated in the cache.

The application may choose to pass NULL for payload the first time OCIAQDeq()
is called, and let the OCI allocate the memory for the payload. It can then use a
pointer to that previously allocated memory in subsequent calls to OCIAQDeq().

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

The OCI provides functions which allow the user to set attributes of the payload,
such as its text. For information about setting these attributes, refer to
"Manipulating Object Attributes" on page 10-13.

payload_ind (IN/OUT)
A pointer to a pointer to the program variable buffer containing the parallel
indicator structure for the object type.

The memory allocation rules for payload_ind are the same as those for payload,.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
Users must have the AQ_USER_ROLE or privileges to execute the DBMS_AQ package
in order to use this call. The OCI environment must be initialized in object mode
(using OCIInitialize()) to use this call.

See Also:

■ For more information about OCI and Advanced Queuing, refer
to "OCI and Streams Advanced Queuing" on page 9-48

■ For additional information about Advanced Queuing, refer to
Oracle Streams Advanced Queuing User’s Guide and Reference

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-117

Examples
For code examples, refer to the description of OCIAQEnq() on page 16-121.

Related Functions
OCIAQEnq(), OCIAQListen(), OCIInitialize()

OCIAQDeqArray()

16-118 Oracle Call Interface Programmer's Guide

OCIAQDeqArray()

Purpose
This call dequeues an array of messages from a queue. The array of messages is all
dequeued with the same option and has the same queue table payload column
TDO.

Syntax
sword OCIAQDeqArray (OCISvcCtx *svchp,
 OCIError *errhp,
 OraText *queue_name,
 OCIAQDeqOptions *deqopt,
 ub4 *iters,
 OCIAQMsgProperties **msgprop,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 dvoid *ctxp,
 OCICallbackAQDeq (cbfp)
 (
 dvoid *ctxp,
 dvoid **payload,
 dvoid **payload_ind
),
 ub4 flags);

Parameters

svchp (IN)
OCI service context (unchanged from OCIAQDeq()).

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error (unchanged from OCIAQDeq()).

queue_name (IN)
The name of the queue from which messages are dequeued (unchanged from
OCIAQDeq()).

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-119

deqopt (IN)
A pointer to an OCIAQDeqOptions descriptor (unchanged from OCIAQDeq()).

iters (IN/OUT)
On input, the number of messages to dequeue. On output, the number of messages
successfully dequeued.

msgprop (IN)
An array of pointers to OCIAQMsgProperties descriptors.

payload_tdo (OUT)
A pointer to the TDO of the queue table's payload column.

payload (OUT)
An array of pointers to dequeued messages.

payload_ind (OUT)
An array of pointers to indicators.

msgid (OUT)
An array of pointers to the message ID of the dequeued messages.

ctxp (IN)
The context that will be passed to the callback function.

cbfp (IN)
The callback that may be registered to provide a buffer pointer into which the
dequeued message will be placed. If NULL, then messages will be dequeued into
buffers pointed to by payload.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
Users must have the AQ_USER_ROLE or privileges to execute the DBMS_AQ package
in order to use this call. The OCI environment must be initialized in object mode
(using OCIInitialize()) to use this call.

A non-zero wait time, as specified in the OCIAQDeqOptions, is recognized only
when there are no messages in the queue. If the queue contains messages that are
eligible for dequeue, then the OCIAQDeqArray() function will dequeue up to
iters messages and return immediately.

OCIAQDeqArray()

16-120 Oracle Call Interface Programmer's Guide

This function is not supported in non-blocking mode.

Related Functions
OCIAQDeq(), OCIAQEnqArray(), OCIAQListen(), OCIInitialize()

See Also:

■ For more information about OCI and Advanced Queuing, refer
to "OCI and Streams Advanced Queuing" on page 9-48

■ For additional information about Advanced Queuing, refer to
Oracle Streams Advanced Queuing User’s Guide and Reference

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-121

OCIAQEnq()

Purpose
This call is used for an Streams Advanced Queuing enqueue.

Syntax
sword OCIAQEnq (OCISvcCtx *svch,
 OCIError *errh,
 text *queue_name,
 OCIAQEnqOptions *enqueue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters

svch (IN)
OCI service context.

errh (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

queue_name (IN)
The target queue for the enqueue operation.

enqueue_options (IN)
The options for the enqueue operation; stored in an OCIAQEnqOptions descriptor.

message_properties (IN)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter
should point to the TDO of SYS.RAW.

OCIAQEnq()

16-122 Oracle Call Interface Programmer's Guide

payload (IN)
A pointer to a pointer to an instance of an object type. For a raw queue, this
parameter should point to an instance of OCIRaw.

The OCI provides functions which allow the user to set attributes of the payload,
such as its text.

payload_ind (IN)
A pointer to a pointer to the program variable buffer containing the parallel
indicator structure for the object type.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
Users must have the AQ_USER_ROLE or privileges to execute the DBMS_AQ package
in order to use this call.

The OCI environment must be initialized in object mode (using
OCIInitialize()) to use this call.

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

Examples
The following four examples demonstrate the use of OCIAQEnq() and
OCIAQDeq() in several different situations.

See Also: For information about setting these attributes, refer to
"Manipulating Object Attributes" on page 10-13

See Also:

■ For more information about OCI and Advanced Queuing, refer
to "OCI and Streams Advanced Queuing" on page 9-48

■ For more information about Advanced Queuing, refer to Oracle
Streams Advanced Queuing User’s Guide and Reference

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-123

Example 1 - Enqueue And Dequeue Of A Payload Object.
struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main(argc, argv)
int argc;
char * argv[];
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)(dvoid *,size_t)) 0,
 dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
 (void (*)(dvoid *, dvoid *)) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

See Also: These examples assume that the database is set up as
illustrated in the section "Oracle Advanced Queuing By Example"
in the Advanced Queuing chapter of the Oracle Streams Advanced
Queuing User’s Guide and Reference

OCIAQEnq()

16-124 Oracle Call Interface Programmer's Guide

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, (const text *)"AQ", (ub4) strlen("AQ"),
 (const text *) "AQ", (ub4) strlen("AQ"), (const text *)0, 0);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", (ub4) strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", (ub4) strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL MESSAGE",
 (ub4) strlen("NORMAL MESSAGE"), &mesg->subject);
 OCIStringAssignText(envhp, errhp,(CONST text *)"OCI ENQUEUE",
 (ub4) strlen("OCI ENQUEUE"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue into the msg_queue */
 OCIAQEnq(svchp, errhp, (text *)"msg_queue", (OCIAQEnqOptions *)0,
 (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, (OCIRaw **)0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (text *)"msg_queue", (OCIAQDeqOptions *)0,
 (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, (OCIRaw **)0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-125

 return 0;
}

Example 2 - Enqueue and Dequeue Using Correlation Ids.

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main(argc, argv)
int argc;
char * argv[];
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;
 OCIRaw*firstmsg = (OCIRaw *)0;
 OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
 OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
 text correlation1[30], correlation2[30];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)(dvoid *,size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0, (void (*)(dvoid *, dvoid *)) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,

OCIAQEnq()

16-126 Oracle Call Interface Programmer's Guide

 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, (const text *) "AQ", (ub4) strlen("AQ"),
 (const text *) "AQ", (ub4) strlen("AQ"), (const text *) 0, 0);

 /* allocate message properties descriptor */
 OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
 OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
 strcpy((char *) correlation1, "1st message");
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)&correlation1,
 (ub4) strlen((const char*) correlation1), OCI_ATTR_CORRELATION,
 errhp);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", (ub4)strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", (ub4) strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL ENQUEUE1",
 (ub4) strlen("NORMAL ENQUEUE1"), &mesg->subject);
 OCIStringAssignText(envhp, errhp,(CONST text *)"OCI ENQUEUE",
 (ub4) strlen("OCI ENQUEUE"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue into the msg_queue, store the message id into firstmsg */
 OCIAQEnq(svchp, errhp, (text *)"msg_queue", (OCIAQEnqOptions *)0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, &firstmsg, 0);

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-127

 /* enqueue into the msg_queue with a different correlation id */
 strcpy((char *)correlation2, "2nd message");
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid*)&correlation2,
 (ub4) strlen((const char *)correlation2), OCI_ATTR_CORRELATION,
 errhp);
 OCIStringAssignText(envhp, errhp, (text *)"NORMAL ENQUEUE2",
 (ub4) strlen("NORMAL ENQUEUE2"), &mesg->subject);
 OCIAQEnq(svchp, errhp, (text *)"msg_queue", (OCIAQEnqOptions *)0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, (OCIRaw **)0, 0);

 OCITransCommit(svchp, errhp, (ub4) 0);

 /* first dequeue by correlation id "2nd message" */
 /* allocate dequeue options descriptor and set the correlation option */
 OCIDescriptorAlloc(envhp, (dvoid **)&deqopt,
 OCI_DTYPE_AQDEQ_OPTIONS, 0, (dvoid **)0);
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)correlation2,
 (ub4) strlen((const char *)correlation2), OCI_ATTR_CORRELATION,
 errhp);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (text *)"msg_queue", deqopt, (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, (OCIRaw **)0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* second dequeue by message id */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&firstmsg,
 OCIRawSize(envhp, firstmsg), OCI_ATTR_DEQ_MSGID, errhp);
 /* clear correlation id option */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,
 (dvoid *)correlation2, 0, OCI_ATTR_CORRELATION, errhp);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (text *)"msg_queue", deqopt, (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, (OCIRaw **)0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);
 return 0;
}

Example 3 - Enqueue and Dequeue Of A Raw Queue.
int main(argc, argv)

OCIAQEnq()

16-128 Oracle Call Interface Programmer's Guide

int argc;
char * argv[];
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 char msg_text[100];
 OCIRaw *mesg = (OCIRaw *)0;
 OCIRaw*deqmesg = (OCIRaw *)0;
 OCIInd ind = 0;
 dvoid *indptr = (dvoid *)&ind;
 int i;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0, (void (*)(dvoid *,
 dvoid *)) 0);
 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, (const text *) "AQ", (ub4) strlen("AQ"), (const
 text *) "AQ", (ub4) strlen("AQ"), (const text *) 0, 0);

 /* obtain the TDO of the RAW datatype */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"SYS", (ub4) strlen("SYS"),
 (CONST text *)"RAW", (ub4) strlen("RAW"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-129

 strcpy(msg_text, "Enqueue to a RAW queue");
 OCIRawAssignBytes(envhp, errhp, (const ub1 *)msg_text, (ub4) strlen(msg_text),
 &mesg);

 /* enqueue the message into raw_msg_queue */
 OCIAQEnq(svchp, errhp, (text *)"raw_msg_queue", (OCIAQEnqOptions *)0,
 (OCIAQMsgProperties *) 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&indptr, (OCIRaw **)0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue the same message into C variable deqmesg */
 OCIAQDeq(svchp, errhp, (text *)"raw_msg_queue", (OCIAQDeqOptions *)0,
 (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&indptr, (OCIRaw **)0, 0);
 for (i = 0; i < OCIRawSize(envhp, deqmesg); i++)
 printf("%c", *(OCIRawPtr(envhp, deqmesg) + i));
 OCITransCommit(svchp, errhp, (ub4) 0);
 return 0;
}

Example 4 - Enqueue and Dequeue Using OCIAQAgent.

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main(argc, argv)
int argc;
char * argv[];
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;

OCIAQEnq()

16-130 Oracle Call Interface Programmer's Guide

 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;
 OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
 OCIAQAgent *agents[2];
 OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
 ub4 wait = OCI_DEQ_NO_WAIT;
 ub4 navigation = OCI_DEQ_FIRST_MSG;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)(dvoid *,size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
 (void (*)(dvoid *, dvoid *)) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, (const text *) "AQ", (ub4) strlen("AQ"), (const
 text *) "AQ", (ub4) strlen("AQ"), (const text *) 0, 0);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", (ub4) strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", (ub4) strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-131

 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 1", (ub4) strlen("MESSAGE 1"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for queue subscribers",
 (ub4) strlen("mesg for queue subscribers"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue MESSAGE 1 for subscribers to the queue for RED and GREEN */
 OCIAQEnq(svchp, errhp, (text *)"msg_queue_multiple", (OCIAQEnqOptions *)0,
 (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, (OCIRaw **)0, 0);

 /* enqueue MESSAGE 2 for specified recipients for RED and BLUE */
 /* prepare message payload */
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 2", (ub4) strlen("MESSAGE 2"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for two recipients",
 (ub4) strlen("mesg for two recipients"), &mesg->data);

 /* allocate AQ message properties and agent descriptors */
 OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
 OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[0],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[1],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);

 /* prepare the recipient list, RED and BLUE */
 OCIAttrSet(agents[0], OCI_DTYPE_AQAGENT, (dvoid *) "RED", (ub4) strlen("RED"),
 OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(agents[1], OCI_DTYPE_AQAGENT, (dvoid *)"BLUE",
 (ub4) strlen("BLUE"), OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)agents, 2,
 OCI_ATTR_RECIPIENT_LIST, errhp);

 OCIAQEnq(svchp, errhp, (text *)"msg_queue_multiple", (OCIAQEnqOptions *)0,
 msgprop, mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, (OCIRaw **)0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* now dequeue the messages using different consumer names */

OCIAQEnq()

16-132 Oracle Call Interface Programmer's Guide

 /* allocate dequeue options descriptor to set the dequeue options
*/
 OCIDescriptorAlloc(envhp, (dvoid **)&deqopt, OCI_DTYPE_AQDEQ_OPTIONS, 0,
 (dvoid **)0);

 /* set wait parameter to NO_WAIT so that the dequeue returns
immediately */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&wait, 0,
 OCI_ATTR_WAIT, errhp);

 /* set navigation to FIRST_MESSAGE so that the dequeue resets the
position */
 /* after a new consumer_name is set in the dequeue options */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&navigation, 0,
 OCI_ATTR_NAVIGATION, errhp);

 /* dequeue from the msg_queue_multiple as consumer BLUE */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"BLUE",
 (ub4)strlen("BLUE"), OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (text *)"msg_queue_multiple", deqopt,
 (OCIAQMsgProperties *) 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg,
 (OCIRaw **) 0, 0) == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer RED */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"RED",
 (ub4)strlen("RED"), OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (text *)"msg_queue_multiple", deqopt,
 (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg,
 (OCIRaw **)0, 0) == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer GREEN */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,(dvoid *)"GREEN", (ub4)
 strlen("GREEN"), OCI_ATTR_CONSUMER_NAME, errhp);

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-133

 while (OCIAQDeq(svchp, errhp, (text *)"msg_queue_multiple", deqopt,
 (OCIAQMsgProperties *)0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg,
 (OCIRaw **)0, 0) == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);
 return 0;
}

Related Functions
OCIAQDeq(), OCIAQListen(), OCIInitialize()

OCIAQEnqArray()

16-134 Oracle Call Interface Programmer's Guide

OCIAQEnqArray()

Purpose
This call enqueues an array of messages to a queue. The array of messages is
enqueued with the same options and has the same payload column TDO.

Syntax
sword OCIAQEnqArray (OCISvcCtx *svchp,
 OCIError *errhp,
 OraText *queue_name,
 OCIAQEnqOptions *enqopt,
 ub4 *iters,
 OCIAQMsgProperties **msgprop,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 dvoid *ctxp,
 OCICallbackAQEnq (cbfp)
 (
 dvoid *ctxp,
 dvoid **payload,
 dvoid **payload_ind
),
 ub4 flags);

Parameters

svchp (IN)
The service context (unchanged from OCIAQEnq()).

errhp (IN/OUT)
The error handle (unchanged from OCIAQEnq()).

queue_name (IN)
The name of the queue in which messages are enqueued (unchanged from
OCIAQEnq()).

enqopt (IN)
A pointer to an OCIAQEnqOptions descriptor (unchanged from OCIAQEnq()).

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-135

iters (IN/OUT)
On input, the number of messages to enqueue. On output, the number of messages
successfully enqueued.

msgprop (IN)
An array of pointers to OCIAQMsgProperties descriptors.

payload_tdo (IN)
A pointer to the TDO of the queue table's payload column.

payload (IN)
An array of pointers to messages to be enqueued.

payload_ind (IN)
An array of pointers to indicators, or a NULL pointer if indicator variables are not
used.

msgid (OUT)
An array of pointers to the message ID of the enqueued messages or a NULL pointer
if no message IDs are returned.

ctxp (IN)
The context that will be passed to the registered callback function.

cbfp (IN)
A callback that may be registered to provide messages dynamically. If NULL, then
all messages must be materialized prior to calling OCIAQEnqArray().

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
This function is not supported in non-blocking mode.

Related Functions
OCIAQEnq(), OCIAQDeqArray(), OCIAQListen(), OCIInitialize()

OCIAQListen()

16-136 Oracle Call Interface Programmer's Guide

OCIAQListen()

Purpose
Listens on one or more queues on behalf of a list of agents.

Syntax
sword OCIAQListen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAQAgent **agent_list,
 ub4 num_agents,
 sb4 wait,
 OCIAQAgent **agent,
 ub4 flags);

Parameters

svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

agent_list (IN)
List of agents for which to monitor messages.

num_agents (IN)
Number of agents in the agent list.

wait (IN)
Time-out for the listen call.

agent (OUT)
Agent for which there is a message. OCIAgent is an OCI descriptor.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-137

Comments
This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If there are no messages found when the wait time expires,
an error is returned.

Related Functions
OCIAQEnq(), OCIAQDeq(), OCISvcCtxToLda(),
OCISubscriptionEnable(), OCISubscriptionPost(),
OCISubscriptionRegister(),OCISubscriptionUnRegister()

OCISubscriptionDisable()

16-138 Oracle Call Interface Programmer's Guide

OCISubscriptionDisable()

Purpose
Disables a subscription registration which turns off all notifications.

Syntax
ub4 OCISubscriptionDisable (OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters

subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and
OCI_ATTR_SUBSCR_NAMESPACE attributes set.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

mode (IN)
Call-specific mode. Valid values:

■ OCI_DEFAULT - executes the default call which discards all notifications on
this subscription until the subscription is enabled

Comments
This call is used to temporarily turn off notifications. This is useful when the
application is running a critical section of the code and should not be interrupted.

The user need not be connected or authenticated to perform this operation. A
registration must have been performed to the subscription specified by the
subscription handle before this call is made.

All notifications subsequent to an OCISubscriptionDisable() are discarded by
the system until an OCISubscriptionEnable() is performed.

See Also: For information, see Subscription Handle Attributes on
page A-56

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-139

Related Functions
OCIAQListen(), OCISubscriptionEnable(), OCISubscriptionPost(),
OCISubscriptionRegister(), OCISubscriptionUnRegister()

OCISubscriptionEnable()

16-140 Oracle Call Interface Programmer's Guide

OCISubscriptionEnable()

Purpose
Enables a subscription registration that has been disabled. This turns on all
notifications.

Syntax
ub4 OCISubscriptionEnable (OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters

subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and
OCI_ATTR_SUBSCR_NAMESPACE attributes set.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call which buffers all notifications on this
subscription until a subsequent enable is performed

Comments
This call is used to turn on notifications after a subscription registration has been
disabled.

The user need not be connected or authenticated to perform this operation. A
registration must have been done for the specified subscription before this call is
made.

See Also: For information, see Subscription Handle Attributes on
page A-56

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-141

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionPost(),
OCISubscriptionRegister(), OCISubscriptionUnRegister()

OCISubscriptionPost()

16-142 Oracle Call Interface Programmer's Guide

OCISubscriptionPost()

Purpose
Posts to a subscription which allows all clients who are registered for the
subscription to get notifications.

Syntax
ub4 OCISubscriptionPost (OCISvcCtx *svchp,
 OCISubscription **subscrhpp,
 ub2 count,
 OCIError *errhp
 ub4 mode);

Parameters

svchp (IN)
An OCI service context (after release 7). This service context should have a valid
authenticated user handle.

subscrhpp (IN)
An array of subscription handles. Each element of this array should be a
subscription handle with the OCI_ATTR_SUBSCR_NAME and
OCI_ATTR_SUBSCR_NAMESPACE attributes set.

The OCI_ATTR_SUBSCR_PAYLOAD attribute has to be set for each subscription
handle prior to this call. If it is not set, the payload is assumed to be NULL and no
payload is delivered when the notification is received by the clients that have
registered interest. Note that the caller will have to preserve the payload until the
post is done as the OCIAttrSet() call keeps track of the reference to the payload
but does not copy the contents.

count (IN)
The number of elements in the subscription handle array.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

See Also: For information, see Subscription Handle Attributes on
page A-56

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-143

mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Comments
Posting to a subscription involves identifying the subscription name and the
payload if desired. If no payload is associated, the payload length can be set to 0.

This call provides a best-effort guarantee. A notification does to registered clients at
most once.

This call is primarily used for light-weight notification and is useful in the case of
several system events. If the application needs more rigid guarantees, it can use the
Advanced Queuing functionality by enqueuing to queue.

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionEnable(),
OCISubscriptionRegister(), OCISubscriptionUnRegister()

OCISubscriptionRegister()

16-144 Oracle Call Interface Programmer's Guide

OCISubscriptionRegister()

Purpose
Registers a callback for message notification.

Syntax
ub4 OCISubscriptionRegister (OCISvcCtx *svchp,
 OCISubscription **subscrhpp,
 ub2 count,
 OCIError *errhp
 ub4 mode);

Parameters

svchp (IN)
An OCI service context (after release 7). This service context should have a valid
authenticated user handle.

subscrhpp (IN)
An array of subscription handles. Each element of this array should be a
subscription handle with all of the following attributes set:

■ OCI_ATTR_SUBSCR_NAME,

■ OCI_ATTR_SUBSCR_NAMESPACE,

■ OCI_ATTR_SUBSCR_RECPTPROTO.

Otherwise, an error will be returned.

One of attributes

■ OCI_ATTR_SUBSCR_CBACK,

■ OCI_ATTR_SUBSCR_CTX,

■ OCI_ATTR_SUBSCR_RECPT,

must also be set.

See Also: For information about the handle attributes, see
Subscription Handle Attributes on page A-56

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-145

When a notification is received for the registration denoted by subscrhpp[i],
either the user-defined callback function (OCI_ATTR_SUBSCR_CBACK) set for
subscrhpp[i] will be invoked with the context (OCI_ATTR_SUBSCR_CTX) set
for subscrhpp[i], or an e-mail will be sent to (OCI_ATTR_SUBSCR_RECPT) set
for subscrhpp[i], or the PL/SQL procedure (OCI_ATTR_SUBSCR_RECPT) set
for subscrhpp[i], will be invoked in the database, provided the subscriber of
subscrhpp[i] has the appropriate permissions on the procedure.

count (IN)
The number of elements in the subscription handle array.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

mode (IN)
Call-specific mode. Valid values:

■ OCI_DEFAULT - executes the default call which specifies that the registration is
treated as disconnected

■ OCI_NOTIFY_CONNECTED - notifications are received only if the client is
connected (not supported in this release)

Whenever a new client process comes up, or an old one goes down and comes back
up, it needs to register for all subscriptions of interest. If the client stays up and the
server first goes down and then comes back up, the client will continue to receive
notifications for registrations that are DISCONNECTED. However, the client will
not receive notifications for CONNECTED registrations as they will be lost once the
server goes down and comes back up.

Comments
This call is invoked for registration to a subscription which identifies the
subscription name of interest and the associated callback to be invoked. Interest in
several subscriptions can be registered at one time.

This interface is only valid for the asynchronous mode of message delivery. In this
mode, a subscriber issues a registration call which specifies a callback. When
messages are received that match the subscription criteria, the callback is invoked.
The callback may then issue an explicit message_receive (dequeue) to retrieve the
message.

OCISubscriptionRegister()

16-146 Oracle Call Interface Programmer's Guide

The user must specify a subscription handle at registration time with the namespace
attribute set to OCI_SUBSCR_NAMESPACE_AQ.

The subscription name is the string SCHEMA.QUEUE if the registration is for a single
consumer queue and SCHEMA.QUEUE:CONSUMER_NAME if the registration is for a
multi-consumer queue. The string should be in uppercase.

Each namespace will have its own privilege model. If the user performing the
register is not entitled to register in the namespace for the specified subscription, an
error is returned.

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionEnable(),
OCISubscriptionPost(), OCISubscriptionUnRegister()

Streams Advanced Queuing and Publish-Subscribe Functions

More OCI Relational Functions 16-147

OCISubscriptionUnRegister()

Purpose
Unregisters a subscription which turns off notifications.

Syntax
ub4 OCISubscriptionUnRegister (OCISvcCtx *svchp,
 OCISubscription *subscrhp,
 OCIError *errhp
 ub4 mode);

Parameters

svchp (IN)
An OCI service context (after release 7). This service context should have a valid
authenticated user handle.

subscrhp (IN)
A subscription handle with the OCI_ATTR_SUBSCR_NAME and
OCI_ATTR_SUBSCR_NAMESPACE attributes set.

errhp (OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

mode (IN)
Call-specific mode. Valid value:

■ OCI_DEFAULT - executes the default call

Comments
Unregistering to a subscription is going to ensure that the user will not receive
notifications regarding the specified subscription in future. If the user wishes to
resume notification, then the only option is to re-register to the subscription.

See Also: For information, see Subscription Handle Attributes on
page A-56

OCISubscriptionUnRegister()

16-148 Oracle Call Interface Programmer's Guide

All notifications that would otherwise have been delivered are not delivered after a
subsequent register is performed because the user is no longer in the list of
interested clients.

Related Functions
OCIAQListen(), OCISvcCtxToLda(), OCISubscriptionEnable(),
OCISubscriptionPost(), OCISubscriptionRegister().

Direct Path Loading Functions

More OCI Relational Functions 16-149

Direct Path Loading Functions

This section describes the direct path loading functions.

Table 16–8 Direct Path Loading Functions

Function Purpose

OCIDirPathAbort() on page 16-150 Terminates a direct path operation

OCIDirPathColArrayEntryGet() on page 16-151 Gets a specified entry in a column array

OCIDirPathColArrayEntrySet() on page 16-153 Sets a specified entry in a column array to a
specific value

OCIDirPathColArrayRowGet() on page 16-155 Gets the base row pointers for a specified row
number

OCIDirPathColArrayReset() on page 16-157 Resets the row array state

OCIDirPathColArrayToStream() on page 16-158 Converts from a column array to a direct path
stream format

OCIDirPathDataSave() on page 16-160 Does a data savepoint, or commits the loaded data
and finishes the load operation

OCIDirPathFinish() on page 16-161 Finishes and commits the loaded data

OCIDirPathFlushRow() on page 16-162 Loads data that has been converted to direct path
stream format

OCIDirPathLoadStream() on page 16-163 Loads the data converted to direct path stream
format

OCIDirPathPrepare() on page 16-165 Prepares direct path interface to convert or load
rows

OCIDirPathStreamReset() on page 16-167 Resets the direct path stream state

OCIDirPathAbort()

16-150 Oracle Call Interface Programmer's Guide

OCIDirPathAbort()

Purpose
Terminates a direct path operation.

Syntax
sword OCIDirPathAbort (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
All state maintained by the server on behalf of the direct path operation is
destroyed by a termination. For a direct path load, the data loaded prior to the
terminate will not be visible to any queries. However, the data may still consume
space in the segments that are being loaded. Any load completion operations, such
as index maintenance operations, are not performed.

Related Functions
OCIDirPathFinish(), OCIDirPathFlushRow(), OCIDirPathPrepare(),
OCIDirPathLoadStream(), OCIDirPathStreamReset(),
OCIDirPathDataSave()

Direct Path Loading Functions

More OCI Relational Functions 16-151

OCIDirPathColArrayEntryGet()

Purpose
Gets a specified entry in a column array.

Syntax
sword OCIDirPathColArrayEntryGet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub2 colIdx,
 ub1 **cvalpp,
 ub4 *clenp,
 ub1 *cflgp);

Parameters

dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

rownum (IN)
Zero-based row offset

colIdx (IN)
Column identifier (index), the column ID is returned by
OCIDirPathColAttrSet()

cvalpp (IN/OUT)
Pointer to pointer to column data

clenp (IN/OUT)
Pointer to length of column data

cflgp (IN/OUT)
Pointer to column flag.

One of the following values is returned:

■ OCI_DIRPATH_COL_COMPLETE - all data for column is present

OCIDirPathColArrayEntryGet()

16-152 Oracle Call Interface Programmer's Guide

■ OCI_DIRPATH_COL_NULL - column is NULL

■ OCI_DIRPATH_COL_PARTIAL - partial column data is being supplied

Comments
If cflgp is set to OCI_DIRPATH_COL_NULL, the cvalp and clenp parameters
are not set by this operation.

Related Functions
OCIDirPathColArrayEntrySet(), OCIDirPathColArrayRowGet(),
OCIDirPathColArrayReset(), OCIDirPathColArrayToStream()

Direct Path Loading Functions

More OCI Relational Functions 16-153

OCIDirPathColArrayEntrySet()

Purpose
 Sets a specified entry in a column array to the supplied values.

Syntax
sword OCIDirPathColArrayEntrySet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub2 colIdx,
 ub1 *cvalp,
 ub4 clen,
 ub1 cflg);

Parameters

dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

rownum (IN)
Zero-based row offset

colIdx (IN)
Column identifier (index), the column ID is returned by
OCIDirPathColAttrSet()

cvalp (IN)
Pointer to column data

clen (IN)
Length of column data

cflg (IN)
Column flag. One of the following values is returned:

■ OCI_DIRPATH_COL_COMPLETE - all data for column is present

■ OCI_DIRPATH_COL_NULL - column is NULL

OCIDirPathColArrayEntrySet()

16-154 Oracle Call Interface Programmer's Guide

■ OCI_DIRPATH_COL_PARTIAL - partial column data is being supplied

Comments
If cflg is set to OCI_DIRPATH_COL_NULL, the cval and clen parameters are
not used.

Example
This example sets the source of data for the first row in a column array to addr,
with a length of len. In this example, the column is identified by colId.

err = OCIDirPathColArrayEntrySet(dpca, errhp, (ub2)0, colId, addr, len,
 OCI_DIRPATH_COL_COMPLETE);

Related Functions
OCIDirPathColArrayRowGet(), OCIDirPathColArrayRowGet(),
OCIDirPathColArrayReset(), OCIDirPathColArrayToStream()

Direct Path Loading Functions

More OCI Relational Functions 16-155

OCIDirPathColArrayRowGet()

Purpose
Gets the column array row pointers for a given row number

Syntax
sword OCIDirPathColArrayRowGet (OCIDirPathColArray *dpca,
 OCIError *errhp,
 ub4 rownum,
 ub1 ***cvalppp,
 ub4 **clenpp,
 ub1 **cflgpp);

Parameters

dpca (IN/OUT)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

rownum (IN)
Zero-based row offset

cvalppp (IN/OUT)
Pointer to vector of pointers to column data

clenpp (IN/OUT)
Pointer to vector of column data lengths

cflgpp (IN/OUT)
Pointer to vector of column flags

Comments
Returns pointers to column array entries for the given row. This allows the
application to do simple pointer arithmetic to iterate across the columns of the
specific row. This interface can be used to efficiently get or set the column array
entries of a row, as opposed to calling OCIDirPathColArrayEntrySet() for
every column. The application is also responsible for not de-referencing memory

OCIDirPathColArrayRowGet()

16-156 Oracle Call Interface Programmer's Guide

beyond the column array boundaries. The dimensions of the column array are
available as attributes of the column array.

Related Functions
OCIDirPathColArrayRowGet(), OCIDirPathColArrayEntrySet(),
OCIDirPathColArrayReset(), OCIDirPathColArrayToStream()

Direct Path Loading Functions

More OCI Relational Functions 16-157

OCIDirPathColArrayReset()

Purpose
 Resets the column array state.

Syntax
sword OCIDirPathColArrayReset (OCIDirPathColArray *dpca,
 OCIError *errhp);

Parameters

dpca (IN)
Direct path column array handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
Resetting the column array state is necessary when piecing in a large column and an
error occurs in the middle of loading the column.

Related Functions
OCIDirPathColArrayEntryGet(), OCIDirPathColArrayEntrySet(),
OCIDirPathColArrayRowGet(), OCIDirPathColArrayToStream()

OCIDirPathColArrayToStream()

16-158 Oracle Call Interface Programmer's Guide

OCIDirPathColArrayToStream()

Purpose
Converts from column array format to a direct path stream format.

Syntax
sword OCIDirPathColArrayToStream (OCIDirPathColArray *dpca,
 OCIDirPathCtx const *dpctx,
 OCIDirPathStream *dpstr,
 OCIError *errhp,
 ub4 rowcnt,
 ub4 rowoff);

Parameters

dpca (IN)
Direct path column array handle.

dpctx (IN)
Direct path context handle for the object being loaded.

dpstr (IN/OUT)
Direct path stream handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

rowcnt (IN)
Number of rows in the column array.

rowoff (IN)
Starting index in the column array.

Comments
This interface is used to convert a column array representation of data in its external
format as specified by OCIDirPathColAttrSet() to a direct path stream format.
The converted format is suitable for loading with OCIDirPathLoadStream().

Direct Path Loading Functions

More OCI Relational Functions 16-159

The column data in direct path stream format is converted to its Oracle internal
representation. All conversions are done on the client side of the two-task interface,
all conversion errors occur synchronously with the call to this interface. Information
concerning which row and column that an error occurred on is available as an
attribute of the column array handle.

Note that in a threaded environment concurrent
OCIDirPathColArrayToStream() operations can be referencing the same direct
path context handle. However, the direct path context handle is not modified by this
interface.

The return codes for this call are:

■ OCI_SUCCESS - All data in the column array was successfully converted to
stream format. The column array attribute OCI_ATTR_ROW_COUNT is the
number of rows processed.

■ OCI_ERROR - An error occurred during conversion, the error handle contains
the error information. The column array attribute OCI_ATTR_ROW_COUNT,
is the number of rows successfully converted in the last call. The attribute
OCI_ATTR_COL_COUNT contains the column index into the column array for
the column which caused the error.

■ OCI_CONTINUE - Not all of the data in the column array could be converted
to stream format. The stream buffer is not large enough to contain all of the
column array data. The caller should either load the data, save the data to a file,
or use another stream and call OCIDirPathArrayToStream() again to
convert the remainder of the column array data. Note that the column array has
internal state to know where to resume conversion from. The column array
attribute OCI_ATTR_ROW_COUNT is the number of rows successfully
converted in the last call.

■ OCI_NEED_DATA - All of the data in the column array was successfully
converted, but a partial column was encountered. The caller should load the
resulting stream, and supply the remainder of the row, iteratively if necessary.
The column array attribute OCI_ATTR_ROW_COUNT, is the number of rows
successfully converted in the last call. The attribute OCI_ATTR_COL_COUNT
contains the column index into the column array for the column which is
marked partial.

Related Functions
OCIDirPathColArrayEntryGet(), OCIDirPathColArrayEntrySet(),
OCIDirPathColArrayRowGet(), OCIDirPathColArrayReset()

OCIDirPathDataSave()

16-160 Oracle Call Interface Programmer's Guide

OCIDirPathDataSave()

Purpose
Depending on the action requested, does a data savepoint, or commits the loaded
data and finishes the direct path load operation.

Syntax
sword OCIDirPathDataSave (OCIDirPathCtx *dpctx,
 OCIError *errhp,
 ub4 action);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

action (IN)
Values for action parameter to OCIDirPathDataSave():

■ OCI_DIRPATH_DATASAVE_SAVEONLY - to execute a data savepoint only.

■ OCI_DIRPATH_DATASAVE_FINISH - to commit the loaded data and call the
direct finishing function.

Comments
A return value of OCI_SUCCESS indicates that the back-end has properly executed
a data savepoint or executed the finishing logic.

Executing a data savepoint is not allowed for LOBs.

Executing the finishing logic is not the same as properly terminating the load,
because resources allocated are not freed.

Related Functions
OCIDirPathAbort(), OCIDirPathFinish(), OCIDirPathFlushRow(),
OCIDirPathPrepare(), OCIDirPathStreamReset()

Direct Path Loading Functions

More OCI Relational Functions 16-161

OCIDirPathFinish()

Purpose
Finishes the direct path load operation.

Syntax
sword OCIDirPathFinish (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
After the load has completed, and the loaded data is to be committed, the direct
path finishing function is called.

A return value of OCI_SUCCESS indicates that the back-end has properly
terminated the load.

Related Functions
OCIDirPathAbort(), OCIDirPathDataSave(), OCIDirPathFlushRow(),
OCIDirPathPrepare(), OCIDirPathStreamReset()

OCIDirPathFlushRow()

16-162 Oracle Call Interface Programmer's Guide

OCIDirPathFlushRow()

Purpose
Flushes a partially loaded row from server.

Syntax
sword OCIDirPathFlushRow (OCIDirPathCtx *dpctx,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
This function is necessary when part of a row is loaded, but a conversion error
occurs on the next piece being processed by the application. Only the row currently
in partial state is discarded. If the server is not currently processing a partial row for
the object associated with the direct path context, this function is basically does
nothing.

Related Functions
OCIDirPathAbort(), OCIDirPathFinish(), OCIDirPathPrepare(),
OCIDirPathLoadStream()

Direct Path Loading Functions

More OCI Relational Functions 16-163

OCIDirPathLoadStream()

Purpose
Loads the data converted to direct path stream format.

Syntax
sword OCIDirPathLoadStream (OCIDirPathCtx *dpctx,
 OCIDirPathStream *dpstr,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

dpstr (IN)
Direct path stream handle for the stream to load.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
When the interface returns an error, information concerning the row in the column
array that sourced the stream can be obtained as an attribute of the direct path
stream. Also, the offset into the stream where the error occurred can be obtained as
an attribute of the stream.

Return codes for this function are:

■ OCI_SUCCESS - All data in the stream was successfully loaded.

■ OCI_ERROR - An error occurred while loading the data. The problem could be
a partition mapping error, a NULL constraint violation, function-based index
evaluation error, or an out of space condition, such as cannot allocate extent.
OCI_ATTR_ROW_COUNT is the number of rows successfully loaded in the
last call.

■ OCI_NEED_DATA - Last row was not complete. The caller needs to supply
another row piece. If the stream was sourced from a column array, the attribute

OCIDirPathLoadStream()

16-164 Oracle Call Interface Programmer's Guide

OCI_ATTR_ROW_COUNT is the number of complete rows successfully loaded
in the last call.

■ OCI_NO_DATA - Attempt to load an empty stream, or a stream which has been
completely processed.

Related Functions
OCIDirPathAbort(), OCIDirPathDataSave(), OCIDirPathFinish(),
OCIDirPathPrepare(), OCIDirPathStreamReset()

Direct Path Loading Functions

More OCI Relational Functions 16-165

OCIDirPathPrepare()

Purpose
Prepares the direct path load interface before any rows can be converted or loaded.

Syntax
sword OCIDirPathPrepare (OCIDirPathCtx *dpctx,
 OCISvcCtx *svchp,
 OCIError *errhp);

Parameters

dpctx (IN)
Direct path context handle for the object loaded.

svchp (IN)
Service context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
After the name of the object to be operated on is set, the external attributes of the
column data is set, and all load options are set, the direct path interface must be
prepared with OCIDirPathPrepare() before any rows can be converted or
loaded.

A return value of OCI_SUCCESS indicates that the back-end has been properly
initialized for a direct path load operation. A nonzero return indicates an error.
Possible errors are:

■ invalid context

■ not connected to a server

■ object name not set

■ already prepared (cannot prepare twice)

■ object not suitable for a direct path operation

OCIDirPathPrepare()

16-166 Oracle Call Interface Programmer's Guide

Related Functions
OCIDirPathAbort(), OCIDirPathDataSave(), OCIDirPathFinish(),
OCIDirPathFlushRow(), OCIDirPathStreamReset()

Direct Path Loading Functions

More OCI Relational Functions 16-167

OCIDirPathStreamReset()

Purpose
Resets the direct path stream state.

Syntax
sword OCIDirPathStreamReset (OCIDirPathStream *dpstr,
 OCIError *errhp);

Parameters

dpstr (IN)
Direct path stream handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
A direct path stream maintains the state that indicates where the next
OCIDirPathColArrayToStream() call should start writing into the stream.
Normally, data is appended to the end of the stream. When the caller wants to start
a new stream after a stream is successfully loaded, or discard the data in a stream,
the stream must be reset with this call.

Related Functions
OCIDirPathAbort(), OCIDirPathDataSave(), OCIDirPathFinish(),
OCIDirPathFlushRow(), OCIDirPathPrepare()

Thread Management Functions

16-168 Oracle Call Interface Programmer's Guide

Thread Management Functions

This section describes the thread management functions.

Table 16–9 Thread Management functions

Function Purpose

OCIThreadClose() on page 16-170 Closes a thread handle

OCIThreadCreate() on page 16-171 Creates a new thread

OCIThreadHandleGet() on page 16-173 Retrieves the OCIThreadHandle of the thread in which it is
called

OCIThreadHndDestroy() on page 16-174 Destroys and deallocates the thread handle

OCIThreadHndInit() on page 16-175 Allocates and initializes the thread handle

OCIThreadIdDestroy() on page 16-176 Destroys and deallocates a thread id

OCIThreadIdGet() on page 16-177 Retrieves the OCIThreadId of the thread in which it is
called

OCIThreadIdInit() on page 16-178 Allocate and initialize the thread id

OCIThreadIdNull() on page 16-179 Determines whether or not a given OCIThreadId is the
NULL thread ID

OCIThreadIdSame() on page 16-180 Determines whether or not two OCIThreadIds represent the
same thread

OCIThreadIdSet() on page 16-181 Sets one OCIThreadId to another

OCIThreadIdSetNull() on page 16-182 Sets the NULL thread ID to a given OCIThreadId

OCIThreadInit() on page 16-183 Initializes OCIThread context

OCIThreadIsMulti() on page 16-184 Tells the caller whether the application is running in a
multithreaded environment or a single-threaded environment

OCIThreadJoin() on page 16-185 Allows the calling thread to join with another thread

OCIThreadKeyDestroy() on page 16-186 Destroy and deallocate the key pointed to by key

OCIThreadKeyGet() on page 16-187 Gets the calling threads current value for a key

OCIThreadKeyInit() on page 16-188 Creates a key

OCIThreadKeySet() on page 16-190 Sets the calling threads value for a key

OCIThreadMutexAcquire() on page 16-191 Acquires a mutex for the thread in which it is called

Thread Management Functions

More OCI Relational Functions 16-169

OCIThreadMutexDestroy() on page 16-192 Destroys and deallocate a mutex

OCIThreadMutexInit() on page 16-193 Allocates and initializes a mutex

OCIThreadMutexRelease() on page 16-194 Releases a mutex

OCIThreadProcessInit() on page 16-195 Performs OCIThread process initialization

OCIThreadTerm() on page 16-196 Releases the OCIThread context

Table 16–9 Thread Management functions (Cont.)

Function Purpose

OCIThreadClose()

16-170 Oracle Call Interface Programmer's Guide

OCIThreadClose()

Purpose
Closes a thread handle.

Syntax
sword OCIThreadClose (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tHnd (IN/OUT)
The OCIThread thread handle to close.

Comments
tHnd should be initialized by OCIThreadHndInit(). Both thread handle and the
thread ID that was returned by the same call to OCIThreadCreate() are invalid
after the call to OCIThreadClose().

Related Functions
OCIThreadCreate()

Thread Management Functions

More OCI Relational Functions 16-171

OCIThreadCreate()

Purpose
Creates a new thread.

Syntax
sword OCIThreadCreate (dvoid *hndl,
 OCIError *err,
 void (*start) (dvoid
 dvoid *arg,
 OCIThreadId *tid,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

start (IN)
The function in which the new thread should begin execution.

arg (IN)
The argument to give the function pointed to by start.

tid (IN/OUT)
If not NULL, gets the ID for the new thread.

tHnd (IN/OUT)
If not NULL, gets the handle for the new thread.

Comments
The new thread starts by executing a call to the function pointed to by start with
the argument given by arg. When that function returns, the new thread will
terminate. The function should not return a value and should accept one parameter,

OCIThreadCreate()

16-172 Oracle Call Interface Programmer's Guide

a dvoid. The call to OCIThreadCreate() must be matched by a call to
OCIThreadClose() if and only if tHnd is non-NULL.

If tHnd is NULL, a thread ID placed in *tid will not be valid in the calling thread
because the timing of the spawned threads termination is unknown.

tid should be initialized by OCIThreadIdInit() and tHnd should be initialized
by OCIThreadHndInit().

Related Functions
OCIThreadClose(), OCIThreadIdInit(), OCIThreadHndInit()

Thread Management Functions

More OCI Relational Functions 16-173

OCIThreadHandleGet()

Purpose
Retrieves the OCIThreadHandle of the thread in which it is called.

Syntax
sword OCIThreadHandleGet (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tHnd (IN/OUT)
If not NULL, the location to place the thread handle for the thread.

Comments
tHnd should be initialized by OCIThreadHndInit().

The thread handle tHnd retrieved by this function must be closed with
OCIThreadClose() and destroyed by OCIThreadHndDestroy() after it is used.

Related Functions
OCIThreadHndDestroy(), OCIThreadHndInit()

OCIThreadHndDestroy()

16-174 Oracle Call Interface Programmer's Guide

OCIThreadHndDestroy()

Purpose
Destroys and deallocates the thread handle.

Syntax
sword OCIThreadHndDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle **thnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

thnd (IN/OUT)
The address of pointer to the thread handle to destroy.

Comments
thnd should be initialized by OCIThreadHndInit().

Related Functions
OCIThreadHandleGet(), OCIThreadHndInit()

Thread Management Functions

More OCI Relational Functions 16-175

OCIThreadHndInit()

Purpose
Allocates and initializes the thread handle.

Syntax
sword OCIThreadHndInit (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle **thnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

thnd (OUT)
The address of pointer to the thread handle to initialize.

Related Functions
OCIThreadHandleGet(), OCIThreadHndDestroy()

OCIThreadIdDestroy()

16-176 Oracle Call Interface Programmer's Guide

OCIThreadIdDestroy()

Purpose
Destroys and deallocates a thread Id.

Syntax
sword OCIThreadIdDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadId **tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

tid (IN/OUT)
Pointer to the thread ID to destroy.

Comments
tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdGet(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSet(), OCIThreadIdSetNull()

Thread Management Functions

More OCI Relational Functions 16-177

OCIThreadIdGet()

Purpose
Retrieves the OCIThreadId of the thread in which it is called.

Syntax
sword OCIThreadIdGet (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tid (OUT)
This should point to the location in which to place the ID of the calling thread.

Comments
tid should be initialized by OCIThreadIdInit(). When OCIThread is used in a
single-threaded environment, OCIThreadIdGet() will always place the same
value in the location pointed to by tid. The exact value itself is not important. The
important thing is that it is not the same as the NULL thread ID and that it is always
the same value.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdInit(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSet(), OCIThreadIdSetNull()

OCIThreadIdInit()

16-178 Oracle Call Interface Programmer's Guide

OCIThreadIdInit()

Purpose
Allocate and initialize the thread Id tid.

Syntax
sword OCIThreadIdInit (dvoid *hndl,
 OCIError *err,
 OCIThreadId **tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

tid (OUT)
Pointer to the thread ID to initialize.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdNull(),
OCIThreadIdSame(), OCIThreadIdSet(), OCIThreadIdSetNull()

Thread Management Functions

More OCI Relational Functions 16-179

OCIThreadIdNull()

Purpose
Determines whether or not a given OCIThreadId is the NULL thread Id.

Syntax
sword OCIThreadIdNull (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid,
 boolean *result);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tid (IN)
Pointer to the OCIThreadId to check.

result (IN/OUT)
Pointer to the result.

Comments
If tid is the NULL thread ID, result is set to TRUE. Otherwise, result is set to
FALSE. tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(),
OCIThreadIdSame(), OCIThreadIdSet(), OCIThreadIdSetNull()

OCIThreadIdSame()

16-180 Oracle Call Interface Programmer's Guide

OCIThreadIdSame()

Purpose
Determines whether or not two OCIThreadIds represent the same thread.

Syntax
sword OCIThreadIdSame (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid1,
 OCIThreadId *tid2,
 boolean *result);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tid1 (IN)
Pointer to the first OCIThreadId.

tid2 (IN)
Pointer to the second OCIThreadId.

result (IN/OUT)
Pointer to the result.

Comments
If tid1 and tid2 represent the same thread, result is set to TRUE. Otherwise,
result is set to FALSE. result is set to TRUE if both tid1 and tid2 are the NULL
thread ID. ti1d and tid2 should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(),
OCIThreadIdNull(), OCIThreadIdSet(), OCIThreadIdSetNull()

Thread Management Functions

More OCI Relational Functions 16-181

OCIThreadIdSet()

Purpose
Sets one OCIThreadId to another.

Syntax
sword OCIThreadIdSet (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tidDest,
 OCIThreadId *tidSrc);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

tidDest (OUT)
This should point to the location of the OCIThreadId to be set to.

tidSrc (IN)
This should point to the OCIThreadId to set from.

Comments
tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(),
OCIThreadIdNull(), OCIThreadIdSame(), OCIThreadIdSetNull()

OCIThreadIdSetNull()

16-182 Oracle Call Interface Programmer's Guide

OCIThreadIdSetNull()

Purpose
Sets the NULL thread ID to a given OCIThreadId.

Syntax
sword OCIThreadIdSetNull (dvoid *hndl,
 OCIError *err,
 OCIThreadId *tid);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tid (OUT)
This should point to the OCIThreadId in which to put the NULL thread Id.

Comments
tid should be initialized by OCIThreadIdInit().

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(),
OCIThreadIdNull(), OCIThreadIdSame(), OCIThreadIdSet()

Thread Management Functions

More OCI Relational Functions 16-183

OCIThreadInit()

Purpose
Initializes the OCIThread context.

Syntax
sword OCIThreadInit (dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

Comments
It is illegal for OCIThread clients to try an examine the memory pointed to by the
returned pointer. It is safe to make concurrent calls to OCIThreadInit(). Unlike
OCIThreadProcessInit(), there is no need to have a first call that occurs before
all the others.

The first time OCIThreadInit() is called, it initializes the OCI Thread context. It
also saves a pointer to the context in some system dependent manner. Subsequent
calls to OCIThreadInit() will return the same context.

Each call to OCIThreadInit() must eventually be matched by a call to
OCIThreadTerm().

Related Functions
OCIThreadTerm()

OCIThreadIsMulti()

16-184 Oracle Call Interface Programmer's Guide

OCIThreadIsMulti()

Purpose
Tells the caller whether the application is running in a multithreaded environment
or a single-threaded environment.

Syntax
boolean OCIThreadIsMulti ();

Returns
TRUE if the environment is multithreaded;

FALSE if the environment is single-threaded.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(),
OCIThreadIdNull(), OCIThreadIdSame(), OCIThreadIdSet()

Thread Management Functions

More OCI Relational Functions 16-185

OCIThreadJoin()

Purpose
Allows the calling thread to join with another thread.

Syntax
sword OCIThreadJoin (dvoid *hndl,
 OCIError *err,
 OCIThreadHandle *tHnd);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tHnd (IN)
The OCIThreadHandle of the thread to join with.

Comments
This function blocks the caller until the specified thread terminates.

tHnd should be initialized by OCIThreadHndInit(). The result of multiple
threads all trying to join with the same thread is undefined.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(),
OCIThreadIdNull(), OCIThreadIdSame(), OCIThreadIdSet()

OCIThreadKeyDestroy()

16-186 Oracle Call Interface Programmer's Guide

OCIThreadKeyDestroy()

Purpose
Destroy and deallocate the key pointed to by key.

Syntax
sword OCIThreadKeyDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadKey **key);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

key (IN/OUT)
The OCIThreadKey in which to destroy the key.

Comments
This is different from the destructor function callback passed to the key create
routine. This new destroy function OCIThreadKeyDestroy() is used to terminate
any resources OCI THREAD acquired when it created key. The
OCIThreadKeyDestFunc callback of OCIThreadKeyInit() is a key VALUE
destructor; it does in no way operate on the key itself.

This must be called once the user has finished using the key. Not calling the key
destroy function may result in memory leaks.

Related Functions
OCIThreadKeyGet(), OCIThreadKeyInit(), OCIThreadKeySet()

Thread Management Functions

More OCI Relational Functions 16-187

OCIThreadKeyGet()

Purpose
Gets the calling threads current value for a key.

Syntax
sword OCIThreadKeyGet (dvoid *hndl,
 OCIError *err,
 OCIThreadKey *key,
 dvoid **pValue);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

key (IN)
The key.

pValue (IN/OUT)
The location in which to place the thread-specific key value.

Comments
It is illegal to use this function on a key that has not been created using
OCIThreadKeyInit().

If the calling thread has not yet assigned a value to the key, NULL is placed in the
location pointed to by pValue.

Related Functions
OCIThreadKeyDestroy(), OCIThreadKeyInit(), OCIThreadKeySet()

OCIThreadKeyInit()

16-188 Oracle Call Interface Programmer's Guide

OCIThreadKeyInit()

Purpose
Creates a key.

Syntax
sword OCIThreadKeyInit (dvoid *hndl,
 OCIError *err,
 OCIThreadKey **key,
 OCIThreadKeyDestFunc destFn);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

key (OUT)
The OCIThreadKey in which to create the new key.

destFn (IN)
The destructor for the key. NULL is permitted.

Comments
Each call to this routine allocate and generates a new key that is distinct from all
other keys. After this function executes successfully, a pointer to an allocated and
initialized key is return. That key can be used with OCIThreadKeyGet() and
OCIThreadKeySet(). The initial value of the key will be NULL for all threads.

It is illegal for this function to be called more than once with the same value for the
key parameter.

If the destFn parameter is not NULL, the routine pointed to by destFn will be
called whenever a thread that has a non-NULL value for the key terminates. The
routine will be called with one parameter. The parameter will be the keys value for

Thread Management Functions

More OCI Relational Functions 16-189

the thread at the time at which the thread terminated. If the key does not need a
destructor function, pass NULL for destFn.

Related Functions
OCIThreadKeyDestroy(), OCIThreadKeyGet(), OCIThreadKeySet()

OCIThreadKeySet()

16-190 Oracle Call Interface Programmer's Guide

OCIThreadKeySet()

Purpose
Sets the calling threads value for a key.

Syntax
sword OCIThreadKeySet (dvoid *hndl,
 OCIError *err,
 OCIThreadKey *key,
 dvoid *value);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

key (IN/OUT)
The key.

value (IN)
The thread-specific value to set in the key.

Comments
It is illegal to use this function on a key that has not been created using
OCIThreadKeyInit().

Related Functions
OCIThreadKeyDestroy(), OCIThreadKeyGet(), OCIThreadKeyInit()

Thread Management Functions

More OCI Relational Functions 16-191

OCIThreadMutexAcquire()

Purpose
Acquires a mutex for the thread in which it is called.

Syntax
sword OCIThreadMutexAcquire (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex *mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

mutex (IN/OUT)
The mutex to acquire.

Comments
If the mutex is held by another thread, the calling thread is blocked until it can
acquire the mutex.

It is illegal to attempt to acquire an uninitialized mutex.

This functions behavior is undefined if it is used by a thread to acquire a mutex that
is already held by that thread.

Related Functions
OCIThreadMutexDestroy(), OCIThreadMutexInit(),
OCIThreadMutexRelease()

OCIThreadMutexDestroy()

16-192 Oracle Call Interface Programmer's Guide

OCIThreadMutexDestroy()

Purpose
Destroys and deallocate a mutex.

Syntax
sword OCIThreadMutexDestroy (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex **mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

mutex (IN/OUT)
The mutex to destroy.

Comments
Each mutex must be destroyed once it is no longer needed.

It is not legal to destroy a mutex that is uninitialized or is currently held by a thread.
The destruction of a mutex must not occur concurrently with any other operations
on the mutex. A mutex must not be used after it has been destroyed.

Related Functions
OCIThreadMutexAcquire(), OCIThreadMutexInit(),
OCIThreadMutexRelease()

Thread Management Functions

More OCI Relational Functions 16-193

OCIThreadMutexInit()

Purpose
Allocates and initializes a mutex.

Syntax
sword OCIThreadMutexInit (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex **mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

mutex (OUT)
The mutex to initialize.

Comments
All mutexes must be initialized prior to use.

Multiple threads must not initialize the same mutex simultaneously. Also, a mutex
must not be reinitialized until it has been destroyed (see
OCIThreadMutexDestroy()).

Related Functions
OCIThreadMutexDestroy(), OCIThreadMutexAcquire(),
OCIThreadMutexRelease()

OCIThreadMutexRelease()

16-194 Oracle Call Interface Programmer's Guide

OCIThreadMutexRelease()

Purpose
Releases a mutex.

Syntax
sword OCIThreadMutexRelease (dvoid *hndl,
 OCIError *err,
 OCIThreadMutex *mutex);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

mutex (IN/OUT)
The mutex to release.

Comments
If there are any threads blocked on the mutex, one of them will acquire it and
become unblocked.

It is illegal to attempt to release an uninitialized mutex. It is also illegal for a thread
to release a mutex that it does not hold.

Related Functions
OCIThreadMutexDestroy(), OCIThreadMutexInit(),
OCIThreadMutexAcquire()

Thread Management Functions

More OCI Relational Functions 16-195

OCIThreadProcessInit()

Purpose
Performs OCIThread process initialization.

Syntax
void OCIThreadProcessInit ();

Comments
Whether or not this function needs to be called depends on how OCI Thread is
going to be used.

In a single-threaded application, calling this function is optional. If it is called at all,
the first call to it must occur before calls to any other OCIThread functions.
Subsequent calls can be made without restriction; they will not have any effect.

In a multithreaded application, this function must be called. The first call to it must
occur strictly before any other OCIThread calls; that is, no other calls to OCIThread
functions (including other calls to this one) can be concurrent with the first call.

Subsequent calls to this function can be made without restriction; they will not have
any effect.

Related Functions
OCIThreadIdDestroy(), OCIThreadIdGet(), OCIThreadIdInit(),
OCIThreadIdNull(), OCIThreadIdSame(), OCIThreadIdSet()

OCIThreadTerm()

16-196 Oracle Call Interface Programmer's Guide

OCIThreadTerm()

Purpose
Releases the OCIThread context.

Syntax
sword OCIThreadTerm (dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error and OCI_ERROR is returned, the error is
recorded in err and diagnostic information can be obtained by calling
OCIErrorGet().

Comments
This function should be called exactly once for each call made to
OCIThreadInit().

It is safe to make concurrent calls to OCIThreadTerm(). OCIThreadTerm() will
not do anything until it has been called as many times as OCIThreadInit() has
been called. When that happens, it terminates the OCIThread layer and frees the
memory allocated for the context. Once this happens, the context should not be
re-used. It will be necessary to obtain a new one by calling OCIThreadInit().

Related Functions
OCIThreadInit()

Transaction Functions

More OCI Relational Functions 16-197

Transaction Functions

This section describes the transaction functions.

Table 16–10 Transaction Functions

Function Purpose

OCITransCommit() on page 16-198 Commit a transaction on a service context

OCITransDetach() on page 16-201 Detach a transaction from a service context

OCITransForget() on page 16-203 Forget a prepared global transaction

OCITransMultiPrepare() on page 16-204 Prepare a transaction with multiple branches in a single cell

OCITransPrepare() on page 16-205 Prepare a global transaction for commit

OCITransRollback() on page 16-206 Roll back a transaction

OCITransStart() on page 16-207 Start a transaction on a service context

OCITransCommit()

16-198 Oracle Call Interface Programmer's Guide

OCITransCommit()

Purpose
Commits the transaction associated with a specified service context.

Syntax
sword OCITransCommit (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

flags (IN)
A flag used for one-phase commit optimization in global transactions.

If the transaction is non-distributed, the flags parameter is ignored, and
OCI_DEFAULT can be passed as its value. OCI applications managing global
transactions should pass a value of OCI_TRANS_TWOPHASE to the flags
parameter for a two-phase commit. The default is one-phase commit.

Comments
The transaction currently associated with the service context is committed. If it is a
global transaction that the server cannot commit, this call additionally retrieves the
state of the transaction from the database to be returned to the user in the error
handle.

If the application has defined multiple transactions, this function operates on the
transaction currently associated with the service context. If the application is
working with only the implicit local transaction created when database changes are
made, that implicit transaction is committed.

If the application is running in the object mode, then the modified or updated
objects in the object cache for this transaction are also flushed and committed.

Transaction Functions

More OCI Relational Functions 16-199

Under normal circumstances, OCITransCommit() returns with a status indicating
that the transaction has either been committed or rolled back. With global
transactions, it is possible that the transaction is now in-doubt, meaning that it is
neither committed nor terminated. In this case, OCITransCommit() attempts to
retrieve the status of the transaction from the server. The status is returned.

Example
The following example demonstrates the use of a simple local transaction, as
described in the section "Simple Local Transactions" on page 8-3.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 dvoid *tmp;
 text sqlstmt[128];

 OCIEnvCreate(&envhp, OCI_DEFAULT, (dvoid *)0, 0, 0, 0,
 (size_t)0, (dvoid *)0);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 (size_t)0, (dvoid **) 0);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 (size_t)0, (dvoid **) 0);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 (size_t)0, (dvoid **) 0);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 OCILogon(envhp, errhp, &svchp, (text *)"HR", strlen("HR"),
 (text *)"HR", strlen("HR"), 0, 0);

 /* update hr.employees employee_id=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \

OCITransCommit()

16-200 Oracle Call Interface Programmer's Guide

 WHERE EMPLOYEE_ID = 7902");

 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* update hr.employees employee_id=7902, increment salary again, but rollback
*/
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransRollback(svchp, errhp, (ub4) 0);
}

Related Functions
OCITransRollback()

Transaction Functions

More OCI Relational Functions 16-201

OCITransDetach()

Purpose
Detaches a transaction.

Syntax
sword OCITransDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

flags (IN)
You must pass a value of OCI_DEFAULT for this parameter.

Comments
Detaches a global transaction from the service context handle. The transaction
currently attached to the service context handle becomes inactive at the end of this
call. The transaction may be resumed later by calling OCITransStart(),
specifying a flags value of OCI_TRANS_RESUME.

When a transaction is detached, the value which was specified in the timeout
parameter of OCITransStart() when the transaction was started is used to
determine the amount of time the branch can remain inactive before being deleted
by the server's PMON process.

Note: The transaction can be resumed by a different process than
the one that detached it, provided that the transaction has the same
authorization. If this function is called before a transaction is
actually started, this function is a no-op.

OCITransDetach()

16-202 Oracle Call Interface Programmer's Guide

For example code demonstrating the use of OCITransDetach() see the
description of OCITransStart().

Related Functions
OCITransStart()

Transaction Functions

More OCI Relational Functions 16-203

OCITransForget()

Purpose
Causes the server to forget a heuristically completed global transaction.

Syntax
sword OCITransForget (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle in which the transaction resides.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments
Forgets a heuristically completed global transaction. The server deletes the status of
the transaction from the system's pending transaction table.

You set the XID of the transaction to be forgotten as an attribute of the transaction
handle (OCI_ATTR_XID).

Related Functions
OCITransCommit(), OCITransRollback()

OCITransMultiPrepare()

16-204 Oracle Call Interface Programmer's Guide

OCITransMultiPrepare()

Purpose
Prepares a transaction with multiple branches in a single call.

Syntax
sword OCITransMultiPrepare (OCISvcCtx *svchp,
 ub4 numBranches,
 OCITrans **txns,
 OCIError **errhp);

Parameters

srvchp (IN)
The service context handle.

numBranches (IN)
The number of branches expected. It is also the array size for the next two
parameters.

txns (IN)
The array of transaction handles for the branches to prepare. They should all have
the OCI_ATTR_XID set. The global transaction ID should be the same.

errhp (IN)
The array of error handles. If OCI_SUCCESS is not returned, then these will
indicate which branches received which errors.

Comments
Prepares the specified global transaction for commit. This call is valid only for
distributed transactions. This call is an advanced performance feature intended for
use only in situations where the caller is responsible for preparing all the branches
in a transaction.

Related Functions
OCITransPrepare()

Transaction Functions

More OCI Relational Functions 16-205

OCITransPrepare()

Purpose
Prepares a transaction for commit.

Syntax
sword OCITransPrepare (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments
Prepares the specified global transaction for commit.

This call is valid only for global transactions.

The call returns OCI_SUCCESS_WITH_INFO if the transaction has not made any
changes. The error handle will indicate that the transaction is read-only. The flag
parameter is not currently used.

Related Functions
OCITransCommit(), OCITransForget()

OCITransRollback()

16-206 Oracle Call Interface Programmer's Guide

OCITransRollback()

Purpose
Rolls back the current transaction.

Syntax
sword OCITransRollback (dvoid *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
A service context handle. The transaction currently set in the service context handle
is rolled back.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

flags (IN)
You must pass a value of OCI_DEFAULT for this parameter.

Comments
The current transaction— defined as the set of statements executed since the last
OCITransCommit() or since OCISessionBegin()—is rolled back.

If the application is running under object mode then the modified or updated
objects in the object cache for this transaction are also rolled back.

Attempting to roll back a global transaction that is not currently active causes an
error.

Examples
For example code demonstrating the use of OCITransRollback() see the
description of OCITransCommit().

Related Functions
OCITransCommit()

Transaction Functions

More OCI Relational Functions 16-207

OCITransStart()

Purpose
Sets the beginning of a transaction.

Syntax
sword OCITransStart (OCISvcCtx *svchp,
 OCIError *errhp,
 uword timeout,
 ub4 flags);

Parameters

svchp (IN/OUT)
The service context handle. The transaction context in the service context handle is
initialized at the end of the call if the flag specified a new transaction to be started.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

timeout (IN)
The time, in seconds, to wait for a transaction to become available for resumption
when OCI_TRANS_RESUME is specified. When OCI_TRANS_NEW is specified,
the timeout parameter indicates the number of seconds the transaction can be
inactive before it is automatically terminated by the system. A transaction is
inactive between the time it is detached (with OCITransDetach()) and the time it is
resumed with OCITransStart().

flags (IN)
Specifies whether a new transaction is being started or an existing transaction is
being resumed. Also specifies serializiability or read-only status. More than a single
value can be specified. By default, a read/write transaction is started. The flag
values are:

■ OCI_TRANS_NEW - starts a new transaction branch. By default starts a tightly
coupled and migratable branch.

■ OCI_TRANS_TIGHT - explicitly specifies a tightly coupled branch

OCITransStart()

16-208 Oracle Call Interface Programmer's Guide

■ OCI_TRANS_LOOSE - specifies a loosely coupled branch

■ OCI_TRANS_RESUME - resumes an existing transaction branch.

■ OCI_TRANS_READONLY - start a read-only transaction

■ OCI_TRANS_SERIALIZABLE - start a serializable transaction

■ OCI_TRANS_SEPARABLE - the transaction will be separated after each call.

This flag results in a warning that the transaction was started using regular
transactions. Separated transactions are not supported through release 9.0.1 of
the server.

An error message results if there is an error in your code or the transaction
service. The error indicates that you attempted an action on a transaction that
has already been prepared.

Comments
This function sets the beginning of a global or serializable transaction. The
transaction context currently associated with the service context handle is initialized
at the end of the call if the flags parameter specifies that a new transaction should
be started.

The XID of the transaction is set as an attribute of the transaction handle
(OCI_ATTR_XID)

Examples
The following examples demonstrate the use of OCI transactional calls for
manipulating global transactions.

Example 1 - A Single Session Operating On Different Branches.
This concept is illustrated by Figure 8–2, "Session Operating on Multiple Branches"
on page 8-6.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp1, *stmthp2;
 OCITrans *txnhp1, *txnhp2;
 dvoid *tmp;

Transaction Functions

More OCI Relational Functions 16-209

 XID gxid;
 text sqlstmt[128];

 OCIEnvCreate(&envhp, OCI_DEFAULT, (dvoid *)0, 0, 0, 0,
 (size_t)0, (dvoid *)0);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4)
 OCI_HTYPE_ERROR, 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)
 OCI_HTYPE_SERVER, 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp1, OCI_HTYPE_STMT, 0, 0);
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp2, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "txn demo", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"HR",
 (ub4)strlen("HR"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"HR",
 (ub4)strlen("HR"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,

OCITransStart()

16-210 Oracle Call Interface Programmer's Guide

 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp1, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 1 with 60 second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update hr.employees employee_id=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \
 WHERE EMPLOYEE_ID = 7902");
 OCIStmtPrepare(stmthp1, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp2, OCI_HTYPE_TRANS, 0,

0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 124, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 124 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 4;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp2, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90 second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

Transaction Functions

More OCI Relational Functions 16-211

 /* update hr.employees employee_id=7934, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \
 WHERE EMPLOYEE_ID = 7934");
 OCIStmtPrepare(stmthp2, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp2, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* Resume transaction 1, increment salary and commit it */
 /* Set transaction handle 1 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* attach to transaction 1, wait for 10 seconds if the transaction is busy */
 /* The wait is clearly not required in this example because no other */
 /* process/thread is using the transaction. It is only for illustration */
 OCITransStart(svchp, errhp, 10, OCI_TRANS_RESUME);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 2 - A Single Session Operating On Multiple Branches That Share The
Same Transaction.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp;
 OCITrans *txnhp1, *txnhp2;
 dvoid *tmp;
 XID gxid;
 text sqlstmt[128];

OCITransStart()

16-212 Oracle Call Interface Programmer's Guide

 OCIEnvCreate(&envhp, OCI_DEFAULT, (dvoid *)0, 0, 0, 0,
 (size_t)0, (dvoid *)0);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "txn demo2", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"HR",
 (ub4)strlen("HR"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"HR",
 (ub4)strlen("HR"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */

Transaction Functions

More OCI Relational Functions 16-213

 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp1, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 1 with 60 second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update hr.employees employee_id=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMPLOYEES SET SALARY = SALARY + 1 \
 WHERE EMPLOYEE_ID = 7902");
 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen((char *)sqlstmt),
 OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp2, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 2] */
 /* The global transaction will be tightly coupled with earlier transaction */
 /* There is not much practical value in doing this but the example */
 /* illustrates the use of tightly-coupled transaction branches */
 /* In a practical case the second transaction that tightly couples with */
 /* the first can be executed from a different process/thread */

 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 2 */
 gxid.data[3] = 2;

 OCIAttrSet((dvoid *)txnhp2, OCI_HTYPE_TRANS, (dvoid *)&gxid,
sizeof(XID), OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90 second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

OCITransStart()

16-214 Oracle Call Interface Programmer's Guide

 /* update hr.employees employee_id=7902, increment salary */
 /* This is possible even if the earlier transaction has locked this row */
 /* because the two global transactions are tightly coupled */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* Resume transaction 1 and prepare it. This will return */
 /* OCI_SUCCESS_WITH_INFO because all branches except the last branch */
 /* are treated as read-only transactions for tightly-coupled transactions */

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);
 if (OCITransPrepare(svchp, errhp, (ub4) 0) == OCI_SUCCESS_WITH_INFO)
 {
 text errbuf[512];
 ub4 buflen;
 sb4 errcode;

 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("OCITransPrepare - %s\n", errbuf);
 }

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Related Functions
OCITransDetach()

Miscellaneous Functions

More OCI Relational Functions 16-215

Miscellaneous Functions

This section describes the miscellaneous OCI functions.

Table 16–11 Miscellaneous Functions

Function Purpose

OCIBreak() on page 16-216 Perform an immediate asynchronous break

OCIErrorGet() on page 16-217 Return error message and Oracle error

OCILdaToSvcCtx() on page 16-220 Toggle Lda_Def to service context handle

OCIPasswordChange() on page 16-222 Change password

OCIReset() on page 16-225 Called after OCIBreak() to reset asynchronous
operation and protocol

OCIRowidToChar() on page 16-226 Converts a Universal ROWID to character
extended (base 64) representation.

OCIServerVersion() on page 16-227 Get the Oracle version string

OCISvcCtxToLda() on page 16-229 Toggle service context handle to Lda_Def

OCIUserCallbackGet() on page 16-231 Identifies the callback that is registered for
handle

OCIUserCallbackRegister() on page 16-234 Registers a user-created callback function

OCIBreak()

16-216 Oracle Call Interface Programmer's Guide

OCIBreak()

Purpose
This call performs an immediate (asynchronous) termination of any currently
executing OCI function that is associated with a server.

Syntax
sword OCIBreak (dvoid *hndlp,
 OCIError *errhp);

Parameters

hndlp (IN/OUT)
The service context handle or the server context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
This call performs an immediate (asynchronous) termination of any currently
executing OCI function that is associated with a server. It is normally used to stop a
long-running OCI call being processed on the server.

This call can take either the service context handle or the server context handle as a
parameter to identify the function to be terminated.

Related Functions
OCIReset()

Note: OCIBreak() is not supported on a Windows server.

See Also:

■ OCI_ATTR_NONBLOCKING_MODE on page A-15.

■ "Nonblocking Mode in OCI" on page 2-35

■ "Canceling Calls" on page 2-32

Miscellaneous Functions

More OCI Relational Functions 16-217

OCIErrorGet()

Purpose
Returns an error message in the buffer provided and an Oracle error code.

Syntax
sword OCIErrorGet (dvoid *hndlp,
 ub4 recordno,
 text *sqlstate,
 sb4 *errcodep,
 text *bufp,
 ub4 bufsiz,
 ub4 type);

Parameters

hndlp (IN)
The error handle, in most cases, or the environment handle (for errors on
OCIEnvCreate(), OCIHandleAlloc()).

recordno (IN)
Indicates the status record from which the application seeks info. Starts from 1.

sqlstate (OUT)
Not supported in release 8.x or later.

errcodep (OUT)
The error code returned.

bufp (OUT)
The error message text returned.

bufsiz (IN)
The size of the buffer provided for the error message, in number of bytes. If the
error message length is less than bufsiz, a NULL string is returned. To avoid that,
calculate the message length, as shown in the example which follows.

type (IN)
The type of the handle (OCI_HTYPE_ERROR or OCI_HTYPE_ENV).

OCIErrorGet()

16-218 Oracle Call Interface Programmer's Guide

Comments
This function does not support SQL statements. In most cases, hndlp is actually the
error handle, or the environment handle. You should always get the message in the
encoding that was set in the environment handle.This function can be called
multiple times if there are more than one diagnostic record for an error.

Note that OCIErrorGet() must not be called when the return code is
OCI_SUCCESS. Otherwise, an error message from a previously executed statement
will be found by OCIErrorGet().

The error handle is originally allocated with a call to OCIHandleAlloc().

Example
Here is a simplified example of a function for error checking using
OCIErrorGet():

static void checkerr(OCIError *errhp, sword status)
{
 text errbuf[512];
 ub4 buflen;
 sb4 errcode;

 if (status == OCI_SUCCESS) return;

 switch (status)
 {
 case OCI_SUCCESS_WITH_INFO:
 printf("Error - OCI_SUCCESS_WITH_INFO\n");
 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error - %s\n", errbuf);
 break;
 case OCI_NEED_DATA:
 printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf("Error - OCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);

See Also: For a more complete discussion of error handling see
"Error Handling in OCI" on page 2-26

Miscellaneous Functions

More OCI Relational Functions 16-219

 printf("Error - %s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf("Error - OCI_STILL_EXECUTING\n");
 break;
 case OCI_CONTINUE:
 printf("Error - OCI_CONTINUE\n");
 break;
 default:
 printf("Error - %d\n", status);
 break;
 }
}

Related Functions
OCIHandleAlloc()

OCILdaToSvcCtx()

16-220 Oracle Call Interface Programmer's Guide

OCILdaToSvcCtx()

Purpose
Converts a V7 Lda_Def to a V8 or later service context handle.

Syntax
sword OCILdaToSvcCtx (OCISvcCtx **svchpp,
 OCIError *errhp,
 Lda_Def *ldap);

Parameters

svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

ldap (IN/OUT)
The Oracle7 logon data area returned by OCISvcCtxToLda() from this service
context.

Comments
Converts an Oracle7 Lda_Def to a release 8 or later service context handle. The
action of this call can be reversed by passing the resulting service context handle to
the OCISvcCtxToLda() function.

The OCILdaToSvcCtx() call should be used only for resetting an Lda_Def
obtained from OCISvcCtxToLda() back to a service context handle. It cannot be
used to transform an Lda_def which started as an Lda_def back to a service
context handle.

If the service context has been converted to an Lda_Def, only Oracle7 calls may be
used. It is illegal to make OCI release 8 or later calls without first resetting the
Lda_Def to a service context.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context
handle enables an application to determine whether the application is currently in
Oracle release 7 mode or Oracle release 8 or later mode.

Miscellaneous Functions

More OCI Relational Functions 16-221

Related Functions
OCISvcCtxToLda()

See Also: Appendix A, "Handle and Descriptor Attributes"

OCIPasswordChange()

16-222 Oracle Call Interface Programmer's Guide

OCIPasswordChange()

Purpose
This call allows the password of an account to be changed.

Syntax
sword OCIPasswordChange (OCISvcCtx *svchp,
 OCIError *errhp,
 CONST text *user_name,
 ub4 usernm_len,
 CONST text *opasswd,
 ub4 opasswd_len,
 CONST text *npasswd,
 sb4 npasswd_len,
 ub4 mode);

Parameters

svchp (IN/OUT)
A handle to a service context. The service context handle must be initialized and
have a server context handle associated with it.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

user_name (IN)
Specifies the user name, which can be in UTF-16 encoding. It must be terminated
with a NULL character if the service context has been initialized with an
authentication handle.

usernm_len (IN)
The length of the user name string specified in user_name, in number of bytes
regardless of the encoding. usernm_len must be nonzero.

opasswd (IN)
Specifies the user's old password, which can be in UTF-16 encoding.

opasswd_len (IN)
The length of the old password string specified in opasswd, in bytes.
opasswd_len must be nonzero.

Miscellaneous Functions

More OCI Relational Functions 16-223

npasswd (IN)
Specifies the user's new password, which can be in UTF-16 encoding. If the
password complexity verification routine is specified in the user's profile to verify
the new password's complexity, the new password must meet the complexity
requirements of the verification function.

npasswd_len (IN)
The length in bytes of the new password string specified in npasswd. For a valid
password string, npasswd_len must be nonzero.

mode (IN)
■ OCI_DEFAULT - use the setting in the environment handle.

■ OCI_UTF16 - use UTF-16 encoding, regardless of the setting of the environment
handle.

There is only one encoding allowed, either UTF-16 or not, for user_name,
opasswd, and npasswd.

■ OCI_AUTH - If a user session context is not created, this call creates the user
session context and changes the password. At the end of the call, the user
session context is not cleared. Hence the user remains logged in.

If the user session context is already created, this call just changes the password
and the flag has no effect on the session. Hence the user still remains logged in.

Comments
This call allows the password of an account to be changed. This call is similar to
OCISessionBegin() with the following differences:

■ If the user session is already established, it authenticates the account using the
old password and then changes the password to the new password

■ If the user session is not established, it establishes a user session and
authenticates the account using the old password, then changes the password
to the new password.

This call is useful when the password of an account has expired and
OCISessionBegin() returns an error (ORA-28001) or warning that indicates that
the password has expired.

The mode or the environment handle determines if UTF-16 is being used.

OCIPasswordChange()

16-224 Oracle Call Interface Programmer's Guide

Related Functions
OCISessionBegin()

Miscellaneous Functions

More OCI Relational Functions 16-225

OCIReset()

Purpose
Resets the interrupted asynchronous operation and protocol. Must be called if a
OCIBreak call had been issued while a nonblocking operation was in progress.

Syntax
sword OCIReset (dvoid *hndlp,
 OCIError *errhp);

Parameters

hndlp (IN)
The service context handle or the server context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
This call is called in nonblocking mode only. Resets the interrupted asynchronous
operation and protocol. Must be called if an OCIBreak() call had been issued
while a nonblocking operation was in progress.

Related Functions
OCIBreak()

OCIRowidToChar()

16-226 Oracle Call Interface Programmer's Guide

OCIRowidToChar()

Purpose
Converts a Universal ROWID to character extended (base 64) representation.

Syntax
sword OCIRowidToChar (OCIRowid *rowidDesc,
 OraText *outbfp,
 ub2 *outbflp
 OCIError *errhp);

Parameters

rowidDesc (IN)
The ROWID descriptor which is allocated by OCIDescriptorAlloc() and
populated by a prior execution of a SQL statement.

outbfp (OUT)
Pointer to the buffer where the character representation is stored after successful
execution of this call.

outbflp (IN/OUT)
Pointer to the output buffer length. Before execution, the buffer length contains the
size of outbfp. After execution it contains the number of bytes converted.

In the event of truncation during conversion, outbfp contains the length required
to make conversion successful. An error is also returned.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

Comments
After this conversion, the ROWID in character format can be bound with the
OCIBindByPos() or OCIBindByName() calls, and used to query a row at the
given ROWID.

Miscellaneous Functions

More OCI Relational Functions 16-227

OCIServerVersion()

Purpose
Returns the version string of the Oracle server.

Syntax
sword OCIServerVersion (dvoid *hndlp,
 OCIError *errhp,
 text *bufp,
 ub4 bufsz
 ub1 hndltype);

Parameters

hndlp (IN)
The service context handle or the server context handle.

errhp (IN)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

bufp (IN)
The buffer in which the version information is returned.

bufsz (IN)
The length of the buffer. In number of bytes.

hndltype (IN)
The type of handle passed to the function.

Comments
This call returns the version string of the Oracle server. It can be in Unicode if the
environment handle so determines.

For example, the following might be returned as the version string if an application
is running on an 8.1.5 SunOS server:

Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.5.0.0 - Production

OCIServerVersion()

16-228 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet()

Miscellaneous Functions

More OCI Relational Functions 16-229

OCISvcCtxToLda()

Purpose
Toggles between a V8 or later service context handle and a V7 Lda_Def.

Syntax
sword OCISvcCtxToLda (OCISvcCtx *srvhp,
 OCIError *errhp,
 Lda_Def *ldap);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

ldap (IN/OUT)
A Logon Data Area for Oracle7-style OCI calls which is initialized by this call.

Comments
Toggles between an OCI release 8 or later service context handle and an Oracle7
Lda_Def.

This function can only be called after a service context has been properly initialized.

Once the service context has been translated to an Lda_Def, it can be used in
release 7.x OCI calls (for example, obindps(), ofen()).

If there are multiple service contexts which share the same server handle, only one
can be in Oracle7 mode at any time.

The action of this call can be reversed by passing the resulting Lda_Def to the
OCILdaToSvcCtx() function.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context
handle enables an application to determine whether the application is currently in
Oracle release 7 mode or Oracle release 8 or later mode.

OCISvcCtxToLda()

16-230 Oracle Call Interface Programmer's Guide

Related Functions
OCILdaToSvcCtx()

See Also: Appendix A, "Handle and Descriptor Attributes"

Miscellaneous Functions

More OCI Relational Functions 16-231

OCIUserCallbackGet()

Purpose
Determines the callback that is registered for a handle.

Syntax
sword OCIUserCallbackGet (dvoid *hndlp,
 ub4 type,
 dvoid *ehndlp,
 ub4 fcode,
 ub4 when,
 OCIUserCallback (*callbackp)
 (
 dvoid *ctxp,
 dvoid *hndlp,
 ub4 type,
 ub4 fcode,
 ub1 when,
 sword returnCode,
 ub4 *errnop,
 va_list arglist
),
 dvoid **ctxpp,
 OCIUcb *ucbDesc);

Parameters

hndlp (IN)
This is the handle whose type is specified by the type parameter.

type (IN)
The handle type. The valid handle type is:

■ OCI_HTYPE_ENV - The callback is registered for all calls of the function
specified by fcode made on the environment handle.

ehndlp (IN)
The OCI error or environment handle. If there is an error, it is recorded in ehndlp
and this function returns OCI_ERROR. Diagnostic information can be obtained by
calling OCIErrorGet().

OCIUserCallbackGet()

16-232 Oracle Call Interface Programmer's Guide

fcode (IN)
A unique function code of an OCI function. These are listed in Table 16–12, "OCI
Function Codes" on page 16-238.

when (IN)
Defines when the callback is invoked. Valid modes are:

■ OCI_CBTYPE_ENTRY - the callback is invoked on entry into the OCI function.

■ OCI_CBTYPE_EXIT - the callback is invoked before exit from the OCI function.

■ OCI_UCBTYPE_REPLACE - if it returns anything other than an
OCI_CONTINUE, then the next replacement callback and the OCI code for the
OCI function is not called. Instead, processing jumps to the exit callbacks. For
information about this parameter see OCIUserCallbackRegister() on
page 16-234.

callbackp (OUT)
A pointer to a callback function pointer. This returns the function that is currently
registered for these values of fcode, when, and hndlp. The value returned would
be NULL if no callback is registered for this case.

ctxpp (OUT)
A pointer to return context for the currently registered callback.

ucbDesc (IN)
An OCI provided descriptor. This descriptor is passed by OCI in the environment
callback. It contains the priority at which the callback would be registered at. If the
ucbDesc parameter is specified as NULL, then this callback has the highest priority.

User callbacks registered statically (as opposed to those registered dynamically in a
package) use a NULL descriptor because they do not have a ucb descriptor to use.

Comments
This function finds out what callback is registered for a particular handle.

See Also: For information about the parameters of callbackp
see the description of OCIUserCallbackRegister() on
page 16-234

See Also: For information on the restrictions of the use of callback
functions, see "Restrictions on Callback Functions" on page 9-38.

Miscellaneous Functions

More OCI Relational Functions 16-233

Related Functions
OCIUserCallbackRegister()

OCIUserCallbackRegister()

16-234 Oracle Call Interface Programmer's Guide

OCIUserCallbackRegister()

Purpose
Register a user-created callback function

Syntax
sword OCIUserCallbackRegister (dvoid *hndlp,
 ub4 type,
 dvoid *ehndlp,
 OCIUserCallback (callback)
 (
 dvoid *ctxp,
 dvoid *hndlp,
 ub4 type,
 ub4 fcode,
 ub1 when,
 sword returnCode,
 ub4 *errnop,
 va_list arglist
),
 dvoid *ctxp,
 ub4 fcode,
 ub4 when,
 OCIUcb *ucbDesc);

Parameters

hndlp (IN)
This is the handle whose type is specified by the type parameter.

type (IN)
The handle type. The valid handle type is:

■ OCI_HTYPE_ENV - The callback is registered for all calls of the function
specified by fcode made on the environment handle.

ehndlp (IN)
The OCI error or environment handle. If there is an error, it is recorded in ehndlp
and this function returns OCI_ERROR. Diagnostic information can be obtained by
calling OCIErrorGet(). Note that the because an error handle is not available
within OCIEnvCallback, so the environment handle is passed in as a ehndlp.

Miscellaneous Functions

More OCI Relational Functions 16-235

callback (IN)
A callback function pointer. The variable argument list in the OCIUserCallback
function prototype are the parameters passed to the OCI function. The typedef for
OCIUserCallback is described later.

If an entry callback returns anything other than OCI_CONTINUE, then the return
code is passed to the subsequent entry or replacement callback, if there is one. If this
is the last entry callback and there is no replacement callback, then the OCI code is
executed and the return code is ignored.

If a replacement callback returns anything other than OCI_CONTINUE, then
subsequent replacement callbacks and the OCI code are bypassed, and processing
jumps to the exit callbacks.

If the exit callback returns anything other than OCI_CONTINUE, then that returned
value is returned by the OCI function; otherwise, the return value from the OCI
code or the replacement callback (if the replacement callback did not return
OCI_CONTINUE and essentially bypassed the OCI code) is returned by the call.

If a NULL value is passed in for callback, then the callback is removed for the when
value and the specified handle. This is the way to de-register a callback for a given
ucbDesc value, including the NULL ucbDesc.

ctxp (IN)
A context pointer for the callback.

fcode (IN)
A unique function code of an OCI function. These are listed in Table 16–12, "OCI
Function Codes" on page 16-238.

when (IN)
Defines when the callback is invoked. Valid modes are:

■ OCI_CBTYPE_ENTRY - the callback is invoked on entry into the OCI function.

■ OCI_CBTYPE_EXIT - the callback is invoked before exit from the OCI function.

■ OCI_UCBTYPE_REPLACE - if it returns anything other than OCI_CONTINUE,
then the next replacement callback and the OCI code for the OCI function is not
called. Instead, processing jumps to the exit callbacks.

ucbDesc (IN)
An OCI provided descriptor. This descriptor is passed by OCI in the environment
callback. It contains the priority at which the callback would be registered at. If the
ucbDesc parameter is specified as NULL, then this callback has the highest priority.

OCIUserCallbackRegister()

16-236 Oracle Call Interface Programmer's Guide

User callbacks registered statically (as opposed to those registered dynamically in a
package) use a NULL descriptor as they do not have a ucb descriptor to use.

Comments
This function is used to register a user-created callback functions.s with the OCI
environment.

Such callbacks allow an application to:

1. Trace OCI calls for debugging and performance measurements.

2. Perform additional pre- or post-processing after selected OCI calls.

3. Substitute the body of a given function with proprietary code to execute on a
foreign data source.

The OCI supports these kinds of callbacks: entry callbacks, replacement callbacks, and
exit callbacks.

The three types of callbacks are identified by the modes OCI_UCBTYPE_ENTRY,
OCI_UCBTYPE_REPLACE, and OCI_UCBTYPE_EXIT.

 The control flow now is:

■ Execute entry callbacks.

■ Execute replacement callbacks.

■ Execute OCI code.

■ Execute exit callbacks.

Entry callbacks are executed when a program enters an OCI function.

Replacement callbacks are executed after entry callbacks. If the replacement
callback returns a value of OCI_CONTINUE, then subsequent replacement
callbacks or the normal OCI-specific code is executed. If the callback returns
anything other than OCI_CONTINUE, then subsequent replacement callbacks and
the OCI code do not execute.

After an OCI function successfully executes, or after a replacement callback returns
something other than OCI_CONTINUE, program control transfers to the exit
callback (if one is registered).

See Also: For a more complete discussion, see "User-Defined
Callback Functions in OCI" on page 16-2.

Miscellaneous Functions

More OCI Relational Functions 16-237

If a replacement or exit callback returns anything other than OCI_CONTINUE, then
the return code from the callback is returned from the associated OCI call.

To find out the callback that is registered for the handle, you can use
OCIUserCallbackGet().

The prototype of the OCIUserCallback typedef is:

typedef sword (*OCIUserCallback)
 (dvoid *ctxp,
 dvoid *hndlp,
 ub4 type,
 ub4 fcode,
 ub4 when,
 sword returnCode,
 sb4 *errnop,
 va_list arglist);

The parameters to the OCIUserCallback function prototype are:

ctxp (IN)
The context passed in as ctxp in the register callback function.

hndlp (IN)
This is the handle whose type is specified in the type parameter. It is the handle on
which the callback is invoked. Because we only allow a type of OCI_HTYPE_ENV,
therefore, the environment handle, env, would be passed-in here.

type (IN)
The type registered for the hndlp. The valid handle type is:

■ OCI_HTYPE_ENV - The callback is registered for all calls of the function
specified by fcode made on the environment handle.

fcode (IN)
The function code of the OCI call. These are listed in Table 16–12, "OCI Function
Codes". Please note that callbacks can be registered for only the OCI calls listed in
Table 16–7, "Advanced Queuing and Publish-Subscribe Functions".

when (IN)
The when value of the callback.

OCIUserCallbackRegister()

16-238 Oracle Call Interface Programmer's Guide

returnCode (IN)
This is the return code from the previous callback or the OCI code. For the first
entry callback, OCI_SUCCESS will always be passed in. For the subsequent
callbacks, the return code from the OCI code or the previous callback is passed in.

errnop (IN/OUT)
When the first entry callback is called, the input value of *errnop is 0. If the
callback is returning any value other than an OCI_CONTINUE, then it must also set
an error number in *errnop. This value is the set in the error handle passed in the
OCI call.

For all subsequent callbacks, the input value of *errnop is the value of error
number in the error handle. Therefore, if the previous callback did not return
OCI_CONTINUE, then the out value of *errnop from the previous callback would
be the one in the error handle, and that value would be passed in here to the
subsequent callback. If, on the other hand, the previous callback returned
OCI_CONTINUE, then whatever value that is in the error handle would be passed
in here.

Note that if a non-Oracle error number is returned in *errnop, then a callback
must also be registered for the OCIErrorGet() function to return appropriate text
for the error number.

arglist (IN)
These are the parameters to the OCI call passed in here as variable number of
arguments. They should be de-referenced using va_arg, as illustrated in the user
callback demonstration programs.

See Also: See Appendix B, "OCI Demonstration Programs" for a
list of the available demonstration programs.

Table 16–12 OCI Function Codes

OCI Routine # OCI Routine # OCI Routine

1 OCIInitialize 33 OCITransStart 65 OCIDefineByPos

2 OCIHandleAlloc 34 OCITransDetach 66 OCIBindByPos

3 OCIHandleFree 35 OCITransCommit 67 OCIBindByName

4 OCIDescriptorAlloc 36 (not used) 68 OCILobAssign

5 OCIDescriptorFree 37 OCIErrorGet 69 OCILobIsEqual

Miscellaneous Functions

More OCI Relational Functions 16-239

6 OCIEnvInit 38 OCILobFileOpen 70 OCILobLocatorIsInit

7 OCIServerAttach 39 OCILobFileClose 71 OCILobEnableBuffering

8 OCIServerDetach 40 (not used) 72 OCILobCharSetID

9 (not used) 41 (not used) 73 OCILobCharSetForm

10 OCISessionBegin 42 OCILobCopy,
OCILobCopy2

74 OCILobFileSetName

11 OCISessionEnd 43 OCILobAppend 75 OCILobFileGetName

12 OCIPasswordChange 44 OCILobErase,
OCILobErase2

76 OCILogon

13 OCIStmtPrepare 45 OCILobGetLength,
OCILobGetLength2

77 OCILogoff

14 (not used) 46 OCILobTrim,
OCILobTrim2

78 OCILobDisableBuffering

15 (not used) 47 ,OCILobRead
OCILobRead2

79 OCILobFlushBuffer

16 (not used) 48 OCILobWrite,
OCILobWrite2

80 OCILobLoadFromFile,
OCILobLoadFromFile2

17 OCIBindDynamic 49 (not used) 81 OCILobOpen

18 OCIBindObject 50 OCIBreak 82 OCILobClose

19 (not used) 51 OCIServerVersion 83 OCILobIsOpen

20 OCIBindArrayOfStruct 52 (not used) 84 OCILobFileIsOpen

21 OCIStmtExecute 53 (not used) 85 OCILobFileExists

22 (not used) 54 OCIAttrGet 86 OCILobFileCloseAll

23 (not used) 55 OCIAttrSet 87 OCILobCreateTemporary

24 (not used) 56 OCIParamSet 88 OCILobFreeTemporary

25 OCIDefineObject 57 OCIParamGet 89 OCILobIsTemporary

26 OCIDefineDynamic 58 OCIStmtGetPieceInfo 90 OCIAQEnq

27 OCIDefineArrayOfStruct 59 OCILdaToSvcCtx 91 OCIAQDeq

28 OCIStmtFetch 60 (not used) 92 OCIReset

Table 16–12 OCI Function Codes (Cont.)

OCI Routine # OCI Routine # OCI Routine

OCIUserCallbackRegister()

16-240 Oracle Call Interface Programmer's Guide

Related Functions
OCIUserCallbackGet()

29 OCIStmtGetBindInfo 61 OCIStmtSetPieceInfo 93 OCISvcCtxToLda

30 (not used) 62 OCITransForget 94 OCILobLocatorAssign

31 (not used) 63 OCITransPrepare 95 (not used)

32 OCIDescribeAny 64 OCITransRollback 96 OCIAQListen

Table 16–12 OCI Function Codes (Cont.)

OCI Routine # OCI Routine # OCI Routine

OCI Navigational and Type Functions 17-1

17
OCI Navigational and Type Functions

This chapter describes the OCI navigational functions which are used to navigate
through objects retrieved from an Oracle database server. It also contains the
descriptions of the functions which are used to obtain type descriptor objects
(TDOs).

This chapter contains these topics:

■ Introduction to the Navigational and Type Functions

■ OCI Flush or Refresh Functions

■ OCI Mark or Unmark Object and Cache Functions

■ OCI Get Object Status Functions

■ OCI Miscellaneous Object Functions

■ OCI Pin, Unpin, and Free Functions

■ OCI Type Information Accessor Functions

See Also: For code examples, see the demonstration programs
included with your Oracle installation. For additional information,
refer to Appendix B, "OCI Demonstration Programs".

Introduction to the Navigational and Type Functions

17-2 Oracle Call Interface Programmer's Guide

Introduction to the Navigational and Type Functions

In an object navigational paradigm, data is represented as a graph of objects
connected by references. Objects in the graph are reached by following the
references. The OCI provides a navigational interface to objects in the Oracle server.
Those calls are described in this chapter.

The OCI object environment is initialized when the application calls
OCIInitialize() in OCI_OBJECT mode.

Object Types and Lifetimes
An object instance is an occurrence of a type defined in an Oracle database. This
section describes how an object instance can be represented in OCI. See Figure 17–1
on page 17-3. In OCI, an object instance can be classified based on the type, the
lifetime and referenceability:

■ A persistent object is an instance of an object type. A persistent object resides in
a row of a table in the server and can exist longer than the duration of a session
(connection). Persistent objects can be identified by object references which
contain the object identifiers. A persistent object is obtained by pinning its
object reference.

■ A transient object is an instance of an object type. A transient object cannot exist
longer than the duration of a session, and it is used to contain temporary
computing results. Transient objects can also be identified by references which
contain transient object identifiers.

■ A value is an instance of an user-defined type (object type or collection type) or
any built-in Oracle type. Unlike objects, values of object types are identified by
memory pointers, rather than by references.

A value can be standalone or embedded. A standalone value is usually obtained by
issuing a select statement. OCI also allows the client program to select a row of
object table into a value by issuing a SQL statement. A referenceable object in the
database can be represented as a value which cannot be identified by a reference. A
standalone value can also be an out-of-line attribute in an object, such as VARCHAR
or RAW, or an out-of-line element in a collection, such as VARCHAR, RAW, or object.

See Also: For more information about using the calls in this
chapter, refer to Chapter 10, "OCI Object-Relational Programming",
and Chapter 13, "Object Advanced Topics in OCI".

Introduction to the Navigational and Type Functions

OCI Navigational and Type Functions 17-3

An embedded value is physically included in a containing instance. An embedded
value can be an in-line attribute in an object. such as number or nested object, or an
in-line element in a collection.

All values are considered to be transient by OCI, which means that OCI does not
support automatic flushing a value to the database, and the client has to explicitly
execute a SQL statement to store a value into the database. For embedded values,
they are flushed when their containing instance are flushed.

Figure 17–1 shows how instances can be classified according to their type and
lifetime:

Figure 17–1 Classification of Instances by Type and Lifetime

The distinction between various instances is further illustrated by the following
table:

Terminology
In the remainder of this chapter, the following terms will be used:

Table 17–1 Type and Lifetime of Instances

Characteristic Persistent Object Transient Object Value

Type object type object type object type, built-in,
collection

Maximum Lifetime until object is deleted session session

Referenceable yes yes no

Embeddable no no yes

Lifetime

Type

Instance

OBJECT VALUE

PERSISTENT TRANSIENT

Introduction to the Navigational and Type Functions

17-4 Oracle Call Interface Programmer's Guide

■ An object can be generally used to refer to a persistent object, a transient object,
a standalone value of object type, or an embedded value of object type.

■ A referenceable object refers to a persistent object or a transient object.

■ A standalone object refers to a persistent object, a transient object or a standalone
value of object type.

■ An embedded object refers to a embedded value of object type.

■ An object is dirty if it has been created (newed), or marked updated or deleted.

The Function Syntax
The entries for each function contain the following information:

Purpose
A brief description of what the function does.

Syntax
The function declaration.

Comments
Detailed information about the function if available. This may include restrictions
on the use of the function, or other information that might be useful when using the
function in an application.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described next:

See Also: For a further discussion of the terms used to refer to
different types of objects, please see "Persistent Objects, Transient
Objects, and Values" on page 10-5.

Table 17–2 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

Introduction to the Navigational and Type Functions

OCI Navigational and Type Functions 17-5

Returns
A description of what value is returned by the function if the function returns
something other than the standard return codes listed in Table 18–2, "Function
Return Values".

Related Functions
A list of related calls which may provide additional useful information.

Navigational Function Return Values
The OCI navigational functions typically return one of the following values:

Function-specific return information follows the description of each function in this
chapter. Information about specific error codes returned by each function is
presented in the following section.

Server Round Trips for Cache and Object Functions
For a table showing the number of server round trips required for individual
OCI cache and object functions, refer to Appendix C, "OCI Function Server
Round Trips".

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Table 17–3 Return Values of Navigational Functions

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be retrieved by
calling OCIErrorGet() on the error handle passed to the
function.

OCI_INVALID_HANDLE The OCI handle passed to the function is invalid.

See Also: For more information about return codes and error
handling, see the section "Error Handling in OCI" on page 2-26.

Table 17–2 Mode of a Parameter (Cont.)

Mode Description

Introduction to the Navigational and Type Functions

17-6 Oracle Call Interface Programmer's Guide

Navigational Function Error Codes
Table 17–4 lists the external Oracle error codes which can be returned by each of the
OCI navigational functions. The list following the table identifies what each error
represents.

Table 17–4 OCI Navigational Functions Error Codes

Function Possible ORA Errors

OCICacheFlush() 24350, 21560, 21705

OCICacheFree() 24350, 21560, 21705

OCICacheRefresh() 24350, 21560, 21705

OCICacheUnmark() 24350, 21560, 21705

OCICacheUnpin() 24350, 21560, 21705

OCIObjectArrayPin() 24350, 21560

OCIObjectCopy() 24350, 21560, 21705, 21710

OCIObjectExists() 24350, 21560, 21710

OCIObjectFlush() 24350, 21560, 21701, 21703, 21708, 21710

OCIObjectFree() 24350, 21560, 21603, 21710

OCIObjectGetAttr() 21560, 21600, 22305

OCIObjectGetInd() 24350, 21560, 21710

OCIObjectGetTypeRef() 24350, 21560, 21710

OCIObjectIsDirty() 24350, 21560, 21710

OCIObjectIsLocked() 24350, 21560, 21710

OCIObjectLock() 24350, 21560, 21701, 21708, 21710

OCIObjectLockNoWait() 24350, 21560, 21701, 21708, 21710

OCIObjectMarkDelete() 24350, 21560, 21700, 21701, 21702, 21710

OCIObjectMarkDeleteByRef() 24350, 21560

OCIObjectMarkUpdate() 24350, 21560, 21700, 21701, 21710

OCIObjectNew() 24350, 21560, 21705, 21710

OCIObjectPin() 24350, 21560, 21700, 21702

OCIObjectPinCountReset() 24350, 21560, 21710

Introduction to the Navigational and Type Functions

OCI Navigational and Type Functions 17-7

The ORA errors in Table 17–4 have the following meanings.

■ ORA-21560 - name argument should not be NULL

■ ORA-21600 - path expression too long

■ ORA-21601 - attribute is not an instance of user-defined type

■ ORA-21603 - cannot free a dirtied persistent object

■ ORA-21700 - object does not exist or has been deleted

■ ORA-21701 - invalid object

■ ORA-21702 - object is not instantiated in the cache

■ ORA-21703 - cannot flush an object that is not modified

■ ORA-21704 - terminate cache or connection without flushing

■ ORA-21705 - service context is invalid

■ ORA-21708 - operations cannot be performed on a transient object

■ ORA-21709 - operations can only be performed on a current object

■ ORA-21710 - invalid pointer or value passed to the function

■ ORA-22279 - cannot perform operation with LOB buffering enabled

■ ORA-22305 - name argument is invalid

■ ORA-24350 - this OCI call is not allowed from external subroutines

OCIObjectPinTable() 24350, 21560, 21705

OCIObjectRefresh() 24350, 21560, 21709, 21710

OCIObjectSetAttr() 21560, 21600, 22305, 22279, 21601

OCIObjectUnmark() 24350, 21560, 21710

OCIObjectUnmarkByRef() 24350, 21560

OCIObjectUnpin() 24350, 21560, 21710

OCIOjectGetObjectRef() 24350, 21560, 21710

Table 17–4 OCI Navigational Functions Error Codes (Cont.)

Function Possible ORA Errors

OCI Flush or Refresh Functions

17-8 Oracle Call Interface Programmer's Guide

OCI Flush or Refresh Functions

This section describes the OCI flush or refresh functions.

Table 17–5 Flush or Refresh Functions

Function/Page Purpose

OCICacheFlush() on page 17-9 Flush modified persistent objects in cache to server

OCICacheRefresh() on page 17-11 Refresh pinned persistent objects

OCIObjectFlush() on page 17-13 Flush a modified persistent object to the server

OCIObjectRefresh() on page 17-15 Refresh a persistent object

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 17-9

OCICacheFlush()

Purpose
Flushes modified persistent objects to the server

Syntax
sword OCICacheFlush (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 dvoid *context,
 OCIRef *(*get)
 (dvoid *context,
 ub1 *last),
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

context (IN) [optional]
Specifies an user context that is an argument to the client callback function get.
This parameter is set to NULL if there is no user context.

get (IN) [optional]
A client-defined function which acts an iterator to retrieve a batch of dirty objects
that need to be flushed. If the function is not NULL, this function will be called to get
a reference of a dirty object. This is repeated until a NULL reference is returned by
the client function or the parameter last is set to TRUE. The parameter context is
passed to get() for each invocation of the client function. This parameter should
be NULL if user callback is not given. If the object that is returned by the client
function is not a dirtied persistent object, the object is ignored.

OCICacheFlush()

17-10 Oracle Call Interface Programmer's Guide

All the objects that are returned from the client function must be newed or pinned
using the same service context, otherwise an error is signalled. Note that the cache
flushes the returned objects in the order in which they were marked dirty.

If this parameter is passed as NULL (for example, no client-defined function is
provided), then all dirty persistent objects for the given service context are flushed
in the order in which they were dirtied.

ref (OUT) [optional]
If there is an error in flushing the objects (*ref) will point to the object that is
causing the error. If ref is NULL, then the object will not be returned. If *ref is
NULL, then a reference will be allocated and set to point to the object. If *ref is not
NULL, then the reference of the object is copied into the given space. If the error is
not caused by any of the dirtied object, the given REF is initialized to be a NULL
reference (OCIRefIsNull(*ref) is TRUE).

The REF is allocated for session duration (OCI_DURATION_SESSION). The
application can free the allocated REF using the OCIObjectFree() function.

Comments
This function flushes the modified persistent objects from the object cache to the
server. The objects are flushed in the order that they are newed or marked updated
or deleted.

This function incurs at most one network round trip.

Related Functions
OCIObjectFlush()

See Also: OCIObjectFlush() on page 17-13

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 17-11

OCICacheRefresh()

Purpose
Refreshes all pinned persistent objects in the cache.

Syntax
sword OCICacheRefresh (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIRefreshOpt option,
 dvoid *context,
 OCIRef *(*get)(dvoid *context),
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

option (IN) [optional]
If OCI_REFRESH_LOADED is specified, all objects that are loaded within the
transaction are refreshed. If the option is OCI_REFRESH_LOADED and the
parameter get is not NULL, this function will ignore the parameter.

context (IN) [optional]
Specifies an user context that is an argument to the client callback function get.
This parameter is set to NULL if there is no user context.

get (IN) [optional]
A client-defined function which acts an iterator to retrieve a batch of objects that
need to be refreshed. If the function is not NULL, this function will be called to get a
reference of an object. If the reference is not NULL, then the object will be refreshed.

OCICacheRefresh()

17-12 Oracle Call Interface Programmer's Guide

These steps are repeated until a NULL reference is returned by this function. The
parameter context is passed to get() for each invocation of the client function.
This parameter should be NULL if user callback is not given.

ref (OUT) [optional]
If there is an error in refreshing the objects, (*ref) will point to the object that is
causing the error. If ref is NULL, then the object will not be returned. If *ref is
NULL, then a reference will be allocated and set to point to the object. If *ref is not
NULL, then the reference of the object is copied into the given space. If the error is
not caused by any of the object, the given ref is initialized to be a NULL reference
(OCIRefIsNull(*ref) is TRUE).

Comments
This function refreshes all pinned persistent objects and all unpinned persistent
objects are freed from the object cache.

Related Functions
OCIObjectRefresh()

See Also: For more information about refreshing, see the
description of OCIObjectRefresh(), and the section "Refreshing
an Object Copy" on page 13-12.

Caution: When objects are refreshed, the secondary-level memory
of those objects could potentially move to a different place in
memory. As a result, any pointers to attributes which were saved
prior to this call may be invalidated. Examples of attributes using
secondary-level memory include OCIString *, OCIColl *, and
OCIRaw *.

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 17-13

OCIObjectFlush()

Purpose
Flushes a modified persistent object to the server.

Syntax
sword OCIObjectFlush (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object. The object must be pinned before this call.

Comments
This function flushes a modified persistent object to the server. An exclusive lock is
obtained implicitly for the object when it is flushed. When the object is written to
the server, triggers may be fired. This function returns an error for transient objects
and values, and for unmodified persistent objects.

Objects can be modified by triggers at the server. To keep objects in the cache
consistent with the database, an application can free or refresh objects in the cache.

If the object to flush contains an internal LOB attribute and the LOB attribute was
modified due to an OCIObjectCopy(), OCILobAssign(), or
OCILobLocatorAssign() or by assigning another LOB locator to it, then the
flush makes a copy of the LOB value that existed in the source LOB at the time of
the assignment or copy of the internal LOB locator or object.

See Also: For more information on LOB functions, see"LOB
Functions" on page 16-23.

OCIObjectFlush()

17-14 Oracle Call Interface Programmer's Guide

Related Functions
OCIObjectPin(), OCICacheFlush()

OCI Flush or Refresh Functions

OCI Navigational and Type Functions 17-15

OCIObjectRefresh()

Purpose
Refreshes a persistent object from the most current database snapshot.

Syntax
sword OCIObjectRefresh (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments
This function refreshes an object with data retrieved from the latest snapshot in the
server. An object should be refreshed when the objects in the object cache are
inconsistent with the objects at the server.

Note: When an object is flushed to the server, triggers can be fired
to modify more objects in the server. The same objects (modified by
the triggers) in the object cache become out-of-date, and must be
refreshed before they can be locked or flushed.

This occurs when the user issues a SQL statement or PL/SQL
procedure to modify any object in the server.

OCIObjectRefresh()

17-16 Oracle Call Interface Programmer's Guide

The various meta-attribute flags and durations of an object are modified after being
refreshed:

The object that is refreshed will be replaced-in-place. When an object is
replaced-in-place, the top-level memory of the object will be reused so that new
data can be loaded into the same memory address. The top level memory of the
NULL indicator structure is also reused. Unlike the top-level memory chunk, the
secondary memory chunks will be freed and reallocated.

You should be careful when writing functionality that holds on to a pointer to the
secondary memory chunk, such as assigning the address of a secondary memory to
a local variable, because this pointer can become invalid after the object is refreshed.

This function does nothing for transient objects or values.

Related Functions
OCICacheRefresh()

Caution: Modifications made to objects (dirty objects) since the
last flush are lost if unmarked objects are refreshed by this function.

Table 17–6 Object Status After Refresh

Object Attribute Status After Refresh

existent set to appropriate value

pinned unchanged

allocation duration unchanged

pin duration unchanged

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 17-17

OCI Mark or Unmark Object and Cache Functions

This section describe the OCI mark or unmark Object and Cache functions.

Table 17–7 Mark or Unmark Object and Cache Functions

Function/Page Purpose

OCICacheUnmark() on page 17-18 Unmarks objects in the cache

OCIObjectMarkDelete() on page 17-19 Mark an object deleted / delete a value instance

OCIObjectMarkDeleteByRef() on page 17-21 Mark an object deleted given a ref

OCIObjectMarkUpdate() on page 17-22 Mark an object as updated/dirty

OCIObjectUnmark() on page 17-24 Unmarks an object

OCIObjectUnmarkByRef() on page 17-25 Unmarks an object, given a ref to it

OCICacheUnmark()

17-18 Oracle Call Interface Programmer's Guide

OCICacheUnmark()

Purpose
Unmarks all dirty objects in the object cache.

Syntax
sword OCICacheUnmark (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

Comments
If a connection is specified, this function unmarks all dirty objects in that
connection. Otherwise, all dirty objects in the cache are unmarked.

Related Functions
OCIObjectUnmark()

See Also: See OCIObjectUnmark() on page 17-24 for more
information about unmarking an object.

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 17-19

OCIObjectMarkDelete()

Purpose
Marks a standalone instance as deleted, given a pointer to the instance.

Syntax
sword OCIObjectMarkDelete (OCIEnv *env,
 OCIError *err,
 dvoid *instance);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to the instance. It must be standalone, and if it is an object it must be
pinned.

Comments
This function accepts a pointer to a standalone instance and marks the object as
deleted. The object is freed according to the following rules:

For Persistent Objects
The object is marked deleted. The memory of the object is not freed. The object is
deleted in the server when the object is flushed.

For Transient Objects
The object is marked deleted. The memory of the object is not freed.

For Values
This function frees a value immediately.

OCIObjectMarkDelete()

17-20 Oracle Call Interface Programmer's Guide

Related Functions
OCIObjectMarkDeleteByRef(), OCIObjectGetProperty()

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 17-21

OCIObjectMarkDeleteByRef()

Purpose
Marks an object as deleted, given a reference to the object.

Syntax
sword OCIObjectMarkDeleteByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
Reference to the object to be deleted.

Comments
This function accepts a reference to an object, and marks the object designated by
object_ref as deleted. The object is marked and freed as follows:

For Persistent Objects
If the object is not loaded, then a temporary object is created and is marked deleted.
Otherwise, the object is marked deleted.

The object is deleted in the server when the object is flushed.

For Transient Objects
The object is marked deleted. The object is not freed until it is unpinned.

Related Functions
OCIObjectMarkDelete(), OCIObjectGetProperty()

OCIObjectMarkUpdate()

17-22 Oracle Call Interface Programmer's Guide

OCIObjectMarkUpdate()

Purpose
Marks a persistent object as updated, or dirty.

Syntax
sword OCIObjectMarkUpdate (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments
This function marks a persistent object as updated, or dirty. The following special
rules apply to different types of objects. The dirty status of an object may be checked
by calling OCIObjectIsLocked().

For Persistent Objects
This function marks the specified persistent object as updated.

The persistent objects will be written to the server when the object cache is flushed.
The object is not locked or flushed by this function. It is an error to update a deleted
object.

After an object is marked updated and flushed, this function must be called again to
mark the object as updated if it has been dirtied after it is being flushed.

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 17-23

For Transient Objects
This function marks the specified transient object as updated. The transient objects
will not be written to the server. It is an error to update a deleted object.

For Values
This function is an no-op for values.

Related Functions
OCIObjectPin(), OCIObjectGetProperty(),
OCIObjectIsDirty(),OCIObjectUnmark().

See Also: For more information about the use of this function, see
"Marking Objects and Flushing Changes" on page 10-14.

OCIObjectUnmark()

17-24 Oracle Call Interface Programmer's Guide

OCIObjectUnmark()

Purpose
Unmarks an object as dirty.

Syntax
sword OCIObjectUnmark (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to the persistent object. It must be pinned.

Comments

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are
made to the object will not be written to the server. If the object is marked locked, it
remains marked locked. The changes that have already made to the object will not
be undone implicitly.

For Values
This function is an no-op for values. This means that the function will have no effect
if called on a value.

Related Functions
OCIObjectUnmarkByRef()

OCI Mark or Unmark Object and Cache Functions

OCI Navigational and Type Functions 17-25

OCIObjectUnmarkByRef()

Purpose
Unmarks an object as dirty, given a REF to the object.

Syntax
sword OCIObjectUnmarkByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
Reference of the object. It must be pinned.

Comments
This function unmarks an object as dirty. This function is identical to
OCIObjectUnmark(), except that it takes a REF to the object as an argument.

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are
made to the object will not be written to the server. If the object is marked locked, it
remains marked locked. The changes that have already made to the object will not
be undone implicitly.

For Values
This function is a no-op for values.

Related Functions
OCIObjectUnmark()

OCI Get Object Status Functions

17-26 Oracle Call Interface Programmer's Guide

OCI Get Object Status Functions

This section describes the OCI get object status functions.

Table 17–8 Get Object Status functions

Function/Page Purpose

OCIObjectExists() on page 17-27 Get the existent status of an instance

OCIObjectGetProperty() on page 17-28 Get the status of a particular object property

OCIObjectIsDirty() on page 17-33 Get the dirtied status of an instance

OCIObjectIsLocked() on page 17-33 Get the locked status of an instance

OCI Get Object Status Functions

OCI Navigational and Type Functions 17-27

OCIObjectExists()

Purpose
Returns the existence meta-attribute of a standalone instance.

Syntax
sword OCIObjectExists (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *exist);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. If it is an object, it must be pinned.

exist (OUT)
Return value for the existence status.

Comments
This function returns the existence of an instance. If the instance is a value, this
function always returns TRUE. The instance must be a standalone persistent or
transient object.

Related Functions
OCIObjectPin()

See Also: For more information about object meta-attributes, see
"Object Meta-Attributes" on page 10-17.

OCIObjectGetProperty()

17-28 Oracle Call Interface Programmer's Guide

OCIObjectGetProperty()

Purpose
Retrieve a given property of an object.

Syntax
sword OCIObjectGetProperty (OCIEnv *envh,
 OCIError *errh,
 CONST dvoid *obj,
 OCIObjectPropId propertyId,
 dvoid *property,
 ub4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

obj (IN)
The object whose property is returned.

propertyId (IN)
The identifier which identifies the desired property.

property (OUT)
The buffer into which the desired property is copied.

size (IN/OUT)
On input, this parameter specifies the size of the property buffer passed by caller.

On output it contains the size in bytes of the property returned. This parameter is
required for string-type properties only, such as OCI_OBJECTPROP_SCHEMA,
OCI_OBJECTPROP_TABLE). For non-string properties this parameter is ignored
since the size is fixed.

OCI Get Object Status Functions

OCI Navigational and Type Functions 17-29

Comments
This function returns the specified property of the object. The desired property is
identified by propertyId. The property value is copied into property and for
string typed properties the string size is returned by size.

Objects are classified as persistent, transient and value depending upon the lifetime
and referenceability of the object. Some of the properties are applicable only to
persistent objects and some others only apply to persistent and transient objects. An
error is returned if the user tries to get a property which in not applicable to the
given object. To avoid such an error, the user should first check whether the object is
persistent or transient or value (OCI_OBJECTPROP_LIFETIME property) and then
appropriately query for other properties.

The different property ids and the corresponding type of property argument are
given next.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or
a value instance. The property argument must be a pointer to a variable of type
OCIObjectLifetime. Possible values include:

■ OCI_OBJECT_PERSISTENT

■ OCI_OBJECT_TRANSIENT

■ OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is
returned if the given object points to a transient instance or a value. If the input
buffer is not big enough to hold the schema name an error is returned, the error
message will communicate the required size. Upon success, the size of the returned
schema name in bytes is returned by size. The property argument must be an
array of type text and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the
given object points to a transient instance or a value. If the input buffer is not big
enough to hold the table name an error is returned, the error message will
communicate the required size. Upon success, the size of the returned table name in
bytes is returned by size. The property argument must be an array of type text
and size should be set to size of array in bytes by the caller.

OCIObjectGetProperty()

17-30 Oracle Call Interface Programmer's Guide

OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object
points to a value instance. The property argument must be a pointer to a variable
of type OCIDuration. Valid values include

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be
a pointer to a variable of type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

For more information about durations, see "Object Duration" on page 13-15.

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock statuses are enumerated
by OCILockOpt. An error is returned if the given object points to a transient or
value instance. The property argument must be a pointer to a variable of type
OCILockOpt. Note, the lock status of an object can also be retrieved by calling
OCIObjectIsLocked(). Valid values include:

■ OCI_LOCK_NONE - for no lock

■ OCI_LOCK_X - for an exclusive lock

■ OCI_LOCK_X_NOWAIT - for an exclusive lock with the NOWAIT option.

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object,
updated object or deleted object. An error is returned if the given object points to a
transient or value instance. The property argument must be of type
OCIObjectMarkStatus. Valid values include:

■ OCI_OBJECT_NEW

See Also: For more information about durations, see "Object
Duration" on page 13-15.

See Also: For information about the NOWAIT option, see "Locking
with the NOWAIT Option" on page 13-14.

OCI Get Object Status Functions

OCI Navigational and Type Functions 17-31

■ OCI_OBJECT_DELETED

■ OCI_OBJECT_UPDATED

The following macros are available to test the object mark status:

■ OCI_OBJECT_IS_UPDATED (flag)

■ OCI_OBJECT_IS_DELETED (flag)

■ OCI_OBJECT_IS_NEW (flag)

■ OCI_OBJECT_IS_DIRTY (flag)

OCI_OBJECTPROP_VIEW
This identifies whether the specified object is a view object or not. If the property
value returned is TRUE, it indicates the object is a view otherwise it is not. An error
is returned if the given object points to a transient or value instance. The property
argument must be of type boolean.

Related Functions
OCIObjectLock(), OCIObjectMarkDelete(), OCIObjectMarkUpdate(),
OCIObjectPin(), OCIObjectPin()

OCIObjectIsDirty()

17-32 Oracle Call Interface Programmer's Guide

OCIObjectIsDirty()

Purpose
Checks to see if an object is marked as dirty.

Syntax
sword OCIObjectIsDirty (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *dirty);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance.

dirty (OUT)
Return value for the dirty status.

Comments
The instance passed to this function must be standalone. If the instance is an object,
the instance must be pinned.

This function returns the dirty status of an instance. If the instance is a value, this
function always returns FALSE for the dirty status.

Related Functions
OCIObjectMarkUpdate(), OCIObjectGetProperty()

OCI Get Object Status Functions

OCI Navigational and Type Functions 17-33

OCIObjectIsLocked()

Purpose
Get lock status of an object.

Syntax
sword OCIObjectIsLocked (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *lock);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. The instance must be standalone, and if it is an object it must
be pinned.

lock (OUT)
Return value for the lock status.

Comments
This function returns the lock status of an instance. If the instance is a value, this
function always returns FALSE.

Related Functions
OCIObjectLock(), OCIObjectGetProperty()

OCI Miscellaneous Object Functions

17-34 Oracle Call Interface Programmer's Guide

OCI Miscellaneous Object Functions

This section describes the miscellaneous object functions.

Table 17–9 Miscellaneous Object functions

Function/Page Purpose

OCIObjectCopy() on page 17-35 Copy one instance to another

OCIObjectGetAttr() on page 17-38 Gets an object attribute

OCIObjectGetInd() on page 17-40 Get NULL structure of an instance

OCIObjectGetObjectRef() on page 17-41 Return reference to a given object

OCIObjectGetTypeRef() on page 17-42 Get a reference to a TDO of an instance

OCIObjectLock() on page 17-43 Lock a persistent object

OCIObjectLockNoWait() on page 17-44 Lock a persistent object but do not wait for the lock

OCIObjectPin() on page 17-59 Create a new instance

OCIObjectSetAttr() on page 17-50 Sets an object attribute

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-35

OCIObjectCopy()

Purpose
Copies a source instance to a destination.

Syntax
sword OCIObjectCopy (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 dvoid *source,
 dvoid *null_source,
 dvoid *target,
 dvoid *null_target,
 OCIType *tdo,
 OCIDuration duration,
 ub1 option);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() in Chapter 15 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle, specifying the service context on which the copy
operation is taking place

source (IN)
A pointer to the source instance; if it is an object, it must be pinned.

null_source (IN)
Pointer to the NULL structure of the source object.

See Also: OCIObjectPin() on page 17-59

OCIObjectCopy()

17-36 Oracle Call Interface Programmer's Guide

target (IN)
A pointer to the target instance; if it is an object is must be pinned.

null_target (IN)
A pointer to the NULL structure of the target object.

tdo (IN)
The TDO for both the source and the target. Can be retrieved with
OCIDescribeAny().

duration (IN)
Allocation duration of the target memory.

option (IN)
This parameter is currently unused. Pass as zero or OCI_DEFAULT.

Comments
This function copies the contents of the source instance to the target instance.
This function performs a deep-copy such that all of the following is copied:

■ all the top level attributes (see the exceptions later)

■ all secondary memory (of the source) reachable from the top level attributes

■ the NULL structure of the instance

Memory is allocated with the duration specified in the duration parameter.

Certain data items are not copied:

■ If the option OCI_OBJECTCOPY_NOREF is specified in the option parameter,
then all references in the source are not copied. Instead, the references in the
target are set to NULL.

■ If the attribute is an internal LOB, then only the LOB locator from the source
object is copied. A copy of the LOB data is not made until OCIObjectFlush()
is called. Before the target object is flushed, both the source and the target
locators refer to the same LOB value.

The target or the containing instance of the target must be already have been
created. This may be done with OCIObjectNew() or OCIObjectPin()
depending on whether or not the target object already exists.

The source and target instances must be of the same type. If the source and
target are located in a different databases, then the same type must exist in both
databases.

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-37

Related Functions
OCIObjectPin()

OCIObjectGetAttr()

17-38 Oracle Call Interface Programmer's Guide

OCIObjectGetAttr()

Purpose
Retrieves an object attribute.

Syntax
sword OCIObjectGetAttr (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid *null_struct,
 struct OCIType *tdo,
 CONST OraText **names,
 CONST ub4 *lengths,
 CONST ub4 name_count,
 CONST ub4 *indexes,
 CONST ub4 index_count,
 OCIInd *attr_null_status,
 dvoid **attr_null_struct,
 dvoid **attr_value,
 struct OCIType **attr_tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the descriptions of
OCIEnvCreate() and OCIInitialize()for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object.

null_struct (IN)
The NULL structure of the object or array.

tdo (IN)
Pointer to the TDO.

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-39

names (IN)
Array of attribute names. This is used to specify the names of the attributes in the
path expression.

lengths (IN)
Array of lengths of attribute names, in bytes.

name_count (IN)
Number of element in the array names.

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (OUT)
The NULL status of the attribute if the type of attribute is primitive.

attr_null_struct (OUT)
The NULL structure of an object or collection attribute.

attr_value (OUT)
Pointer to the attribute value.

attr_tdo (OUT)
Pointer to the TDO of the attribute.

Comments
This function gets a value from an object or from an array. If the parameter
instance points to an object, then the path expression specifies the location of the
attribute in the object. It is assumed that the object is pinned and that the value
returned is valid until the object is unpinned.

Related Functions
OCIObjectSetAttr()

OCIObjectGetInd()

17-40 Oracle Call Interface Programmer's Guide

OCIObjectGetInd()

Purpose
Gets the NULL indicator structure of a standalone instance.

Syntax
sword OCIObjectGetInd (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid **null_struct);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the instance whose NULL structure is being retrieved. The instance
must be standalone. If instance is an object, it must already be pinned.

null_struct (OUT)
The NULL indicator structure for the instance.

Comments
None.

Related Functions
OCIObjectPin()

See Also: "NULL Indicator Structure" on page 10-30 for a
discussion of the NULL indicator structure and examples of its use.

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-41

OCIObjectGetObjectRef()

Purpose
Returns a reference to a given persistent object.

Syntax
sword OCIObjectGetObjectRef (OCIEnv *env,
 OCIError *err,
 dvoid *object,
 OCIRef *object_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to a persistent object. It must already be pinned.

object_ref (OUT)
A reference to the object specified in object. The reference must already be
allocated. This can be accomplished with OCIObjectNew().

Comments
This function returns a reference to the given persistent object, given a pointer to the
object. Passing a value (rather than an object) to this function causes an error.

Related Functions
OCIObjectPin(), OCIObjectPin()

See Also: For more information about object meta-attributes, see
"Object Meta-Attributes" on page 10-17.

OCIObjectGetTypeRef()

17-42 Oracle Call Interface Programmer's Guide

OCIObjectGetTypeRef()

Purpose
Returns a reference to the type descriptor object (TDO) of a standalone instance.

Syntax
sword OCIObjectGetTypeRef (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 OCIRef *type_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the standalone instance. It must be standalone, and if it is an object, it
must already be pinned.

type_ref (OUT)
A reference to the type of the object. The reference must already be allocate. This
can be accomplished with OCIObjectNew().

Comments
None.

Related Functions
OCIObjectPin(), OCIObjectPin()

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-43

OCIObjectLock()

Purpose
Locks a persistent object at the server.

Syntax
sword OCIObjectLock (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object being locked. It must already be pinned.

Comments
This function will return an error for transient objects and values. It also returns an
error if the object does not exist.

Related Functions
OCIObjectPin(), OCIObjectIsLocked(), OCIObjectGetProperty(),
OCIObjectLockNoWait()

See Also: For more information about object locking, see
"Locking Objects For Update" on page 13-13.

OCIObjectLockNoWait()

17-44 Oracle Call Interface Programmer's Guide

OCIObjectLockNoWait()

Purpose
Locks a persistent object at the server but does not wait for the lock. and returns an
error if the lock is unavailable.

Syntax
sword OCIObjectLockNoWait (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object being locked. It must already be pinned.

Comments
This function locks a persistent object at the server. However, unlike
OCIObjectLock(), this function does not wait if another user holds the lock on
the desired object and an error is returned if the object is currently locked by
another user. This function also returns an error for transient objects and values, or
objects that do not exist.

The lock of an object is released at the end of a transaction.

OCIObjectLockNoWait() returns the following values:

■ OCI_INVALID_HANDLE, if the environment handle or error handle is NULL.

■ OCI_SUCCESS, if the operation suceeds.

See Also: For more information about object locking, see
"Locking Objects For Update" on page 13-13.

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-45

■ OCI_ERROR, if the operation fails.

Related Functions
OCIObjectPin(), OCIObjectIsLocked(), OCIObjectGetProperty(),
OCIObjectLock()

OCIObjectNew()

17-46 Oracle Call Interface Programmer's Guide

OCIObjectNew()

Purpose
Creates a standalone instance

Syntax
sword OCIObjectNew (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCITypeCode typecode,
 OCIType *tdo,
 dvoid *table,
 OCIDuration duration,
 boolean value,
 dvoid **instance);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode with Unicode setting. See
the description of OCIEnvCreate() and OCIInitialize() for more
information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN) [optional]
OCI service handle. It must be given if the program wants to associate the duration
of an instance with an OCI service (for example, free a string when the transaction
is committed). This parameter is ignored if the TDO is given.

typecode (IN)
The typecode of the type of the instance.

See Also: "Typecodes" on page 3-33

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-47

tdo (IN) [optional]
Pointer to the type descriptor object. The TDO describes the type of the instance
that is to be created. Refer to OCITypeByName() for obtaining a TDO. The TDO is
required for creating a named type, such as an object or a collection.

table (IN) [optional]
Pointer to a table object which specifies a table in the server. This parameter can be
set to NULL if no table is given. See the following description to find out how the
table object and the TDO are used together to determine the kind of instances
(persistent, transient, value) to be created. Also see OCIObjectPinTable() for
retrieving a table object.

duration (IN)
This is an overloaded parameter. The use of this parameter is based on the kind of
the instance that is to be created.

■ Persistent object. This parameter specifies the pin duration.

■ Transient object. This parameter specifies the allocation duration and pin
duration.

■ Value. This parameter specifies the allocation duration.

value (IN)
Specifies whether the created object is a value. If TRUE, then a value is created.
Otherwise, a referenceable object is created. If the instance is not an object, then this
parameter is ignored.

instance (OUT)
Address of the newly created instance. The instance can be a character string in
Unicode if the environment handle has the appropriate setting and the object is
OCIString. In this case, the instance will have a flag to indicate its Unicode setting.

Comments
This function creates a new instance of the type specified by the typecode or the
TDO. It can create an OCIString object with a Unicode buffer if the typecode
indicates the object to be created is OCIString.

Based on the parameters typecode (or tdo), value and table, different instances
are created:

See Also: "Typecodes" on page 3-33

OCIObjectNew()

17-48 Oracle Call Interface Programmer's Guide

This function allocates the top-level memory chunk of an instance. The attributes in
the top-level memory are initialized which means that an attribute of VARCHAR2 is
initialized to a OCIString of 0 length. If the instance is an object, the object is
marked existed but is atomically NULL.

For Persistent Objects
The object is marked dirty and existed. The allocation duration for the object is
session. The object is pinned and the pin duration is specified by the given
parameter duration. Creating a persistent object does not cause any entries to be
made into a database table until the object is flushed to the server.

For Transient Objects
The object is pinned. The allocation duration and the pin duration are specified by
the given parameter duration.

For Values
The allocation duration is specified by the given parameter duration.

Attribute Values of New Objects
By default, all attributes of a newly created objects have NULL values. After
initializing attribute data, the user must change the corresponding NULL status of
each attribute to non-NULL.

It is possible to have attributes set to non-NULL values when an object is created.
This is accomplished by setting the OCI_ATTR_OBJECT_NEWNOTNULL attribute
of the environment handle to TRUE using OCIAttrSet(). This mode can later be
turned off by setting the attribute to FALSE. If

Table 17–10 Instances Created

Type Created Not NULL NULL

object type (value=TRUE) value value

object type (value=FALSE) persistent object transient object

built-in type value value

collection type value value

See Also: For information about creating new objects based on
object views or user-created OIDs, see "Creating Objects Based on
Object Views or User-Defined OIDs" on page 10-35.

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-49

OCI_ATTR_OBJECT_NEWNOTNULL is set to TRUE, then OCIObjectNew()
creates a non-NULL object.

Objects with LOB Attributes
If the object contains an internal LOB attribute, the LOB is set to empty. The object
must be marked as dirty and flushed (in order to insert the object into the table) and
repinned before the user can start writing data into the LOB. When pinning the
object after creating it, you must use the OCI_PIN_LATEST pin option in order to
retrieve the newly updated LOB locator from the server.

If the object contains an external LOB attribute (FILE), the FILE locator is allocated
but not initialized. The user must call OCILobFileSetName() to initialize the
FILE attribute before flushing the object to the database. It is an error to INSERT or
UPDATE a FILE without first indicating a directory alias and filename. Once the
filename is set, the user can start reading from the FILE.

Related Functions
OCIObjectPinTable(), OCIObjectFree()

See Also: "Attribute Values of New Objects" on page 10-33

Note: Oracle now supports only binary FILEs (BFILEs).

OCIObjectSetAttr()

17-50 Oracle Call Interface Programmer's Guide

OCIObjectSetAttr()

Purpose
Set an object attribute.

Syntax
sword OCIObjectSetAttr (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid *null_struct,
 struct OCIType *tdo,
 CONST OraText **names,
 CONST ub4 *lengths,
 CONST ub4 name_count,
 CONST ub4 *indexes,
 CONST ub4 index_count,
 CONST OCIInd null_status,
 CONST dvoid *attr_null_struct,
 CONST dvoid *attr_value);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object instance.

null_struct (IN)
The NULL structure of the object instance or array.

tdo (IN)
Pointer to the TDO.

OCI Miscellaneous Object Functions

OCI Navigational and Type Functions 17-51

names (IN)
Array of attribute names. This is used to specify the names of the attributes in the
path expression.

lengths (IN)
Array of lengths of attribute names, in bytes.

name_count (IN)
Number of element in the array names.

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (IN)
The NULL status of the attribute if the type of attribute is primitive.

attr_null_struct (IN)
The NULL structure of an object or collection attribute.

attr_value (IN)
Pointer to the attribute value.

Comments
This function sets the attribute of the given object with the given value. The position
of the attribute is specified as a path expression which is an array of names and an
array of indexes.

Example
For the path expression stanford.cs.stu[5].addr, the arrays will look like:

names = {"stanford", "cs", "stu", "addr"}

lengths = {8, 2, 3, 4}

indexes = {5}

Related Functions
OCIObjectGetAttr()

OCI Pin, Unpin, and Free Functions

17-52 Oracle Call Interface Programmer's Guide

OCI Pin, Unpin, and Free Functions

This section describes the OCI pin unpin, and free functions.

Table 17–11 Pin, Unpin, and Free Functions

Function/Page Purpose

OCICacheFree() on page 17-53 Free objects in the cache

OCICacheUnpin() on page 17-54 Unpin persistent objects in cache or connection

OCIObjectArrayPin() on page 17-55 Pin an array of references

OCIObjectFree() on page 17-57 Free a previously allocated object

OCIObjectPin() on page 17-59 Pin an object

OCIObjectPinCountReset() on page 17-62 Unpin an object to zero pin count

OCIObjectPinTable() on page 17-64 Pin a table object with a given duration

OCIObjectUnpin() on page 17-66 Unpin an object

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-53

OCICacheFree()

Purpose
Frees all objects and values in the cache for the specified connection.

Syntax
sword OCICacheFree (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context.

Comments
If a connection is specified, this function frees the persistent objects, transient objects
and values allocated for that connection. Otherwise, all persistent objects, transient
objects and values in the object cache are freed. Objects are freed regardless of their
pin count.

Related Functions
OCIObjectFree()

See Also: See OCIObjectFree() on page 17-57 for more
information about freeing an instance.

OCICacheUnpin()

17-54 Oracle Call Interface Programmer's Guide

OCICacheUnpin()

Purpose
Unpins persistent objects.

Syntax
sword OCICacheUnpin (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle. The objects on the specified connection are
unpinned.

Comments
This function completely unpins all of the persistent objects for the given
connection. The pin count for the objects is reset to zero.

Related Functions
OCIObjectUnpin()

See Also: For more information about pinning and unpinning,
see "Pinning an Object" on page 10-11, and "Pin Count and
Unpinning" on page 10-29.

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-55

OCIObjectArrayPin()

Purpose
Pins an array of references.

Syntax
sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,
 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 dvoid **obj_array,
 ub4 *pos);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref_array (IN)
Array of references to be pinned

array_size (IN)
Number of elements in the array of references

cor_array
An array of COR handles corresponding to the objects being pinned.

cor_array_size
The number of elements in cor_array.

OCIObjectArrayPin()

17-56 Oracle Call Interface Programmer's Guide

pin_option (IN)
Pin option.

pin_duration (IN)
Pin duration. See OCIObjectPin().

lock (IN)
Lock option. See OCIObjectPin().

obj_array (OUT)
If this argument is not NULL, the pinned objects will be returned in the array. The
user must allocate this array with element type being dvoid *. The size of this
array is identical to array_size.

pos (OUT)
If there is an error, this argument indicates the element that is causing the error.
Note that this argument is set to 1 for the first element in the ref_array.

Comments
All the pinned objects are retrieved from the database in one network round trip. If
the user specifies an output array (obj_array), then the address of the pinned
objects will be assigned to the elements in the array.

Related Functions
OCIObjectPin()

See Also: OCIObjectPin() on page 17-59

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-57

OCIObjectFree()

Purpose
Frees and unpins an object instance.

Syntax
sword OCIObjectFree (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 ub2 flags);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to a standalone instance. If it is an object, it must be pinned.

flags (IN)
If OCI_OBJECTFREE_FORCE is passed, free the object even if it is pinned or dirty.
If OCI_OBJECTFREE_NONULL is passed, the NULL structure is not freed.

Comments
This function deallocates all the memory allocated for an object instance, including
the NULL structure. The following rules apply for different instance types:

For Persistent Objects
This function returns an error if the client is attempting to free a dirty persistent
object that has not been flushed. The client should either flush the persistent object,
unmark it, or set the parameter flags to OCI_OBJECTFREE_FORCE.

This function calls OCIObjectUnpin() once to check if the object can be
completely unpin. If it succeeds, the rest of the function proceeds to free the object.

OCIObjectFree()

17-58 Oracle Call Interface Programmer's Guide

If it fails, then an error is returned unless the parameter flags is set to
OCI_OBJECTFREE_FORCE.

Freeing a persistent object in memory does not change the persistent state of that
object at the server. For example, the object remains locked after the object is freed.

For Transient Objects
This function will call OCIObjectUnpin() once to check if the object can be
completely unpin. If it succeeds, the rest of the function will proceed to free the
object. If it fails, then an error is returned unless the parameter flags is set to
OCI_OBJECTFREE_FORCE.

For Values
The memory of the object is freed immediately.

Related Functions
OCICacheFree()

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-59

OCIObjectPin()

Purpose
Pin a referenceable object.

Syntax
sword OCIObjectPin (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock_option,
 dvoid **object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
The reference to the object.

corhdl (IN)
Handle for complex object retrieval.

pin_option (IN)
Used to specify the copy of the object that is to be retrieved.

pin_duration (IN)
The duration of which the object is being accessed by a client. The object is
implicitly unpinned at the end of the pin duration. If OCI_DURATION_NULL is
passed, there is no pin promotion if the object is already loaded into the cache. If the
object is not yet loaded, then the pin duration is set to OCI_DURATION_DEFAULT
in the case of OCI_DURATION_NULL.

OCIObjectPin()

17-60 Oracle Call Interface Programmer's Guide

lock_option (IN)
Lock option (for example, exclusive). If a lock option is specified, the object is
locked in the server. Note, the lock status of an object can also be retrieved by
calling OCIObjectIsLocked(). Valid values include:

■ OCI_LOCK_NONE - for no lock

■ OCI_LOCK_X - for an exclusive lock

■ OCI_LOCK_X_NOWAIT - for an exclusive lock with the NOWAIT option.

object (OUT)
The pointer to the pinned object.

Comments
This function pins a referenceable object instance given the object reference. The
process of pinning serves two purposes:

■ locate an object given its reference. This is done by the object cache which keeps
track of the objects in the object cache.

■ notify the object cache that a persistent object is being in use such that the
persistent object cannot be aged out. Since a persistent object can be loaded
from the server whenever is needed, the memory utilization can be increased if
a completely unpinned persistent object can be freed (aged out), even before the
allocation duration is expired. An object can be pinned many times. A pinned
object will remain in memory until it is completely unpinned.

For Persistent Objects
When pinning a persistent object, if it is not in the cache, the object will be fetched
from the persistent store. The allocation duration of the object is session. If the
object is already in the cache, it is returned to the client. The object will be locked in
the server if a lock option is specified.

This function will return an error for a non-existent object.

A pin option is used to specify the copy of the object that is to be retrieved:

■ If pin_option is OCI_PIN_ANY (pin any), then if the object is already in the
object cache, return this object. Otherwise, the object is retrieved from the

See Also: For information about the NOWAIT option, see "Locking
with the NOWAIT Option" on page 13-14.

See Also: See OCIObjectUnpin() on page 17-66.

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-61

database. In this case, it is the same as OCI_PIN_LATEST. This option is useful
when the client knows that he has the exclusive access to the data in a session.

■ If pin_option is OCI_PIN_LATEST (pin latest), if the object is not locked, it is
retrieved from the database. If the object is cached, it is refreshed with the latest
version. See OCIObjectRefresh() for more information about refreshing. If
the object is already pinned in the cache and marked dirty, then a pointer to that
object is returned. The object will not be refreshed from the database.

■ If pin_option is OCI_PIN_RECENT (pin recent), if the object is loaded into
the cache in the current transaction, the object is returned. If the object is not
loaded in the current transaction, the object is refreshed from the server.

For Transient Objects
This function will return an error if the transient object has already been freed. This
function does not return an error if an exclusive lock is specified in the lock option.

Related Functions
OCIObjectUnpin(), OCIObjectPinCountReset()

OCIObjectPinCountReset()

17-62 Oracle Call Interface Programmer's Guide

OCIObjectPinCountReset()

Purpose
Completely unpins an object, setting its pin count to zero.

Syntax
sword OCIObjectPinCountReset (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments
This function completely unpins an object, setting its pin count to zero. When an
object is completely unpinned, it can be freed implicitly by the OCI at any time
without error. The following rules apply for specific object types:

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging.
The memory of an object is freed when it is aged out. Aging is used to maximize the
utilization of memory. An dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient can be freed only at the end
of its allocation duration or when it is explicitly freed by calling
OCIObjectFree().

For Values
This function will return an error for value.

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-63

Related Functions
OCIObjectPin(), OCIObjectUnpin()

See Also: "Pin Count and Unpinning" on page 10-29

OCIObjectPinTable()

17-64 Oracle Call Interface Programmer's Guide

OCIObjectPinTable()

Purpose
Pins a table object for a specified duration.

Syntax
sword OCIObjectPinTable (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST OraText *schema_name,
 ub4 s_n_length,
 CONST OraText *object_name,
 ub4 o_n_length,
 dvoid *not_used,
 OCIDuration pin_duration,
 dvoid **object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
The OCI service context handle.

schema_name (IN) [optional]
The schema name of the table.

s_n_length (IN) [optional]
The length of the schema name indicated in schema_name, in bytes.

object_name (IN)
The name of the table.

o_n_length (IN)
The length of the table name specified in object_name, in bytes.

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-65

not_used (IN/OUT)
This parameter is not currently used. Pass as NULL.

pin_duration (IN)
The pin duration.

object (OUT)
The pinned table object.

Comments
This function pins a table object with the specified pin duration. The client can
unpin the object by calling OCIObjectUnpin().

The table object pinned by this call can be passed as a parameter to
OCIObjectNew() to create a standalone persistent object.

Related Functions
OCIObjectPin(), OCIObjectUnpin()

See Also: See description in OCIObjectPin() on page 17-59.

Note: The TDO (array of TDOs or table definition) obtained by
this function will belong to the logical partition of the cache
corresponding to the service handle (connection) passed in. If
TDOs or tables are used across logical partitions, then the behavior
is not known and may change between releases.

OCIObjectUnpin()

17-66 Oracle Call Interface Programmer's Guide

OCIObjectUnpin()

Purpose
Unpins an object.

Syntax
sword OCIObjectUnpin (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments
There is a pin count associated with each object which is incremented whenever an
object is pinned. When the pin count of the object is zero, the object is said to be
completely unpinned. An unpinned object can be freed implicitly by the OCI at any
time without error.

This function unpins an object. An object is completely unpinned when any of the
following is true:

1. The object's pin count reaches zero (that is, it is unpinned a total of N times after
being pinned a total of N times).

2. It is the end of the object's pin duration.

3. The function OCIObjectPinCountReset() is called on the object.

When an object is completely unpinned, it can be freed implicitly by the OCI at any
time without error.

OCI Pin, Unpin, and Free Functions

OCI Navigational and Type Functions 17-67

The following rules apply for unpinning different types of objects:

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging.
The memory of an object is freed when it is aged out. Aging is used to maximize the
utilization of memory. An dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient can be freed only at the end
of its allocation duration or when it is explicitly deleted by calling
OCIObjectFree().

For Values
This function returns an error for values.

Related Functions
OCIObjectPin(), OCIObjectPinCountReset()

OCI Type Information Accessor Functions

17-68 Oracle Call Interface Programmer's Guide

OCI Type Information Accessor Functions

This section describes the OCI type information accessor functions.

Table 17–12 Type Information Accessor Functions

Function/Page Purpose

OCITypeArrayByName() on page 17-69 Get an array of TDOs given an array of object names

OCITypeArrayByRef() on page 17-72 Get an array of TDOs given an array of object references

OCITypeByName() on page 17-74 Get a TDO given an object name

OCITypeByRef() on page 17-77 Get a TDO given an object reference

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 17-69

OCITypeArrayByName()

Purpose
Get an array of types given an array of names.

Syntax
sword OCITypeArrayByName (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCISvcCtx *svc,
 ub4 array_len,
 CONST text *schema_name[],
 ub4 s_length[],
 CONST text *type_name[],
 ub4 t_length[],
 CONST text *version_name[],
 ub4 v_length[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters

envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

array_len (IN)
Number of schema_name/type_name/version_name entries to be retrieved.

schema_name (IN, optional)
Array of schema names associated with the types to be retrieved. The array must
have array_len elements if specified. If 0 is supplied, the default schema is
assumed, otherwise it must have array_len number of elements. 0 can be

OCITypeArrayByName()

17-70 Oracle Call Interface Programmer's Guide

supplied for one or more of the entries to indicate that the default schema is desired
for those entries.

s_length (IN)
Array of schema_name lengths with each entry corresponding to the length of the
corresponding schema_name entry in the schema_name array in bytes. The array
must either have array_len number of elements or it must be 0 if schema_name
is not specified.

type_name (IN)
Array of the names of the types to retrieve. This must have array_len number of
elements.

t_length (IN)
Array of the lengths of type names in the type_name array in bytes.

version_name (IN)
The version name is ignored and the latest version of the requested type is returned.
Because type evolution is available starting in release 9.0, pre-9.0 applications
attempting to access an altered type will generate an error. These applications must
be modified, re-compiled, and re-linked using the new type definition.

Array of the version names of the types to retrieve corresponding. This can be 0 to
indicate retrieval of the most current versions, or it must have array_len number
of elements.

If 0 is supplied, the most current version is assumed, otherwise it must have
array_len number of elements. 0 can be supplied for one or more of the entries to
indicate that the current version is desired for those entries.

v_length (IN)
Array of the lengths of version names in the version_name array in bytes.

pin_duration (IN)
Pin duration (for example, until the end of current transaction) for the types
retrieved. See oro.h for a description of each option.

get_option (IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded, or

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 17-71

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have
space for array_len pointers. Use OCIObjectGetObjectRef() to obtain the
CREF to each pinned type descriptor.

Comments
Gets pointers to the existing types associated with the schema/type name array.

The get_option parameter can be used to control the portion of the TDO that gets
loaded for each round trip.

This function returns an error if any of the required parameters is NULL or any
object types associated with a schema/type name entry do not exist.

To retrieve a single type, rather than an array, use OCITypeByName().

Related Functions
OCITypeArrayByRef(), OCITypeByName(), OCITypeByRef()

Note: The TDO (array of TDOs or table definition) obtained by
this function will belong to the logical partition of the cache
corresponding to the service handle (connection) passed in. If
TDOs or tables are used across logical partitions, then the behavior
is not known and may change between releases.

OCITypeArrayByRef()

17-72 Oracle Call Interface Programmer's Guide

OCITypeArrayByRef()

Purpose
Get an array of types given an array of references.

Syntax
sword OCITypeArrayByRef (OCIEnv *envhp,
 OCIError *errhp,
 ub4 array_len,
 CONST OCIRef *type_ref[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters

envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

array_len (IN)
Number of schema_name/type_name/version_name entries to be retrieved.

type_ref (IN)
Array of OCIRef * pointing to the particular version of the type descriptor object
to obtain. The array must have array_len elements if specified.

pin_duration (IN)
Pin duration (for example,until the end of current transaction) for the types
retrieved. See oro.h for a description of each option.

get_option (IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 17-73

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have
space for array_len pointers. Use OCIObjectGetObjectRef() to obtain the
CREF to each pinned type descriptor.

Comments
Gets pointers to the with the schema/type name array.

This function returns an error if:

■ any of the required parameters is NULL.

■ one or more object types associated with a schema/type name entry does not
exist.

To retrieve a single type, rather than an array of types, use OCITypeByRef().

Related Functions
OCITypeArrayByName(), OCITypeByRef(), OCITypeByName()

Note: The TDO (array of TDOs or table definition) obtained by
this function will belong to the logical partition of the cache
corresponding to the service handle (connection) passed in. If
TDOs or tables are used across logical partitions, then the behavior
is not known and may change between releases.

OCITypeByName()

17-74 Oracle Call Interface Programmer's Guide

OCITypeByName()

Purpose
Get the most current version of an existing type by name.

Syntax
sword OCITypeByName (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST text *schema_name,
 ub4 s_length,
 CONST text *type_name,
 ub4 t_length,
 CONST text *version_name,
 ub4 v_length,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option
 OCIType **tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

schema_name (IN, optional)
Name of schema associated with the type. By default, the user's schema name is
used. This string must be all in upper-case, or else OCI throws an internal error and
the program stops.

s_length (IN)
Length of the schema_name parameter, in bytes.

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 17-75

type_name (IN)
Name of the type to get. This string must be all in upper-case, or else OCI throws an
internal error and the program stops.

t_length (IN)
Length of the type_name parameter, in bytes.

version_name (IN)
The version name is ignored and the latest version of the requested type is returned.
Because type evolution is available starting in release 9.0, pre-9.0 applications
attempting to access an altered type will generate an error. These applications must
be modified, re-compiled, and re-linked using the new type definition.

User-readable version of the type. Pass as (text *)0 to retrieve the most current
version.

v_length (IN)
Length of version_name in bytes.

pin_duration (IN)
Pin duration.

get_option ((IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER for only the header to be loaded, or

■ OCI_TYPEGET_ALL for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Pointer to the pinned type in the object cache.

Comments
This function gets a pointer to the existing type associated with schema/type name.
It returns an error if any of the required parameters is NULL, or if the object type
associated with schema/type name does not exist, or if version_name does not
exist.

See Also: "Object Duration" on page 13-15

OCITypeByName()

17-76 Oracle Call Interface Programmer's Guide

This function always makes a round trip to the server and hence calling this
function repeatedly to get the type can significantly drag down performance. To
minimize the round trips, the application may call the function for each type and
cache the type objects.

To free the type obtained by this function, OCIObjectUnpin() or
OCIObjectPinCountReset() may be called.

An application can retrieve an array of TDOs by calling OCITypeArrayByName(),
or OCITypeArrayByRef().

Related Functions
OCITypeByRef(), OCITypeArrayByName(), OCITypeArrayByRef()

Note: Schema and type names are case-sensitive. If they have
been created with SQL, you need to use strings all in upper-case, or
the program will stop.

Note: The TDO (array of TDOs or table definition) obtained by
this function will belong to the logical partition of the cache
corresponding to the service handle (connection) passed in. If
TDOs or tables are used across logical partitions, then the behavior
is not known and may change between releases.

OCI Type Information Accessor Functions

OCI Navigational and Type Functions 17-77

OCITypeByRef()

Purpose
Get a type given a reference.

Syntax
sword OCITypeByRef (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *type_ref,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType **tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIEnvCreate() and OCIInitialize() for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type_ref (IN)
An OCIRef * pointing to the version of the type descriptor object to obtain.

pin_duration (IN)
Pin duration until the end of current transaction for the type to retrieve. See oro.h
for a description of each option.

get_option (IN)
Options for loading the type. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded, or

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Pointer to the pinned type in the object cache.

OCITypeByRef()

17-78 Oracle Call Interface Programmer's Guide

Comments
OCITypeByRef() returns an error if any of the required parameters is NULL.

Related Functions
OCITypeByName(), OCITypeArrayByName(), OCITypeArrayByRef()

Note: The TDO (array of TDOs or table definition) obtained by
this function will belong to the logical partition of the cache
corresponding to the service handle (connection) passed in. If
TDOs or tables are used across logical partitions, then the behavior
is not known and may change between releases.

OCI Datatype Mapping and Manipulation Functions 18-1

18
OCI Datatype Mapping and Manipulation

Functions

This chapter describes the OCI datatype mapping and manipulation functions,
which is Oracle's external C Language interface to Oracle predefined types.

This chapter contains these topics:

■ Introduction to Datatype Mapping and Manipulation Functions

■ OCI Collection and Iterator Functions

■ OCI Date, Datetime, and Interval Functions

■ OCI NUMBER Functions

■ OCI Raw Functions

■ OCI Ref Functions

■ OCI String Functions

■ OCI Table Functions

See Also: For code examples, see the demonstration programs
included with your Oracle installation. For additional information,
refer to Appendix B, "OCI Demonstration Programs".

Introduction to Datatype Mapping and Manipulation Functions

18-2 Oracle Call Interface Programmer's Guide

Introduction to Datatype Mapping and Manipulation Functions

This chapter describes the OCI datatype mapping and manipulation functions in
detail.

The Function Syntax
The entries for each function contain the following information:

Purpose
A brief statement of the purpose of the function.

Syntax
The function declaration.

Comments
Detailed information about the function if available. This may include restrictions
on the use of the function, or other information that might be useful when using the
function in an application.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described next:

See Also: For more information about the functions listed in this
chapter, refer to Chapter 11, "Object-Relational Datatypes in OCI"

Table 18–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction to Datatype Mapping and Manipulation Functions

OCI Datatype Mapping and Manipulation Functions 18-3

Returns
A description of what value is returned by the function if the function returns
something other than the standard return codes listed in Table 18–2, "Function
Return Values" on page 18-3.

Related Functions
A list of related functions.

Datatype Mapping and Manipulation Function Return Values
The OCI datatype mapping and manipulation functions typically return one of the
following values:

Function-specific return information follows the description of each function in this
chapter.

Functions Returning Other Values
Some functions return values other than those listed in Table 18–2. When using
these function be sure to take into account that they return a value directly from the
function call, rather than through an OUT parameter.

■ OCICollMax()

■ OCIRawPtr()

■ OCIRawSize()

■ OCIRefHexSize()

Table 18–2 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be
retrieved by calling OCIErrorGet() on the
error handle passed to the function.

OCI_INVALID_HANDLE The OCI handle passed to the function is
invalid.

See Also: For more information about return codes and error
handling, see the section "Error Handling in OCI" on page 2-26

Introduction to Datatype Mapping and Manipulation Functions

18-4 Oracle Call Interface Programmer's Guide

■ OCIRefIsEqual()

■ OCIRefIsNull()

■ OCIStringPtr()

■ OCIStringSize()

Server Round Trips for Datatype Mapping and Manipulation Functions
For a table showing the number of server round trips required for individual
OCI datatype mapping and manipulation functions, refer to Appendix C, "OCI
Function Server Round Trips".

Examples
For more information about these functions, including some code examples,
refer to Chapter 11, "Object-Relational Datatypes in OCI".

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-5

OCI Collection and Iterator Functions

This section describes the Collection and Iterator functions.

Table 18–3 Collection and Iterator Functions

Function/Page Purpose

OCICollAppend() on page 18-6 Collection appends element

OCICollAssign() on page 18-8 Assigns collection

OCICollAssignElem() on page 18-10 Collection assigns element

OCICollGetElem() on page 18-12 Gets pointer to an element

OCICollGetElemArray() on page 18-15 Gets an array of elements from a collection.

OCICollIsLocator() on page 18-17 Indicates whether a collection is locator-based or not

OCICollMax() on page 18-18 Returns maximum number of elements in collection

OCICollSize() on page 18-19 Gets current size of collection (in number of elements)

OCICollTrim() on page 18-21 Trims elements from the collection

OCIIterCreate() on page 18-22 Creates iterator to scan the varray elements

OCIIterDelete() on page 18-24 Deletes iterator

OCIIterGetCurrent() on page 18-25 Gets current collection element

OCIIterInit() on page 18-27 Initializes iterator to scan the given collection

OCIIterNext() on page 18-29 Gets next collection element

OCIIterPrev() on page 18-31 Gets previous collection element

OCICollAppend()

18-6 Oracle Call Interface Programmer's Guide

OCICollAppend()

Purpose
Appends an element to the end of a collection.

Syntax
sword OCICollAppend (OCIEnv *env,
 OCIError *err,
 CONST dvoid *elem,
 CONST dvoid *elemind,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

elem (IN)
Pointer to the element which is appended to the end of the given collection.

elemind (IN) [optional]
Pointer to the element's NULL indicator information. If (elemind == NULL) then
the NULL indicator information of the appended element will be set to non-NULL.

coll (IN/OUT)
Updated collection.

Comments
Appending an element is equivalent to increasing the size of the collection by 1
element and updating (deep-copying) the last element's data with the given
element's data. Note that the pointer to the given element elem is not saved by this
function, which means that elem is strictly an input parameter.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-7

This function returns an error if the current size of the collection is equal to the max
size (upper-bound) of the collection prior to appending the element. This function
also returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet()

OCICollAssign()

18-8 Oracle Call Interface Programmer's Guide

OCICollAssign()

Purpose
Assigns (deep-copies) one collection to another.

Syntax
sword OCICollAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *rhs,
 OCIColl *lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) collection to be assigned from.

lhs (OUT)
Left-hand side (target) collection to be assigned to.

Comments
Assigns rhs (source) to lhs (target). The lhs collection may be decreased or
increased depending upon the size of rhs. If the lhs contains any elements then
the elements will be deleted prior to the assignment. This function performs a deep
copy. The memory for the elements comes from the object cache.

An error is returned if the element types of the lhs and rhs collections do not
match. Also, an error is returned if the upper-bound of the lhs collection is less
than the current number of elements in the rhs collection. An error is also returned
if:

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-9

■ any of the input parameters is NULL

■ there is a type mismatch between the lhs and rhs collections

■ the upper bound of lhs collection is less than the current number of elements
in the rhs collection

Related Functions
OCIErrorGet(), OCICollAssignElem()

OCICollAssignElem()

18-10 Oracle Call Interface Programmer's Guide

OCICollAssignElem()

Purpose
Assigns the given element value elem to the element at coll[index].

Syntax
sword OCICollAssignElem (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST dvoid *elem,
 CONST dvoid *elemind,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element whose is assigned to.

elem (IN)
Element which is assigned from (source element).

elemind (IN) [optional]
Pointer to the element's NULL indicator information; if (elemind == NULL) then the
NULL indicator information of the assigned element will be set to non-NULL.

coll (IN/OUT)
Collection to be updated.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-11

Comments
If the collection is of type nested table, the element at the given index may not exist,
as in the case when an element has been deleted. In this case, the given element is
inserted at index. Otherwise, the element at index is updated with the value of
elem.

Note that the given element is deep-copied and elem is strictly an input parameter.

This function returns an error if any input parameter is NULL or if the given index is
beyond the bounds of the given collection.

Related Functions
OCIErrorGet(), OCICollAssign()

OCICollGetElem()

18-12 Oracle Call Interface Programmer's Guide

OCICollGetElem()

Purpose
Gets a pointer to the element at the given index.

Syntax
sword OCICollGetElem (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 sb4 index,
 boolean *exists,
 dvoid **elem,
 dvoid **elemind);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Pointer to the element in this collection is returned.

index (IN)
Index of the element whose pointer is returned.

exists (OUT)
Set to FALSE if the element at the specified index does not exist; otherwise, set to
TRUE.

elem (OUT)
Address of the desired element is returned.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-13

elemind (OUT) [optional]
Address of the NULL indicator information is returned. If (elemind == NULL), then
the NULL indicator information will not be returned.

Comments
Gets the address of the element at the given position. Optionally this function also
returns the address of the element's NULL indicator information.

The following table describes for each collection element type what the
corresponding element pointer type is. The element pointer is returned with the
elem parameter of OCICollGetElem().

The element pointer returned by OCICollGetElem() is in a form such that it
cannot only be used to access the element data but also is in a form that can be used
as the target (left-hand-side) of an assignment statement.

For example, assume the user is iterating over the elements of a collection whose
element type is object reference (OCIRef*). A call to OCICollGetElem() returns
pointer to a reference handle (OCIRef**). After getting, the pointer to the collection
element, the user may wish to modify it by assigning a new reference.

This can be accomplished by means of the ref assignment function as follows:

sword OCIRefAssign(OCIEnv *env,
 OCIError *err,
 CONST OCIRef *source,

Table 18–4 Element Pointers

Element Type *elem is set to

Oracle NUMBER (OCINumber) OCINumber*

Date (OCIDate) OCIDate*

Datetime (OCIDateTime) OCIDateTime*

Interval (OCIInterval) OCIInterval*

Variable-length string (OCIString*) OCIString**

Variable-length raw (OCIRaw*) OCIRaw**

object reference (OCIRef*) OCIRef**

lob locator (OCILobLocator*) OCILobLocator**

object type (such as person) person*

OCICollGetElem()

18-14 Oracle Call Interface Programmer's Guide

 OCIRef **target);

Note that the target parameter of OCIRefAssign() is of type OCIRef**. Hence
OCICollGetElem() returns OCIRef**. If *target equals NULL, a new REF will
be allocated by OCIRefAssign() and returned in the target parameter.

Similarly, if the collection element was of type string (OCIString*),
OCICollGetElem() returns pointer to string handle (that is, OCIString**). If a
new string is assigned, through OCIStringAssign() or
OCIStringAssignText(), the type of the target must be OCIString **.

If the collection element is of type Oracle NUMBER, OCICollGetElem() returns
OCINumber*. The prototype of OCINumberAssign() is:

sword OCINumberAssign(OCIError *err,
 CONST OCINumber *from,
 OCINumber *to);

This function returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet(), OCICollAssignElem()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-15

OCICollGetElemArray()

Purpose
Gets an array of elements from a collection given a starting index.

Syntax
sword OCICollGetElemArray (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 sb4 index,
 boolean *exists,
 dvoid **elem,
 dvoid **elemind,
 uword *nelems);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Pointers to the elements in this collection to be returned.

index (IN)
Starting index of the elements.

exists (OUT)
Is set to FALSE if the element at the specified index does not exist, else it is set to
TRUE.

elem (OUT)
Address of the desired elements to be returned.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCICollGetElemArray()

18-16 Oracle Call Interface Programmer's Guide

elemind (OUT)
[optional] Address of the NULL indicators information to be returned. If (elemind
== NULL) then the NULL indicator information will not be returned.

nelems (IN)
Maximum number of pointers to both elem and elemind.

Comments
Gets the address of the elements from the given position. Optionally, this function
also returns the address of the element's NULL indicator information.

Related Functions
OCIErrorGet(), OCICollGetElem()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-17

OCICollIsLocator()

Purpose
Indicates whether a collection is locator-based or not.

Syntax
sword OCICollIsLocator (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 boolean *result);

Parameters

env (IN)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
A collection item.

result (OUT)
Returns TRUE if the collection item is locator-based, FALSE otherwise.

Comments
This function tests to see whether or not a collection is locator-based. Returns TRUE
in the result parameter if the collection item is locator-based, otherwise it returns
FALSE.

Related Functions
OCIErrorGet()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCICollMax()

18-18 Oracle Call Interface Programmer's Guide

OCICollMax()

Purpose
Gets the maximum size in number of elements of the given collection.

Syntax
sb4 OCICollMax (OCIEnv *env,
 CONST OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

coll (IN)
Collection whose number of elements is returned. coll must point to a valid
collection descriptor.

Comments
Returns the maximum number of elements that the given collection can hold. A
value of zero indicates that the collection has no upper bound.

Returns
The upper bound of the given collection.

Related Functions
OCIErrorGet(), OCICollSize()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-19

OCICollSize()

Purpose
Gets the current size in number of elements of the given collection.

Syntax
sword OCICollSize (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll
 sb4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection whose number of elements is returned. Must point to a valid collection
descriptor.

size (OUT)
Current number of elements in the collection.

Comments
Returns the current number of elements in the given collection. For the case of
nested table, this count will not be decremented upon deleting elements. So, this
count includes any holes created by deleting elements. A trim operation
(OCICollTrim()) will decrement the count by the number of trimmed elements.
To get the count minus the deleted elements use OCITableSize().

The following pseudocode shows some examples:

OCICollSize(...);

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCICollSize()

18-20 Oracle Call Interface Programmer's Guide

// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
OCICollSize(...);
// 'size' returned is still 5

To get the count minus the deleted elements use OCITableSize(). Continuing the
earlier example:

OCITableSize(...)
// 'size' returned is equal to 4

A trim operation (OCICollTrim()) decrements the count by the number of
trimmed elements. Continuing the earlier example:

OCICollTrim(..,1..); // trim one element
OCICollSize(...);
// 'size' returned is equal to 4

This function returns an error if an error occurs during the loading of the collection
into object cache or if any of the input parameters is NULL.

Related Functions
OCIErrorGet(), OCICollMax()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-21

OCICollTrim()

Purpose
Trims the given number of elements from the end of the collection.

Syntax
sword OCICollTrim (OCIEnv *env,
 OCIError *err,
 sb4 trim_num,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

trim_num (IN)
Number of elements to trim.

coll (IN/OUT)
This function removes (frees) trim_num elements from the end of coll.

Comments
The elements are removed from the end of the collection. An error is returned if
trim_num is greater than the current size of the collection.

Related Functions
OCIErrorGet(), OCICollSize()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18.

OCIIterCreate()

18-22 Oracle Call Interface Programmer's Guide

OCIIterCreate()

Purpose
Creates an iterator to scan the elements or the collection.

Syntax
sword OCIIterCreate (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 OCIIter **itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection which will be scanned. For this release, valid collection types include
varrays and nested tables.

itr (OUT)
Address to the allocated collection iterator is returned by this function.

Comments
The iterator is created in the object cache. The iterator is initialized to point to the
beginning of the collection.

If OCIIterNext() is called immediately after creating the iterator then the first
element of the collection is returned. If OCIIterPrev() is called immediately after
creating the iterator then a "at beginning of collection" error is returned.

This function returns an error if any of the input parameters is NULL.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-23

Related Functions
OCIErrorGet(), OCIIterDelete()

OCIIterDelete()

18-24 Oracle Call Interface Programmer's Guide

OCIIterDelete()

Purpose
Deletes a collection iterator.

Syntax
sword OCIIterDelete (OCIEnv *env,
 OCIError *err,
 OCIIter **itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
The allocated collection iterator which is destroyed and set to NULL prior to
returning.

Comments
Deletes an iterator which was previously created by a call to OCIIterCreate().

This function returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet(), OCIIterCreate()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-25

OCIIterGetCurrent()

Purpose
Gets a pointer to the current iterator collection element.

Syntax
sword OCIIterGetCurrent (OCIEnv *env,
 OCIError *err,
 CONST OCIIter *itr,
 dvoid **elem,
 dvoid **elemind);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN)
Iterator which points to the current element.

elem (OUT)
Address of the element pointed by the iterator is returned.

elemind (OUT) [optional]
Address of the element's NULL indicator information is returned; if (elem_ind ==
NULL) then the NULL indicator information will not be returned.

Comments
Returns pointer to the current iterator collection element and its corresponding
NULL information. This function returns an error if any input parameter is NULL.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIIterGetCurrent()

18-26 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(), OCIIterNext(), OCIIterPrev()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-27

OCIIterInit()

Purpose
Initializes an iterator to scan a collection.

Syntax
sword OCIIterInit (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 OCIIter *itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection which will be scanned. For Oracle8i or later, valid collection types
include varrays and nested tables.

itr (IN/OUT)
Pointer to an allocated collection iterator.

Comments
Initializes given iterator to point to the beginning of given collection. Returns an
error if any input parameter is NULL. This function can be used to:

■ reset an iterator to point back to the beginning of the collection, or

■ reuse an allocated iterator to scan a different collection.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIIterInit()

18-28 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-29

OCIIterNext()

Purpose
Gets a pointer to the next iterator collection element.

Syntax
sword OCIIterNext (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 dvoid **elem,
 dvoid **elemind,
 boolean *eoc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
Iterator is updated to point to the next element.

elem (OUT)
After updating the iterator to point to the next element, address of the element is
returned.

elemind (OUT) [optional]
Address of the element's NULL indicator information is returned; if (elem_ind ==
NULL) then the NULL indicator information will not be returned.

eoc (OUT)
TRUE if iterator is at End of Collection (that is, next element does not exist);
otherwise, FALSE.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIIterNext()

18-30 Oracle Call Interface Programmer's Guide

Comments
This function returns a pointer to the next iterator collection element and its
corresponding NULL information. It also updates the iterator to point to the next
element.

If the iterator is pointing to the last element of the collection prior to executing this
function, then calling this function will set the eoc flag to TRUE. The iterator will be
left unchanged in that case.

This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCIIterGetCurrent(), OCIIterPrev()

OCI Collection and Iterator Functions

OCI Datatype Mapping and Manipulation Functions 18-31

OCIIterPrev()

Purpose
Gets a pointer to the previous iterator collection element.

Syntax
sword OCIIterPrev (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 dvoid **elem,
 dvoid **elemind,
 boolean *boc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
Iterator which is updated to point to the previous element.

elem (OUT)
Address of the previous element; returned after the iterator is updated to point to it.

elemind (OUT) [optional]
Address of the element's NULL indicator; if (elemind == NULL) then the NULL
indicator will not be returned.

boc (OUT)
TRUE if iterator is at beginning of collection (that is, previous element does not
exist); otherwise, FALSE.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIIterPrev()

18-32 Oracle Call Interface Programmer's Guide

Comments
This function returns a pointer to the previous iterator collection element and its
corresponding NULL information. The iterator is updated to point to the previous
element.

If the iterator is pointing to the first element of the collection prior to executing this
function, then calling this function will set boc to TRUE. The iterator is left
unchanged in that case.

This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCIIterGetCurrent(), OCIIterNext()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-33

OCI Date, Datetime, and Interval Functions

This section describes the OCI Date and Interval functions.
90

Table 18–5 Date Functions

Function/Page Purpose

OCIDateAddDays() on page 18-36 Adds or subtracts days

OCIDateAddMonths() on page 18-37 Adds or subtracts months

OCIDateAssign() on page 18-38 Assigns date

OCIDateCheck() on page 18-39 Checks if the given date is valid

OCIDateCompare() on page 18-41 Compares dates

OCIDateDaysBetween() on page 18-42 Gets number of days between two dates

OCIDateFromText() on page 18-43 Converts string to date

OCIDateGetDate() on page 18-45 Gets the date portion of a date

OCIDateGetTime() on page 18-46 Gets the time portion of a date

OCIDateLastDay() on page 18-47 Gets date of last day of month

OCIDateNextDay() on page 18-48 Gets date of next day

OCIDateSetDate() on page 18-50 Sets the date portion of a date

OCIDateSetTime() on page 18-51 Sets the time portion of a date

OCIDateSysDate() on page 18-52 Gets current system date and time

OCIDateToText() on page 18-53 Converts date to string

OCIDateTimeAssign() on page 18-55 Performs datetime assignment

OCIDateTimeCheck() on page 18-57 Checks if the given date is valid

OCIDateTimeCompare() on page 18-59 Compares two datetime values

OCIDateTimeConstruct() on page 18-61 Constructs a datetime descriptor

OCIDateTimeConvert() on page 18-63 Converts one datetime type to another

OCIDateTimeFromArray() on page 18-65 Converts an array of size OCI_DT_ARRAYLEN to an
OCIDateTime descriptor

OCI Date, Datetime, and Interval Functions

18-34 Oracle Call Interface Programmer's Guide

OCIDateTimeFromText() on page 18-67 Converts the given string to Oracle datetime type in
the OCIDateTime descriptor, according to the
specified format

OCIDateTimeGetDate() on page 18-69 Gets the date (year, month, day) portion of a datetime
value

OCIDateTimeGetTime() on page 18-71 Gets the time (hour, min, second, fractional second) out
of a datetime value

OCIDateTimeGetTimeZoneName() on page 18-73 Gets the time zone name portion of a datetime value

OCIDateTimeGetTimeZoneOffset() on
page 18-75

Gets the time zone (hour, minute) portion of a datetime
value

OCIDateTimeIntervalAdd() on page 18-77 Adds an interval to a datetime to produce a resulting
datetime

OCIDateTimeIntervalSub() on page 18-79 Subtracts an interval from a datetime and stores the
result in a datetime

OCIDateTimeSubtract() on page 18-81 Takes two datetimes as input and stores their
difference in an interval

OCIDateTimeSysTimeStamp() on page 18-82 Gets the system current date and time as a timestamp
with time zone

OCIDateTimeToArray() on page 18-83 Converts a OCIDateTime descriptor to an array

OCIDateTimeToText() on page 18-85 Converts the given date to a string according to the
specified format

OCIDateZoneToZone() on page 18-87 Converts date from one time zone to another zone

OCIIntervalAdd() on page 18-89 Adds two intervals to produce a resulting interval

OCIIntervalAssign() on page 18-91 Copies one interval to another

OCIIntervalCheck() on page 18-92 Checks the validity of an interval

OCIIntervalCompare() on page 18-94 Compares two intervals

OCIIntervalDivide() on page 18-96 Divides an interval by an Oracle NUMBER to produce
an interval

OCIIntervalFromNumber() on page 18-97 Converts an Oracle NUMBER to an interval

OCIIntervalFromText() on page 18-98 Given an interval string, returns the interval
represented by the string

OCIIntervalFromTZ() on page 18-100 Returns an OCI_DTYPE_INTERVAL_DS.

Table 18–5 Date Functions (Cont.)

Function/Page Purpose

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-35

OCIIntervalGetDaySecond() on page 18-102 Gets values of day, hour, minute, and second from an
interval

OCIIntervalGetYearMonth() on page 18-104 Gets year and month from an interval

OCIIntervalMultiply() on page 18-105 Multiplies an interval by an Oracle NUMBER to
produce an interval

OCIIntervalSetDaySecond() on page 18-107 Sets day, hour, minute, and second in an interval

OCIIntervalSetYearMonth() on page 18-109 Sets year and month in an interval

OCIIntervalSubtract() on page 18-111 Subtracts two intervals and stores the result in an
interval

OCIIntervalToNumber() on page 18-113 Converts an interval to an Oracle NUMBER

OCIIntervalToText() on page 18-114 Given an interval, produces a string representing the
interval

Table 18–5 Date Functions (Cont.)

Function/Page Purpose

OCIDateAddDays()

18-36 Oracle Call Interface Programmer's Guide

OCIDateAddDays()

Purpose
Adds or subtracts days from a given date.

Syntax
sword OCIDateAddDays (OCIError *err,
 CONST OCIDate *date,
 sb4 num_days,
 OCIDate *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The given date from which to add or subtract.

num_days (IN)
Number of days to be added or subtracted. A negative value is subtracted.

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Comments
This function returns and error if an invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateAddMonths()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-37

OCIDateAddMonths()

Purpose
Adds or subtracts months from a given date.

Syntax
sword OCIDateAddMonths (OCIError *err,
 CONST OCIDate *date,
 sb4 num_months,
 OCIDate *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The given date from which to add or subtract.

num_months (IN)
Number of months to be added or subtracted. A negative value is subtracted.

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Comments
If the input date is the last day of a month, then the appropriate adjustments are
made to ensure that the output date is also the last day of the month. For example,
Feb. 28 + 1 month = March 31, and November 30 - 3 months = August 31. Otherwise
the result date has the same day component as date.

This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateAddDays()

OCIDateAssign()

18-38 Oracle Call Interface Programmer's Guide

OCIDateAssign()

Purpose
Performs a date assignment.

Syntax
sword OCIDateAssign (OCIError *err,
 CONST OCIDate *from,
 OCIDate *to);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Date to be assigned.

to (OUT)
Target of assignment.

Comments
This function assigns a value from one OCIDate variable to another.

Related Functions
OCIErrorGet(), OCIDateCheck()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-39

OCIDateCheck()

Purpose
Checks if the given date is valid.

Syntax
sword OCIDateCheck (OCIError *err,
 CONST OCIDate *date,
 uword *valid);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Date to be checked

valid (OUT)
Returns zero for a valid date. Otherwise, the ORed combination of all error bits
specified as follows:

Table 18–6 Error Bits

Macro Name Bit Number Error

OCI_DATE_INVALID_DAY 0x1 Bad day

OCI_DATE_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)

OCI_DATE_INVALID_MONTH 0x4 Bad month

OCI_DATE_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)

OCI_DATE_INVALID_YEAR 0x10 Bad year

OCI_DATE_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)

OCI_DATE_INVALID_HOUR 0x40 Bad hour

OCI_DATE_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)

OCI_DATE_INVALID_MINUTE 0x100 Bad minute

OCI_DATE_MINUTE_BELOW_VALID 0x200 Bad minute low/high bit (1=low)

OCIDateCheck()

18-40 Oracle Call Interface Programmer's Guide

For example, if the date passed in was 2/0/1990 25:61:10 in (month/day/year
hours:minutes:seconds format), the error returned would be:

OCI_DATE_INVALID_DAY | OCI_DATE_DAY_BELOW_VALID | OCI_DATE_INVALID_HOUR |
 OCI_DATE_INVALID_MINUTE.

Comments
This function returns an error if date or valid pointer is NULL.

Related Functions
OCIErrorGet(), OCIDateCompare()

OCI_DATE_INVALID_SECOND 0x400 Bad second

OCI_DATE_SECOND_BELOW_VALID 0x800 Bad second low/high bit (1=low)

OCI_DATE_DAY_MISSING_FROM_1
582

0x1000 Day is one of those missing from
1582

OCI_DATE_YEAR_ZERO 0x2000 Year may not equal zero

OCI_DATE_INVALID_FORMAT 0x8000 Bad date format input

Table 18–6 Error Bits (Cont.)

Macro Name Bit Number Error

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-41

OCIDateCompare()

Purpose
Compares two dates.

Syntax
sword OCIDateCompare (OCIError *err,
 CONST OCIDate *date1,
 CONST OCIDate *date2,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1, date2 (IN)
Dates to be compared.

result (OUT)
Comparison result:

Comments
This function returns and error if an invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateCheck()

Table 18–7 Comparison Results

Comparison result Output in result parameter

date1 < date2 -1

date1 = date2 0

date1 > date2 1

OCIDateDaysBetween()

18-42 Oracle Call Interface Programmer's Guide

OCIDateDaysBetween()

Purpose
Gets the number of days between two dates.

Syntax
sword OCIDateDaysBetween (OCIError *err,
 CONST OCIDate *date1,
 CONST OCIDate *date2,
 sb4 *num_days);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Input date.

date2 (IN)
Input date.

num_days (OUT)
Number of days between date1 and date2.

Comments
When the number of days between date1 and date2 is computed, the time is
ignored.

This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateCheck()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-43

OCIDateFromText()

Purpose
Converts a character string to a date type according to the specified format.

Syntax
sword OCIDateFromText (OCIError *err,
 CONST text *date_str,
 ub4 d_str_length,
 CONST text *fmt,
 ub1 fmt_length,
 CONST text *lang_name,
 ub4 lang_length,
 OCIDate *date);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date_str (IN)
Input string to be converted to Oracle date.

d_str_length (IN)
Size of the input string, if the length is -1 then date_str is treated as a
NULL-terminated string.

fmt (IN)
Conversion format. If fmt is a NULL pointer, then the string is expected to be in
"DD-MON-YY" format.

fmt_length (IN)
Length of the fmt parameter.

lang_name (IN)
Language in which the names and abbreviations of days and months are specified.
If lang_name is a NULL string, (text *)0, then the default language of the
session is used.

OCIDateFromText()

18-44 Oracle Call Interface Programmer's Guide

lang_length (IN)
Length of the lang_name parameter.

date (OUT)
Given string converted to date.

Comments
Refer to the TO_DATE conversion function described in the Oracle Database SQL
Reference for a description of format and multilingual arguments.

This function returns an error if it receives an invalid format, language, or input
string.

Related Functions
OCIErrorGet(), OCIDateToText()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-45

OCIDateGetDate()

Purpose
Get the year, month, and day stored in an Oracle date.

Syntax
void OCIDateGetDate (CONST OCIDate *date,
 sb2 *year,
 ub1 *month,
 ub1 *day);

Parameters

date (IN)
Oracle date whose year, month, day data is retrieved.

year (OUT)
Year value returned.

month (OUT)
Month value returned.

day (OUT)
Day value returned.

Comments
None.

Related Functions
OCIDateSetDate(), OCIDateGetTime()

OCIDateGetTime()

18-46 Oracle Call Interface Programmer's Guide

OCIDateGetTime()

Purpose
Gets the time stored in an Oracle date.

Syntax
void OCIDateGetTime (CONST OCIDate *date,
 ub1 *hour,
 ub1 *min,
 ub1 *sec);

Parameters

date (IN)
Oracle date whose time data is retrieved.

hour (OUT)
Hour value returned.

min (OUT)
Minute value returned.

sec (OUT)
Second value returned.

Comments
Returns the time information returned in the form: hour, minute and seconds.

Related Functions
OCIDateSetTime(), OCIDateGetDate()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-47

OCIDateLastDay()

Purpose
Gets the date of the last day of the month in a specified date.

Syntax
sword OCIDateLastDay (OCIError *err,
 CONST OCIDate *date,
 OCIDate *last_day);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Input date.

last_day (OUT)
Last day of the month in date.

Comments
This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet(), OCIDateGetDate()

OCIDateNextDay()

18-48 Oracle Call Interface Programmer's Guide

OCIDateNextDay()

Purpose
Gets the date of next day of the week, after a given date.

Syntax
sword OCIDateNextDay (OCIError *err,
 CONST OCIDate *date,
 CONST OraText *day,
 ub4 day_length,
 OCIDate *next_day);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Returned date should be later than this date.

day (IN)
First day of week named by this is returned.

day_length (IN)
Length in bytes of string day.

next_day (OUT)
First day of the week named by day later than date.

Comments
Returns the date of the first day of the week named by day that is later than date.

Example
Get the date of the next Monday after April 18, 1996 (a Thursday).

OCIDate one_day, next_day;
/* Add code here to set one_day to be '18-APR-96' */
OCIDateNextDay(err, &one_day, "MONDAY", strlen("MONDAY"), &next_day);

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-49

OCIDateNextDay() returns "22-APR-96".

This function returns and error if an invalid date or day is passed to it.

Related Functions
OCIErrorGet(), OCIDateGetDate()

OCIDateSetDate()

18-50 Oracle Call Interface Programmer's Guide

OCIDateSetDate()

Purpose
Set the values in an Oracle date.

Syntax
void OCIDateSetDate (OCIDate *date,
 sb2 year,
 ub1 month,
 ub1 day);

Parameters

date (OUT)
Oracle date whose time data is set.

year (IN)
Year value to be set.

month (IN)
Month value to be set.

day (IN)
Day value to be set.

Comments
None.

Related Functions
OCIDateGetDate()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-51

OCIDateSetTime()

Purpose
Sets the time information in an Oracle date.

Syntax
void OCIDateSetTime (OCIDate *date,
 ub1 hour,
 ub1 min,
 ub1 sec);

Parameters

date (OUT)
Oracle date whose time data is set.

hour (IN)
Hour value to be set.

min (IN)
Minute value to be set.

sec (IN)
Second value to be set.

Comments
None.

Related Functions
OCIDateGetTime()

OCIDateSysDate()

18-52 Oracle Call Interface Programmer's Guide

OCIDateSysDate()

Purpose
Gets the current system date and time of the client.

Syntax
sword OCIDateSysDate (OCIError *err,
 OCIDate *sys_date);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sys_date (OUT)
Current system date and time of the client.

Comments
None.

Related Functions
OCIErrorGet()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-53

OCIDateToText()

Purpose
Converts a date type to a character string.

Syntax
sword OCIDateToText (OCIError *err,
 CONST OCIDate *date,
 CONST OraText *fmt,
 ub1 fmt_length,
 CONST OraText *lang_name,
 ub4 lang_length,
 ub4 *buf_size,
 OraText *buf);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Oracle date to be converted.

fmt (IN)
Conversion format, if NULL, (text *)0, then the date is converted to a character
string in the default date format, DD-MON-YY.

fmt_length (IN)
Length of the fmt parameter.

lang_name (IN)
Specifies the language in which names and abbreviations of months and days are
returned; default language of session is used if lang_name is NULL ((text *)0).

lang_length (IN)
Length of the lang_name parameter.

buf_size (IN/OUT)
■ Size of the buffer (IN);

OCIDateToText()

18-54 Oracle Call Interface Programmer's Guide

■ Size of the resulting string is returned with this parameter (OUT).

buf (OUT)
Buffer into which the converted string is placed.

Comments
Converts the given date to a string according to the specified format. The converted
NULL-terminated date string is stored in buf.

Refer to the TO_DATE conversion function described in the Oracle Database SQL
Reference for a description of format and multilingual arguments.

This function returns an error if the buffer is too small, or if the function is passed
an invalid format or unknown language. Overflow also causes an error. For
example, converting a value of 10 into format '9' causes an error.

Related Functions
OCIErrorGet(), OCIDateFromText()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-55

OCIDateTimeAssign()

Purpose
Performs datetime assignment.

Syntax
sword OCIDateTimeAssign (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *from,
 OCIDateTime *to);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is
passed, the conversion takes place in the session's NLS_LANGUAGE and the
session's NLS_CALENDAR, otherwise the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Source (rhs) datetime to be assigned.

to (OUT)
Target (lhs) of assignment.

Comments
This function performs an assignment from the from datetime to the to datetime
for any of the datetime types listed in the description of the type parameter.

The type of the output is the same as that of the input.

Returns
OCI_SUCCESS,

OCI_ERROR

OCIDateTimeAssign()

18-56 Oracle Call Interface Programmer's Guide

Related Functions
OCIDateTimeCheck(), OCIDateTimeConstruct()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-57

OCIDateTimeCheck()

Purpose
Checks if the given date is valid.

Syntax
sword OCIDateTimeCheck (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *date,
 ub4 *valid);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is
passed, the conversion takes place in the session's NLS_LANGUAGE and the
session's NLS_CALENDAR, otherwise the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
The date to be checked.

valid (OUT)
Returns zero for a valid date, otherwise it returns the ORed combination of all the
error bits specified next:

Table 18–8 Error Bits

Macro Name
Bit
Number Error

OCI_DT_INVALID_DAY 0x1 Bad day

OCI_DT_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)

OCI_DT_INVALID_MONTH 0x4 Bad month

OCI_DT_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)

OCI_DT_INVALID_YEAR 0x10 Bad year

OCIDateTimeCheck()

18-58 Oracle Call Interface Programmer's Guide

So, for example, if the date passed in was 2/0/1990 25:61:10 in (month/day/year
hours:minutes:seconds format), the error returned would be:

 OCI_DT_INVALID_DAY | OCI_DT_DAY_BELOW_VALID |
 OCI_DT_INVALID_HOUR | OCI_DT_INVALID_MINUTE.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if date or valid is a NULL pointer.

Related Functions
OCIDateTimeAssign()

OCI_DT_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)

OCI_DT_INVALID_HOUR 0x40 Bad hour

OCI_DT_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)

OCI_DT_INVALID_MINUTE 0x100 Bad minute

OCI_DT_MINUTE_BELOW_VALID 0x200 Bad minute low/high bit (1=low)

OCI_DT_INVALID_SECOND 0x400 Bad second

OCI_DT_SECOND_BELOW_VALID 0x800 Bad second low/high bit (1=low)

OCI_DT_DAY_MISSING_FROM_1582 0x1000 Day is one of those missing from
1582

OCI_DT_YEAR_ZERO 0x2000 Year may not equal zero

OCI_DT_INVALID_TIMEZONE 0x4000 Bad time zone

OCI_DT_INVALID_FORMAT 0x8000 Bad date format input

Table 18–8 Error Bits (Cont.)

Macro Name
Bit
Number Error

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-59

OCIDateTimeCompare()

Purpose
Compares two datetime values.

Syntax
sword OCIDateTimeCompare (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *date1,
 CONST OCIDateTime *date2,
 sword *result);

Parameters

hndl (IN/OUT)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1, date2 (IN)
Dates to be compared.

result (OUT)
Comparison result:

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

Table 18–9 Comparison Results

Comparison result Output in result parameter

date1 < date2 -1

date1 = date2 0

date1 > date2 1

OCIDateTimeCompare()

18-60 Oracle Call Interface Programmer's Guide

OCI_ERROR, if an invalid date is used, or if the input date arguments are not of
mutually comparable types.

Related Functions
OCIDateTimeConstruct()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-61

OCIDateTimeConstruct()

Purpose
Constructs a datetime descriptor.

Syntax
sword OCIDateTimeConstruct (dvoid *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 sb2 year,
 ub1 month,
 ub1 day,
 ub1 hour,
 ub1 min,
 ub1 sec,
 ub4 fsec,
 OraText *timezone,
 size_t timezone_length);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

year (IN)
Year value.

month (IN)
Month value.

day (IN)
Day value.

OCIDateTimeConstruct()

18-62 Oracle Call Interface Programmer's Guide

hour (IN)
Hour value.

min (IN)
Minute value.

sec (IN)
Second value

fsec (IN)
Fractional second value.

timezone (IN)
Time zone string.

timezone_length (IN)
Length of the time zone string.

Comments
The type of the datetime is the type of the OCIDateTime descriptor. Only the
relevant fields based on the type are used. For types with time zone, the date and
time fields are assumed to be in the local time of the specified time zone.

If time zone is not specified, then session default time zone is assumed.

Returns
OCI_SUCCESS,

OCI_ERROR, if datetime is not valid.

Related Functions
OCIDateTimeAssign(), OCIDateTimeConvert()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-63

OCIDateTimeConvert()

Purpose
Converts one datetime type to another.

Syntax
sword OCIDateTimeConvert (dvoid *hndl,
 OCIError *err,
 OCIDateTime *indate,
 OCIDateTime *outdate);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

indate (IN)
A pointer to the input date.

outdate (OUT)
A pointer to the output datetime.

Comments
This function converts one datetime type to another. The result type is the type of
the outdate descriptor. The session default time zone (ORA_SDTZ) is used when
converting a datetime without time zone to one with time zone.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE if err is NULL,

OCI_ERROR, if the conversion is not possible with the given input values.

OCIDateTimeConvert()

18-64 Oracle Call Interface Programmer's Guide

Related Functions
OCIDateTimeCheck()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-65

OCIDateTimeFromArray()

Purpose
Converts an array containing a date to an OCIDateTime descriptor.

Syntax
sword OCIDateTimeFromArray (dvoid *hndl,
 OCIError *err,
 CONST ub1 *inarray,
 ub4 *len
 ub1 type,
 OCIDateTime *datetime,
 CONST OCIInterval *reftz,
 ub1 fsprec);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inarray(IN)
Array of ub1, containing the date.

len (IN)
Length of inarray.

type (IN)
Type of the resulting datetime. The array will be converted to the specific SQLT
type.

datetime (OUT)
Pointer to an OCIDateTime descriptor.

reftz (IN)
Descriptor for OCIInterval used as a reference when converting a
SQLT_TIMESTAMP_LTZ type.

OCIDateTimeFromArray()

18-66 Oracle Call Interface Programmer's Guide

fsprec (IN)
Fractional second precision of the resulting datetime.

Returns
OCI_SUCCESS,

OCI_ERROR if type is invalid.

Related Functions
OCIDateTimeFromText(),OCIDateTimeToArray().

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-67

OCIDateTimeFromText()

Purpose
Converts the given string to Oracle datetime type in the OCIDateTime descriptor,
according to the specified format.

Syntax
sword OCIDateTimeFromText (dvoid *hndl,
 OCIError *err,
 CONST OraText *date_str,
 size_t dstr_length,
 CONST OraText *fmt,
 ub1 fmt_length,
 CONST OraText *lang_name,
 size_t lang_length,
 OCIDateTime *datetime);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is
passed, the conversion takes place in the session's NLS_LANGUAGE and the
session's NLS_CALENDAR, otherwise the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date_str (IN)
The input string to be converted to an Oracle datetime.

dstr_length (IN)
The size of the input string. If the length is -1 then date_str is treated as a
NULL-terminated string.

fmt (IN)
The conversion format. If fmt is a NULL pointer, then the string is expected to be in
the default format for the datetime type.

fmt_length (IN)
The length of the fmt parameter.

OCIDateTimeFromText()

18-68 Oracle Call Interface Programmer's Guide

lang_name (IN)
Specifies the language in which the names and abbreviations of months and days
are specified. The default language of the session is used if lang_name is NULL
(lang_name = (text *)0).

lang_length (IN)
The length of the lang_name parameter.

datetime (OUT)
The given string converted to a date.

Comments
Refer to the description of the TO_DATE conversion function in the SQL Reference
for a description of the format argument.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE if err is NULL,

OCI_ERROR, if any of the following is true:

■ An invalid format is used.

■ An unknown language is used.

■ An invalid input string is used.

Related Functions
OCIDateTimeToText(), OCIDateTimeFromArray().

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-69

OCIDateTimeGetDate()

Purpose
Gets the date (year, month, day) portion of a datetime value.

Syntax
void OCIDateTimeGetDate (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *datetime,
 sb2 *year,
 ub1 *month,
 ub1 *day);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor from which date information is retrieved.

year (OUT)
month (OUT)
day (OUT)
The retrieved year, month, and day values.

Comments
This function gets the date (year, month, day) portion of a datetime value.

Returns
OCI_SUCCESS,

OCI_ERROR if the input type is SQLT_TIME or OCI_TIME_TZ.

OCIDateTimeGetDate()

18-70 Oracle Call Interface Programmer's Guide

Related Functions
OCIDateTimeGetTime()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-71

OCIDateTimeGetTime()

Purpose
Gets the time (hour, min, second, fractional second) out of a datetime value.

Syntax
void OCIDateTimeGetTime (dvoid *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 ub1 *hour,
 ub1 *min,
 ub1 *sec,
 ub4 *fsec);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor from which time information will be
retrieved.

hour (OUT)
The retrieved hour value.

min (OUT)
The retrieved minute value.

sec (OUT)
The retrieved second value.

fsec (OUT)
The retrieved fractional second value.

OCIDateTimeGetTime()

18-72 Oracle Call Interface Programmer's Guide

Comments
This function gets the time portion (hour, min, second, fractional second) out of a
given datetime value.

This function returns an error if the given datetime does not contain time
information.

Returns
OCI_SUCCESS,

OCI_ERROR if datetime does not contain time (SQLT_DATE).

Related Functions
OCIDateTimeGetDate()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-73

OCIDateTimeGetTimeZoneName()

Purpose
Gets the time zone name portion of a datetime value.

Syntax
void OCIDateTimeGetTimeZoneName (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *datetime,
 ub1 *buf,
 ub4 *buflen,);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

buf (OUT)
Buffer to store the retrieved time zone name.

buflen (IN/OUT)
The size of the buffer (IN). The size of the name field (OUT)

Comments
This function gets the time portion (hour, min, second, fractional second) out of a
given datetime value.

This function returns an error if the given datetime does not contain time
information.

Returns
OCI_SUCCESS,

OCIDateTimeGetTimeZoneName()

18-74 Oracle Call Interface Programmer's Guide

OCI_ERROR if datetime does not contain time zone (SQLT_DATE,
SQLT_TIMESTAMP).

Related Functions
OCIDateTimeGetDate(), OCIDateTimeGetTimeZoneOffset().

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-75

OCIDateTimeGetTimeZoneOffset()

Purpose
Gets the time zone (hour, minute) portion of a datetime value.

Syntax
void OCIDateTimeGetTimeZoneOffset (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *datetime,
 sb1 *hour,
 sb1 *min,);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

hour (OUT)
The retrieved time zone hour value.

min (OUT)
The retrieved time zone minute value.

Comments
This function gets the time zone hour and the time zone minute portion out of a
given datetime value.

This function returns an error if the given datetime does not contain time
information.

Returns
OCI_SUCCESS,

OCIDateTimeGetTimeZoneOffset()

18-76 Oracle Call Interface Programmer's Guide

OCI_ERROR if datetime does not contain time zone (SQLT_DATE,
SQLT_TIMESTAMP).

Related Functions
OCIDateTimeGetDate(), OCIDateTimeGetTimeZoneName().

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-77

OCIDateTimeIntervalAdd()

Purpose
Adds an interval to a datetime to produce a resulting datetime.

Syntax
sword OCIDateTimeIntervalAdd (dvoid *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 OCIInterval *inter,
 OCIDateTime *outdatetime);

Parameters

hndl (IN)
The user session or environment handle. If a session handle is passed, the addition
takes place in the session default calendar.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to the input datetime.

inter (IN)
Pointer to the input interval.

outdatetime (OUT)
Pointer to the output datetime. The output datetime will be of same type as the
input datetime.

Returns
OCI_SUCCESS if the function completes successfully,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if the resulting date is before Jan 1, -4713, or is after Dec 31, 9999.

OCIDateTimeIntervalAdd()

18-78 Oracle Call Interface Programmer's Guide

Related Functions
OCIDateTimeIntervalSub()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-79

OCIDateTimeIntervalSub()

Purpose
Subtracts an interval from a datetime and stores the result in a datetime.

Syntax
sword OCIDateTimeIntervalSub (dvoid *hndl,
 OCIError *err,
 OCIDateTime *datetime,
 OCIInterval *inter,
 OCIDateTime *outdatetime);

Parameters

hndl (IN)
The user session or environment handle. If a session handle is passed, the
subtraction takes place in the session default calendar. The interval is assumed to be
in the session calendar.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to the input datetime value.

inter (IN)
Pointer to the input interval.

outdatetime (OUT)
Pointer to the output datetime. The output datetime will be of same type as the
input datetime.

Returns
OCI_SUCCESS if the function completes successfully,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if the resulting date is before Jan 1, -4713, or is after Dec 31, 9999.

OCIDateTimeIntervalSub()

18-80 Oracle Call Interface Programmer's Guide

Related Functions
OCIDateTimeIntervalAdd()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-81

OCIDateTimeSubtract()

Purpose
Takes two datetimes as input and stores their difference in an interval.

Syntax
sword OCIDateTimeSubtract (dvoid *hndl,
 OCIError *err,
 OCIDateTime *indate1,
 OCIDateTime *indate2,
 OCIInterval *inter);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

indate1(IN)
Pointer to the subtrahend.

indate2(IN)
Pointer to the minuend.

inter (OUT)
Pointer to the output interval.

Returns
OCI_SUCCESS if the function completes successfully,

OCI_INVALID_HANDLE if err is NULL pointer,

OCI_ERROR, if the input datetimes are not of comparable types.

Related Functions
OCIDateTimeCompare()

OCIDateTimeSysTimeStamp()

18-82 Oracle Call Interface Programmer's Guide

OCIDateTimeSysTimeStamp()

Purpose
Gets the system current date and time as a timestamp with time zone.

Syntax
sword OCIDateTimeSysTimeStamp (dvoid *hndl,
 OCIError *err,
 OCIDateTime *sys_date);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sys_date (OUT)
Pointer to the output timestamp.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Functions
OCIDateSysDate()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-83

OCIDateTimeToArray()

Purpose
Converts a OCIDateTime descriptor to an array.

Syntax
sword OCIDateTimeToArray (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *datetime,
 CONST OCIInterval *reftz,
 ub1 *outarray,
 ub4 *len
 ub1 fsprec);

Parameters

hndl (IN)
The OCI user session handle or environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

datetime (IN)
Pointer to an OCIDateTime descriptor.

reftz (IN)
Descriptor for the OCIInterval used as a reference when converting
SQL_TIMESTAMP_LTZ type.

outarray(OUT)
Array of bytes containing the date.

len (OUT)
Length of outarray.

fsprec (IN)
Fractional second precision in the array.

OCIDateTimeToArray()

18-84 Oracle Call Interface Programmer's Guide

Comments
The array is allocated by OCI and its length is returned.

Returns
OCI_SUCCESS,

OCI_ERROR if datetime is invalid.

Related Functions
OCIDateTimeToText(), OCIDateTimeFromArray().

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-85

OCIDateTimeToText()

Purpose
Converts the given date to a string according to the specified format.

Syntax
sword OCIDateTimeToText (dvoid *hndl,
 OCIError *err,
 CONST OCIDateTime *date,
 CONST OraText *fmt,
 ub1 fmt_length,
 ub1 fsprec,
 CONST OraText *lang_name,
 size_t lang_length,
 ub4 *buf_size,
 OraText *buf);

Parameters

hndl (IN)
The OCI user session handle or environment handle. If a user session handle is
passed, the conversion takes place in the session's NLS_LANGUAGE and the
session's NLS_CALENDAR, otherwise the default is used.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Oracle datetime value to be converted

fmt (IN)
The conversion format. If it is a NULL string pointer, (text*)0, then the date is
converted to a character string in the default format for that type.

fmt_length (IN)
The length of the fmt parameter.

fsprec (IN)
Specifies the precision in which the fractional seconds is returned.

OCIDateTimeToText()

18-86 Oracle Call Interface Programmer's Guide

lang_name (IN)
Specifies the language in which the names and abbreviations of months and days
are returned. The default language of the session is used if lang_name is NULL
(lang_name = (OraText *)0).

lang_length (IN)
The length of the lang_name parameter.

buf_size (IN/OUT)
The size of the buf buffer (IN).

The size of the resulting string after the conversion (OUT).

buf (OUT)
The buffer into which the converted string is placed.

Comments
Refer to the description of the TO_DATE conversion function in the SQL Reference
for a description of format and multilingual arguments. The converted
NULL-terminated date string is stored in the buffer buf.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is NULL,

OCI_ERROR, if any of the following is true:

■ The buffer is too small.

■ An invalid format is used.

■ An unknown language is used.

■ There is an overflow error.

Related Functions
OCIDateTimeFromText()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-87

OCIDateZoneToZone()

Purpose
Converts a date from one time zone to another.

Syntax
sword OCIDateZoneToZone (OCIError *err,
 CONST OCIDate *date1,
 CONST OraText *zon1,
 ub4 zon1_length,
 CONST OraText *zon2,
 ub4 zon2_length,
 OCIDate *date2);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Date to convert.

zon1 (IN)
Zone of input date.

zon1_length (IN)
Length in bytes of zon1.

zon2 (IN)
Zone to be converted to.

zon2_length (IN)
Length in bytes of zon2.

date2 (OUT)
Converted date (in zon2).

OCIDateZoneToZone()

18-88 Oracle Call Interface Programmer's Guide

Comments
Converts a given date date1 in time zone zon1 to a date date2 in time zone zon2.
Works only with North American time zones.

For a list of valid zone strings, refer to the description of the NEW_TIME function in
the Oracle Database SQL Reference. Examples of valid zone strings include:

■ AST, Atlantic Standard Time

■ ADT, Atlantic Daylight Time

■ BST, Bering Standard Time

■ BDT, Bering Daylight Time

This function returns an error if an invalid date or time zone is passed to it.

Related Functions
OCIErrorGet(), OCIDateCheck()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-89

OCIIntervalAdd()

Purpose
Adds two intervals to produce a resulting interval.

Syntax
sword OCIIntervalAdd (dvoid *hndl,
 OCIError *err,
 OCIInterval *addend1,
 OCIInterval *addend2,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

addend1 (IN)
Interval to be added.

addend2 (IN)
Interval to be added.

result (OUT)
The resulting interval (addend1 + addend2).

Returns
OCI_SUCCESS,

OCI_ERROR, if:

■ the two input intervals are not mutually comparable,

■ or, the resulting year would go above SB4MAXVAL,

■ or, the resulting year would go below SB4MINVAL,

OCI_INVALID_HANDLE, if err is a NULL pointer.

OCIIntervalAdd()

18-90 Oracle Call Interface Programmer's Guide

Related Functions
OCIIntervalSubtract()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-91

OCIIntervalAssign()

Purpose
Copies one interval to another.

Syntax
void OCIIntervalAssign (dvoid *hndl,
 OCIError *err,
 CONST OCIInterval *inpinter,
 OCIInterval *outinter);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inpinter (IN)
Input interval.

outinter (OUT)
Output interval.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Functions
OCIIntervalCompare()

OCIIntervalCheck()

18-92 Oracle Call Interface Programmer's Guide

OCIIntervalCheck()

Purpose
Checks the validity of an interval.

Syntax
sword OCIIntervalCheck (dvoid *hndl,
 OCIError *err,
 CONST OCIInterval *interval,
 ub4 *valid);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (IN)
Interval to be checked.

valid (OUT)
Zero if the interval is valid, else returns an ORed combination of the following
codes:

Table 18–10 Error Bits

Macro Name
Bit
Number Error

OCI_INTER_INVALID_DAY 0x1 Bad day

OCI_INTER_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)

OCI_INTER_INVALID_MONTH 0x4 Bad month

OCI_INTER_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)

OCI_INTER_INVALID_YEAR 0x10 Bad year

OCI_INTER_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)

OCI_INTER_INVALID_HOUR 0x40 Bad hour

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-93

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, on error.

Related Functions
OCIIntervalCompare()

OCI_INTER_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)

OCI_INTER_INVALID_MINUTE 0x100 Bad minute

OCI_INTER_MINUTE_BELOW_VALID 0x200 Bad minute low/high bit (1=low)

OCI_INTER_INVALID_SECOND 0x400 Bad second

OCI_INTER_SECOND_BELOW_VALID 0x800 Bad second low/high bit (1=low)

OCI_INTER_INVALID_FRACSEC 0x1000 Bad fractional second

OCI_INTER_FRACSEC_BELOW_VALID 0x2000 Bad fractional second low/high bit
(1=low)

Table 18–10 Error Bits (Cont.)

Macro Name
Bit
Number Error

OCIIntervalCompare()

18-94 Oracle Call Interface Programmer's Guide

OCIIntervalCompare()

Purpose
Compares two intervals.

Syntax
sword OCIIntervalCompare(dvoid *hndl,
 OCIError *err,
 OCIInterval *inter1,
 OCIInterval *inter2,
 sword *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inter1 (IN)
Interval to be compared.

inter2 (IN)
Interval to be compared.

result (OUT)
Comparison result:

Returns
OCI_SUCCESS,

Table 18–11 Comparison Results

Comparison result Output in result parameter

inter1 < inter2 -1

inter1 = inter2 0

inter1 > inter2 1

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-95

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if the input values are not mutually comparable.

Related Functions
OCIIntervalAssign()

OCIIntervalDivide()

18-96 Oracle Call Interface Programmer's Guide

OCIIntervalDivide()

Purpose
Divides an interval by an Oracle NUMBER to produce an interval.

Syntax
sword OCIIntervalDivide (dvoid *hndl,
 OCIError *err,
 OCIInterval *dividend,
 OCINumber *divisor,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

dividend (IN)
Interval to be divided.

divisor (IN)
Oracle NUMBER dividing dividend.

result (OUT)
The resulting interval (dividend / divisor).

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Functions
OCIIntervalMultiply()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-97

OCIIntervalFromNumber()

Purpose
Converts an Oracle NUMBER to an interval.

Syntax
sword OCIIntervalFromNumber (dvoid *hndl,
 OCIError *err,
 OCIInterval *interval,
 OCINumber *number);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (OUT)
Interval result.

number (IN)
Oracle NUMBER to be converted (in years for YEAR TO MONTH intervals and in
days for DAY TO SECOND intervals).

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Functions
OCIIntervalToNumber()

OCIIntervalFromText()

18-98 Oracle Call Interface Programmer's Guide

OCIIntervalFromText()

Purpose
Given an interval string, returns the interval represented by the string. The type of
the interval is the type of the result descriptor.

Syntax
sword OCIIntervalFromText (dvoid *hndl,
 OCIError *err,
 CONST OraText *inpstring,
 size_t str_len,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inpstring (IN)
Input string.

str_len (IN)
Length of the input string.

result (OUT)
Resultant interval.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if any of the following is true:

■ there are too many fields in the literal string

■ the year is out of range (-4713 to 9999)

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-99

■ the month is out of range (1 to 12)

■ the day of month is out of range (1 to 28...31)

■ the hour is out of range (0 to 23)

■ if hour is out of range (0 to 11)

■ if minute is out of range (0 to 59)

■ if seconds in minute out of range (0 to 59)

■ if seconds in day out of range (0 to 86399)

■ if the interval is invalid

Related Functions
OCIIntervalToText()

OCIIntervalFromTZ()

18-100 Oracle Call Interface Programmer's Guide

OCIIntervalFromTZ()

Purpose
Returns an OCI_DTYPE_INTERVAL_DS of datatype OCIInterval with the region
id set (if the region is specified in the input string) and the current absolute offset, or
an absolute offset with the region id set to 0.

Syntax
sword OCIIntervalFromTZ (dvoid *hndl,
 OCIError *err,
 CONST oratext *inpstring,
 size_t str_len,
 OCIInterval *result) ;

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inpstring (IN)
Pointer to the input string.

str_len (IN)
Length of inpstring.

result (OUT)
Output interval.

Returns
OCI_SUCCESS, on success,

OCI_INVALID_HANDLE, if err is NULL,

OCI_ERROR, if there is a bad interval type or time zone errors.

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-101

Comments
The input string must be of the form [+/-]TZH:TZM or 'TZR [TZD]'

Related Functions
OCIIntervalFromText()

OCIIntervalGetDaySecond()

18-102 Oracle Call Interface Programmer's Guide

OCIIntervalGetDaySecond()

Purpose
Gets values of day, hour, minute, and second from an interval.

Syntax
sword OCIIntervalGetDaySecond (dvoid *hndl,
 OCIError *err,
 sb4 *dy,
 sb4 *hr,
 sb4 *mm,
 sb4 *ss,
 sb4 *fsec,
 CONST OCIInterval *interval);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

dy (OUT)
Number of days.

hr (OUT)
Number of hours.

mm (OUT)
Number of minutes.

ss (OUT)
Number of seconds.

fsec (OUT)
Number of fractional seconds.

interval (IN)
The input interval.

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-103

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

Related Functions
OCIIntervalSetDaySecond()

OCIIntervalGetYearMonth()

18-104 Oracle Call Interface Programmer's Guide

OCIIntervalGetYearMonth()

Purpose
Gets year and month from an interval.

Syntax
sword OCIIntervalGetYearMonth (dvoid *hndl,
 OCIError *err,
 sb4 *yr,
 sb4 *mnth,
 CONST OCIInterval *interval);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

yr (OUT)
Year value.

mnth (OUT)
Month value.

interval (IN)
The input interval.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Functions
OCIIntervalSetYearMonth()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-105

OCIIntervalMultiply()

Purpose
Multiplies an interval by an Oracle NUMBER to produce an interval.

Syntax
sword OCIIntervalMultiply (dvoid *hndl,
 OCIError *err,
 CONST OCIInterval *inter,
 OCINumber *nfactor,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inter (IN)
Interval to be multiplied.

nfactor (IN)
Oracle NUMBER to be multiplied.

result (OUT)
The resulting interval (inter * nfactor).

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if any of the following is true:

■ the resulting year would go above SB4MAXVAL

■ the resulting year would go below SB4MINVAL

OCIIntervalMultiply()

18-106 Oracle Call Interface Programmer's Guide

Related Functions
OCIIntervalDivide()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-107

OCIIntervalSetDaySecond()

Purpose
Sets day, hour, minute, and second in an interval.

Syntax
sword OCIIntervalSetDaySecond (dvoid *hndl,
 OCIError *err,
 sb4 dy,
 sb4 hr,
 sb4 mm,
 sb4 ss,
 sb4 fsec,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

dy (IN)
Number of days.

hr (IN)
Number of hours.

mm (IN)
Number of minutes.

ss (IN)
Number of seconds.

fsec (IN)
Number of fractional seconds.

result (OUT)
The resulting interval.

OCIIntervalSetDaySecond()

18-108 Oracle Call Interface Programmer's Guide

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

Related Functions
OCIIntervalGetDaySecond()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-109

OCIIntervalSetYearMonth()

Purpose
Sets year and month in an interval.

Syntax
sword OCIIntervalSetYearMonth (dvoid *hndl,
 OCIError *err,
 sb4 yr,
 sb4 mnth,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

yr (IN)
Year value.

mnth (IN)
Month value.

result (OUT)
The resulting interval.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

Related Functions
■ the resulting year would go above SB4MAXVAL

■ the resulting year would go below SB4MINVAL

OCIIntervalSetYearMonth()

18-110 Oracle Call Interface Programmer's Guide

Related Functions
OCIIntervalGetYearMonth()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-111

OCIIntervalSubtract()

Purpose
Subtracts two intervals and stores the result in an interval.

Syntax
sword OCIIntervalSubtract (dvoid *hndl,
 OCIError *err,
 OCIInterval *minuend,
 OCIInterval *subtrahend,
 OCIInterval *result);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

minuend (IN)
The interval to be subtracted from.

subtrahend (IN)
The interval subtracted from minuend.

result (OUT)
The resulting interval (minuend - subtrahend).

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if any of the following are true:

■ the resulting year would go above SB4MAXVAL

■ the resulting year would go below SB4MINVAL

■ the two input intervals are not mutually comparable

OCIIntervalSubtract()

18-112 Oracle Call Interface Programmer's Guide

Related Functions
OCIIntervalAdd()

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-113

OCIIntervalToNumber()

Purpose
Converts an interval to an Oracle NUMBER.

Syntax
sword OCIIntervalToNumber (dvoid *hndl,
 OCIError *err,
 OCIInterval *interval,
 OCINumber *number);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (IN)
Interval to be converted.

number (OUT)
Oracle NUMBER result (in years for YEARMONTH interval and in days for
DAYSECOND).

Comments
Fractional portions of the date (for instance, minutes and seconds if the unit chosen
is hours) are included in the Oracle NUMBER produced. Excess precision is
truncated.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer.

Related Functions
OCIIntervalFromNumber()

OCIIntervalToText()

18-114 Oracle Call Interface Programmer's Guide

OCIIntervalToText()

Purpose
Given an interval, produces a string representing the interval.

Syntax
sword OCIIntervalToText (dvoid *hndl,
 OCIError *err,
 CONST OCIInterval *interval,
 ub1 lfprec,
 ub1 fsprec,
 OraText *buffer,
 size_t buflen,
 size_t *resultlen);

Parameters

hndl (IN)
The OCI user session handle or the environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

interval (IN)
Interval to be converted.

lfprec (IN)
Leading field precision. (The number of digits used to represent the leading field.)

fsprec (IN)
Fractional second precision of the interval (the number of digits used to represent
the fractional seconds).

buffer (OUT)
Buffer to hold the result.

buflen (IN)
The length of buffer.

OCI Date, Datetime, and Interval Functions

OCI Datatype Mapping and Manipulation Functions 18-115

resultlen (OUT)
The length of the result placed into buffer.

Comments
The interval literal is output as 'year' or '[year-]month' for INTERVAL YEAR TO
MONTH intervals and as 'seconds' or 'minutes[:seconds]' or
'hours[:minutes[:seconds]]' or 'days[hours[:minutes[:seconds]]]' for INTERVAL DAY
TO SECOND intervals (where optional fields are surrounded by brackets).

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE, if err is a NULL pointer,

OCI_ERROR, if the buffer is not large enough to hold the result.

Related Functions
OCIIntervalFromText()

OCI NUMBER Functions

18-116 Oracle Call Interface Programmer's Guide

OCI NUMBER Functions

This section describes the OCI NUMBER functions.

Table 18–12 NUMBER Functions

Function/Page Purpose

OCINumberAbs() on page 18-118 Computes the absolute value

OCINumberAdd() on page 18-119 Adds NUMBERs

OCINumberArcCos() on page 18-120 Computes the arc cosine

OCINumberArcSin() on page 18-121 Computes the arc sine

OCINumberArcTan() on page 18-122 Computes the arc tangent

OCINumberArcTan2() on page 18-123 Computes the arc tangent of two NUMBERs

OCINumberAssign() on page 18-124 Assigns one NUMBER to another

OCINumberCeil() on page 18-125 Computes the ceiling of NUMBER

OCINumberCmp() on page 18-126 Compares NUMBERs

OCINumberCos() on page 18-127 Computes the cosine

OCINumberDec() on page 18-128 Decrements a NUMBER

OCINumberDiv() on page 18-129 Divides two NUMBERs

OCINumberExp() on page 18-130 Raises e to the specified Oracle NUMBER power

OCINumberFloor() on page 18-131 Computes the floor of a NUMBER

OCINumberFromInt() on page 18-132 Converts an integer to an Oracle NUMBER

OCINumberFromReal() on page 18-134 Convert a real to an Oracle NUMBER

OCINumberFromText() on page 18-135 Convert a string to an Oracle NUMBER

OCINumberHypCos() on page 18-137 Computes the hyperbolic cosine

OCINumberHypSin() on page 18-138 Computes the hyperbolic sine

OCINumberHypTan() on page 18-139 Computes the hyperbolic tangent

OCINumberInc() on page 18-140 Increments an Oracle NUMBER

OCINumberIntPower() on page 18-141 Raises a given base to an integer power

OCINumberIsInt() on page 18-142 Tests if a NUMBER is an integer

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-117

OCINumberIsZero() on page 18-143 Tests if a NUMBER is zero

OCINumberLn() on page 18-144 Computes the natural logarithm

OCINumberLog() on page 18-145 Computes the logarithm to an arbitrary base

OCINumberMod() on page 18-146 Modulo division

OCINumberMul() on page 18-147 Multiplies NUMBERs

OCINumberNeg() on page 18-148 Negates a NUMBER

OCINumberPower() on page 18-149 Exponentiation to base e

OCINumberPrec() on page 18-150 Rounds a NUMBER to a specified number of decimal places

OCINumberRound() on page 18-151 Rounds an Oracle NUMBER to a specified decimal place

OCINumberSetPi() on page 18-152 Initializes a NUMBER to Pi

OCINumberSetZero() on page 18-153 Initializes a NUMBER to zero

OCINumberShift() on page 18-154 Multiplies by 10, shifting specified number of decimal places

OCINumberSign() on page 18-155 Obtains the sign of an Oracle NUMBER

OCINumberSin() on page 18-156 Computes the sine

OCINumberSqrt() on page 18-157 Computes the square root of a NUMBER

OCINumberSub() on page 18-158 Subtracts NUMBERs

OCINumberTan() on page 18-159 Computes the tangent

OCINumberToInt() on page 18-160 Converts an Oracle NUMBER to an integer

OCINumberToReal() on page 18-162 Converts an Oracle NUMBER to a real

OCINumberToRealArray() on
page 18-163

Converts an array of NUMBER to a real array.

OCINumberToText() on page 18-165 Converts an Oracle NUMBER to a string

OCINumberTrunc() on page 18-167 Truncates an Oracle NUMBER at a specified decimal place

Table 18–12 NUMBER Functions (Cont.)

Function/Page Purpose

OCINumberAbs()

18-118 Oracle Call Interface Programmer's Guide

OCINumberAbs()

Purpose
Computes the absolute value of an Oracle number.

Syntax
sword OCINumberAbs (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
The absolute value of the input number.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberSign()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-119

OCINumberAdd()

Purpose
Adds two Oracle numbers together.

Syntax
sword OCINumberAdd (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
Numbers to be added.

result (OUT)
Result of adding number1 to number2.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberSub()

OCINumberArcCos()

18-120 Oracle Call Interface Programmer's Guide

OCINumberArcCos()

Purpose
Takes the arc cosine in radians of an Oracle number.

Syntax
sword OCINumberArcCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc cosine.

result (OUT)
Result of the arc cosine in radians.

Comments
This function returns an error if any of the number arguments is NULL, or if number
is less than -1 or if number is greater than 1.

Related Functions
OCIErrorGet(), OCINumberCos()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-121

OCINumberArcSin()

Purpose
Takes the arc sine in radians of an Oracle number.

Syntax
sword OCINumberArcSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc sine.

result (OUT)
Result of the arc sine in radians.

Comments
This function returns an error if any of the number arguments is NULL, or if number
is less than -1 or if number is greater than 1.

Related Functions
OCIErrorGet(), OCINumberSin()

OCINumberArcTan()

18-122 Oracle Call Interface Programmer's Guide

OCINumberArcTan()

Purpose
Takes the arc tangent in radians of an Oracle number.

Syntax
sword OCINumberArcTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberTan()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-123

OCINumberArcTan2()

Purpose
Takes the arc tangent of two Oracle numbers.

Syntax
sword OCINumberArcTan2 (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Argument 1 of the arc tangent.

number2 (IN)
Argument 2 of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Comments
This function returns an error if any of the number arguments is NULL, or if
number2 is equal to 0.

Related Functions
OCIErrorGet(), OCINumberTan()

OCINumberAssign()

18-124 Oracle Call Interface Programmer's Guide

OCINumberAssign()

Purpose
Assigns one Oracle number to another Oracle number.

Syntax
sword OCINumberAssign (OCIError *err,
 CONST OCINumber *from,
 OCINumber *to);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
NUMBER to be assigned.

to (OUT)
NUMBER copied into.

Comments
Assigns the number identified by from to the number identified by to.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberCmp()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-125

OCINumberCeil()

Purpose
Computes the ceiling value of an Oracle number.

Syntax
sword OCINumberCeil (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
Output which will contain the ceiling value of the input number.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberFloor()

OCINumberCmp()

18-126 Oracle Call Interface Programmer's Guide

OCINumberCmp()

Purpose
Compares two Oracle numbers.

Syntax
sword OCINumberCmp (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
NUMBERs to compare.

result (OUT)
Comparison result:

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberAssign()

Table 18–13 Comparison Results

Comparison result Output in result parameter

number1 < number2 negative

number1 = number2 0

number1 > number2 positive

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-127

OCINumberCos()

Purpose
Computes the cosine in radians of an Oracle number.

Syntax
sword OCINumberCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine in radians.

result (OUT)
Result of the cosine.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberArcCos()

OCINumberDec()

18-128 Oracle Call Interface Programmer's Guide

OCINumberDec()

Purpose
Decrements an OCINumber.

Syntax
sword OCINumberDec (OCIError *err,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN/OUT)
A positive Oracle NUMBER to be decremented.

 Comments
Decrements an Oracle number in place. It is assumed that the input is an integer
between 0 and 100^21-2. If the is input too large, it will be treated as 0 - the result
will be an Oracle number 1. If the input is not a positive integer, the result will be
unpredictable.

This function returns an error if the input number is NULL.

Related Functions
OCINumberInc()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-129

OCINumberDiv()

Purpose
Divides two Oracle NUMBERs.

Syntax
sword OCINumberDiv (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Division result.

Comments
Divides number1 by number2 and returns result in result.

This function returns an error if:

■ any of the number arguments is NULL

■ there is an underflow error

■ there is a divide-by-zero error

Related Functions
OCIErrorGet(), OCINumberMul()

OCINumberExp()

18-130 Oracle Call Interface Programmer's Guide

OCINumberExp()

Purpose
Raises e to the specified Oracle number power.

Syntax
sword OCINumberExp (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
This function raises e to this Oracle number power.

result (OUT)
Output of exponentiation.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberLn()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-131

OCINumberFloor()

Purpose
Computes the floor value of an Oracle NUMBER.

Syntax
sword OCINumberFloor (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

result (OUT)
The floor value of the input NUMBER.

Comments
This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberCeil()

OCINumberFromInt()

18-132 Oracle Call Interface Programmer's Guide

OCINumberFromInt()

Purpose
Converts an integer to an Oracle number.

Syntax
sword OCINumberFromInt (OCIError *err,
 CONST dvoid *inum,
 uword inum_length,
 uword inum_s_flag,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inum (IN)
Pointer to the integer to convert.

inum_length (IN)
Size of the integer.

inum_s_flag (IN)
Flag that designates the sign of the integer, as follows:

■ OCI_NUMBER_UNSIGNED - Unsigned values

■ OCI_NUMBER_SIGNED - Signed values

number (OUT)
Given integer converted to Oracle number.

Comments
This is a native type conversion function. It converts any Oracle standard
machine-native integer type, such as ub4 or sb2, to an Oracle number.

This function returns an error if the number is too big to fit into an Oracle number, if
number or inum is NULL, or if an invalid sign flag value is passed in
inum_s_flag.

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-133

Related Functions
OCIErrorGet(), OCINumberToInt()

OCINumberFromReal()

18-134 Oracle Call Interface Programmer's Guide

OCINumberFromReal()

Purpose
Converts a real (floating-point) type to an Oracle NUMBER.

Syntax
sword OCINumberFromReal (OCIError *err,
 CONST dvoid *rnum,
 uword rnum_length,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rnum (IN)
Pointer to the floating point number to convert.

rnum_length (IN)
The size of the desired result, which equals sizeof({float | double | long
double}).

number (OUT)
Given float converted to Oracle NUMBER.

Comments
This is a native type conversion function. It converts a machine-native floating point
type to an Oracle NUMBER.

This function returns an error if number or rnum is NULL, or if rnum_length
equals zero.

Related Functions
OCIErrorGet(), OCINumberToReal()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-135

OCINumberFromText()

Purpose
Converts character string to Oracle NUMBER.

Syntax
sword OCINumberFromText (OCIError *err,
 CONST OraText *str,
 ub4 str_length,
 CONST OraText *fmt,
 ub4 fmt_length,
 CONST OraText *nls_params,
 ub4 nls_p_length,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

str (IN)
Input string to convert to Oracle NUMBER.

str_length (IN)
Size of the input string.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
Global Support format specification. If it is the NULL string (""), then the default
parameters for the session is used.

nls_p_length (IN)
Length of the nls_params parameter.

OCINumberFromText()

18-136 Oracle Call Interface Programmer's Guide

number (OUT)
Given string converted to NUMBER.

Comments
Converts the given string to a NUMBER according to the specified format. Refer to
the TO_NUMBER conversion function described in the Oracle Database SQL
Reference for a description of format and multilingual parameters.

This function returns an error if there is an invalid format, an invalid multibyte
format, or an invalid input string, if number or str is NULL, or if str_length is
zero.

Related Functions
OCIErrorGet(), OCINumberToText()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-137

OCINumberHypCos()

Purpose
Computes the hyperbolic cosine of an Oracle NUMBER.

Syntax
sword OCINumberHypCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine hyperbolic.

result (OUT)
Result of the cosine hyperbolic.

Comments
This function returns an error if either of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberHypSin(), OCINumberHypTan()

Caution: An Oracle NUMBER overflow causes an unpredictable
result value.

OCINumberHypSin()

18-138 Oracle Call Interface Programmer's Guide

OCINumberHypSin()

Purpose
Computes the hyperbolic sine of an Oracle NUMBER.

Syntax
sword OCINumberHypSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine hyperbolic.

result (OUT)
Result of the sine hyperbolic.

Comments
This function returns an error if either of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberHypCos(), OCINumberHypTan()

Caution: An Oracle number overflow causes an unpredictable
result value.

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-139

OCINumberHypTan()

Purpose
Computes the hyperbolic tangent of an Oracle NUMBER.

Syntax
sword OCINumberHypTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent hyperbolic.

result (OUT)
Result of the tangent hyperbolic.

Comments
This function returns an error if either of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberHypCos(), OCINumberHypSin()

Caution: An Oracle NUMBER overflow causes an unpredictable
result value.

OCINumberInc()

18-140 Oracle Call Interface Programmer's Guide

OCINumberInc()

Purpose
Increments an OCINumber.

Syntax
sword OCINumberInc (OCIError *err,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN/OUT)
A positive Oracle NUMBER to be incremented.

 Comments
Increments an Oracle NUMBER in place. It is assumed that the input is an integer
between 0 and 100^21-2. If the is input too large, it will be treated as 0 - the result
will be an Oracle NUMBER 1. If the input is not a positive integer, the result will be
unpredictable.

This function returns an error if the input NUMBER is NULL.

Related Functions
OCINumberDec()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-141

OCINumberIntPower()

Purpose
Raises a given base to a given integer power.

Syntax
sword OCINumberIntPower (OCIError *err,
 CONST OCINumber *base,
 CONST sword exp,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

exp (IN)
Exponent to which the base is raised.

result (OUT)
Output of exponentiation.

Comments
This function returns an error if either of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberPower()

OCINumberIsInt()

18-142 Oracle Call Interface Programmer's Guide

OCINumberIsInt()

Purpose
Tests if an OCINumber is an integer.

Syntax
sword OCINumberIsInt (OCIError *err,
 CONST OCINumber *number,
 boolean *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to be tested

result (OUT)
Set to TRUE if integer value else FALSE

 Comments
This function returns an error if number or result is NULL.

Related Functions
OCIErrorGet(), OCINumberRound(), OCINumberTrunc()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-143

OCINumberIsZero()

Purpose
Tests if the given NUMBER is equal to zero.

Syntax
sword OCINumberIsZero (OCIError *err,
 CONST OCINumber *number,
 boolean *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to compare.

result (OUT)
Set to TRUE if equal to zero; otherwise, set to FALSE.

Comments
This function returns an error if the NUMBER argument is NULL.

Related Functions
OCIErrorGet(), OCINumberSetZero()

OCINumberLn()

18-144 Oracle Call Interface Programmer's Guide

OCINumberLn()

Purpose
Takes the natural logarithm (base e) of an Oracle NUMBER.

Syntax
sword OCINumberLn (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Logarithm of this NUMBER is computed.

result (OUT)
Logarithm result.

Comments
This function returns an error if either of the NUMBER arguments is NULL, or if
number is less than or equal to zero.

Related Functions
OCIErrorGet(), OCINumberExp(), OCINumberLog()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-145

OCINumberLog()

Purpose
Takes the logarithm, to any base, of an Oracle NUMBER.

Syntax
sword OCINumberLog (OCIError *err,
 CONST OCINumber *base,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the logarithm.

number (IN)
Operand.

result (OUT)
Logarithm result.

Comments
This function returns an error if:

■ any of the NUMBER arguments is NULL

■ number <= 0

■ base <= 0

Related Functions
OCIErrorGet(), OCINumberLn()

OCINumberMod()

18-146 Oracle Call Interface Programmer's Guide

OCINumberMod()

Purpose
Gets the modulus (remainder) of the division of two Oracle NUMBERs.

Syntax
sword OCINumberMod (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Remainder of the result.

Comments
This function returns an error if number1 or number2 is NULL, or if there is a
divide-by-zero error.

Related Functions
OCIErrorGet(), OCINumberDiv()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-147

OCINumberMul()

Purpose
Multiplies two Oracle NUMBERs.

Syntax
sword OCINumberMul (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
NUMBER to multiply.

number2 (IN)
NUMBER to multiply.

result (OUT)
Multiplication result.

Comments
Multiplies number1 with number2 and returns result in result.

This function returns an error if any of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberDiv()

OCINumberNeg()

18-148 Oracle Call Interface Programmer's Guide

OCINumberNeg()

Purpose
Negates an Oracle NUMBER.

Syntax
sword OCINumberNeg (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to negate.

result (OUT)
Contains negated value of number.

Comments
This function returns an error if either of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberAbs(), OCINumberSign()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-149

OCINumberPower()

Purpose
Raises a given base to a given exponent.

Syntax
sword OCINumberPower (OCIError *err,
 CONST OCINumber *base,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

number (IN)
Exponent to which the base is to be raised.

result (OUT)
Output of exponentiation.

Comments
This function returns an error if any of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberExp()

OCINumberPrec()

18-150 Oracle Call Interface Programmer's Guide

OCINumberPrec()

Purpose
Rounds an OCINumber to a specified number of decimal digits.

Syntax
sword OCINumberPrec (OCIError *err,
 CONST OCINumber *number,
 eword nDigs,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
The number for which to set precision.

nDigs (IN)
The number of decimal digits desired in the result.

result (OUT)
The result.

 Comments
Performs a floating point round with respect to the number of digits.

This function returns an error any of the number arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberRound()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-151

OCINumberRound()

Purpose
Rounds an Oracle NUMBER to a specified decimal place.

Syntax
sword OCINumberRound (OCIError *err,
 CONST OCINumber *number,
 sword decplace,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to round.

decplace (IN)
Number of decimal digits to the right of the decimal point to round to. Negative
values are allowed.

result (OUT)
Output of rounding.

Comments
This function returns an error if any of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberTrunc()

OCINumberSetPi()

18-152 Oracle Call Interface Programmer's Guide

OCINumberSetPi()

Purpose
Sets an OCINumber to Pi.

Syntax
void OCINumberSetPi (OCIError *err,
 OCINumber *num);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

num (OUT)
NUMBER set to the value of Pi.

Comments
Initializes the given NUMBER to the value of Pi.

Related Functions
OCIErrorGet()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-153

OCINumberSetZero()

Purpose
Initializes an Oracle NUMBER to zero.

Syntax
void OCINumberSetZero (OCIError *err
 OCINumber *num);

Parameters

err (IN)
A valid OCI error handle. This function does not check for errors because the
function will never produce an error.

num (IN/OUT)
NUMBER to initialize to zero value.

Comments
None.

Related Functions
OCIErrorGet()

OCINumberShift()

18-154 Oracle Call Interface Programmer's Guide

OCINumberShift()

Purpose
Multiplies a NUMBER by a power of 10 by shifting it a specified number of decimal
places.

Syntax
sword OCINumberShift (OCIError *err,
 CONST OCINumber *number,
 CONST sword nDig,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle NUMBER to be shifted.

nDig (IN)
Number of decimal places to shift.

result (OUT)
Shift result.

 Comments
Multiplies number by 10^nDig and sets product to the result.

This function returns an error if the input number is NULL.

Related Functions
OCIErrorGet()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-155

OCINumberSign()

Purpose
Gets sign of an Oracle NUMBER.

Syntax
sword OCINumberSign (OCIError *err,
 CONST OCINumber *number,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER whose sign is returned.

result (OUT)
Possible values:

Comments
This function returns an error if number or result is NULL.

Related Functions
OCIErrorGet(), OCINumberAbs()

Table 18–14 Values of result

Value of number Output in result parameter

number < 0 -1

number == 0 0

number > 0 1

OCINumberSin()

18-156 Oracle Call Interface Programmer's Guide

OCINumberSin()

Purpose
Computes the sine in radians of an Oracle NUMBER.

Syntax
sword OCINumberSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine in radians.

result (OUT)
Result of the sine.

Comments
This function returns an error if either of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberArcSin()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-157

OCINumberSqrt()

Purpose
Computes the square root of an Oracle NUMBER.

Syntax
sword OCINumberSqrt (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

result (OUT)
Output which will contain the square root of the input NUMBER.

Comments
This function returns an error if number is NULL or number is negative.

Related Functions
OCIErrorGet(), OCINumberPower()

OCINumberSub()

18-158 Oracle Call Interface Programmer's Guide

OCINumberSub()

Purpose
Subtract two Oracle NUMBERs.

Syntax
sword OCINumberSub (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
This function subtracts number2 from number1.

result (OUT)
Subtraction result.

Comments
Subtracts number2 from number1 and returns result in result.

This function returns an error if any of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberAdd()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-159

OCINumberTan()

Purpose
Computes the tangent in radians of an Oracle NUMBER.

Syntax
sword OCINumberTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent in radians.

result (OUT)
Result of the tangent.

Comments
This function returns an error if any of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberArcTan(), OCINumberArcTan2()

OCINumberToInt()

18-160 Oracle Call Interface Programmer's Guide

OCINumberToInt()

Purpose
Converts an Oracle NUMBER type to integer.

Syntax
sword OCINumberToInt (OCIError *err,
 CONST OCINumber *number,
 uword rsl_length,
 uword rsl_flag,
 dvoid *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to convert.

rsl_length (IN)
Size of the desired result.

rsl_flag (IN)
Flag that designates the sign of the output, as follows:

■ OCI_NUMBER_UNSIGNED - Unsigned values

■ OCI_NUMBER_SIGNED - Signed values

rsl (OUT)
Pointer to space for the result.

Comments
This is a native type conversion function. It converts the given Oracle NUMBER into
an integer of the form xbn, such as ub2, ub4, or sb2.

This function returns an error if number or rsl is NULL, if number is too big
(overflow) or too small (underflow), or if an invalid sign flag value is passed in
rsl_flag.

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-161

Related Functions
OCIErrorGet(), OCINumberFromInt()

OCINumberToReal()

18-162 Oracle Call Interface Programmer's Guide

OCINumberToReal()

Purpose
Converts an Oracle NUMBER type to real.

Syntax
sword OCINumberToReal (OCIError *err,
 CONST OCINumber *number,
 uword rsl_length,
 dvoid *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
NUMBER to convert.

rsl_length (IN)
The size of the desired result, which equals sizeof({ float | double | long
double}).

rsl (OUT)
Pointer to space for storing the result.

Comments
This is a native type conversion function. It converts an Oracle NUMBER into a
machine-native real type. This function only converts NUMBERs up to LDBL_DIG,
DBL_DIG, or FLT_DIG digits of precision and removes trailing zeroes. These
constants are defined in float.h.

You must pass a valid OCINumber to this function. Otherwise, the result is
undefined.

Related Functions
OCIErrorGet(), OCINumberFromReal()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-163

OCINumberToRealArray()

Purpose
Converts an array of NUMBER to an array of real.

Syntax
sword OCINumberToRealArray (OCIError *err,
 CONST OCINumber **number,
 uword elems,
 uword rsl_length,
 dvoid *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Pointer to array of NUMBER to be converted.

elems (IN)
Maximum number of NUMBER pointers.

rsl_length (IN)
The size of the desired result, that is, sizeof({ float | double | long
double }).

rsl (OUT)
Pointer to array of space for storing the result.

Comments
Native type conversion function that converts an Oracle NUMBER into a
machine-native real type. This function only converts numbers up to LDBL_DIG,
DBL_DIG, or FLT_DIG digits of precision and removes trailing zeroes. The
constants are defined in the float.h header file.

You must pass a valid OCINumber to this function. Otherwise, the result is
undefined.

OCINumberToRealArray()

18-164 Oracle Call Interface Programmer's Guide

Returns
■ OCI_SUCCESS - the function completes successfully.

■ OCI_INVALID_HANDLE - if err is NULL.

■ OCI_ERROR - if number or rsl is NULL, or rsl_length is 0.

Related Functions
OCIErrorGet(), OCINumberToReal()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-165

OCINumberToText()

Purpose
Converts an Oracle NUMBER to a character string according to a specified format.

Syntax
sword OCINumberToText (OCIError *err,
 CONST OCINumber *number,
 CONST OraText *fmt,
 ub4 fmt_length,
 CONST OraText *nls_params,
 ub4 nls_p_length,
 ub4 *buf_size,
 text *buf);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle NUMBER to convert.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
Global Support format specification. If it is a NULL string ((text *)0), then the
default parameters for the session is used.

nls_p_length (IN)
Length of the nls_params parameter.

buf_size (IN)
Size of the buffer.

OCINumberToText()

18-166 Oracle Call Interface Programmer's Guide

buf (OUT)
Buffer into which the converted string is placed.

Comments
Refer to the TO_NUMBER conversion function described in the Oracle Database SQL
Reference for a description of format and Global Support parameters.

The converted number string is stored in buf, up to a maximum of buf_size
bytes. This function returns an error if:

■ number or buf is NULL

■ buffer is too small

■ invalid format or invalid multibyte format is passed

■ number to text translation for given format causes an overflow

Related Functions
OCIErrorGet(), OCINumberFromText()

OCI NUMBER Functions

OCI Datatype Mapping and Manipulation Functions 18-167

OCINumberTrunc()

Purpose
Truncates an Oracle NUMBER at a specified decimal place.

Syntax
sword OCINumberTrunc (OCIError *err,
 CONST OCINumber *number,
 sword decplace,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input NUMBER.

decplace (IN)
Number of decimal digits to the right of the decimal point at which to truncate.
Negative values are allowed.

result (OUT)
Output of truncation.

Comments
This function returns an error if any of the NUMBER arguments is NULL.

Related Functions
OCIErrorGet(), OCINumberRound()

OCI Raw Functions

18-168 Oracle Call Interface Programmer's Guide

OCI Raw Functions

This section describes the OCI Raw functions.

Table 18–15 Raw Functions

Function/Page Purpose

OCIRawAllocSize() on page 18-169 Get allocated size of raw memory in bytes

OCIRawAssignBytes() on page 18-170 Assign raw bytes to raw

OCIRawAssignRaw() on page 18-171 Assign raw to raw

OCIRawPtr() on page 18-172 Get raw data Pointer

OCIRawResize() on page 18-173 Resize memory of variable-length raw

OCIRawSize() on page 18-175 Get raw size

OCI Raw Functions

OCI Datatype Mapping and Manipulation Functions 18-169

OCIRawAllocSize()

Purpose
Gets allocated size of raw memory in bytes.

Syntax
sword OCIRawAllocSize (OCIEnv *env,
 OCIError *err,
 CONST OCIRaw *raw,
 ub4 *allocsize);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

raw (IN)
Raw data whose allocated size in bytes is returned. This must be a non-NULL
pointer.

allocsize (OUT)
The allocated size of raw memory in bytes is returned.

Comments
The allocated size is greater than or equal to the actual raw size.

Related Functions
OCIErrorGet(), OCIRawResize(), OCIRawSize()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIRawAssignBytes()

18-170 Oracle Call Interface Programmer's Guide

OCIRawAssignBytes()

Purpose
Assigns raw bytes of type ub1* to Oracle OCIRaw* datatype.

Syntax
sword OCIRawAssignBytes (OCIEnv *env,
 OCIError *err,
 CONST ub1 *rhs,
 ub4 rhs_len,
 OCIRaw **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, of datatype ub1.

rhs_len (IN)
Length of the rhs raw bytes.

lhs (IN/OUT)
Left-hand side (target) of the assignment OCIRaw data.

Comments
Assigns rhs raw bytes to lhs raw datatype. The lhs raw may be resized
depending upon the size of the rhs. The raw bytes assigned are of type ub1.

Related Functions
OCIErrorGet(), OCIRawAssignRaw()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Raw Functions

OCI Datatype Mapping and Manipulation Functions 18-171

OCIRawAssignRaw()

Purpose
Assign one Oracle raw datatype to another Oracle raw datatype.

Syntax
sword OCIRawAssignRaw (OCIEnv *env,
 OCIError *err,
 CONST OCIRaw *rhs,
 OCIRaw **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment; OCIRaw data.

lhs (IN/OUT)
Left-hand side (target) of the assignment; OCIRaw data.

Comments
Assigns rhs raw to lhs raw. The lhs raw may be resized depending upon the size
of the rhs.

Related Functions
OCIErrorGet(), OCIRawAssignBytes()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIRawPtr()

18-172 Oracle Call Interface Programmer's Guide

OCIRawPtr()

Purpose
Gets the pointer to raw data.

Syntax
ub1 *OCIRawPtr (OCIEnv *env,
 CONST OCIRaw *raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

raw (IN)
Pointer to the data of a given raw is returned.

Comments
None.

Related Functions
OCIErrorGet(), OCIRawAssignRaw()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Raw Functions

OCI Datatype Mapping and Manipulation Functions 18-173

OCIRawResize()

Purpose
Resizes the memory of a given variable-length raw.

Syntax
sword OCIRawResize (OCIEnv *env,
 OCIError *err,
 ub2 new_size,
 OCIRaw **raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New size of the raw data in bytes.

raw (IN)
Variable-length raw pointer; the raw is resized to new_size.

Comments
This function resizes the memory of the given variable-length raw in the object
cache. The previous contents of the raw are not preserved. This function may
allocate the raw in a new memory region in which case the original memory
occupied by the given raw will be freed. If the input raw is NULL (raw == NULL),
then this function will allocate memory for the raw data.

If the new_size is 0, then this function frees the memory occupied by raw and a
NULL pointer value is returned.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIRawResize()

18-174 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(), OCIRawAllocSize(), OCIRawSize()

OCI Raw Functions

OCI Datatype Mapping and Manipulation Functions 18-175

OCIRawSize()

Purpose
Returns the size of a given raw in bytes.

Syntax
ub4 OCIRawSize (OCIEnv *env,
 CONST OCIRaw *raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

raw (IN/OUT)
Raw whose size is returned.

Comments
None.

Related Functions
OCIErrorGet(), OCIRawAllocSize(), OCIRawSize()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Ref Functions

18-176 Oracle Call Interface Programmer's Guide

OCI Ref Functions

This section describes the OCI Ref functions.

Table 18–16 Ref Functions

Function/Page Purpose

OCIRefAssign() on page 18-177 Assign one REF to another

OCIRefClear() on page 18-178 Clear or nullify a REF

OCIRefFromHex() on page 18-179 Convert hexadecimal string to REF

OCIRefHexSize() on page 18-181 Return size of hexadecimal representation of REF

OCIRefIsEqual() on page 18-182 Compare two REFs for equality

OCIRefIsNull() on page 18-183 Test if a REF is NULL

OCIRefToHex() on page 18-184 Convert REF to hexadecimal string

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 18-177

OCIRefAssign()

Purpose
Assigns one REF to another, such that both reference the same object.

Syntax
sword OCIRefAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *source,
 OCIRef **target);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

source (IN)
REF to copy from.

target (IN/OUT)
REF to copy to.

Comments
Copies source REF to target REF; both then reference the same object. If the
target REF pointer is NULL (*target == NULL), then OCIRefAssign() will
allocate memory for the target REF in the OCI object cache prior to the copy.

Related Functions
OCIErrorGet(), OCIRefIsEqual()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIRefClear()

18-178 Oracle Call Interface Programmer's Guide

OCIRefClear()

Purpose
Clears or NULLifies a given REF.

Syntax
void OCIRefClear (OCIEnv *env,
 OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

ref (IN/OUT)
REF to clear.

Comments
A REF is considered to be a NULL REF if it no longer points to an object. Logically, a
NULL REF is a dangling REF.

Note that a NULL REF is still a valid SQL value and is not SQL NULL. It can be used
as a valid non-NULL constant REF value for a NOT NULL column or attribute of a
row in a table.

If a NULL pointer value is passed as a REF, then this function is non-operational.

Related Functions
OCIErrorGet(), OCIRefIsNull()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 18-179

OCIRefFromHex()

Purpose
Converts the given hexadecimal string into a REF.

Syntax
sword OCIRefFromHex (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST OraText *hex,
 ub4 length,
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context handle; if the resulting ref is initialized with this service context.

hex (IN)
Hexadecimal text string, previously output by OCIRefToHex(), to convert into a
REF.

length (IN)
Length of the hexadecimal text string.

ref (IN/OUT)
The REF into which the hexadecimal string is converted. If *ref is NULL on input,
then space for the REF is allocated in the object cache, otherwise the memory
occupied by the given REF is re-used.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIRefFromHex()

18-180 Oracle Call Interface Programmer's Guide

Comments
This function ensures that the resulting REF is well formed. It does not ensure that
the object pointed to by the resulting REF exists or not.

Related Functions
OCIErrorGet(), OCIRefToHex()

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 18-181

OCIRefHexSize()

Purpose
Returns the size of the hex representation of a REF.

Syntax
ub4 OCIRefHexSize (OCIEnv *env,
 CONST OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

ref (IN)
REF whose size in hexadecimal representation in bytes is returned.

Returns
The size of the hexadecimal representation of the REF.

Comments
Returns the size of the buffer in bytes required for the hexadecimal representation
of the ref. A buffer of at least this size must be passed to the ref-to-hex
(OCIRefToHex()) conversion function.

Related Functions
OCIErrorGet(), OCIRefFromHex()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIRefIsEqual()

18-182 Oracle Call Interface Programmer's Guide

OCIRefIsEqual()

Purpose
Compares two REFs to determine if they are equal.

Syntax
boolean OCIRefIsEqual (OCIEnv *env,
 CONST OCIRef *x,
 CONST OCIRef *y);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

x (IN)
REF to compare.

y (IN)
REF to compare.

Returns
TRUE if the two REFs are equal

FALSE if the two REFs are not equal, or x is NULL, or y is NULL

Comments
Two REFs are equal if and only if they are both referencing the same object,
whether persistent or transient.

Related Functions
OCIErrorGet(), OCIRefAssign()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

Note: Two NULL REFs are considered not equal by this function.

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 18-183

OCIRefIsNull()

Purpose
Tests if a REF is NULL.

Syntax
boolean OCIRefIsNull (OCIEnv *env,
 CONST OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

ref (IN)
REF to test for NULL.

Returns
Returns TRUE if the given REF is NULL; otherwise, returns FALSE.

Comments
A REF is NULL if and only if:

■ it is supposed to be referencing a persistent object, but the object's identifier is
NULL

■ it is supposed to be referencing a transient object, but it is currently not pointing
to an object.

Related Functions
OCIErrorGet(), OCIRefClear()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

Note: A REF is a dangling REF if the object that it points to does
not exist.

OCIRefToHex()

18-184 Oracle Call Interface Programmer's Guide

OCIRefToHex()

Purpose
Converts a REF to a hexadecimal string.

Syntax
sword OCIRefToHex (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *ref,
 OraText *hex,
 ub4 *hex_length);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
REF to be converted into a hexadecimal string; if ref is a NULL REF (that is,
OCIRefIsNull(ref) == TRUE) then zero hex_length value is returned.

hex (OUT)
Buffer that is large enough to contain the resulting hexadecimal string; the contents
of the string is opaque to the caller.

hex_length (IN/OUT)
On input specifies the size of the hex buffer on output specifies the actual size of
the hexadecimal string being returned in hex.

Comments
Converts the given REF into a hexadecimal string, and returns the length of the
string. The resulting string is opaque to the caller.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Ref Functions

OCI Datatype Mapping and Manipulation Functions 18-185

This function returns an error if the given buffer is not big enough to hold the
resulting string.

Related Functions
OCIErrorGet(), OCIRefFromHex(), OCIRefHexSize(), OCIRefIsNull()

OCI String Functions

18-186 Oracle Call Interface Programmer's Guide

OCI String Functions

This section describes the OCI string functions.

Table 18–17 String Functions

Function/Page Purpose

OCIStringAllocSize() on page 18-187 Get allocated size of string memory in bytes

OCIStringAssign() on page 18-188 Assign string to string

OCIStringAssignText() on page 18-189 Assign text string to string

OCIStringPtr() on page 18-191 Get string pointer

OCIStringResize() on page 18-192 Resize string memory

OCIStringSize() on page 18-194 Get string size

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 18-187

OCIStringAllocSize()

Purpose
Gets allocated size of string memory in codepoints (Unicode) or in bytes.

Syntax
sword OCIStringAllocSize (OCIEnv *env,
 OCIError *err,
 CONST OCIString *vs,
 ub4 *allocsize);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

vs (IN)
String whose allocated size in bytes is returned. vs must be a non-NULL pointer.

allocsize (OUT)
The allocated size of string memory in bytes is returned.

Comments
The allocated size is greater than or equal to the actual string size.

Related Functions
OCIErrorGet(), OCIStringResize(), OCIStringSize()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIStringAssign()

18-188 Oracle Call Interface Programmer's Guide

OCIStringAssign()

Purpose
Assigns one string to another string.

Syntax
sword OCIStringAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIString *rhs,
 OCIString **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment. Can be in UTF-16.

lhs (IN/OUT)
Left-hand side (target) of the assignment. Its buffer is UTF-16 if rhs is UTF-16.

Comments
Assigns rhs string to lhs string. The lhs string may be resized depending upon
the size of the rhs. The assigned string is NULL-terminated. The length field will
not include the extra codepoint or byte needed for NULL-termination.

This function returns an error if the assignment operation runs out of space.

Related Functions
OCIErrorGet(), OCIStringAssignText()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 18-189

OCIStringAssignText()

Purpose
Assigns the source text string to the target string.

Syntax
sword OCIStringAssignText (OCIEnv *env,
 OCIError *err,
 CONST OraText *rhs,
 ub2 rhs_len,
 OCIString **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, a text or UTF-16 Unicode string.

rhs_len (IN)
Length of the rhs string in bytes.

lhs (IN/OUT)
Left-hand side (target) of the assignment. Its buffer is Unicode if rhs is Unicode.

Comments
Assigns rhs string to lhs string. The lhs string may be resized depending upon
the size of the rhs. The assigned string is NULL-terminated. The length field will
not include the extra byte or codepoint needed for NULL-termination.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIStringAssignText()

18-190 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(), OCIStringAssign()

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 18-191

OCIStringPtr()

Purpose
Gets a pointer to the text of a given string.

Syntax
text *OCIStringPtr (OCIEnv *env,
 CONST OCIString *vs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

vs (IN)
Pointer to the OCIString object whose character string will be returned. If vs is in
UTF-16, the returned buffer will also be UTF-16. If you want to know the encoding
of the returned buffer, check the UTF-16 information in the OCIString vs itself,
since it is not guaranteed that a particular OCIString must have the same setting
as env does. The function to check should be some object OCI function designed to
check member fields in objects.

Comments
None.

Related Functions
OCIErrorGet(), OCIStringAssign()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCIStringResize()

18-192 Oracle Call Interface Programmer's Guide

OCIStringResize()

Purpose
Resizes the memory of a given string.

Syntax
sword OCIStringResize (OCIEnv *env,
 OCIError *err,
 ub4 new_size,
 OCIString **str);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New memory size of the string in bytes. new_size must include space for the
NULL character as the string terminator.

str (IN/OUT)
Allocated memory for the string which is freed from the OCI object cache.

Comments
This function resizes the memory of the given variable-length string in the object
cache. Contents of the string are not preserved. This function may allocate the string
in a new memory region, in which case the original memory occupied by the given
string is freed. If str is NULL, this function allocates memory for the string. If
new_size is 0, this function frees the memory occupied by str and a NULL pointer
value is returned.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI String Functions

OCI Datatype Mapping and Manipulation Functions 18-193

Related Functions
OCIErrorGet(), OCIStringAllocSize(), OCIStringSize()

OCIStringSize()

18-194 Oracle Call Interface Programmer's Guide

OCIStringSize()

Purpose
Gets the size of the given string vs.

Syntax
ub4 OCIStringSize (OCIEnv *env,
 CONST OCIString *vs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

vs (IN)
String whose size is returned, in number of bytes.

Comments
The returned size does not include an extra byte for NULL termination.

Related Functions
OCIErrorGet(), OCIStringResize()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 18-195

OCI Table Functions

This section describes the OCI Table functions.

Table 18–18 Table Functions

Function/Page Purpose

OCITableDelete() on page 18-196 Delete element

OCITableExists() on page 18-198 Test whether element exists

OCITableFirst() on page 18-199 Return first index of table

OCITableLast() on page 18-201 Return last index of table

OCITableNext() on page 18-202 Return next available index of table

OCITablePrev() on page 18-204 Return previous available index of table

OCITableSize() on page 18-206 Return current size of table

OCITableDelete()

18-196 Oracle Call Interface Programmer's Guide

OCITableDelete()

Purpose
Deletes the element at the specified index.

Syntax
sword OCITableDelete (OCIEnv *env,
 OCIError *err,
 sb4 index,
 OCITable *tbl);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element which must be deleted.

tbl (IN)
Table whose element is deleted.

Comments
This function returns an error if the element at the given index has already been
deleted or if the given index is not valid for the given table. It is also an error if any
input parameter is NULL.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

Note: The position ordinals of the remaining elements of the table
are not changed by OCITableDelete(). The delete operation
creates holes in the table.

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 18-197

Related Functions
OCIErrorGet(), OCITableExists()

OCITableExists()

18-198 Oracle Call Interface Programmer's Guide

OCITableExists()

Purpose
Tests whether an element exists at the given index.

Syntax
sword OCITableExists (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 index,
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table in which the given index is checked.

index (IN)
Index of the element which is checked for existence.

exists (OUT)
Set to TRUE if element at given index exists; otherwise, it is set to FALSE.

Comments
This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCITableDelete()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 18-199

OCITableFirst()

Purpose
Returns the index of the first existing element in a given table.

Syntax
sword OCITableFirst (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 *index);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
First index of the element which exists in the given table is returned.

Comments
For example, if OCITableDelete() deleted the first 5 elements of a table,
OCITableFirst() returns 6.

This function returns an error if the table is empty.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

See Also: OCITableDelete() for information regarding
non-data holes in tables.

OCITableFirst()

18-200 Oracle Call Interface Programmer's Guide

Related Functions
OCIErrorGet(), OCITableDelete(), OCITableLast()

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 18-201

OCITableLast()

Purpose
Returns the index of the last existing element of a table.

Syntax
sword OCITableLast (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 *index);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
Index of the last existing element in the table.

Comments
This function returns an error if the table is empty.

Related Functions
OCIErrorGet(), OCITableFirst(), OCITableNext(), OCITablePrev()

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCITableNext()

18-202 Oracle Call Interface Programmer's Guide

OCITableNext()

Purpose
Returns the index of the next existing element of a table.

Syntax
sword OCITableNext (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST OCITable *tbl,
 sb4 *next_index
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for starting point of scan.

tbl (IN)
Table to scan.

next_index (OUT)
Index of the next existing element after tbl(index).

exists (OUT)
FALSE if no next index is available, else TRUE.

Comments
Returns the smallest position j, greater than index, such that exists(j) is TRUE.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 18-203

Related Functions
OCIErrorGet(), OCITablePrev()

See Also: Refer to the description of OCIStringAllocSize(),
regarding the existence of non-data holes in tables.

OCITablePrev()

18-204 Oracle Call Interface Programmer's Guide

OCITablePrev()

Purpose
Returns the index of the previous existing element of a table.

Syntax
sword OCITablePrev (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST OCITable *tbl,
 sb4 *prev_index
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for starting point of scan.

tbl (IN)
Table to scan.

prev_index (OUT)
Index of the previous existing element before tbl(index).

exists (OUT)
FALSE if no previous index is available, else TRUE.

Comments
Return the largest position j, less than index, such that exists(j) is TRUE.

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 18-205

Related Functions
OCITableNext()

See Also: Refer to the description of OCIStringAllocSize(),
regarding the existence of non-data holes in tables.

OCITableSize()

18-206 Oracle Call Interface Programmer's Guide

OCITableSize()

Purpose
Returns the size of the given table, not including deleted elements.

Syntax
sword OCITableSize (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl
 sb4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Nested table whose number of elements is returned.

size (OUT)
Current number of elements in the nested table. The count does not include deleted
elements.

Comments
The count will be decremented upon deleting elements from the nested table. So
this count does not include any holes created by deleting elements. To get the count
not including the deleted elements, use OCICollSize().

For example:

OCITableSize(...);
// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
OCITableSize(...);

See Also: OCIEnvCreate() on page 15-9 and
OCIInitialize() on page 15-18

OCI Table Functions

OCI Datatype Mapping and Manipulation Functions 18-207

// 'size' returned is equal to 4

To get the count plus the count of deleted elements use OCICollSize().
Continuing the previous example:

OCICollSize(...)
// 'size' returned is still equal to 5

This function returns an error if an error occurs during the loading of the nested
table into the object cache, or if any of the input parameters is NULL.

Related Functions
OCICollSize()

OCITableSize()

18-208 Oracle Call Interface Programmer's Guide

OCI Cartridge Functions 19-1

19
OCI Cartridge Functions

This chapter presents the cartridge functions.

This chapter contains these topics:

■ Introduction to External Procedure and Cartridge Services Functions

■ Cartridge Services — OCI External Procedures

■ Cartridge Services — Memory Services

■ Cartridge Services — Maintaining Context

■ Cartridge Services — Parameter Manager Interface

■ Cartridge Services — File I/O Interface

■ Cartridge Services — String Formatting Interface

See Also: For code examples, see the demonstration programs
included with your Oracle installation. For additional information,
refer to Appendix B, "OCI Demonstration Programs".

Introduction to External Procedure and Cartridge Services Functions

19-2 Oracle Call Interface Programmer's Guide

Introduction to External Procedure and Cartridge Services Functions

This chapter first describes the OCI external procedure functions. These functions
enable users of external procedures to raise errors, allocate some memory, and get
OCI context information.

Then the cartridge services functions are described.

The Function Syntax
 For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
The function declaration.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described next:

See Also: For more information about using these functions in
external procedures, see the chapter on external routines in Oracle
Database Application Developer's Guide - Fundamentals

See Also: For more information about using these functions, see
Oracle Data Cartridge Developer's Guide

Table 19–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction to External Procedure and Cartridge Services Functions

OCI Cartridge Functions 19-3

Comments
More detailed information about the function (if available). This may include
restrictions on the use of the function, or other information that might be useful
when using the function in an application.

Returns
A list of possible return values for the function.

Related Functions
A list of related function calls. For cartridge services, see all the other functions in
the group being documented.

Return Codes
Success and error return codes are defined for certain external procedure interface
functions. If a particular interface function returns OCIEXTPROC_SUCCESS or
OCIEXTPROC_ERROR, then applications must use these macros to check for return
values.

■ OCIEXTPROC_SUCCESS - External Procedure Success Return Code

■ OCIEXTPROC_ERROR - External Procedure Failure Return Code

With_Context Type
The C callable interface to PL/SQL external procedures requires the
with_context parameter to be passed. The type of this structure is
OCIExtProcContext, which is opaque to the user.

The user can declare the with_context parameter in the application as

OCIExtProcContext *with_context;

Cartridge Services — OCI External Procedures

19-4 Oracle Call Interface Programmer's Guide

Cartridge Services — OCI External Procedures

The OCI external procedure functions for C:

Table 19–2 External Procedures Functions

Function/Page Purpose

OCIExtProcAllocCallMemory() on page 19-5 Allocates memory for the duration of the External
Procedure

OCIExtProcRaiseExcp() on page 19-6 Raises an Exception to PL/SQL

OCIExtProcRaiseExcpWithMsg() on page 19-7 Raises an exception with a message

OCIExtProcGetEnv() on page 19-9 Gets the OCI environment, service context, and error
handles

Cartridge Services — OCI External Procedures

OCI Cartridge Functions 19-5

OCIExtProcAllocCallMemory()

Purpose
Allocate N bytes of memory for the duration of the External Procedure.

Syntax
dvoid * OCIExtProcAllocCallMemory (OCIExtProcContext *with_context,
 size_t amount);
Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure.

amount (IN)
The number of bytes to allocate.

Comments
This call allocates amount bytes of memory for the duration of the call of the
external procedure.

Any memory allocated by this call is freed by PL/SQL upon return from the
external procedure. The application must not use any kind of free() function on
memory allocated by OCIExtProcAllocCallMemory(). Use this function to
allocate memory for function returns.

A zero return value should be treated as an error

Returns
An untyped (opaque) Pointer to the allocated memory.

Example
text *ptr = (text *)OCIExtProcAllocCallMemory(wctx, 1024)

Related Functions
OCIErrorGet(), OCIMemoryAlloc().

See Also: "With_Context Type" on page 19-3

OCIExtProcRaiseExcp()

19-6 Oracle Call Interface Programmer's Guide

OCIExtProcRaiseExcp()

Purpose
Raise an Exception to PL/SQL.

Syntax
size_t OCIExtProcRaiseExcp (OCIExtProcContext *with_context,
 int errnum);
Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure.

errnum (IN)
Oracle Error number to signal to PL/SQL. errnum must be a positive number and
in the range 1 to 32767.

Comments
Calling this function signals an exception back to PL/SQL. After a successful return
from this function, the external procedure must start its exit handling and return
back to PL/SQL. Once an exception is signalled to PL/SQL, IN/OUT and OUT
arguments, if any, are not processed at all.

Returns
This function returns OCIEXTPROC_SUCCESS if the call was successful. It returns
OCIEXTPROC_ERROR if the call has failed.

Related Functions
OCIExtProcRaiseExcpWithMsg()

See Also: "With_Context Type" on page 19-3

Cartridge Services — OCI External Procedures

OCI Cartridge Functions 19-7

OCIExtProcRaiseExcpWithMsg()

Purpose
Raise an exception with a message.

Syntax
size_t OCIExtProcRaiseExcpWithMsg (OCIExtProcContext *with_context,
 int errnum,
 char *errmsg,
 size_t msglen);

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure.

errnum (IN)
Oracle Error number to signal to PL/SQL. The value of errnum must be a positive
number and in the range 1 to 32767

errmsg (IN)
The error message associated with the errnum.

len (IN)
The length of the error message. Pass zero if errmsg is a NULL-terminated string.

Comments
Raise an exception to PL/SQL. In addition, substitute the following error message
string within the standard Oracle error message string.

Returns
This function returns OCIEXTPROC_SUCCESS if the call was successful. It returns
OCIEXTPROC_ERROR if the call has failed.

See Also: "With_Context Type" on page 19-3

See Also: See the description of OCIExtProcRaiseExcp() for
more information.

OCIExtProcRaiseExcpWithMsg()

19-8 Oracle Call Interface Programmer's Guide

Related Functions
OCIExtProcRaiseExcp()

Cartridge Services — OCI External Procedures

OCI Cartridge Functions 19-9

OCIExtProcGetEnv()

Purpose
Gets the OCI environment, service context, and error handles.

Syntax
sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv envh,
 OCISvcCtx svch,
 OCIError errh);
Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See
"With_Context Type" on page 19-3.

envh (OUT)
The OCI Environment handle.

svch (OUT)
The OCI Service handle.

errh (OUT)
The OCI Error handle.

Comments
The primary purpose of this function is to allow OCI callbacks to use the database
in the same transaction. The OCI handles obtained by this function should be used
in OCI callbacks to the database. If these handles are obtained through standard
OCI calls, then these handles use a new connection to the database and cannot be
used for callbacks in the same transaction. In one external procedure you can use
either callbacks or a new connection, but not both.

Returns
This function returns OCI_SUCCESS if the call was successful; otherwise, it returns
OCI_ERROR.

OCIExtProcGetEnv()

19-10 Oracle Call Interface Programmer's Guide

Related Functions
OCIEnvCreate(), OCIAttrGet(), OCIHandleAlloc()

Cartridge Services — Memory Services

OCI Cartridge Functions 19-11

Cartridge Services — Memory Services

This section describes the memory services functions.

Table 19–3 Memory Services Functions

Function/Page Purpose

OCIDurationBegin() on page 19-12 Starts a user duration.

OCIDurationEnd() on page 19-14 Terminates a user duration.

OCIMemoryAlloc() on page 19-15 Allocates memory of a given size from a given duration.

OCIMemoryResize() on page 19-17 Resizes a memory chunk.

OCIMemoryFree() on page 19-18 Frees a memory chunk.

See Also: For more information about using these functions, see
Oracle Data Cartridge Developer's Guide

OCIDurationBegin()

19-12 Oracle Call Interface Programmer's Guide

OCIDurationBegin()

Purpose
Starts a user duration.

Syntax
sword OCIDurationBegin (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration parent,
 OCIDuration *duration);

Parameters

env (IN/OUT)
The OCI environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

svc (IN)
The OCI service context handle. This should be passed as NULL for cartridge
services.

parent (IN)
The duration number of the parent duration. One of these:

■ A user duration that was previously created.

■ OCI_DURATION_STATEMENT

■ OCI_DURATION_SESSION

duration (OUT)
An identifier unique to the newly created user duration.

Comments
This function starts an user duration. A user can have multiple active user
durations simultaneously. The user durations do not have to be nested. The
duration parameter is used to return a number which uniquely identifies the
duration created by this call.

Note that the environment and service context parameters cannot both be NULL.

Cartridge Services — Memory Services

OCI Cartridge Functions 19-13

Related Functions
OCIDurationEnd()

OCIDurationEnd()

19-14 Oracle Call Interface Programmer's Guide

OCIDurationEnd()

Purpose
Terminates a user duration.

Syntax
sword OCIDurationEnd (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIDuration duration,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

duration (IN)
A user duration previously created by OCIDurationBegin().

svc (IN)
OCI service context (this should be passed as NULL for cartridge services, otherwise
non-NULL)

Comments
This function terminates a user duration.

Note that the environment and service context parameters cannot both be NULL.

Related Functions
OCIDurationBegin()

Cartridge Services — Memory Services

OCI Cartridge Functions 19-15

OCIMemoryAlloc()

Purpose
This call allocates memory of a given size from a given duration.

Syntax
sword OCIMemoryAlloc(dvoid *hndl,
 OCIError *err,
 dvoid **mem,
 OCIDuration dur,
 ub4 size,
 ub4 flags);

Parameters

hndl (IN)
The OCI environment handle.

err (IN)
The error handle.

mem (OUT)
Memory allocated.

dur (IN)
One of the following (a previously created user duration):

OCI_DURATION_CALLOUT

OCI_DURATION_STATEMENT

OCI_DURATION_SESSION

 OCI_DURATION_PROCESS

size (IN)
Size of memory to be allocated.

flags (IN)
Set OCI_MEMORY_CLEARED bit to get memory that has been cleared.

OCIMemoryAlloc()

19-16 Oracle Call Interface Programmer's Guide

Comments
To allocate memory for duration of callout of agent, that is, external procedure
duration, use OCIExtProcAllocCallMemory() or OCIMemoryAlloc() with
dur as OCI_DURATION_CALLOUT.

 Returns
Error code.

Cartridge Services — Memory Services

OCI Cartridge Functions 19-17

OCIMemoryResize()

Purpose
This call resizes a memory chunk to a new size.

Syntax
sword OCIMemoryResize(dvoid *hndl,
 OCIError *err,
 dvoid **mem,
 ub4 newsize,
 ub4 flags);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

mem (IN/OUT)
Pointer to memory allocated previously using OCIMemoryAlloc().

newsize (IN)
Size of memory requested.

flags (IN)
Set OCI_MEMORY_CLEARED bit to get memory that has been cleared

Comments
Memory must have been allocated before this function can be called to resize.

Returns
Error code.

OCIMemoryFree()

19-18 Oracle Call Interface Programmer's Guide

OCIMemoryFree()

Purpose
This call frees a memory chunk.

Syntax
sword OCIMemoryFree(dvoid *hndl,
 OCIError *err,
 dvoid *mem);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

mem (IN/OUT)
Pointer to memory allocated previously using OCIMemoryAlloc().

Returns
Error code.

Cartridge Services — Maintaining Context

OCI Cartridge Functions 19-19

Cartridge Services — Maintaining Context

This section describes the maintaining context functions.

Table 19–4 Maintaining Context Functions

Function/Page Purpose

OCIContextSetValue() on page 19-20 Save a value (or address) for a particular duration.

OCIContextGetValue() on page 19-22 Return the value stored in the context.

OCIContextClearValue() on page 19-23 Remove the value stored in the context.

OCIContextGenerateKey() on page 19-24 Returns a unique 4-byte value each time it is called.

See Also: For more information about using these functions, see
Oracle Data Cartridge Developer's Guide

OCIContextSetValue()

19-20 Oracle Call Interface Programmer's Guide

OCIContextSetValue()

Purpose
This call is used to save a value (or address) for a particular duration.

Syntax
sword OCIContextSetValue(dvoid *hndl,
 OCIError *err,
 OCIDuration duration,
 ub1 *key,
 ub1 keylen,
 dvoid *ctx_value);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

duration (IN)
One of the following (a previously created user duration):

OCI_DURATION_STATEMENT

OCI_DURATION_SESSION

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

ctx_value (IN)
Pointer that will be saved in the context.

Comments
The context value being stored must be allocated out of memory of duration greater
than or equal to the duration being passed in. The key being passed in should be
unique in this session. Trying to save a context value under the same key and

Cartridge Services — Maintaining Context

OCI Cartridge Functions 19-21

duration again will result in overwriting the old context value with the new one.
Typically, a client will allocate a structure, store its address in the context using this
call, and get this address in a separate call using OCIContextGetValue(). The
(key, value) association can be explicitly removed by calling
OCIContextClearValue() or else it will go away at the end of the duration.

Returns
■ If operation succeeds, return OCI_SUCCESS.

■ If operation fails, return OCI_ERROR.

OCIContextGetValue()

19-22 Oracle Call Interface Programmer's Guide

OCIContextGetValue()

Purpose
This call is used to return the value that is stored in the context associated with the
given key (by calling OCIContextSetValue()).

Syntax
sword OCIContextGetValue(dvoid *hndl,
 OCIError *err,
 ub1 *key,
 ub1 keylen,
 dvoid **ctx_value);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

ctx_value (IN)
Pointer to the value stored in the context (NULL if no value was stored).

Comments
For ctx_value: a pointer to a preallocated pointer for the stored context to be
returned is required.

Returns
■ If operation succeeds, return OCI_SUCCESS.

■ If operation fails, return OCI_ERROR.

Cartridge Services — Maintaining Context

OCI Cartridge Functions 19-23

OCIContextClearValue()

Purpose
This call is used to remove the value that is stored in the context associated with the
given key (by calling OCIContextSetValue()).

Syntax
sword OCIContextClearValue(dvoid *hndl,
 OCIError *err,
 ub1 *key,
 ub1 keylen);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

Comments
 An error is returned when a non-existent key is passed.

Returns
■ If operation succeeds, returns OCI_SUCCESS.

■ If operation fails, returns OCI_ERROR.

OCIContextGenerateKey()

19-24 Oracle Call Interface Programmer's Guide

OCIContextGenerateKey()

Purpose
This call will return a unique, 4-byte value each time it is called.

Syntax
sword OCIContextGenerateKey(dvoid *hndl,
 OCIError *err,
 ub4 *key);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN)
The error handle.

key (IN)
Unique key value.

keylen (IN)
Length of the key. Maximum is 64 bits.

Comments
This value is going to be unique for each session.

Returns
■ If operation succeeds, return OCI_SUCCESS.

■ If operation fails, return OCI_ERROR.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-25

Cartridge Services — Parameter Manager Interface

This section describes the parameter manager interface functions.

Table 19–5 Parameter Manager Interface Functions

Function/Page Purpose

OCIExtractFromFile() on page 19-32 The keys and their values in the given file are processed.

OCIExtractFromList() on page 19-40 Generates a list of values for the parameter denoted by index
in the parameter list.

OCIExtractFromStr() on page 19-33 The keys and the their values in the given string are processed.

OCIExtractInit() on page 19-26 Initializes the parameter manager.

OCIExtractReset() on page 19-28 Re-initializes memory.

OCIExtractSetKey() on page 19-30 Registers information about a key with the parameter manager.

OCIExtractSetNumKeys() on page 19-29 Informs the parameter manager of the number of keys that will
be registered.

OCIExtractTerm() on page 19-27 Releases all dynamically allocated storage.

OCIExtractToBool() on page 19-35 Gets the boolean value for the specified key.

OCIExtractToInt() on page 19-34 Gets the integer value for the specified key.

OCIExtractToList() on page 19-39 Generates a list of parameters from the parameter structures
that are stored in memory.

OCIExtractToOCINum() on page 19-38 Gets the number value for the specified key.

OCIExtractToStr() on page 19-36 Gets the string value for the specified key.

See Also: For more information about using these functions, see
Oracle Data Cartridge Developer's Guide

OCIExtractInit()

19-26 Oracle Call Interface Programmer's Guide

OCIExtractInit()

Purpose
This function initializes the parameter manager.

Syntax
sword OCIExtractInit(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

Comments
This function must be called before calling any other parameter manager routine
and it must only be called once. The Globalization Support information is stored
inside the parameter manager context and used in subsequent calls to
OCIExtract* routines.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-27

OCIExtractTerm()

Purpose
This function releases all dynamically allocated storage.

Syntax
sword OCIExtractTerm(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

Comments
This function may perform other internal bookkeeping functions. It must be called
when the parameter manager is no longer being used and it must only be called
once.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIExtractReset()

19-28 Oracle Call Interface Programmer's Guide

OCIExtractReset()

Purpose
The memory currently used for parameter storage, key definition storage, and
parameter value lists is freed and the structure is re-initialized.

Syntax
sword OCIExtractReset(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-29

OCIExtractSetNumKeys()

Purpose
Informs the parameter manager of the number of keys that will be registered.

Syntax
sword OCIExtractSetNumKeys(dvoid *hndl,
 CIError *err,
 uword numkeys);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

numkeys (IN)
The number of keys that will be registered with OCIExtractSetKey().

Comments
This routine must be called prior to the first call of OCIExtractSetKey().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIExtractSetKey()

19-30 Oracle Call Interface Programmer's Guide

OCIExtractSetKey()

Purpose
Registers information about a key with the parameter manager.

Syntax
sword OCIExtractSetKey(dvoid *hndl,
 OCIError *err,
 CONST text *name,
 ub1 type,
 ub4 flag,
 CONST dvoid *defval,
 CONST sb4 *intrange,
 CONST text *strlist);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

name (IN)
The name of the key.

type (IN)
The type of the key:

OCI_EXTRACT_TYPE_INTEGER,

OCI_EXTRACT_TYPE_OCINUM,

OCI_EXTRACT_TYPE_STRING,

OCI_EXTRACT_TYPE_BOOLEAN.

flag (IN)
Set to OCI_EXTRACT_MULTIPLE if the key can take multiple values or 0
otherwise.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-31

defval (IN)
Set to the default value for the key. It may be NULL if there is no default. A string
default must be a (text*) type, an integer default must be an (sb4*) type, and a
boolean default must be a (ub1*) type.

intrange (IN)
Starting and ending values for the allowable range of integer values; may be NULL
if the key is not an integer type or if all integer values are acceptable.

strlist (IN)
List of all acceptable text strings for the key ended with 0 (or NULL). May be NULL if
the key is not a string type or if all text values are acceptable.

Comments
This routine must be called after calling OCIExtractNumKeys() and before
calling OCIExtractFromFile() or OCIExtractFromStr().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIExtractFromFile()

19-32 Oracle Call Interface Programmer's Guide

OCIExtractFromFile()

Purpose
The keys and their values in the given file are processed.

Syntax
sword OCIExtractFromFile(dvoid *hndl,
 OCIError *err,
 ub4 flag,
 text *filename);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

flag (IN)
Zero or has one or more of the following bits set:

 OCI_EXTRACT_CASE_SENSITIVE,

OCI_EXTRACT_UNIQUE_ABBREVS,

OCI_EXTRACT_APPEND_VALUES.

filename (IN)
A NULL-terminated filename string.

Comments
OCIExtractSetNumKeys() and OCIExtractSetKey() routines must be called
to define all of the keys before calling this routine.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE,OCI_ERROR.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-33

OCIExtractFromStr()

Purpose
The keys and their values in the given string are processed.

Syntax
sword OCIExtractFromStr(dvoid *hndl,
 OCIError *err,
 ub4 flag,
 text *input);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; for diagnostic information call OCIErrorGet().

flag (IN)
Zero or has one or more of the following bits set:

 OCI_EXTRACT_CASE_SENSITIVE,

OCI_EXTRACT_UNIQUE_ABBREVS,

OCI_EXTRACT_APPEND_VALUES.

input (IN)
A NULL-terminated input string.

Comments
OCIExtractSetNumKeys() and OCIExtractSetKey() routines must be called
to define all of the keys before calling this routine.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, OCI_ERROR.

OCIExtractToInt()

19-34 Oracle Call Interface Programmer's Guide

OCIExtractToInt()

Purpose
Gets the integer value for the specified key. The valno'th value (starting with 0) is
returned.

Syntax
sword OCIExtractToInt(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 sb4 *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

keyname (IN)
Keyname (IN).

valno (IN)
Which value to get for this key.

retval (OUT)
The actual integer value.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, OCI_NO_DATA,OCI_ERROR.

 OCI_NO_DATA means that there is no valno'th value for this key.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-35

OCIExtractToBool()

Purpose
Gets the boolean value for the specified key. The valno'th value (starting with 0) is
returned.

Syntax
sword OCIExtractToBool(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 ub1 *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual boolean value.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, OCI_NO_DATA,OCI_ERROR.

 OCI_NO_DATA means that there is no valno'th value for this key.

OCIExtractToStr()

19-36 Oracle Call Interface Programmer's Guide

OCIExtractToStr()

Purpose
Gets the string value for the specified key. The valno'th value (starting with 0) is
returned.

Syntax
sword OCIExtractToStr(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 text *retval,
 uword buflen);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual NULL-terminated string value.

buflen
The length of the buffer for retval.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-37

OCI_NO_DATA,

OCI_ERROR.

 OCI_NO_DATA means that there is no valno'th value for this key.

OCIExtractToOCINum()

19-38 Oracle Call Interface Programmer's Guide

OCIExtractToOCINum()

Purpose
Gets the OCINumber value for the specified key. The valno'th value (starting with
0) is returned.

Syntax
sword OCIExtractToOCINum(dvoid *hndl,
 OCIError *err,
 text *keyname,
 uword valno,
 OCINumber *retval);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

keyname (IN)
Key name.

valno (IN)
Which value to get for this key.

retval (OUT)
The actual OCINumber value.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_NO_DATA, or OCI_ERROR.

 OCI_NO_DATA means that there is no valno'th value for this key.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-39

OCIExtractToList()

Purpose
Generates a list of parameters from the parameter structures that are stored in
memory. Must be called before OCIExtractValues() is called.

Syntax
sword OCIExtractToList(dvoid *hndl,
 OCIError *err,
 uword *numkeys);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

numkeys (OUT)
The number of distinct keys stored in memory.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIExtractFromList()

19-40 Oracle Call Interface Programmer's Guide

OCIExtractFromList()

Purpose
Generates a list of values for the parameter denoted by index in the parameter list.

Syntax
sword OCIExtractFromList(dvoid *hndl,
 OCIError *err,
 uword index,
 text **name,
 ub1 *type,
 uword *numvals,
 dvoid ***values);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

index (IN)
Which parameter to retrieve from the parameter list.

name (OUT)
The name of the key for the current parameter.

type (OUT)
Type of the current parameter:

OCI_EXTRACT_TYPE_STRING,

OCI_EXTRACT_TYPE_INTEGER,

OCI_EXTRACT_TYPE_OCINUM,

OCI_EXTRACT_TYPE_BOOLEAN.

numvals (OUT)
Number of values for this parameter.

Cartridge Services — Parameter Manager Interface

OCI Cartridge Functions 19-41

values (OUT)
The values for this parameter.

Comments
OCIExtractToList() must be called prior to calling this routine to generate the
parameter list from the parameter structures that are stored in memory.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — File I/O Interface

19-42 Oracle Call Interface Programmer's Guide

Cartridge Services — File I/O Interface

This section describes the file I/O interface functions.

OCIFileObject
The OCIFileObject data structure holds information about the way in which a file
should be opened and the way in which it will be accessed once it has been opened.
When this structure is initialized by OCIFileOpen(), it becomes an identifier
through which operations can be performed on that file. It is a necessary parameter
to every function that operates on open files. This data structure is opaque to
OCIFile clients. It is initialized by OCIFileOpen() and terminated by
OCIFileClose().

Table 19–6 File I/O Interface Functions

Function/Page Purpose

OCIFileClose() on page 19-47 Closes a previously opened file.

OCIFileExists() on page 19-53 Tests to see if the file exists.

OCIFileFlush() on page 19-55 Writes buffered data to a file.

OCIFileGetLength() on page 19-54 Gets the length of a file.

OCIFileInit() on page 19-43 Initializes the OCIFile package.

OCIFileOpen() on page 19-45 Opens a file.

OCIFileRead() on page 19-48 Reads from a file into a buffer.

OCIFileSeek() on page 19-51 Changes the current position in a file.

OCIFileTerm() on page 19-44 Terminates the OCIFile package.

OCIFileWrite() on page 19-50 Writes buflen bytes into the file.

See Also: For more information about using these functions, see
Oracle Data Cartridge Developer's Guide

Cartridge Services — File I/O Interface

OCI Cartridge Functions 19-43

OCIFileInit()

Purpose
Initializes the OCIFile package. It must be called before any other OCIFile routine is
called.

Syntax
sword OCIFileInit(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIFileTerm()

19-44 Oracle Call Interface Programmer's Guide

OCIFileTerm()

Purpose
Terminates the OCIFile package. It must be called after the OCIFile package is no
longer being used.

Syntax
sword OCIFileTerm(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — File I/O Interface

OCI Cartridge Functions 19-45

OCIFileOpen()

Purpose
Opens a file.

Syntax
sword OCIFileOpen(dvoid *hndl,
 OCIError *err,
 OCIFileObject **filep,
 OraText *filename,
 OraText *path,
 ub4 mode,
 ub4 create,
 ub4 type);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
The file identifier.

filename (IN)
The file name as a NULL-terminated string.

path (IN)
The path of the file as a NULL-terminated string.

mode (IN)
The mode in which to open the file. Valid modes are

OCI_FILE_READ_ONLY,

OCI_FILE_WRITE_ONLY,

OCI_FILE_READ_WRITE.

OCIFileOpen()

19-46 Oracle Call Interface Programmer's Guide

create (IN)
Indicates if the file be created if it does not exist — valid values are:

OCI_FILE_TRUNCATE — create a file regardless of whether or not it exists. If the
file already exists overwrite the existing file.

OCI_FILE_EXCL — fail if the file exists, else create.

OCI_FILE_CREATE — open the file if it exists, and create it if it does not.

OCI_FILE_APPEND — set the file pointer to the end of the file prior to writing.
This flag can be ORed with OCI_FILE_CREATE

type (IN)
File type. Valid values are

OCI_FILE_TEXT,

OCI_FILE_BIN,

OCI_FILE_STDIN,

 OCI_FILE_STDOUT,

OCI_FILE_STDERR.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — File I/O Interface

OCI Cartridge Functions 19-47

OCIFileClose()

Purpose
Closes a previously opened file.

Syntax
sword OCIFileClose(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
A pointer to a file identifier to be closed.

Comments
Once this returns, the OCIFileObject structure pointed to by filep will have
been destroyed. Therefore, you should not attempt to access this structure after this
returns.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIFileRead()

19-48 Oracle Call Interface Programmer's Guide

OCIFileRead()

Purpose
Reads from a file into a buffer.

Syntax
sword OCIFileRead(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep,
 dvoid *bufp,
 ub4 bufl,
 ub4 *bytesread);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

bufp(IN)
The pointer to a buffer into which the data will be read. The length of the allocated
memory is assumed to be bufl.

bufl (IN)
The length of the buffer in bytes.

bytesread (OUT)
The number of bytes read.

Comments
As many bytes as possible will be read into the user buffer. The read will end either
when the user buffer is full, or when it reaches end-of-file.

Cartridge Services — File I/O Interface

OCI Cartridge Functions 19-49

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIFileWrite()

19-50 Oracle Call Interface Programmer's Guide

OCIFileWrite()

Purpose
Writes buflen bytes into the file.

Syntax
sword OCIFileWrite(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep,
 dvoid *bufp,
 ub4 buflen,
 ub4 *byteswritten);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

bufp(IN)
The pointer to a buffer from into which the data will be written. The length of the
allocated memory is assumed to be buflen.

buflen (IN)
The length of the buffer in bytes.

bytesread (OUT)
The number of bytes written.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, OCI_ERROR.

Cartridge Services — File I/O Interface

OCI Cartridge Functions 19-51

OCIFileSeek()

Purpose
Changes the current position in a file.

Syntax
sword OCIFileSeek(dvoid *hndl,
 OCIError *err,
 OCIFileObject *filep,
 uword origin,
 ubig_ora offset,
 sb1 dir);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

origin(IN)
The starting point we want to seek from. The starting point may be

 OCI_FILE_SEEK_BEGINNING (beginning),

OCI_FILE_SEEK_CURRENT (current position),

OCI_FILE_SEEK_END (end of file).

offset (IN)
The number of bytes from the origin you want to start reading from.

dir (IN)
The direction to go from the origin.

OCIFileSeek()

19-52 Oracle Call Interface Programmer's Guide

Comments
This will allow a seek past the end of the file. Reading from such a position will
cause an end-of-file condition to be reported. Writing to such a position will not
work on all file systems. This is because some systems do not allow files to grow
dynamically. They require that files be preallocated with a fixed size. Note that this
function performs a seek to a byte location.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Note: The direction can be either OCIFILE_FORWARD or
OCIFILE_BACKWARD.

Cartridge Services — File I/O Interface

OCI Cartridge Functions 19-53

OCIFileExists()

Purpose
Tests to see if the file exists.

Syntax
sword OCIFileExists(dvoid *hndl,
 OCIError *err,
 OraText *filename,
 OraText *path,
 ub1 *flag);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

filename (IN)
The file name as a NULL-terminated string.

path (IN)
The path of the file as a NULL-terminated string.

flag (OUT)
Set to TRUE if the file exists or FALSE if it does not.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIFileGetLength()

19-54 Oracle Call Interface Programmer's Guide

OCIFileGetLength()

Purpose
Gets the length of a file.

Syntax
sword OCIFileGetLength(dvoid *hndl,
 OCIError *err,
 OraText *filename,
 OraText *path,
 ubig_ora *lenp);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

filename (IN)
The file name as a NULL-terminated string.

path (IN)
The path of the file as a NULL-terminated string.

lenp (OUT)
Set to the length of the file in bytes.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — File I/O Interface

OCI Cartridge Functions 19-55

OCIFileFlush()

Purpose
Writes buffered data to a file.

Syntax
sword OCIFileFlush(dvoid *h
 OCIError *err,
 OCIFileObject *filep);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
A file identifier that uniquely references the file.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — String Formatting Interface

19-56 Oracle Call Interface Programmer's Guide

Cartridge Services — String Formatting Interface

This section describes the string formatting functions.

Table 19–7 String Formatting Functions

Function/Page Purpose

OCIFormatInit() on page 19-57 Initializes the OCIFormat package.

OCIFormatString() on page 19-59 Writes a text string into the supplied text buffer.

OCIFormatTerm() on page 19-58 Terminates the OCIFormat package.

See Also: For more information about using these functions, see
Oracle Data Cartridge Developer's Guide

Cartridge Services — String Formatting Interface

OCI Cartridge Functions 19-57

OCIFormatInit()

Purpose
Initializes the OCIFormat package.

Syntax
sword OCIFormatInit(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

Comments
This routine must be called before calling any other OCIFormat routine and it must
only be called once.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

OCIFormatTerm()

19-58 Oracle Call Interface Programmer's Guide

OCIFormatTerm()

Purpose
Terminates the OCIFormat package.

Syntax
sword OCIFormatTerm(dvoid *hndl,
 OCIError *err);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

Comments
This function must be called after the OCIFormat package is no longer being used
and it must only be called once.

Returns
OCI_SUCCESS,

 OCI_INVALID_HANDLE,

OCI_ERROR.

Cartridge Services — String Formatting Interface

OCI Cartridge Functions 19-59

OCIFormatString()

Purpose
Writes a text string into the supplied text buffer using the argument list submitted
to it and in accordance with the format string given.

Syntax
sword OCIFormatString(dvoid *hndl,
 OCIError *err,
 text *buffer,
 sbig_ora bufferLength,
 sbig_ora *returnLength,
 CONST text *formatString,...);

Parameters

hndl (IN)
The OCI environment or user session handle.

err (IN/OUT)
The OCI error handle; if there is an error, it is recorded in err and this function
returns OCI_ERROR; diagnostic information can be obtained by calling
OCIErrorGet().

buffer (OUT)
The buffer that contains the string.

bufferLength (IN)
The length of the buffer in bytes.

returnLength (OUT)
The number of bytes written to the buffer (excluding the terminating NULL).

formatString (IN)
The format string which can be any combination of literal text and format
specifications. A format specification is delimited by the '%' character and is
followed by any number (including none) of optional format modifiers and
terminated by a mandatory format code. If the format string ends with '%', that is,
with no format modifiers or format specifier following it, then no action is taken.

OCIFormatString()

19-60 Oracle Call Interface Programmer's Guide

The format modifiers and format codes available are described in the tables that
follow.

...(IN)
Variable number of arguments of the form <OCIFormat type wrapper>(<variable>)
where <variable> must be a variable containing the value to be used. No constant
values or expressions are allowed as arguments to the OCIFormat type wrappers;
The OCIFormat type wrappers that are available are listed next. The argument list
must be terminated with OCIFormatEnd.

OCIFormatUb1(ub1 variable);

OCIFormatUb2(ub2 variable);

OCIFormatUb4(ub4 variable);

OCIFormatUword(uword variable);

OCIFormatUbig_ora(ubig_ora variable);

OCIFormatSb1(sb1 variable);

OCIFormatSb2(sb2 variable);

OCIFormatSb4(sb4 variable);

OCIFormatSword(sword variable);

OCIFormatSbig_ora(sbig_ora variable);

OCIFormatEb1(eb1 variable);

OCIFormatEb2(eb2 variable);

OCIFormatEb4(eb4 variable);

OCIFormatEword(eword variable);

OCIFormatChar (text variable);

OCIFormatText(CONST text *variable);

OCIFormatDouble(double variable);

OCIFormatDvoid(CONST dvoid *variable);

OCIFormatEnd

Cartridge Services — String Formatting Interface

OCI Cartridge Functions 19-61

Comments
The first call to this routine must be preceded by a call to the OCIFormatInit routine
that initializes the OCIFormat package for use. When this routine is no longer
needed terminate the OCIFormat package by a call to the OCIFormatTerm routine.

Returns
OCI_SUCCESS,

OCI_INVALID_HANDLE,

OCI_ERROR.

Format Modifiers

19-62 Oracle Call Interface Programmer's Guide

Format Modifiers

A format modifier alters or extends the format specification, allowing more
specialized output. The format modifiers may be in any order and are all optional.

■ If both the '+' and ' ' flags are used in the same format specification then the
' ' flag is ignored.

■ If both the '-' and '0' flags are used in the same format specification then the
'-' flag is ignored.

Alternate output:
■ For the octal format code add a leading zero.

■ For the hexadecimal format code add a leading '0x'.

■ For floating point format codes the output will always have a radix character.

Field Width
<w> where <w> is a number specifying a minimum field width. The converted
argument will be printed in a field at least this wide, and wider if necessary. If the
converted argument takes up fewer display positions than the field width, it will be
padded on the left (or right for left justification) to make up the field width. The
padding character is normally a space, but it is a zero if the zero padding flag was
specified. The special character '*' may be used in place of <w> and indicates the
current argument is to be used for the field width value, the actual field or precision
follows as the next sequential argument.

Table 19–8 Flags (in any order)

Flag Operation

'-' left-justify the output in the field

'+' always print a sign ('+' or '-') for numeric types

' ' if a number's sign is not printed then print a space in the sign
position

'0' pad numeric output with zeros not spaces

Cartridge Services — String Formatting Interface

OCI Cartridge Functions 19-63

Precision
.<p> specifies a period followed by the number <p>, specifying the maximum
number of display positions to print from a string, or digits after the radix point for
a decimal number, or the minimum number of digits to print for an integer type
(leading zeroes will be added to make up the difference). The special character '*'
may be used in place of <p> indicating the current argument contains the precision
value.

Argument Index
(<n>) where <n> is an integer index into the argument list with the first argument
being 1. If no argument index is specified in a format specification the first
argument is selected. The next time no argument index is specified in a format
specification the second argument is selected and so on. Format specifications with
and without argument indexes can be in any order and are independent of each
other in operation.

For example, the format string "%u %(4)u %u %(2)u %u" selects the first, fourth,
second, second, and third arguments given to OCIFormatString().

Format Codes

19-64 Oracle Call Interface Programmer's Guide

Format Codes

A format code specifies how to format an argument that is being written to a string.

Note that these codes can appear in upper case, which will cause all alphabetic
characters in the output to appear in upper case except for text strings, which are
not converted.

Table 19–9 Codes

Codes Operation

'c' single-byte character in the compiler character set

'd' signed decimal integer

'e' exponential (scientific) notation of the form
[-]<d><r>[<d>...]e+[<d>]<d><d> where <r> is the radix
character for the current language and <d> is any single digit;
the default precision is given by the constant OCIFormatDP. the
precision may be optionally specified as a format modifier -
using a precision of 0 suppresses the radix character; the
exponent is always printed in at least 2 digits, and can take up to
3 for example, 1e+01, 1e+10, and 1e+100

'f' fixed decimal notation of the form
[-]<d>[<d>...]<r>[<d>...] where <r> is the appropriate
radix character for the current language and <d> is any single
digit; the precision may be optionally specified as a format
modifier- using a precision of 0 suppresses the radix character.
the default precision is given by the constant OCIFormatDP

'g' variable floating-point notation; chooses 'e' or 'f', selecting
'f'' if the number will fit in the specified precision (default
precision if unspecified), and choosing 'e' only if exponential
format will allow more significant digits to be printed; does not
print a radix character if number has no fractional part

'i' identical to 'd'

'o' unsigned octal integer

'p' operating system-specific pointer printout

Cartridge Services — String Formatting Interface

OCI Cartridge Functions 19-65

's' prints an argument using the default format code for its type:

ociformatub<n>, ociformatuword,
ociformatubig_ora, ociformateb<n>, and
ociformateword.

the format code used is 'u'.

ociformatsb<n>, ociformatsword, and
ociformatsbig_ora.

the format code used is 'd'.

ociformatchar

the format code used is 'c'.

ociformattext

prints text until trailing NULL is found.

ociformatdouble

the format code used is 'g'.

ociformatdvoid

the format code used is 'p'.

' %' - print a '%'.

'u' unsigned decimal integer

'x' unsigned hexadecimal integer

Table 19–9 Codes (Cont.)

Codes Operation

Example

19-66 Oracle Call Interface Programmer's Guide

Example

/* This example shows the power of arbitrary argument */
/* selection in the context of internationalization. A */
/* date is formatted in 2 different ways for 2 different */
/* countries according to the format string yet the */
/* argument list submitted to OCIFormatString remains */
/* invariant. */

text buffer[255];
ub1 day, month, year;
OCIError *err;
dvoid *hndl;
sbig_ora returnLen;

/* Set the date. */

day = 10;
month = 3;
year = 97;

/* Work out the date in United States' style: mm/dd/yy */
OCIFormatString(hndl, err,
 buffer, (sbig_ora)sizeof(buffer), &returnLen
 (CONST text *)"%(2)02u/%(1)02u/%(3)02u",
 OCIFormatUb1(day),
 OCIFormatUb1(month),
 OCIFormatUb1(year),
 OCIFormatEnd); /* Buffer is "03/10/97". */

/* Work out the date in New Zealand style: dd/mm/yy */
OCIFormatString(hndl, err,
 buffer, (sbig_ora)sizeof(buffer), &returnLen
 (CONST text *)"%(1)02u/%(2)02u/%(3)02u",
 OCIFormatUb1(day),
 OCIFormatUb1(month),
 OCIFormatUb1(year),
 OCIFormatEnd); /* Buffer is "10/03/97". */

OCI Any Type and Data Functions 20-1

20
OCI Any Type and Data Functions

This chapter describes the OCI Any Type and Data functions.

This chapter contains these topics:

■ Introduction to Any Type and Data Interfaces

■ OCI Type Interface Functions

■ OCI Any Data Interface Functions

■ OCI Any Data Set Interface Functions

See Also: For code examples, see the demonstration programs
included with your Oracle installation. For additional information,
refer to Appendix B, "OCI Demonstration Programs".

Introduction to Any Type and Data Interfaces

20-2 Oracle Call Interface Programmer's Guide

Introduction to Any Type and Data Interfaces

This chapter describes the OCI Any Type and Data functions in detail.

The Function Syntax
The entries for each function contain the following information:

Purpose
A brief statement of the purpose of the function.

Syntax
The function declaration.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described next:

Comments
Detailed information about the function if available. This may include restrictions
on the use of the function, or other information that might be useful when using the
function in an application. An optional section.

All the functions in this chapter are related to each other.

See Also: AnyType, AnyData and AnyDataSet Interfaces on
page 11-26

Table 20–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction to Any Type and Data Interfaces

OCI Any Type and Data Functions 20-3

Function Return Values
The OCI Any Type and Data functions typically return one of the following values:

Table 20–2 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be
retrieved by calling OCIErrorGet() on the
error handle passed to the function.

OCI_INVALID_HANDLE The OCI handle passed to the function is
invalid.

See Also: For more information about return codes and error
handling, see the section "Error Handling in OCI" on page 2-26

OCI Type Interface Functions

20-4 Oracle Call Interface Programmer's Guide

OCI Type Interface Functions

This section describes the Type Interface functions.

Table 20–3 Type Interface Functions

Function/Page Purpose

OCITypeAddAttr() on page 20-5 Adds an attribute to an object type that was constructed earlier
with typecode OCI_TYPECODE_OBJECT.

OCITypeBeginCreate() on page 20-6 Begins the construction process for a transient type. The type
will be anonymous (no name).

OCITypeEndCreate() on page 20-8 Finishes construction of a type description. Subsequently, only
access will be allowed.

OCITypeSetBuiltin() on page 20-9 Sets built-in type information. This call can be made only if the
type has been constructed with a built-in typecode
(OCI_TYPECODE_NUMBER, and so on).

OCITypeSetCollection() on page 20-10 Sets collection type information. This call can be made only if
the type has been constructed with a collection typecode.

OCI Type Interface Functions

OCI Any Type and Data Functions 20-5

OCITypeAddAttr()

Purpose
Adds an attribute to an object type that was constructed earlier with typecode
OCI_TYPECODE_OBJECT.

Syntax
sword OCITypeAddAttr (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type,
 CONST text *a_name,
 ub4 a_length,
 OCIParam *attr_info);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type description that is being constructed.

a_name (IN)
Optional. The name of the attribute.

a_length (IN)
Optional. The length of attribute name, in bytes.

attr_info (IN)
Information on the attribute. It is obtained by allocating an OCIParam parameter
handle and setting type information in the OCIParam using OCIAttrSet() calls.

OCITypeBeginCreate()

20-6 Oracle Call Interface Programmer's Guide

OCITypeBeginCreate()

Purpose
Begins the construction process for a transient type. The type will be anonymous
(no name).

Syntax
sword OCITypeBeginCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode tc,
 OCIDuration dur,
 OCIType **type);

Parameters

svchp (IN)
The OCI Service Context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tc (IN)
The typecode for the type. The typecode could correspond to an object type or a
built-in type.

Currently, the permissible values for User Defined Types are:

■ OCI_TYPECODE_OBJECT for an Object Type (structured),

■ OCI_TYPECODE_VARRAY for a VARRAY collection type or

■ OCI_TYPECODE_TABLE for a nested table collection type.

For Object types, call OCITypeAddAttr() to add each of the attribute types. For
Collection types, call OCITypeSetCollection(). Subsequently, call
OCITypeEndCreate() to finish the creation process.

The permissible values for built-in type codes are specified in "Typecodes" on
page 3-33. Additional information on built-in types (precision, scale for numbers,
character set information for VARCHAR2s, and so on) if any, must be set with a
subsequent call to OCITypeSetBuiltin(). Finally, you must use
OCITypeEndCreate() to finish the creation process.

OCI Type Interface Functions

OCI Any Type and Data Functions 20-7

dur (IN)
The allocation duration for the type. One of the following:

■ A user duration that was previously created. It can be created by using
OCIDurationBegin().

■ A predefined duration, such as OCI_DURATION_SESSION.

type (OUT)
The OCIType (Type Descriptor) that is being constructed.

Comments
To create a persistent named type, use the SQL statement CREATE TYPE. Transient
types have no identity. They are pure values.

OCITypeEndCreate()

20-8 Oracle Call Interface Programmer's Guide

OCITypeEndCreate()

Purpose
Finishes construction of a type description. Subsequently, only access will be
allowed.

Syntax
sword OCITypeEndCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type description that is being constructed.

OCI Type Interface Functions

OCI Any Type and Data Functions 20-9

OCITypeSetBuiltin()

Purpose
Sets built-in type information. This call can be made only if the type has been
constructed with a built-in typecode (OCI_TYPECODE_NUMBER, and so on).

Syntax
sword OCITypeSetBuiltin (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type,
 OCIParam *builtin_info);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type description that is being constructed.

builtin_info (IN)
Provides information on the built-in (precision, scale, character set, and so on). It is
obtained by allocating an OCIParam parameter handle and setting type
information in the OCIParam using OCIAttrSet() calls.

OCITypeSetCollection()

20-10 Oracle Call Interface Programmer's Guide

OCITypeSetCollection()

Purpose
Sets collection type information. This call can be made only if the type has been
constructed with a collection typecode.

Syntax
sword OCITypeSetCollection (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIType *type,
 OCIParam *collelem_info,
 ub4 coll_count);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type (IN/OUT)
The type descriptor that is being constructed.

collelem_info (IN)
collelem_info provides information about the collection element. It is obtained
by allocating an OCIParam parameter handle and setting type information in the
OCIParam using OCIAttrSet() calls.

coll_count (IN)
The count of elements in the collection. Pass 0 for a nested table (which is
unbounded).

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-11

OCI Any Data Interface Functions

This section describes the Any Data Interface functions.

Table 20–4 Any Data Functions

Function/Page Purpose

OCIAnyDataAccess() on page 20-12 Retrieves the data value of an OCIAnyData.

OCIAnyDataAttrGet() on page 20-14 Gets the value of the attribute at the current position in
the OCIAnyData.

OCIAnyDataAttrSet() on page 20-17 Sets the attribute at the current position with a given
value.

OCIAnyDataBeginCreate() on page 20-20 Allocates an OCIAnyData for the given duration and
initializes it with the type information.

OCIAnyDataCollAddElem() on page 20-22 Adds the next collection element to the collection
attribute of the OCIAnyData at the current attribute
position.

OCIAnyDataCollGetElem() on page 20-24 Accesses sequentially the elements in the collection
attribute at the current position in the OCIAnyData.

OCIAnyDataConvert() on page 20-26 Constructs an OCIAnyData with the given data value
which will be of the given type.

OCIAnyDataDestroy() on page 20-29 Frees an AnyData .

OCIAnyDataEndCreate() on page 20-30 Marks the end of OCIAnyData creation.

OCIAnyDataGetCurrAttrNum() on page 20-31 Returns the current attribute number of the
OCIAnyData.

OCIAnyDataGetType() on page 20-32 Gets the type corresponding to an AnyData value.

OCIAnyDataIsNull() on page 20-33 Checks if OCIAnyData is NULL.

OCIAnyDataTypeCodeToSqlt() on page 20-34 Converts the OCITypeCode for an AnyData value to
the SQLT code that corresponds to the representation of
the value as returned by the OCIAnyData API.

OCIAnyDataAccess()

20-12 Oracle Call Interface Programmer's Guide

OCIAnyDataAccess()

Purpose
Retrieves the data value of an OCIAnyData. The data value should be of the type
with which the OCIAnyData was initialized.This call can be used to access an entire
OCIAnyData which can be of type OCI_TYPECODE_OBJECT, any of the collection
types, or any of the built-in types.

Syntax
sword OCIAnyDataAccess (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode tc,
 OCIType *inst_type,
 dvoid *null_ind,
 dvoid *data_value,
 ub4 *length);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN)
Initialized pointer to an OCIAnyData.

tc (IN)
Typecode of the data value. This is used for type checking (with the initialization
type of the OCIAnyData).

inst_type (IN)
The OCIType of the data value (if it is not a primitive one). If the tc parameter is

■ OCI_TYPECODE_OBJECT,

■ OCI_TYPECODE_REF,

■ OCI_TYPECODE_VARRAY,

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-13

■ OCI_TYPECODE_TABLE,

then this parameter should be not NULL. Otherwise, it could be NULL.

null_ind (OUT)
Indicates if the data_value is NULL. Pass an (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The value returned will be OCI_IND_NOTNULL if the
value is not NULL and it will be OCI_IND_NULL for a NULL value. If the typecode
is OCI_TYPECODE_OBJECT, pass a pointer to the indicator struct of the
data_value as the argument here. See OCIAnyDataAttrGet() for details.

data_value (OUT)
The data value (will be of the type with which the OCIAnyData was initialized).
See OCIAnyDataAttrGet() for the appropriate C type corresponding to each
allowed typecode and for a description of how memory allocation behavior
depends on the value passed for this parameter.

length (OUT)
Currently, this parameter is ignored. In the future, this may be used for certain
typecodes where the data representation itself will not give the length, in bytes,
implicitly.

OCIAnyDataAttrGet()

20-14 Oracle Call Interface Programmer's Guide

OCIAnyDataAttrGet()

Purpose
Gets the value of the attribute at the current position in the OCIAnyData. Attribute
values can be accessed sequentially.

Syntax
sword OCIAnyDataAttrGet (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode tc,
 OCIType *attr_type,
 dvoid *null_ind,
 dvoid *attr_value,
 ub4 *length,
 boolean is_any);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Pointer to initialized of type OCIAnyData.

tc (IN)
Typecode of the attribute. Type checking happens based on tc, attr_type and the
type information in the OCIAnyData.

attr_type (IN) [OPTIONAL]
attr_type should give the type description of the referenced type (for
OCI_TYPECODE_REF) or the type description of the collection type (for
OCI_TYPECODE_VARRAY, OCI_TYPECODE_TABLE) or the type description of
the object (for OCI_TYPECODE_OBJECT). This parameter is not required for
built-in typecodes.

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-15

null_ind (OUT)
Indicates if the attr_value is NULL. Pass (OCIInd *) in null_ind for all
typecodes except OCI_TYPECODE_OBJECT.

If the typecode is OCI_TYPECODE_OBJECT, pass a pointer (dvoid **) in
null_ind.

The indicator returned will be OCI_IND_NOTNULL if the value is not NULL and it
will be OCI_IND_NULL for a NULL value.

attr_value (IN/OUT)
Value for the attribute

length (IN/OUT)
Currently, this parameter is ignored. Pass 0 here. In the future, this may be used for
certain typecodes where the data representation itself will not give the length, in
bytes, implicitly.

is_any (IN)
Is attribute to be returned in the form of OCIAnyData?

Comments
This call can be used with OCIAnyData of typecode OCI_TYPECODE_OBJECT
only

■ This call gets the value of the attribute at the current position in the
OCIAnyData.

■ tc must match the type of the attribute at the current position, otherwise an
error is returned.

■ is_any is applicable only when the typecode of the attribute is one of the
following:

■ OCI_TYPECODE_OBJECT,

■ OCI_TYPECODE_VARRAY,

■ OCI_TYPECODE_TABLE.

If is_any is TRUE, then attr_value is returned in the form of
OCIAnyData*.

■ You must allocate the memory for the attribute before calling the function. You
can allocate memory through OCIObjectNew(). In case of built-in types such
as NUMBER, VARCHAR, etc, the attribute can be just a pointer to a stack variable.

OCIAnyDataAttrGet()

20-16 Oracle Call Interface Programmer's Guide

Here is the list of available Oracle datatypes which can be used as object
attribute types and the corresponding types of the attribute value that should
be passed:

Table 20–5 Datatypes and Attribute Values

Datatypes attr_value

VARCHAR2, VARCHAR, CHAR OCIString **

NUMBER, REAL, INT, FLOAT,
DECIMAL

OCINumber **

DATE OCIDate **

TIMESTAMP OCIDateTime **

TIMESTAMP WITH TIME ZONE OCIDateTime **

TIMESTAMP WITH LOCAL TIME
ZONE

OCIDateTime **

INTERVAL YEAR TO MONTH OCIInterval **

INTERVAL DAY TO SECOND OCIInterval **

BLOB OCILobLocator ** or OCIBlobLocator **

CLOB OCILobLocator ** or OCIClobLocator *

BFILE OCILobLocator **

REF OCIRef **

RAW OCIRaw **

VARRAY OCIArray ** (or OCIAnyData * if
is_any is TRUE)

TABLE OCITable ** (or OCIAnyData * if is_any is
TRUE)

OBJECT dvoid ** (or OCIAnyData * if is_any is TRUE)

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-17

OCIAnyDataAttrSet()

Purpose
Sets the attribute at the current position with a given value.

Syntax
sword OCIAnyDataAttrSet (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode tc,
 OCIType *attr_type,
 dvoid *null_ind,
 dvoid *attr_value,
 ub4 length,
 boolean is_any);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Initialized OCIAnyData.

tc (IN)
Typecode of the attribute. Type checking happens based on tc, attr_type and the
type information in the OCIAnyData.

attr_type (IN)
OPTIONAL

attr_type will give the type description of the referenced type (for
OCI_TYPECODE_REF) and it will give the type description of the collection type
(for OCI_TYPECODE_VARRAY, OCI_TYPECODE_TABLE) and it will give the type
description of the object (for OCI_TYPECODE_OBJECT). This parameter is not
required for built-in typecodes or if OCI_TYPECODE_NONE is specified.

OCIAnyDataAttrSet()

20-18 Oracle Call Interface Programmer's Guide

null_ind (IN)
Indicates if the attr_value is NULL. Pass (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The indicator should be OCI_IND_NOTNULL if the
value is not NULL and it should be OCI_IND_NULL for a NULL value.

If the typecode is OCI_TYPECODE_OBJECT, pass a pointer to the indicator struct of
the attr_value as the argument here.

attr_value (IN)
Value for the attribute

length (IN)
Currently, this parameter is ignored. Pass 0 here. In the future, this may be used for
certain typecodes where the data representation itself will not give the length
implicitly.

is_any (IN)
Is attribute in the form of OCIAnyData?

Comments
OCIAnyDataBeginCreate() creates an OCIAnyData with an empty skeleton
instance. To fill the attribute values, use OCIAnyDataAttrSet() (for
OCI_TYPECODE_OBJECT) or OCIAnyDataCollAttrAddElem() (for the
collection typecodes).

Attribute values must be set in order, from the first attribute to the last. The current
attribute number is remembered as state maintained inside the OCIAnyData.
Piece-wise construction of embedded attributes and collection elements are not yet
supported.

This call sets the attribute at the current position with attr_value. Once
piece-wise construction has started for an OCIAnyData instance, the
OCIAnyDataConstruct() calls can no longer be used.

tc must match the type of the attribute at the current position. Otherwise, an error
is returned.

If is_any is TRUE, then the attribute must be in the form of OCIAnyData* and it
is copied into the enclosing OCIAnyData (data) without any conversion.

Here is the list of available datatypes which can be used as object attribute types
and the corresponding types of the attribute value that should be passed:

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-19

Table 20–6 Datatypes and Attribute Values

Datatypes attr_value

VARCHAR2, VARCHAR, CHAR OCIString *

NUMBER, REAL, INT, FLOAT,
DECIMAL

OCINumber *

DATE OCIDate *

TIMESTAMP OCIDateTime *

TIMESTAMP WITH TIME ZONE OCIDateTime *

TIMESTAMP WITH LOCAL TIME
ZONE

OCIDateTime *

INTERVAL YEAR TO MONTH OCIInterval *

INTERVAL DAY TO SECOND OCIInterval *

BLOB OCILobLocator * or OCIBlobLocator
*

CLOB OCILobLocator * or OCIClobLocator *

BFILE OCILobLocator *

REF OCIRef *

RAW OCIRaw *

VARRAY OCIArray * (or OCIAnyData * if
is_any is TRUE)

TABLE OCITable * (or OCIAnyData * if is_any is
TRUE)

OBJECT dvoid * (or OCIAnyData * if is_any is
TRUE)

OCIAnyDataBeginCreate()

20-20 Oracle Call Interface Programmer's Guide

OCIAnyDataBeginCreate()

Purpose
Allocates an OCIAnyData for the given duration and initializes it with the type
information.

Syntax
sword OCIAnyDataBeginCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode tc,
 OCIType *type,
 OCIDuration dur,
 OCIAnyData **sdata);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Initialized OCIAnyData.

tc (IN)
Typecode corresponding to the OCIAnyData. Can be a built-in typecode or a user-defined
type's typecode such as:

■ OCI_TYPECODE_OBJECT,

■ OCI_TYPECODE_REF,

■ OCI_TYPECODE_VARRAY.

type (IN)
The type corresponding to OCIAnyData. If the typecode corresponds to a built-in
type (OCI_TYPECODE_NUMBER, and so on), this parameter can be NULL. It
should be non-NULL for user defined types (OCI_TYPECODE_OBJECT,
OCI_TYPECODE_REF, collection types, and so on).

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-21

dur (IN)
Duration for which OCIAnyData is allocated. One of the following:

■ A user duration that was previously created. It can be created by using
OCIDurationBegin().

■ A predefined duration, such as OCI_DURATION_SESSION.

sdata (OUT)
Initialized OCIAnyData. If (*sdata) is not NULL at the beginning of the call, the
memory could be reused instead of reallocating space for the OCIAnyData.

Therefore, do not pass an uninitialized pointer here.

Comments
OCIAnyDataBeginCreate() creates an OCIAnyData with an empty skeleton
instance. To fill in the attribute values, use OCIAnyDataAttrSet() for
OCI_TYPECODE_OBJECT, or OCIAnyDataCollAttrAddElem() for the
collection typecodes.

Attribute values must be set in order. They must be set from the first attribute to the
last one. The current attribute number is remembered as state maintained inside the
OCIAnyData. Piece-wise construction of embedded attributes and collection
elements are not yet supported.

For performance reasons, the OCIAnyData will end up pointing to the OCIType
parameter passed in. It is your responsibility to ensure that the OCIType is longer
lived (has allocation duration >= the duration of the OCIAnyData, if the OCIType
is a transient one, or has allocation/pin duration >= duration of the OCIAnyData,
if the OCIType is a persistent one).

OCIAnyDataCollAddElem()

20-22 Oracle Call Interface Programmer's Guide

OCIAnyDataCollAddElem()

Purpose
Adds the next collection element to the collection attribute of the OCIAnyData at
the current attribute position. If the OCIAnyData is of a collection type, then there
is no notion of attribute position and this call adds the next collection element.

Syntax
sword OCIAnyDataCollAddElem (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode collelem_tc,
 OCIType *collelem_type,
 dvoid *null_ind,
 dvoid *elem_value,
 ub4 length,
 boolean is_any,
 boolean last_elem);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Initialized OCIAnyData.

collelem_tc (IN)
The typecode of the collection element to be added. Type checking happens based
on collelem_tc, collelem_type and the type information in the OCIAnyData.

collelem_type (IN)
OPTIONAL

collelem_type will give the type description of the referenced type (for
OCI_TYPECODE_REF) and it will give the type description of the collection type

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-23

(for OCI_TYPECODE_NAMEDCOLLECTION) and it will give the type description
of the object (for OCI_TYPECODE_OBJECT).

This parameter is not required for built-in typecodes.

null_ind (IN)
Indicates if the elem_value is NULL. Pass an (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The indicator should be OCI_IND_NOTNULL if the
value is not NULL and it should be OCI_IND_NULL for a NULL value.

If the typecode is OCI_TYPECODE_OBJECT, pass a pointer to the indicator struct of
the elem_value as the argument here.

elem_value (IN)
Value for the collection element

length (IN)
Length of the collection element

is_any (IN)
Is the attribute in the form of OCIAnyData?

last_elem (IN)
Is the element being added the last in the collection?

Comments
This call can be invoked for an OCIAnyData of type OCI_TYPECODE_OBJECT or
of any of the collection types. Once piece-wise construction has started for an
OCIAnyData instance, the OCIAnyDataConstruct() calls can no longer be used.

As in OCIAnyDataAttrSet(), is_any is applicable only if the collelem_tc is
that of typecode OCI_TYPECODE_OBJECT or a collection typecode. If is_any is
TRUE, the attribute should be in the form of OCIAnyData *.

If the element being added is the last element in the collection, last_elem should
be set to TRUE.

To add a NULL element, the NULL indicator, null_ind should be set to
OCI_IND_NULL, in which case all other arguments will be ignored. Otherwise,
null_ind must be set to OCI_IND_NOTNULL.

See OCIAnyDataAttrSet() for the type of attribute to be passed in for all the
possible types of the collection elements.

OCIAnyDataCollGetElem()

20-24 Oracle Call Interface Programmer's Guide

OCIAnyDataCollGetElem()

Purpose
Accesses sequentially the elements in the collection attribute at the current position
in the OCIAnyData.

Syntax
sword OCIAnyDataCollGetElem (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 OCITypeCode collelem_tc,
 OCIType *collelem_type,
 dvoid *null_ind,
 dvoid *collelem_value,
 ub4 *length,
 boolean is_any);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Initialized OCIAnyData.

collelem_tc (IN)
The typecode of the collection element to be retrieved. Type checking happens
based on collelem_tc, collelem_type and the type information in the
OCIAnyData.

collelem_type (IN)
OPTIONAL

collelem_type will give the type description of the referenced type (for
OCI_TYPECODE_REF) and it will give the type description of the collection type
(for OCI_TYPECODE_NAMEDCOLLECTION) and it will give the type description
of the object (for OCI_TYPECODE_OBJECT).

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-25

This parameter is not required for built-in typecodes.

null_ind (OUT)
Indicates if the collelem_value is NULL. Pass an (OCIInd *) for all typecodes
except OCI_TYPECODE_OBJECT. The indicator should be OCI_IND_NOTNULL if
the value is not NULL and it should be OCI_IND_NULL for a NULL value.

If the typecode is OCI_TYPECODE_OBJECT, pass a pointer (dvoid **) to the
indicator struct of the collelem_value as the argument here.

collelem_value (IN/OUT)
Value for the collection element

length (IN/OUT)
Length of the collection element. Currently ignored. Set to 0 on input.

is_any (IN)
Is attr_value to be returned in the form of OCIAnyData?

Comments
The OCIAnyData data can also correspond to a top level collection. If the
OCIAnyData is of type OCI_TYPECODE_OBJECT, the attribute at the current
position must be a collection of appropriate type. Otherwise, an error is returned.

As for OCIAnyDataAttrGet(), the is_any parameter is applicable only if
collelem_tc typecode is that OCI_TYPECODE_OBJECT. If is_any is TRUE, the
attr_value will be in the form of OCIAnyData *.

This call returns OCI_NO_DATA when the end of the collection has been reached. It
returns OCI_SUCCESS upon success and OCI_ERROR upon error.

See OCIAnyDataAttrGet()) for the type of attribute to be passed in for all the
possible types of the collection elements.

OCIAnyDataConvert()

20-26 Oracle Call Interface Programmer's Guide

OCIAnyDataConvert()

Purpose
Constructs an OCIAnyData with the given data value which will be of the given
type. This call can be used to construct an entire OCIAnyData which could be of
type OCI_TYPECODE_OBJECT, any of the collection types, or any of the built-in
types.

Syntax
sword OCIAnyDataConvert (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode tc,
 OCIType *inst_type,
 OCIDuration dur,
 dvoid *null_ind,
 dvoid *data_value,
 ub4 length,
 OCIAnyData **sdata);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tc (IN)
Typecode of the data value. Can be a built-in typecode or a user-defined type's
typecode (such as OCI_TYPECODE_OBJECT, OCI_TYPECODE_REF,
OCI_TYPECODE_VARRAY).

If (*sdata) is not NULL and it represents a skeleton instance returned during the
OCIAnyDataSetAddInstance(), the tc as well as the inst_type parameters
are optional here. This is because the type-information for such a skeleton instance
is already known. If the tc and inst_type parameters are provided here for this
situation, they will be used only for type-checking purposes.

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-27

inst_type (IN)
Type corresponding to the OCIAnyData. If the typecode corresponds to a built-in
type (OCI_TYPECODE_NUMBER, and so on), this parameter can be NULL. It
should not be NULL for user defined types (OCI_TYPECODE_OBJECT,
OCI_TYPECODE_REF, or collection types).

dur (IN)
Duration for which the OCIAnyData is allocated. One of the following:

■ A user duration that was previously created. It can be created by using
OCIDurationBegin().

■ A predefined duration, such as OCI_DURATION_SESSION.

null_ind
Indicates if data_value is NULL. Pass an (OCIInd *) for all typecodes except
OCI_TYPECODE_OBJECT. The indicator will be OCI_IND_NOTNULL if the value
is not NULL and it will be OCI_IND_NULL for a NULL value.

If the typecode is OCI_TYPECODE_OBJECT, pass a pointer to the indicator struct of
the data_value as the argument here.

data_value (IN)
The data value (should be of the type with which the OCIAnyData was initialized).
See OCIAnyDataAttrSet() for the appropriate C type corresponding to each
allowed typecode.

length (IN)
Currently, this parameter is ignored. Pass 0 here. In the future, this may be used for
certain typecodes where the data representation itself will not give the length
implicitly.

sdata (IN/OUT)
Initialized OCIAnyData. If (*sdata) is not NULL at the beginning of the call, the
memory could bet reused instead of reallocating space for the OCIAnyData.

Therefore, do not pass an un-initialized pointer here.

If (*sdata) represents a skeleton instance returned during an
OCIAnyDataSetAddInstance() call, the tc and inst_type parameters will be
used for type-checking purposes if necessary.

OCIAnyDataConvert()

20-28 Oracle Call Interface Programmer's Guide

Comments
For performance reasons, the OCIAnyData pointer will end up pointing to the
passed in OCIType parameter. It is your responsibility to ensure that the OCIType
is longer lived (has allocation duration >= the duration of the OCIAnyData, if the
OCIType is a transient one, or has allocation/pin duration >= duration of the
OCIAnyData, if the OCIType is a persistent one).

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-29

OCIAnyDataDestroy()

Purpose
Frees an AnyData.

Syntax
sword OCIAnyDataDestroy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN/OUT)
Pointer to an of type OCIAnyData to be freed.

OCIAnyDataEndCreate()

20-30 Oracle Call Interface Programmer's Guide

OCIAnyDataEndCreate()

Purpose
Marks the end of OCIAnyData creation. It should be called after initializing all
attributes of its instances with suitable values. This call is valid only if
OCIAnyDataBeginCreate() had been called earlier for the OCIAnyData.

Syntax
sword OCIAnyDataEndCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *data);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data (IN/OUT)
Initialized OCIAnyData.

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-31

OCIAnyDataGetCurrAttrNum()

Purpose
Returns the current attribute number of the OCIAnyData. If the OCIAnyData is
being constructed, it refers to the current attribute that is being set. Else, if the
OCIAnyData is being accessed, it refers to the attribute that is being accessed.

Syntax
sword OCIAnyDataGetCurrAttrNum(OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *sdata,
 ub4 *attrnum);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN)
Initialized OCIAnyData.

attrnum (OUT)
The attribute number.

OCIAnyDataGetType()

20-32 Oracle Call Interface Programmer's Guide

OCIAnyDataGetType()

Purpose
Gets the type corresponding to an AnyData value. It returns the actual pointer to
the type maintained inside an OCIAnyData. No copying is done for performance
reasons. You are responsible for not using this type once the OCIAnyData is freed
(or its duration ends).

Syntax
sword OCIAnyDataGetType(OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyData *data,
 OCITypeCode *tc,
 OCIType **type);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data (IN)
Initialized OCIAnyData.

tc (OUT)
The typecode corresponding to the OCIAnyData.

type (OUT)
The type corresponding to the OCIAnyData. This will be NULL if the OCIAnyData
corresponds to a built-in type.

OCI Any Data Interface Functions

OCI Any Type and Data Functions 20-33

OCIAnyDataIsNull()

Purpose
Checks if the contents of the type within the OCIAnyData is NULL.

Syntax
sword OCIAnyDataIsNull (OCISvcCtx *svchp,
 OCIError *errhp,
 CONST OCIAnyData *sdata,
 boolean *isNull) ;

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sdata (IN)
OCIAnyData to be checked.

isNull (IN/OUT)
TRUE if NULL, else FALSE.

OCIAnyDataTypeCodeToSqlt()

20-34 Oracle Call Interface Programmer's Guide

OCIAnyDataTypeCodeToSqlt()

Purpose
Converts the OCITypeCode for an AnyData value to the SQLT code that
corresponds to the representation of the value as returned by the OCIAnyData API.

Syntax
sword OCIAnyDataTypeCodeToSqlt (OCIError *errhp,
 OCITypeCode tc,
 ub1 *sqltcode,
 ub1 *csfrm) ;

Parameters

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in errhp and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

tc (IN)
OCITypeCode corresponding to the AnyData value.

sqltcode (OUT)
SQLT code corresponding to the user format of the typecode.

csfrm (OUT)
Charset form corresponding to the user format of the typecode. Meaningful only for
character types. Returns SQLCS_IMPLICIT or SQLCS_NCHAR (for NCHAR types).

Comments
This function converts OCI_TYPECODE_CHAR as well as
OCI_TYPECODE_VARCHAR2 to SQLT_VST (which corresponds to the OCIString
mapping) with a charset form of SQLCS_IMPLICIT.
OCI_TYPECODE_NVARCHAR2 will also return SQLT_VST (OCIString mapping is
used by the OCIAnyData API) with a charset form of SQLCS_NCHAR.

See Also: For more information see "NCHAR Typecodes for
OCIAnyData Functions" on page 11-31

OCI Any Data Set Interface Functions

OCI Any Type and Data Functions 20-35

OCI Any Data Set Interface Functions

This section describes the Any Data Set Interface functions.

Table 20–7 Any Data Set Functions

Function/Page Purpose

OCIAnyDataSetAddInstance() on page 20-36 Adds a new skeleton instance to the OCIAnyDataSet
and all the attributes of the instance are set to NULL.

OCIAnyDataSetBeginCreate() on page 20-38 Allocates an OCIAnyDataSet for the given duration
and initializes it with the type information.

OCIAnyDataSetDestroy() on page 20-40 Frees the OCIAnyDataSet.

OCIAnyDataSetEndCreate() on page 20-41 Marks the end of OCIAnyDataSet creation.

OCIAnyDataSetGetCount() on page 20-42 Gets the number of instances in the OCIAnyDataSet

OCIAnyDataSetGetInstance() on page 20-43 Returns the OCIAnyData corresponding to an
instance at the current position and updates the
current position.

OCIAnyDataSetGetType() on page 20-44 Gets the type corresponding to an OCIAnyDataSet.

OCIAnyDataSetAddInstance()

20-36 Oracle Call Interface Programmer's Guide

OCIAnyDataSetAddInstance()

Purpose
Adds a new skeleton instance to the OCIAnyDataSet and all the attributes of the
instance are set to NULL.

Syntax
sword OCIAnyDataSetAddInstance (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 OCIAnyData **data);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data_set (IN/OUT)
OCIAnyDataSet to which a new instance is added.

data (IN/OUT)
OCIAnyData corresponding to the newly added instance. If (*data) is NULL, a
new OCIAnyData will be allocated for the same duration as the OCIAnyDataSet.
If (*data) is not NULL, it will be reused. This OCIAnyData can be subsequently
constructed using the OCIAnyDataConvert() call or it can be constructed
piece-wise using the OCIAnyDataAttrSet() or the
OCIAnyDataCollAddElem() calls.

Comments
This call returns this skeleton instance through the OCIAnyData parameter which
can be constructed subsequently by invoking the OCIAnyData API.

OCI Any Data Set Interface Functions

OCI Any Type and Data Functions 20-37

Note: No destruction of the old value is done here. It is your
responsibility to destroy the old value pointed to by (*data) and
set (*data) to a NULL pointer before beginning to make a sequence
of these calls. No deep copying (of OCIType information or of the
data part) is done in the returned OCIAnyData. This OCIAnyData
cannot be used beyond the allocation duration of the
OCIAnyDataSet (it is like a reference into the OCIAnyDataSet).
The returned OCIAnyData can be reused on subsequent calls to
this function, to sequentially add new data instances to the
OCIAnyDataSet.

OCIAnyDataSetBeginCreate()

20-38 Oracle Call Interface Programmer's Guide

OCIAnyDataSetBeginCreate()

Purpose
Allocates an OCIAnyDataSet for the given duration and initializes it with the type
information. The OCIAnyDataSet can hold multiple instances of the given type.

Syntax
sword OCIAnyDataSetBeginCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCITypeCode typecode,
 CONST OCIType *type,
 OCIDuration dur,
 OCIAnyDataSet **data_set);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

typecode (IN)
Typecode corresponding to the OCIAnyDataSet.

type (IN)
Type corresponding to the OCIAnyDataSet. If the typecode corresponds to a
built-in type (OCI_TYPECODE_NUMBER, and so on), this parameter can be NULL.
It should be non-NULL for user defined types (OCI_TYPECODE_OBJECT,
OCI_TYPECODE_REF, collection types, and so on).

dur (IN)
Duration for which OCIAnyDataSet is allocated. One of the following:

■ A user duration that was previously created. It can be created by using
OCIDurationBegin().

■ A predefined duration, such as OCI_DURATION_SESSION.

OCI Any Data Set Interface Functions

OCI Any Type and Data Functions 20-39

data_set (OUT)
Initialized OCIAnyDataSet.

Comments
For performance reasons, the OCIAnyDataSet will end up pointing to the
OCIType parameter passed in. It is your responsibility to ensure that the OCIType
is longer lived (has allocation duration >= the duration of the OCIAnyData if the
OCIType is a transient one, or has allocation/pin duration >= duration of the
OCIAnyData, if the OCIType is a persistent one).

OCIAnyDataSetDestroy()

20-40 Oracle Call Interface Programmer's Guide

OCIAnyDataSetDestroy()

Purpose
Frees the OCIAnyDataSet.

Syntax
sword OCIAnyDataSetDestroy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data_set (IN/OUT)
OCIAnyDataSet to be freed.

OCI Any Data Set Interface Functions

OCI Any Type and Data Functions 20-41

OCIAnyDataSetEndCreate()

Purpose
Marks the end of OCIAnyDataSet creation. It should be called after constructing
all of its instances.

Syntax
sword OCIAnyDataSetEndCreate (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data_set (IN/OUT)
Initialized OCIAnyDataSet.

OCIAnyDataSetGetCount()

20-42 Oracle Call Interface Programmer's Guide

OCIAnyDataSetGetCount()

Purpose
Gets the number of instances in the OCIAnyDataSet.

Syntax
sword OCIAnyDataSetGetCount(OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 ub4 *count);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data_set (IN/OUT)
A well-formed OCIAnyDataSet.

count (OUT)
Number of instances in OCIAnyDataSet.

OCI Any Data Set Interface Functions

OCI Any Type and Data Functions 20-43

OCIAnyDataSetGetInstance()

Purpose
Returns the OCIAnyData corresponding to an instance at the current position and
updates the current position.

Syntax
sword OCIAnyDataSetGetInstance (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 OCIAnyData **data);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data_set (IN/OUT)
A well-formed OCIAnyDataSet.

data (IN/OUT)
OCIAnyData corresponding to the instance. If (*data) is NULL, a new OCIAnyData
will be allocated for same duration as the OCIAnyDataSet. If (*data) is not NULL,
it will be reused.

Comments
Only sequential access to the instances in an OCIAnyDataSet is allowed. This call
returns the OCIAnyData corresponding to an instance at the current position and
updates the current position. Subsequently, the OCIAnyData access routines may be
used to access the instance.

OCIAnyDataSetGetType()

20-44 Oracle Call Interface Programmer's Guide

OCIAnyDataSetGetType()

Purpose
Gets the type corresponding to an OCIAnyDataSet.

Syntax
sword OCIAnyDataSetGetType (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIAnyDataSet *data_set,
 OCITypeCode *tc,
 OCIType **type);

Parameters

svchp (IN)
The OCI service context.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

data_set (IN)
Initialized OCIAnyDataSet.

tc (OUT)
The typecode corresponding to the type of the OCIAnyDataSet.

type (OUT)
The type corresponding to the OCIAnyDataSet. This will be NULL if the
OCIAnyData corresponds to a built-in type.

OCI Globalization Support Functions 21-1

21
OCI Globalization Support Functions

This chapter describes the OCI Globalization support functions.

This chapter contains these topics:

■ Introduction to Globalization Support in OCI

■ OCI Locale Functions

■ OCI Locale-Mapping Function

■ OCI String Manipulation Functions

■ OCI Character Classification Functions

■ OCI Character Set Conversion Functions

■ OCI Messaging Functions

Introduction to Globalization Support in OCI

21-2 Oracle Call Interface Programmer's Guide

Introduction to Globalization Support in OCI

This chapter describes the globalization support functions in detail.

The Function Syntax
The entries for each function contain the following information:

Purpose
A brief statement of the purpose of the function.

Syntax
The function declaration.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described below:

Comments
Detailed information about the function if available. This may include restrictions
on the use of the function, or other information that might be useful when using the
function in an application. An optional section.

Returns
The values returned. The standard return values have the following meanings:

See Also: Oracle Database Globalization Support Guide

Table 21–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction to Globalization Support in OCI

OCI Globalization Support Functions 21-3

Related Functions
A list of related function calls. An optional section.

Table 21–2 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded.

OCI_ERROR The operation failed. The specific error can be
retrieved by calling OCIErrorGet() on the
error handle passed to the function.

OCI_INVALID_HANDLE The OCI handle passed to the function is
invalid.

See Also: For more information about return codes and error
handling, see the section "Error Handling in OCI" on page 2-26

OCI Locale Functions

21-4 Oracle Call Interface Programmer's Guide

OCI Locale Functions

This section describes the OCI locale functions.

An Oracle locale consists of language, territory, and character set definitions. The
locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application obeys a user's locale setting
and cultural conventions. For example, when the locale is set to German, users
expect to see day and month names in German.

Table 21–3 OCI Locale Functions

Function/Page Purpose

OCINlsCharSetIdToName() on page 21-5 Returns the Oracle character set name from the
specified character set ID.

OCINlsCharSetNameTold() on page 21-6 Returns the Oracle character set ID for the specified
Oracle character set name.

OCINlsEnvironmentVariableGet() on page 21-7 Returns the character set ID from NLS_LANG or the
national character set id from NLS_NCHAR

OCINlsGetInfo() on page 21-9 Copies locale information from an OCI environment
or user session handle into an array pointed to by the
destination buffer within a specified size.

OCINlsNumericInfoGet() on page 21-12 Copies numeric language information from the OCI
environment handle into an output number variable.

OCI Locale Functions

OCI Globalization Support Functions 21-5

OCINlsCharSetIdToName()

Purpose
Returns the Oracle character set name from the specified character set ID.

Syntax
sword OCINlsCharSetIdToName (dvoid *hndl,
 oratext *buf,
 size_t buflen
 ub2 id);

Parameters

hndl (IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function
returns OCI_INVALID_HANDLE.

buf (OUT)
Points to the destination buffer. If the function returns OCI_SUCCESS, then the
parameter contains a NULL-terminated string for the character set name.

buflen (IN)
The size of the destination buffer. The recommended size is OCI_NLS_MAXBUFSZ
to guarantee storage for an Oracle character set name. If the size of the destination
buffer is smaller than the length of the character set name, then the function returns
OCI_ERROR.

id (IN)
Oracle character set ID

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

OCINlsCharSetNameTold()

21-6 Oracle Call Interface Programmer's Guide

OCINlsCharSetNameTold()

Purpose
Returns the Oracle character set ID for the specified Oracle character set name.

Syntax
ub2 OCINlsCharSetNameToId (dvoid *hndl,
 CONST oratext *name);

Parameters

hndl (IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function
returns zero.

name (IN)
Pointer to a NULL-terminated Oracle character set name. If the character set name is
invalid, then the function returns zero.

Returns
Character set ID if the specified character set name and the OCI handle are valid.
Otherwise, it returns 0.

OCI Locale Functions

OCI Globalization Support Functions 21-7

OCINlsEnvironmentVariableGet()

Purpose
Returns the character set ID from NLS_LANG or the national character set id from
NLS_NCHAR.

Syntax
sword OCINlsEnvironmentVariableGet (dvoid *val,
 size_t size,
 ub2 item,
 ub2 charset,
 size_t *rsize);

Parameters

val (IN/OUT)
Returns a value of an NLS environment variable such as the NLS_LANG character
set ID or the NLS_NCHAR character set ID.

size (IN)
Specifies the size of the given output value, which is applicable only to string data.
The maximum length for each piece of information is OCI_NLS_MAXBUFSZ
bytes. In the case of numeric data, this argument is ignored.

item (IN)
Specifies one of the following values to get from the NLS environment variable:

■ OCI_NLS_CHARSET_ID: NLS_LANG character set ID in ub2 datatype.

■ OCI_NLS_NCHARSET_ID: NLS_NCHAR character set ID in ub2 datatype.

charset (IN)
Specifies the character set ID for retrieved string data. If it is 0, then the NLS_LANG
value is used. OCI_UTF16ID is a valid value for this argument. In the case of
numeric data, this argument is ignored.

rsize (OUT)
The length of the return value in bytes.

OCINlsEnvironmentVariableGet()

21-8 Oracle Call Interface Programmer's Guide

Comments
Following NLS convention, the national character set ID is the same as the character
set ID if NLS_NCHAR is not set. If NLS_LANG is not set, then the default character set
ID is returned.

To allow for future enhancements of this function (to retrieve other values from
environment variables) the datatype of the output val is a pointer to dvoid. String
data is not terminated by NULL.

Note that the function does not take an environment handle, so the character set ID
and the national character set ID that it returns are the values specified in
NLS_LANG and NLS_NCHAR, instead of the values saved in the OCI environment
handle. To get the character set IDs used by the OCI environment handle, call
OCIAttrGet() for OCI_ATTR_ENV_CHARSET and OCI_ATTR_ENV_NCHARSET,
respectively.

Returns
OCI_SUCCESS or OCI_ERROR

Related Functions
OCIEnvNlsCreate()

OCI Locale Functions

OCI Globalization Support Functions 21-9

OCINlsGetInfo()

Purpose
Obtains locale information from an OCI environment or user session handle into an
array pointed to by the destination buffer within a specified size.

Syntax
sword OCINlsGetInfo (dvoid *hndl,
 OCIError *errhp,
 OraText *buf,
 size_t buflen,
 ub2 item);

Parameters

hndl (IN/OUT)
The OCI environment or user session handle initialized in object mode.

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp and the
function returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet().

buf (OUT)
Pointer to the destination buffer. Returned strings are terminated by a NULL
character.

buflen (IN)
The size of the destination buffer. The maximum length for each piece of
information is OCI_NLS_MAXBUFSZ bytes.

OCI_NLS_MAXBUFSIZE: When calling OCINlsGetInfo(), you need to allocate
the buffer to store the returned information. The buffer size depends on which item
you are querying and what encoding you are using to store the information.
Developers should not need to know how many bytes it takes to store January in
Japanese using JA16SJIS encoding. The OCI_NLS_MAXBUFSZ attribute guarantees
that the buffer is big enough to hold the largest item returned by
OCINlsGetInfo().

OCINlsGetInfo()

21-10 Oracle Call Interface Programmer's Guide

item (IN)
Specifies which item in the OCI environment handle to return. It can be one of the
following values:

OCI_NLS_DAYNAME1: Native name for Monday
OCI_NLS_DAYNAME2: Native name for Tuesday
OCI_NLS_DAYNAME3: Native name for Wednesday
OCI_NLS_DAYNAME4: Native name for Thursday
OCI_NLS_DAYNAME5: Native name for Friday
OCI_NLS_DAYNAME6: Native name for Saturday
OCI_NLS_DAYNAME7: Native name for Sunday
OCI_NLS_ABDAYNAME1: Native abbreviated name for Monday
OCI_NLS_ABDAYNAME2: Native abbreviated name for Tuesday
OCI_NLS_ABDAYNAME3: Native abbreviated name for Wednesday
OCI_NLS_ABDAYNAME4: Native abbreviated name for Thursday
OCI_NLS_ABDAYNAME5: Native abbreviated name for Friday
OCI_NLS_ABDAYNAME6: Native abbreviated name for Saturday
OCI_NLS_ABDAYNAME7: Native abbreviated name for Sunday
OCI_NLS_MONTHNAME1: Native name for January
OCI_NLS_MONTHNAME2: Native name for February
OCI_NLS_MONTHNAME3: Native name for March
OCI_NLS_MONTHNAME4: Native name for April
OCI_NLS_MONTHNAME5: Native name for May
OCI_NLS_MONTHNAME6: Native name for June
OCI_NLS_MONTHNAME7: Native name for July
OCI_NLS_MONTHNAME8: Native name for August
OCI_NLS_MONTHNAME9: Native name for September
OCI_NLS_MONTHNAME10: Native name for October
OCI_NLS_MONTHNAME11: Native name for November
OCI_NLS_MONTHNAME12: Native name for December
OCI_NLS_ABMONTHNAME1: Native abbreviated name for January
OCI_NLS_ABMONTHNAME2: Native abbreviated name for February
OCI_NLS_ABMONTHNAME3: Native abbreviated name for March
OCI_NLS_ABMONTHNAME4: Native abbreviated name for April
OCI_NLS_ABMONTHNAME5: Native abbreviated name for May
OCI_NLS_ABMONTHNAME6: Native abbreviated name for June
OCI_NLS_ABMONTHNAME7: Native abbreviated name for July
OCI_NLS_ABMONTHNAME8: Native abbreviated name for August
OCI_NLS_ABMONTHNAME9: Native abbreviated name for September
OCI_NLS_ABMONTHNAME10: Native abbreviated name for October
OCI_NLS_ABMONTHNAME11: Native abbreviated name for November
OCI_NLS_ABMONTHNAME12: Native abbreviated name for December

OCI Locale Functions

OCI Globalization Support Functions 21-11

OCI_NLS_YES: Native string for affirmative response
OCI_NLS_NO: Native negative response
OCI_NLS_AM: Native equivalent string of AM
OCI_NLS_PM: Native equivalent string of PM
OCI_NLS_AD: Native equivalent string of AD
OCI_NLS_BC: Native equivalent string of BC
OCI_NLS_DECIMAL: Decimal character
OCI_NLS_GROUP: Group separator
OCI_NLS_DEBIT: Native symbol of debit
OCI_NLS_CREDIT: Native symbol of credit
OCI_NLS_DATEFORMAT: Oracle date format
OCI_NLS_INT_CURRENCY: International currency symbol
OCI_NLS_DUAL_CURRENCY: Dual currency symbol
OCI_NLS_LOC_CURRENCY: Locale currency symbol
OCI_NLS_LANGUAGE: Language name
OCI_NLS_ABLANGUAGE: Abbreviation for language name
OCI_NLS_TERRITORY: Territory name
OCI_NLS_CHARACTER_SET: Character set name
OCI_NLS_LINGUISTIC_NAME: Linguistic sort name
OCI_NLS_CALENDAR: Calendar name
OCI_NLS_WRITING_DIR: Language writing direction
OCI_NLS_ABTERRITORY: Territory abbreviation
OCI_NLS_DDATEFORMAT: Oracle default date format
OCI_NLS_DTIMEFORMAT: Oracle default time format
OCI_NLS_SFDATEFORMAT: Local date format
OCI_NLS_SFTIMEFORMAT: Local time format
OCI_NLS_NUMGROUPING: Number grouping fields
OCI_NLS_LISTSEP: List separator
OCI_NLS_MONDECIMAL: Monetary decimal character
OCI_NLS_MONGROUP: Monetary group separator
OCI_NLS_MONGROUPING: Monetary grouping fields
OCI_NLS_INT_CURRENCYSEP: International currency separator

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

OCINlsNumericInfoGet()

21-12 Oracle Call Interface Programmer's Guide

OCINlsNumericInfoGet()

Purpose
Obtains numeric language information from the OCI environment handle and puts
it into an output number variable.

Syntax
sword OCINlsNumericInfoGet (dvoid *hndl,
 OCIError *errhp,
 sb4 *val,
 ub2 item);

Parameters

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp and the
function returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet().

val (OUT)
Pointer to the output number variable. If the function returns OCI_SUCCESS, then
the parameter contains the requested NLS numeric information.

item (IN)
It specifies which item to get from the OCI environment handle and can be one of
following values:

■ OCI_NLS_CHARSET_MAXBYTESZ: Maximum character byte size for OCI
environment or session handle character set

■ OCI_NLS_CHARSET_FIXEDWIDTH: Character byte size for fixed-width
character set; 0 for variable-width character set

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR

OCI Locale-Mapping Function

OCI Globalization Support Functions 21-13

OCI Locale-Mapping Function

This section contains an OCI locale-mapping function.

Table 21–4 OCI Locale-Mapping Function

Function/Page Purpose

OCINlsNameMap() on page 21-14 Maps Oracle character set names, language names, and territory names to
and from Internet Assigned Numbers Authority (IANA) and
International Organization for Standardization (ISO) names.

OCINlsNameMap()

21-14 Oracle Call Interface Programmer's Guide

OCINlsNameMap()

Purpose
Maps Oracle character set names, language names, and territory names to and from
Internet Assigned Numbers Authority (IANA) and International Organization for
Standardization (ISO) names.

Syntax
sword OCINlsNameMap (dvoid *hndl,
 oratext *buf,
 size_t buflen,
 CONST oratext *srcbuf,
 uword flag);

Parameters

hndl (IN/OUT)
OCI environment or session handle. If the handle is invalid, then the function
returns OCI_INVALID_HANDLE.

buf (OUT)
Points to the destination buffer. If the function returns OCI_SUCCESS, then the
parameter contains a NULL-terminated string for the requested name.

buflen (IN)
The size of the destination buffer. The recommended size is OCI_NLS_MAXBUFSZ to
guarantee storage of an NLS name. If the size of the destination buffer is smaller
than the length of the name, then the function returns OCI_ERROR.

srcbuf (IN)
Pointer to a NULL-terminated NLS name. If it is not a valid name, then the function
returns OCI_ERROR.

flag (IN)
It specifies the direction of the name mapping and can take the following values:

OCI_NLS_CS_IANA_TO_ORA: Map character set name from IANA to Oracle
OCI_NLS_CS_ORA_TO_IANA: Map character set name from Oracle to IANA.
OCI_NLS_LANG_ISO_TO_ORA: Map language name from ISO to Oracle
OCI_NLS_LANG_ORA_TO_ISO: Map language name from Oracle to ISO
OCI_NLS_TERR_ISO_TO_ORA: Map territory name from ISO to Oracle

OCI Locale-Mapping Function

OCI Globalization Support Functions 21-15

OCI_NLS_TERR_ORA_TO_ISO: Map territory name from Oracle to ISO
OCI_NLS_TERR_ISO3_TO_ORA: Map territory name from 3-letter ISO
abbreviation to Oracle
OCI_NLS_TERR_ORA_TO_ISO3: Map territory name from Oracle to 3-letter ISO
abbreviation

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

OCI String Manipulation Functions

21-16 Oracle Call Interface Programmer's Guide

OCI String Manipulation Functions

Two types of data structures are supported for string manipulation:

■ multibyte strings

■ wide-character strings

Multibyte strings are encoded in native Oracle character sets. Functions that operate
on multibyte strings take the string as a whole unit with the length of the string
calculated in bytes. wide-character (wchar) string functions provide more flexibility
in string manipulation. They support character-based and string-based operations
with the length the string calculated in characters.

The wide-character datatype is Oracle-specific and should not be confused with the
wchar_t datatype defined by the ANSI/ISO C standard. The Oracle
wide-character datatype is always 4 bytes in all operating systems, while the size of
wchar_t depends on the implementation and the operating system. The Oracle
wide-character datatype normalizes multibyte characters so that they have a fixed
width for easy processing. This guarantees no data loss for round trip conversion
between the Oracle wide-character set and the native character set.

String manipulation can be classified into the following categories:

■ Conversion of strings between multibyte and wide character

■ Character classifications

■ Case conversion

■ Calculations of display length

■ General string manipulation, such as comparison, concatenation, and searching

Table 21–5 summarizes the OCI string manipulation functions.

Table 21–5 OCI String Manipulation Functions

Function/Page Purpose

OCIMultiByteInSizeToWideChar() on page 21-19 Converts part of a multibyte string into the
wide-character string.

OCIMultiByteStrCaseConversion() on page 21-21 Converts a multibyte string into the specified case
and copies the result into the destination array.

OCIMultiByteStrCat() on page 21-22 Appends a multibyte string to the destination string.

OCI String Manipulation Functions

OCI Globalization Support Functions 21-17

OCIMultiByteStrcmp() on page 21-23 Compares two multibyte strings by binary,
linguistic, or case-insensitive comparison methods.

OCIMultiByteStrcpy() on page 21-25 Copies a multibyte string into the destination array.
It returns the number of bytes copied.

OCIMultiByteStrlen() on page 21-26 Returns the number of bytes in a multibyte string.

OCIMultiByteStrncat() on page 21-27 Appends at most n bytes from a multibyte string to
the destination string.

OCIMultiByteStrncmp() on page 21-28 Compares two multibyte strings by binary,
linguistic, or case-insensitive comparison methods.
Each string is in the specified length.

OCIMultiByteStrncpy() on page 21-30 Copies a specified number of bytes of a multibyte
string into the destination array.

OCIMultiByteStrnDisplayLength() on page 21-31 Returns the number of display positions occupied
by the multibyte string within the range of n bytes.

OCIMultiByteToWideChar() on page 21-32 Converts a NULL-terminated multibyte string into
wide-character format.

OCIWideCharInSizeToMultiByte() on page 21-33 Converts part of a wide-character string to the
multibyte string.

OCIWideCharMultiByteLength() on page 21-35 Determines the number of bytes required for a
wide-character in multibyte encoding.

OCIWideCharStrCaseConversion() on page 21-36 Converts a wide character string into the specified
case and copies the result into the destination array.

OCIWideCharStrcat() on page 21-38 Appends a wide-character string to the destination
string.

OCIWideCharStrchr() on page 21-39 Searches for the first occurrence of a wide character
in a string. It returns a point to the wide character if
the search is successful.

OCIWideCharStrcmp() on page 21-40 Compares two wide-character strings by binary,
linguistic, or case-insensitive comparison methods.

OCIWideCharStrcpy() on page 21-42 Copies a wide-character string into a destination
array. It returns the number of characters copied.

OCIWideCharStrlen() on page 21-43 Returns the number of characters in a
wide-character string.

Table 21–5 OCI String Manipulation Functions (Cont.)

Function/Page Purpose

OCI String Manipulation Functions

21-18 Oracle Call Interface Programmer's Guide

OCIWideCharStrncat() on page 21-44 Appends at most n characters from a wide-character
string to the destination string.

OCIWideCharStrncmp() on page 21-45 Compares two wide-character strings by binary,
linguistic, or case-insensitive methods. Each string is
a specified length.

OCIWideCharStrncpy() on page 21-47 Copies at most n characters of a wide-character
string into the destination array.

OCIWideCharStrrchr() on page 21-48 Searches for the last occurrence of a character in a
wide-character string.

OCIWideCharToLower() on page 21-49 Converts a specified wide character into the
corresponding lowercase character.

OCIWideCharToMultiByte() on page 21-50 Converts a NULL-terminated wide-character string
into a multibyte string.

OCIWideCharToUpper() on page 21-51 Converts a specified wide character into the
corresponding uppercase character.

Table 21–5 OCI String Manipulation Functions (Cont.)

Function/Page Purpose

OCI String Manipulation Functions

OCI Globalization Support Functions 21-19

OCIMultiByteInSizeToWideChar()

Purpose
Converts part of a multibyte string into the wide-character string.

Syntax
sword OCIMultiByteInSizeToWideChar (dvoid *hndl,
 OCIWchar *dst,
 size_t dstsz,
 CONST OraText *src,
 size_t srcsz,
 size_t *rsize);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of the string.

dst (OUT)
Pointer to a destination buffer for wchar. It can be NULL pointer when dstsz is
zero.

dstsz (IN)
Destination buffer size in number of characters. If it is zero, then this function
returns the number of characters needed for the conversion.

src (IN)
Source string to be converted.

srcsz (IN)
Length of source string in bytes.

rsize (OUT)
Number of characters written into destination buffer, or number of characters for
converted string if dstsz is zero. If it is a NULL pointer, then nothing is returned.

Comments
This routine converts part of a multibyte string into the wide-character string. It
converts as many complete characters as it can until it reaches the output buffer size
limit or input buffer size limit or it reaches a NULL terminator in a source string. The

OCIMultiByteInSizeToWideChar()

21-20 Oracle Call Interface Programmer's Guide

output buffer is NULL-terminated if space permits. If dstsz is zero, then this
function returns only the number of characters not including the ending NULL
terminator needed for a converted string. If OCI_UTF16ID is specified for SQL
CHAR data in the OCIEnvNlsCreate() function, then this function produces an
error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR..

Related Functions
OCIMultiByteToWideChar()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-21

OCIMultiByteStrCaseConversion()

Purpose
Converts the multibyte string pointed to by srcstr into uppercase or lowercase as
specified by the flag and copies the result into the array pointed to by dststr.

Syntax
size_t OCIMultiByteStrCaseConversion (dvoid *hndl,
 OraText *dststr,
 CONST OraText *srcstr,
 ub4 flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

dststr (OUT)
Pointer to destination array. The result string is NULL-terminated.

srcstr (IN)
Pointer to source string.

flag (IN)
Specify the case to which to convert:

■ OCI_NLS_UPPERCASE: Convert to uppercase

■ OCI_NLS_LOWERCASE: Convert to lowercase

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic
setting in the locale is used for case conversion.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of bytes for result string, not including the NULL terminator.

OCIMultiByteStrCat()

21-22 Oracle Call Interface Programmer's Guide

OCIMultiByteStrCat()

Purpose
Appends a copy of the multibyte string pointed to by srcstr to the end of the
string pointed to by dststr.

Syntax
size_t OCIMultiByteStrCat (dvoid *hndl,
 OraText *dststr,
 CONST OraText *srcstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

dststr (IN/OUT)
Pointer to the destination multibyte string for appending. The output buffer is
NULL-terminated.

srcstr (IN)
Pointer to the source string to append.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of bytes in the result string, not including the NULL terminator.

Related Functions
OCIMultiByteStrncat()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-23

OCIMultiByteStrcmp()

Purpose
Compares two multibyte strings by binary, linguistic, or case-insensitive
comparison methods.

Syntax
int OCIMultiByteStrcmp (dvoid *hndl,
 CONST OraText *str1,
 CONST OraText *str2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

str1 (IN)
Pointer to a NULL-terminated string.

str2 (IN)
Pointer to a NULL-terminated string.

flag (IN)
It is used to decide the comparison method. It can take one of the following values:

■ OCI_NLS_BINARY: Binary comparison This is the default value.

■ OCI_NLS_LINGUISTIC: Linguistic comparison specified in the locale

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive
comparison. For example, use
OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

OCIMultiByteStrcmp()

21-24 Oracle Call Interface Programmer's Guide

Returns
■ 0, if str1 = str2

■ Positive, if str1 > str2

■ Negative, if str1 < str2

Related Functions
OCIMultiByteStrncmp()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-25

OCIMultiByteStrcpy()

Purpose
Copies the multibyte string pointed to by srcstr into the array pointed to by
dststr.

Syntax
size_t OCIMultiByteStrcpy (dvoid *hndl,
 OraText *dststr,
 CONST OraText *srcstr);

Parameters

hndl (IN/OUT)
Pointer to the OCI environment or user session handle.

dststr (OUT)
Pointer to the destination buffer.The output buffer is NULL-terminated.

srcstr (IN)
Pointer to the source multibyte string.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of bytes copied, not including the NULL terminator.

Related Functions
OCIMultiByteStrncpy()

OCIMultiByteStrlen()

21-26 Oracle Call Interface Programmer's Guide

OCIMultiByteStrlen()

Purpose
Returns the number of bytes in the multibyte string pointed to by str, not
including the NULL terminator.

Syntax
size_t OCIMultiByteStrlen (dvoid *hndl,
 CONST OraText *str);

Parameters

hndl (IN/OUT)
Pointer to the OCI environment or user session handle.

str (IN)
Pointer to the source multibyte string.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of bytes, not including the NULL terminator.

Related Functions
OCIWideCharStrlen()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-27

OCIMultiByteStrncat()

Purpose
Appends a specified number of bytes from a multibyte string to a destination string.

Syntax
size_t OCIMultiByteStrncat (dvoid *hndl,
 OraText *dststr,
 CONST OraText *srcstr,
 size_t n);

Parameters

hndl (IN/OUT)
Pointer to OCI environment or user session handle.

dststr (IN/OUT)
Pointer to the destination multibyte string for appending.

srcstr (IN)
Pointer to the source multibyte string to append.

n (IN)
The number of bytes from srcstr to append.

Comments
This function is similar to OCIMultiByteStrcat(). At most n bytes from srcstr
are appended to dststr. Note that the NULL terminator in srcstr stops
appending and the function appends as many character as possible within n bytes.
dststr is NULL-terminated. If OCI_UTF16ID is specified for SQL CHAR data in the
OCIEnvNlsCreate() function, then this function produces an error.

Returns
The number of bytes in the result string, not including the NULL terminator

Related Functions
OCIMultiByteStrCat()

OCIMultiByteStrncmp()

21-28 Oracle Call Interface Programmer's Guide

OCIMultiByteStrncmp()

Purpose
Compares two multibyte strings by binary, linguistic, or case-insensitive
comparison methods. A length is specified for each string.

Syntax
int OCIMultiByteStrncmp (dvoid *hndl,
 CONST OraText *str1,
 size_t len1,
 OraText *str2,
 size_t len2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

str1 (IN)
Pointer to the first string.

len1 (IN)
The length of the first string to compare.

str2 (IN)
Pointer to the second string.

len2 (IN)
The length of the second string to compare.

flag(IN)
It is used to decide the comparison method. It can take one of the following values:

■ OCI_NLS_BINARY: Binary comparison. This is the default value.

■ OCI_NLS_LINGUISTIC: Linguistic comparison specified in the locale

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive
comparison. For example, use
OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

OCI String Manipulation Functions

OCI Globalization Support Functions 21-29

Comments
This function is similar to OCIMultiByteStrcmp(), except that at most len1 bytes
from str1 and len2 bytes from str2 are compared. The NULL terminator is used
in the comparison. If OCI_UTF16ID is specified for SQL CHAR data in the
OCIEnvNlsCreate() function, then this function produces an error.

Returns
■ 0, if str1 = str2

■ Positive, if str1 > str2

■ Negative, if str1 < str2

Related Functions
OCIMultiByteStrcpy()

OCIMultiByteStrncpy()

21-30 Oracle Call Interface Programmer's Guide

OCIMultiByteStrncpy()

Purpose
Copies a multibyte string into an array.

Syntax
size_t OCIMultiByteStrncpy (dvoid *hndl,
 OraText *dststr,
 CONST OraText *srcstr,
 size_t n);

Parameters

hndl (IN/OUT)
Pointer to OCI environment or user session handle.

srcstr (OUT)
Pointer to the destination buffer.

dststr (IN)
Pointer to the source multibyte string.

n (IN)
The number of bytes from srcstr to copy.

Comments
This function is similar to OCIMultiByteStrcpy(). At most n bytes are copied
from the array pointed to by srcstr to the array pointed to by dststr. Note that
the NULL terminator in srcstr stops copying and the function copies as many
characters as possible within n bytes. The result string is NULL-terminated. If
OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of bytes in the resulting string, not including the NULL terminator.

Related Functions
OCIMultiByteStrcpy()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-31

OCIMultiByteStrnDisplayLength()

Purpose
Returns the number of display positions occupied by the multibyte string within
the range of n bytes.

Syntax
size_t OCIMultiByteStrnDisplayLength (dvoid *hndl,
 CONST OraText *str1,
 size_t n);

Parameters

hndl (IN/OUT)
OCI environment or user session handle.

str (IN)
Pointer to a multibyte string.

n (IN)
The number of bytes to examine.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of display positions.

OCIMultiByteToWideChar()

21-32 Oracle Call Interface Programmer's Guide

OCIMultiByteToWideChar()

Purpose
Converts an entire NULL-terminated string into the wide-character string.

Syntax
sword OCIMultiByteToWideChar (dvoid *hndl,
 OCIWchar *dst,
 CONST OraText *src,
 size_t *rsize);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of string

dst (OUT)
Destination buffer for wchar.

src (IN)
Source string to be converted.

rsize (OUT)
Number of characters converted including NULL terminator. If it is a NULL pointer,
then nothing is returned.

Comments
The wchar output buffer are NULL-terminated. If OCI_UTF16ID is specified for
SQL CHAR data in the OCIEnvNlsCreate() function, then this function produces
an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

Related Functions
OCIWideCharToMultiByte()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-33

OCIWideCharInSizeToMultiByte()

Purpose
Converts part of a wide-character string to multibyte format.

Syntax
sword OCIWideCharInSizeToMultiByte (dvoid *hndl,
 OraText *dst,
 size_t dstsz,
 CONST OCIWchar *src,
 size_t srcsz,
 size_t *rsize);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of string.dst
(OUT)

Destination buffer for multibyte. It can be a NULL pointer if dstsz is zero.

dstsz (IN)
Destination buffer size in bytes. If it is zero,then the function returns the size in
bytes need for converted string.

src (IN)
Source wchar string to be converted.

srcsz (IN)
Length of source string in characters.

rsize (OUT)
Number of bytes written into destination buffer, or number of bytes need to store
the converted string if dstsz is zero. If it is a NULL pointer, then nothing is
returned.

Comments
Converts part of a wide-character string into the multibyte format. It converts as
many complete characters as it can until it reaches the output buffer size or the
input buffer size or until it reaches a NULL terminator in the source string. The

OCIWideCharInSizeToMultiByte()

21-34 Oracle Call Interface Programmer's Guide

output buffer is NULL-terminated if space permits. If dstsz is zero, then the
function returns the size in bytes not including the NULL terminator needed to store
the converted string. If OCI_UTF16ID is specified for SQL CHAR data in the
OCIEnvNlsCreate() function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR,

OCI String Manipulation Functions

OCI Globalization Support Functions 21-35

OCIWideCharMultiByteLength()

Purpose
Determines the number of bytes required for a wide character in multibyte
encoding.

Syntax
size_t OCIWideCharMultiByteLength (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar character.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of bytes required for the wide character.

OCIWideCharStrCaseConversion()

21-36 Oracle Call Interface Programmer's Guide

OCIWideCharStrCaseConversion()

Purpose
Converts a wide-character string into a specified case and copies the result into the
destination array.

Syntax
size_t OCIMultiByteStrCaseConversion (dvoid *hndl,
 OraText *dststr,
 CONST OraText *srcstr,
 ub4 flag);

Parameters

ndl (IN/OUT)
OCI environment or user session handle.

dststr (OUT)
Pointer to destination array.

srcstr (IN)
Pointer to source string.

flag (IN)
Specify the case to which to convert:

■ OCI_NLS_UPPERCASE: Convert to uppercase.

■ OCI_NLS_LOWERCASE: Convert to lowercase.

This flag can be used with OCI_NLS_LINGUISTIC to specify that the linguistic
setting in the locale is used for case conversion.

Comments
Converts the wide-character string pointed to by srcstr into uppercase or
lowercase as specified by the flag and copies the result into the array pointed to by
dststr. The result string is NULL-terminated. If OCI_UTF16ID is specified for SQL
CHAR data in the OCIEnvNlsCreate() function, then this function produces an
error.

OCI String Manipulation Functions

OCI Globalization Support Functions 21-37

Returns
The number of bytes for result string, not including the NULL terminator.

OCIWideCharStrcat()

21-38 Oracle Call Interface Programmer's Guide

OCIWideCharStrcat()

Purpose
Appends the wide-character string pointed to by wsrcstr to the wide-character
string pointed to by wdststr.

Syntax
size_t OCIWideCharStrcat (dvoid *hndl,
 OCIWchar *wdststr,
 CONST OCIWchar *wsrcstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wdststr (IN/OUT)
Pointer to the destination wchar string. The output buffer is NULL-terminated.

wsrcstr (IN)
Pointer to the source wide-character string to append.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of characters in the result string, not including the NULL terminator.

Related Functions
OCIWideCharStrncat()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-39

OCIWideCharStrchr()

Purpose
Searches for the first occurrence of a specified character in a wide-character string.

Syntax
OCIWchar *OCIWideCharStrchr (dvoid *hndl,
 CONST OCIWchar *wstr,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr (IN)
Pointer to the wchar string to search.

wc (IN)
wchar to search for.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
A wchar pointer if successful, otherwise a NULL pointer.

Related Functions
OCIWideCharStrrchr()

OCIWideCharStrcmp()

21-40 Oracle Call Interface Programmer's Guide

OCIWideCharStrcmp()

Purpose
Compares two wide-character strings by binary (based on wchar encoding value),
linguistic, or case-insensitive comparison methods.

Syntax
int OCIWideCharStrcmp (dvoid *hndl,
 CONST OCIWchar *wstr1,
 CONST OCIWchar *wstr2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr1 (IN)
Pointer to a NULL-terminated wchar string.

wstr2 (IN)
Pointer to a NULL-terminated wchar string.

flag (IN)
Used to decide the comparison method. It can take one of the following values:

■ OCI_NLS_BINARY: Binary comparison. This is the default value.

■ OCI_NLS_LINGUISTIC: Linguistic comparison specified in the locale
definition.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive
comparison. For example, use
OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

OCI String Manipulation Functions

OCI Globalization Support Functions 21-41

Returns
■ 0, if wstr1 = wstr2

■ Positive, if wstr1 > wstr2

■ Negative, if wstr1 < wstr2

Related Functions
OCIWideCharStrncmp()

OCIWideCharStrcpy()

21-42 Oracle Call Interface Programmer's Guide

OCIWideCharStrcpy()

Purpose
Copies a wide-character string into an array.

Syntax
size_t OCIWideCharStrcpy (dvoid *hndl,
 OCIWchar *wdststr,
 CONST OCIWchar *wsrcstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wdststr (OUT)
Pointer to the destination wchar buffer.The result string is NULL-terminated.

wsrcstr (IN)
Pointer to the source wchar string.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
The number of characters copied not including the NULL terminator.

Related Functions
OCIWideCharStrncpy()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-43

OCIWideCharStrlen()

Purpose
Returns the number of characters in a wide-character string.

Syntax
size_t OCIWideCharStrlen (dvoid *hndl,
 CONST OCIWchar *wstr);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr (IN)
Pointer to the source wchar string.

Comments
Returns the number of characters in the wchar string pointed to by wstr, not
including the NULL terminator. If OCI_UTF16ID is specified for SQL CHAR data in
the OCIEnvNlsCreate() function, then this function produces an error.

Returns
The number of characters not including the NULL terminator.

OCIWideCharStrncat()

21-44 Oracle Call Interface Programmer's Guide

OCIWideCharStrncat()

Purpose
Appends at most n characters from a wide-character string to the destination.

Syntax
size_t OCIWideCharStrncat (dvoid *hndl,
 OCIWchar *wdststr,
 CONST OCIWchar *wsrcstr,
 size_t n);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wdststr (IN/OUT)
Pointer to the destination wchar string.

wsrcstr (IN)
Pointer to the source wchar string.

n (IN)
Number of characters from wsrcstr to append.

Comments
This function is similar to OCIWideCharStrcat(). At most n characters from
wsrcstr are appended to wdststr. Note that the NULL terminator in wsrcstr
stops appending. wdststr is NULL-terminated. If OCI_UTF16ID is specified for
SQL CHAR data in the OCIEnvNlsCreate() function, then this function produces
an error.

Returns
The number of characters in the result string, not including the NULL terminator.

Related Functions
OCIWideCharStrcat()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-45

OCIWideCharStrncmp()

Purpose
Compares two wide-character strings by binary, linguistic, or case-sensitive
methods. Each string has a specified length.

Syntax
int OCIWideCharStrncmp (dvoid *hndl,
 CONST OCIWchar *wstr1,
 size_t len1,
 CONST OCIWchar *wstr2,
 size_t len2,
 int flag);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr1 (IN)
Pointer to the first wchar string.

len1 (IN)
The length from the first string for comparison.

wstr2 (IN)
Pointer to the second wchar string.

len2 (IN)
The length from the second string for comparison.

flag (IN)
It is used to decide the comparison method. It can take one of the following values:

■ OCI_NLS_BINARY: For the binary comparison, this is default value.

■ OCI_NLS_LINGUISTIC: For the linguistic comparison specified in the locale.

This flag can be used with OCI_NLS_CASE_INSENSITIVE for case-insensitive
comparison. For example, use
OCI_NLS_LINGUISTIC|OCI_NLS_CASE_INSENSITIVE to compare strings
linguistically without regard to case.

OCIWideCharStrncmp()

21-46 Oracle Call Interface Programmer's Guide

Comments
This function is similar to OCIWideCharStrcmp(). It compares two wide-character
strings by binary, linguistic, or case-insensitive comparison methods. At most len1
bytes from wstr1 and len2 bytes from wstr2 are compared. The NULL terminator
is used in the comparison. If OCI_UTF16ID is specified for SQL CHAR data in the
OCIEnvNlsCreate() function, then this function produces an error.

Returns
■ 0, if wstr1 = wstr2

■ Positive, if wstr1 > wstr2

■ Negative, if wstr1 < wstr2

Related Functions
OCIWideCharStrcmp()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-47

OCIWideCharStrncpy()

Purpose
Copies at most a n characters from a wide-character string into a destination.

Syntax
size_t OCIWideCharStrncpy (dvoid *hndl,
 OCIWchar *wdststr,
 CONST OCIWchar *wsrcstr,
 size_t n);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wdststr (OUT)
Pointer to the destination wchar buffer.

wsrcstr (IN)
Pointer to the source wchar string.

n (IN)
Number of characters from wsrcstr to copy.

Comments
This function is similar to OCIWideCharStrcpy(), except that at most n characters
are copied from the array pointed to by wsrcstr to the array pointed to by
wdststr. Note that the NULL terminator in wdststr stops copying and the result
string is NULL-terminated. If OCI_UTF16ID is specified for SQL CHAR data in the
OCIEnvNlsCreate() function, then this function produces an error.

Returns
The number of characters copied not including the NULL terminator.

Related Functions
OCIWideCharStrcpy()

OCIWideCharStrrchr()

21-48 Oracle Call Interface Programmer's Guide

OCIWideCharStrrchr()

Purpose
Searches for the last occurrence of a character in a wide-character string.

Syntax
OCIWchar *OCIWideCharStrrchr (dvoid *hndl,
 CONST OCIWchar *wstr,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wstr (IN)
Pointer to the wchar string to search in.

wc (IN)
wchar to search for.

Comments
Searches for the last occurrence of wc in the wchar string pointed to by wstr. If
OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
wchar pointer if successful, otherwise a NULL pointer.

Related Functions
OCIWideCharStrchr()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-49

OCIWideCharToLower()

Purpose
Converts the wide-character string specified by wc into the corresponding
lowercase character, if it exists, in the specified locale. If no corresponding lowercase
character exists, then it returns wc itself.

Syntax
OCIWchar OCIWideCharToLower (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for lowercase conversion.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
A wchar.

Related Functions
OCIWideCharToUpper()

OCIWideCharToMultiByte()

21-50 Oracle Call Interface Programmer's Guide

OCIWideCharToMultiByte()

Purpose
Converts an entire NULL-terminated wide-character string into a multibyte string.

Syntax
sword OCIWideCharToMultiByte (dvoid *hndl,
 OraText *dst,
 CONST OCIWchar *src,
 size_t *rsize);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set of string.

dst (OUT)
Destination buffer for multibyte string. The output buffer is NULL-terminated.

src (IN)
Source wchar string to be converted.

srcsz (IN)
Length of source string in characters.

rsize (OUT)
Number of bytes written into destination buffer. If it is a NULL pointer, then nothing
is returned.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

Related Functions
OCIMultiByteToWideChar()

OCI String Manipulation Functions

OCI Globalization Support Functions 21-51

OCIWideCharToUpper()

Purpose
Converts the wide-character string specified by wc into the corresponding
uppercase character, if it exists, in the specified locale. If no corresponding
uppercase character exists, then it returns wc itself.

Syntax
OCIWchar OCIWideCharToUpper (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for uppercase conversion.

Comments
If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
A wchar.

Related Functions
OCIWideCharToLower()

OCI Character Classification Functions

21-52 Oracle Call Interface Programmer's Guide

OCI Character Classification Functions

Table 21–6 lists the OCI character classification functions.

Table 21–6 OCI Character Classification Function

Function/Page Purpose

OCIWideCharIsAlnum() on page 21-53 Tests whether the wide character is a letter or a decimal digit.

OCIWideCharIsAlpha() on page 21-54 Tests whether the wide character is an alphabetic letter.

OCIWideCharIsCntrl() on page 21-55 Tests whether the wide character is a control character.

OCIWideCharIsDigit() on page 21-56 Tests whether the wide character is a decimal digital character.

OCIWideCharIsGraph() on page 21-57 Tests whether the wide character is a graph character.

OCIWideCharIsLower() on page 21-58 Tests whether the wide character is a lowercase character.

OCIWideCharIsPrint() on page 21-59 Tests whether the wide character is a printable character.

OCIWideCharIsPunct() on page 21-60 Tests whether the wide character is a punctuation character.

OCIWideCharIsSingleByte() on page 21-61 Tests whether the wide character is a single-byte character
when converted to multibyte.

OCIWideCharIsSpace() on page 21-62 Tests whether the wide character is a space character.

OCIWideCharIsUpper() on page 21-63 Tests whether the wide character is an uppercase character.

OCIWideCharIsXdigit() on page 21-64 Tests whether the wide character is a hexadecimal digit.

OCI Character Classification Functions

OCI Globalization Support Functions 21-53

OCIWideCharIsAlnum()

Purpose
Tests whether a wide character is a letter or decimal digit.

Syntax
boolean OCIWideCharIsAlnum (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCIWideCharIsAlpha()

21-54 Oracle Call Interface Programmer's Guide

OCIWideCharIsAlpha()

Purpose
Tests whether a wide character is an alphabetic letter.

Syntax
boolean OCIWideCharIsAlpha (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCI Character Classification Functions

OCI Globalization Support Functions 21-55

OCIWideCharIsCntrl()

Purpose
Tests whether a wide character is a control character.

Syntax
boolean OCIWideCharIsCntrl (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCIWideCharIsDigit()

21-56 Oracle Call Interface Programmer's Guide

OCIWideCharIsDigit()

Purpose
Tests whether a wide character is a decimal digit character.

Syntax
boolean OCIWideCharIsDigit (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCI Character Classification Functions

OCI Globalization Support Functions 21-57

OCIWideCharIsGraph()

Purpose
Tests whether a wide character is a graph character. A graph character is a character
with a visible representation and normally includes alphabetic letters, decimal
digits, and punctuation.

Syntax
boolean OCIWideCharIsGraph (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCIWideCharIsLower()

21-58 Oracle Call Interface Programmer's Guide

OCIWideCharIsLower()

Purpose
Tests whether a wide character is a lowercase letter.

Syntax
boolean OCIWideCharIsLower (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCI Character Classification Functions

OCI Globalization Support Functions 21-59

OCIWideCharIsPrint()

Purpose
Tests whether a wide character is a printable character.

Syntax
boolean OCIWideCharIsPrint (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCIWideCharIsPunct()

21-60 Oracle Call Interface Programmer's Guide

OCIWideCharIsPunct()

Purpose
Tests whether a wide character is a punctuation character.

Syntax
boolean OCIWideCharIsPunct (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCI Character Classification Functions

OCI Globalization Support Functions 21-61

OCIWideCharIsSingleByte()

Purpose
Tests whether a wide character is a single-byte character when converted into
multibyte.

Syntax
boolean OCIWideCharIsSingleByte (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCIWideCharIsSpace()

21-62 Oracle Call Interface Programmer's Guide

OCIWideCharIsSpace()

Purpose
Tests whether a wide character is a space character. A space character causes white
space only in displayed text (for example, space, tab, carriage return, new line,
vertical tab or form feed).

Syntax
boolean OCIWideCharIsSpace (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCI Character Classification Functions

OCI Globalization Support Functions 21-63

OCIWideCharIsUpper()

Purpose
Tests whether a wide character is an uppercase letter

Syntax
boolean OCIWideCharIsUpper (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCIWideCharIsXdigit()

21-64 Oracle Call Interface Programmer's Guide

OCIWideCharIsXdigit()

Purpose
Tests whether a wide character is a hexadecimal digit (0-9, A-F, a-f)

Syntax
boolean OCIWideCharIsXdigit (dvoid *hndl,
 OCIWchar wc);

Parameters

hndl (IN/OUT)
OCI environment or user session handle to determine the character set.

wc (IN)
wchar for testing.

Returns
TRUE or FALSE.

OCI Character Set Conversion Functions

OCI Globalization Support Functions 21-65

OCI Character Set Conversion Functions

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to
the original character set is not always possible without data loss.

Table 21–7 lists the OCI character set conversion functions.

Table 21–7 OCI Character Set Conversion Functions

Function/Page Purpose

OCICharSetConversionIsReplacementUsed() on page 21-66 Indicates whether replacement characters
were used for characters that could not be
converted in the last invocation of
OCINlsCharSetConvert() or
OCICharSetToUnicode().

OCICharSetToUnicode() on page 21-67 Converts a multibyte string to Unicode.

OCINlsCharSetConvert() on page 21-69 Converts a string from one character set
to another.

OCIUnicodeToCharSet() on page 21-71 Converts a Unicode string into multibyte.

OCICharSetConversionIsReplacementUsed()

21-66 Oracle Call Interface Programmer's Guide

OCICharSetConversionIsReplacementUsed()

Purpose
Indicates whether the replacement character was used for characters that could not
be converted during the last invocation of OCICharSetToUnicode() or
OCICharSetConvert().

Syntax
boolean OCICharSetConversionIsReplacementUsed (dvoid *hndl);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle.

Comments

Conversion between the Oracle character set and Unicode (16-bit, fixed-width
Unicode encoding) is supported. Replacement characters are used if there is no
mapping for a character from Unicode to the Oracle character set. Thus, not every
character can make a round trip conversion to the original character. Data loss
occurs with certain characters.

Returns
The function returns TRUE if the replacement character was used when
OCICharSetConvert() or OCICharSetToUnicode() was last invoked.
Otherwise the function returns FALSE.

OCI Character Set Conversion Functions

OCI Globalization Support Functions 21-67

OCICharSetToUnicode()

Purpose
Converts a multibyte string pointed to by src to Unicode into the array pointed to
by dst.

Syntax
sword OCICharSetToUnicode (dvoid *hndl,
 ub2 *dst,
 size_t dstlen,
 CONST OraText *src,
 size_t srclen,
 size_t *rsize);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle.

dst (OUT)
Pointer to a destination buffer.

dstlen (IN)
The size of the destination buffer in characters.

src (IN)
Pointer to a multibyte source string.

srclen (IN)
The size of the source string in bytes.

rsize (OUT)
The number of characters converted. If it is a NULL pointer, then nothing is
returned.

Comments
The conversion stops when it reaches the source limitation or destination limitation.
The function returns the number of characters converted into a Unicode string. If
dstlen is 0, then the function scans the string, counts the number of characters,
and returns the number of characters into rsize, but does not convert the string.

OCICharSetToUnicode()

21-68 Oracle Call Interface Programmer's Guide

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

OCI Character Set Conversion Functions

OCI Globalization Support Functions 21-69

OCINlsCharSetConvert()

Purpose
Converts a string pointed to by src in the character set specified by srcid to the
array pointed to by dst in the character set specified by dstid. The conversion
stops when it reaches the data size limitation of either the source or the destination.
The function returns the number of bytes converted into the destination buffer.

Syntax
sword OCINlsCharSetConvert (dvoid *envhp,
 OCIError *errhp,
 ub2 dstid,
 dvoid *dstp,
 size_t dstlen,
 ub2 srcid,
 CONST dvoid *srcp,
 size_t srclen,
 size_t *rsize);

Parameters

errhp (IN/OUT)
OCI error handle. If there is an error, then it is recorded in errhp and the function
returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet().

dstid (IN)
Character set ID for the destination buffer.

dstp (OUT)
Pointer to the destination buffer.

dstlen (IN)
The maximum size in bytes of the destination buffer.

srcid (IN)
Character set ID for the source buffer.

srcp (IN)
Pointer to the source buffer.

OCINlsCharSetConvert()

21-70 Oracle Call Interface Programmer's Guide

srclen (IN)
The length in bytes of the source buffer.

rsize (OUT)
The number of characters converted. If the pointer is NULL, then nothing is
returned.

Comments
Although either the source or the destination character set ID can be specified as
OCI_UTF16ID, the length of the original and the converted data is represented in
bytes, rather than number of characters. Note that the conversion does not stop
when it encounters null data. To get the character set ID from the character set
name, use OCINlsCharSetNameToId(). To check if derived data in the
destination buffer contains replacement characters, use
OCICharSetConversionIsReplacementUsed(). The buffers should be aligned
with the byte boundaries appropriate for the character sets. For example, the ub2
datatype should be used to hold strings in UTF-16.

Returns
OCI_SUCCESS or OCI_ERROR; number of bytes converted

OCI Character Set Conversion Functions

OCI Globalization Support Functions 21-71

OCIUnicodeToCharSet()

Purpose
Converts a Unicode string to a multibyte string into an array.

Syntax
sword OCIUnicodeToCharSet (dvoid *hndl,
 OraText *dst,
 size_t dstlen,
 CONST ub2 *src,
 size_t srclen,
 size_t *rsize);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle.

dst (OUT)
Pointer to a destination buffer.

dstlen (IN)
The size of destination buffer in bytes.

src (IN)
Pointer to a Unicode string.

srclen (IN)
The size of the source string in characters.

rsize (OUT)
The number of bytes converted. If it is a NULL pointer, then nothing is returned.

Comments
The conversion stops when it reaches the source limitation or destination limitation.
The function returns the number of bytes converted into a multibyte string. If
dstlen is zero, then the function returns the number of bytes into rsize without
conversion.

OCIUnicodeToCharSet()

21-72 Oracle Call Interface Programmer's Guide

If a Unicode character is not convertible for the character set specified in OCI
environment or user session handle, then a replacement character is used. In this
case, OCICharsetConversionIsReplacementUsed() returns TRUE.

If OCI_UTF16ID is specified for SQL CHAR data in the OCIEnvNlsCreate()
function, then this function produces an error.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE. or OCI_ERROR.

OCI Messaging Functions

OCI Globalization Support Functions 21-73

OCI Messaging Functions

The user message API provides a simple interface for cartridge developers to
retrieve their own messages as well as Oracle messages.

Table 21–8 lists the OCI messaging functions.

See Also: Oracle Data Cartridge Developer's Guide

Table 21–8 OCI Messaging Functions

Function/Page Purpose

OCIMessageClose() on page 21-74 Closes a message handle and frees any memory asosciated
with the handle.

OCIMessageGet() on page 21-75 Retrieves a message. If the buffer is not zero, then the function
copies the message into the buffer.

OCIMessageOpen() on page 21-76 Opens a message handle in a specified language.

OCIMessageClose()

21-74 Oracle Call Interface Programmer's Guide

OCIMessageClose()

Purpose
Closes a message handle and frees any memory associated with this handle.

Syntax
sword OCIMessageClose (dvoid *hndl,
 OCIError *errhp,
 OCIMsg *msgh);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle for message language.

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp and the
function returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet().

msgh (IN/OUT)
A pointer to a message handle that was previously opened by
OCIMessageOpen().

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

OCI Messaging Functions

OCI Globalization Support Functions 21-75

OCIMessageGet()

Purpose
Gets a message with the given message number.

Syntax
OraText *OCIMessageGet (OCIMsg *msgh,
 ub4 msgno,
 OraText *msgbuf,
 size_t buflen);

Parameters

msgh (IN/OUT)
Pointer to a message handle which was previously opened by
OCIMessageOpen().

msgno (IN)
The message number

msgbuf (OUT)
Pointer to a destination buffer for the retrieved message. If buflen is zero, then it
can be a NULL pointer.

buflen (IN)
The size of the destination buffer.

Comments
If buflen is not zero, then the function copies the message into the buffer pointed
to by msgbuf. If buflen is zero, then the message is copied into a message buffer
inside the message handle pointed to by msgh.

Returns
It returns the pointer to the NULL-terminated message string. If the translated
message cannot be found, then it tries to return the equivalent English message. If
the equivalent English message cannot be found, then it returns a NULL pointer.

OCIMessageOpen()

21-76 Oracle Call Interface Programmer's Guide

OCIMessageOpen()

Purpose
Opens a message-handling facility in a specified language.

Syntax
sword OCIMessageOpen (dvoid *hndl,
 OCIError *errhp,
 OCIMsg *msghp,
 CONST OraText *product,
 CONST OraText *facility,
 OCIDuration dur);

Parameters

hndl (IN/OUT)
Pointer to an OCI environment or user session handle for message language.

errhp (IN/OUT)
The OCI error handle. If there is an error, then it is recorded in errhp, and the
function returns a NULL pointer. Diagnostic information can be obtained by calling
OCIErrorGet().

msghp (OUT)
A message handle for return.

product (IN)
A pointer to a product name. The product name is used to locate the directory for
messages. Its location depends on the operating system. For example, in Solaris, the
directory of message files for the rdbms product is $ORACLE_HOME/rdbms.

facility (IN)
A pointer to a facility name in the product. It is used to construct a message file
name. A message file name follows the conversion with facility as prefix. For
example, the message file name for the img facility in the American language is
imgus.msb, where us is the abbreviation for the American language and msb is the
message binary file extension.

OCI Messaging Functions

OCI Globalization Support Functions 21-77

dur (IN)
The duration for memory allocation for the return message handle. It can have the
following values:

■ OCI_DURATION_PROCESS

■ OCI_DURATION_SESSION

■ OCI_DURATION_STATEMENT

Comments
It first tries to open the message file corresponding to hndl. If it succeeds, then it
uses that file to initialize a message handle. If it cannot find the message file that
corresponds to the language, then it looks for a primary language file as a fallback.
For example, if the Latin American Spanish file is not found, then it tries to open the
Spanish file. If the fallback fails, then it uses the default message file, whose
language is AMERICAN. The function returns a pointer to a message handle into the
msghp parameter.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR.

OCIMessageOpen()

21-78 Oracle Call Interface Programmer's Guide

OCI XML DB Functions 22-1

22
OCI XML DB Functions

This chapter describes the OCI XML DB functions.

This chapter contains these topics:

■ Introduction to XML DB Support in OCI

■ OCI XML DB Functions

Introduction to XML DB Support in OCI

22-2 Oracle Call Interface Programmer's Guide

Introduction to XML DB Support in OCI

This chapter describes the XML DB functions in detail.

The Function Syntax
The entries for each function contain the following information:

Purpose
A brief statement of the purpose of the function.

Syntax
The function declaration.

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described below:

Comments
Detailed information about the function if available. This may include restrictions
on the use of the function, or other information that might be useful when using the
function in an application. An optional section.

All the functions in this chapter are related to each other.

Function Return Values
Unless otherwise stated, the function returns:

See Also: "OCI Support for XML" on page 13-23

Table 22–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

Introduction to XML DB Support in OCI

OCI XML DB Functions 22-3

Table 22–2 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be
retrieved by calling OCIErrorGet() on the
error handle passed to the function.

OCI_INVALID_HANDLE The OCI handle passed to the function is
invalid.

See Also: For more information about return codes and error
handling, see the section "Error Handling in OCI" on page 2-26

OCI XML DB Functions

22-4 Oracle Call Interface Programmer's Guide

OCI XML DB Functions

This section describes the XML DB functions.

Table 22–3 XML DB Functions

Function/Page Purpose

OCIXmlDbFreeXmlCtx() on page 22-5 Free an XML context.

OCIXmlDbInitXmlCtx() on page 22-6 Initialize an XML context for XML data from the
database.

OCI XML DB Functions

OCI XML DB Functions 22-5

OCIXmlDbFreeXmlCtx()

Purpose
Free any allocations made by the call to OCIXmlDbInitXmlCtx().

Syntax
void OCIXmlDbFreeXmlCtx (xmlct *xctx);

Parameters

xctx (IN)
The XML context to terminate.

Comments
None.

Related Functions
OCIXmlDbInitXmlCtx()

OCIXmlDbInitXmlCtx()

22-6 Oracle Call Interface Programmer's Guide

OCIXmlDbInitXmlCtx()

Purpose
To initialize an XML context for XML data from the database.

Syntax
xmlctx *OCIXmlDbInitXmlCtx (OCIEnv *envhp,
 OCISvcCtx *svchp,
 OCIError *errhp,
 ocixmldbparam *params,
 ub4 num_params);

Parameters

envhp (IN)
The OCI environment handle.

svchp (IN)
The OCI service handle.

errhp (IN)
The OCI error handle.

params (IN)
The optional possible values in this array are:

The OCI duration. Default value is OCI_DURATION_SESSION.

An error handler which is a user-registered callback of prototype:

void (*err_handler) (sword errcode, (CONST OraText *) errmsg);

The two parameters of err_handler are:

 errcode (OUT)
A numerical error value.

 errmsg (OUT)
The error message text.

num_params (IN)
Number of parameters to be read from params. If the value of num_params
exceeds the size of array params, unexpected behavior results.

OCI XML DB Functions

OCI XML DB Functions 22-7

Comments

Returns
Returns either:

■ A pointer to structure xmlctx, with error handler and callbacks populated with
appropriate values. This is later used for all OCI calls.

■ NULL, if no database connection is available.

Related Functions
OCIXmlDbFreeXmlCtx()

See Also: "OCI Support for XML" on page 13-23 for a usage
example.

OCIXmlDbInitXmlCtx()

22-8 Oracle Call Interface Programmer's Guide

Handle and Descriptor Attributes A-1

A
Handle and Descriptor Attributes

This appendix describes the attributes for OCI handles and descriptors, which can
be read with OCIAttrGet(), and modified with OCIAttrSet().

This appendix contains these topics:

■ Conventions

■ Environment Handle Attributes

■ Error Handle Attributes

■ Service Context Handle Attributes

■ Server Handle Attributes

■ Authentication Information Handle

■ User Session Handle Attributes

■ Connection Pool Handle Attributes

■ Session Pool Handle Attributes

■ Transaction Handle Attributes

■ Statement Handle Attributes

■ Bind Handle Attributes

■ Define Handle Attributes

■ Describe Handle Attributes

■ Parameter Descriptor Attributes

■ LOB Locator Attributes

■ Complex Object Attributes

A-2 Oracle Call Interface Programmer's Guide

■ Advanced Queuing Descriptor Attributes

■ Subscription Handle Attributes

■ Direct Path Loading Handle Attributes

■ Process Handle Attributes

Environment Handle Attributes

Handle and Descriptor Attributes A-3

Conventions
For each handle type, the attributes which can be read or changed are listed. Each
attribute listing includes the following information:

Mode
The following modes are valid:

READ - the attribute can be read using OCIAttrGet()

WRITE - the attribute can be modified using OCIAttrSet()

READ/WRITE - the attribute can be read using OCIAttrGet(), and it can be
modified using OCIAttrSet().

Description
This is a description of the purpose of the attribute.

Attribute Datatype
This is the datatype of the attribute. If necessary, a distinction is made between the
datatype for READ and WRITE modes.

Valid Values
In some cases, only certain values are allowed, and they are listed here.

Example
In some cases an example is included.

Environment Handle Attributes

OCI_ATTR_BIND_DN

Mode
READ/WRITE

Description
The login name (DN) to use when connecting to the LDAP server.

Attribute Datatype
OraText *

Environment Handle Attributes

A-4 Oracle Call Interface Programmer's Guide

OCI_ATTR_CACHE_ARRAYFLUSH

Mode
READ/WRITE

Description
When this attribute is set to TRUE, during OCICacheFlush() the objects that
belong to the same table are flushed together, which can considerably improve
performance. This mode should only be used when the order in which the objects
are flushed is not important. During this mode it is not guaranteed that the order in
which the objects are marked dirty is preserved.

Attribute Datatype
boolean

OCI_ATTR_CACHE_MAX_SIZE

Mode
READ/WRITE

Description
Sets the maximum size (high watermark) for the client-side object cache as a
percentage of the optimal size. Set the value at 110% of the optimal size
(OCI_ATTR_CACHE_OPT_SIZE). The object cache uses the maximum and optimal
values for freeing unused memory in the object cache.

Attribute Datatype
ub4 *

OCI_ATTR_CACHE_OPT_SIZE

Mode
READ/WRITE

See Also: "Object Cache Parameters" on page 13-5 and "Flushing
Changes to Server" on page 13-11

See Also: "Object Cache Parameters" on page 13-5

Environment Handle Attributes

Handle and Descriptor Attributes A-5

Description
Sets the optimal size for the client-side object cache in bytes. The default value is 8M
bytes.

Attribute Datatype
ub4 *

OCI_ATTR_ENV_CHARSET_ID

Mode
READ

Description
Local (client-side) character set ID. Users can update this setting only after creating
the environment handle but before calling any other OCI functions. This restriction
ensures the consistency among data and metadata in the same environment handle.
In UTF-16 mode, an attempt to get this attribute is invalid.

Attribute Datatype
ub2 *

OCI_ATTR_ENV_NCHARSET_ID

Mode
READ

Description
Local (client-side) national character set ID. Users can update this setting only after
creating the environment handle but before calling any other OCI functions. This
restriction ensures the consistency among data and metadata in the same
environment handle. In UTF-16 mode, an attempt to get this attribute is invalid.

Attribute Datatype
ub2 *

OCI_ATTR_ENV_UTF16

Mode
READ

See Also: "Object Cache Parameters" on page 13-5

Environment Handle Attributes

A-6 Oracle Call Interface Programmer's Guide

Description
Encoding method is UTF-16. The value 1 means that the environment handle is
created in UTF-16 mode, while 0 means that it is not. This mode can only be set by
the call to OCIEnvCreate() and cannot be changed later.

Attribute Datatype
ub1 *

OCI_ATTR_LDAP_AUTH

Mode
READ/WRITE

Description
The authentication mode. The following are the valid values:

0x0: No authentication; anonymous bind.

0x1: Simple authentication; user name and password authentication.

0x5: SSL connection with no authentication.

0x6: SSL: only server authentication required.

0x7: SSL: both server authentication and client authentication are required.

0x8: Authentication method will be determined at runtime.

Attribute Datatype
ub2

OCI_ATTR_LDAP_CRED

Mode
READ/WRITE

Description
If the authentication method is "simple authentication" (user name and password
authentication), then this attribute holds the password to use when connecting to
the LDAP server.

Attribute Datatype
OraText *

Environment Handle Attributes

Handle and Descriptor Attributes A-7

OCI_ATTR_LDAP_CTX

Mode
READ/WRITE

Description
The administrative context of the client. This is usually the root of the Oracle
RDBMS LDAP schema in the LDAP server.

Attribute Datatype
OraText *

OCI_ATTR_LDAP_HOST

Mode
READ/WRITE

Description
The name of the host on which the LDAP server runs.

Attribute Datatype
OraText *

OCI_ATTR_LDAP_PORT

Mode
READ/WRITE

Description
The port on which the LDAP server is listening.

Attribute Datatype
ub2

OCI_ATTR_OBJECT

Mode
READ

Description
Returns TRUE if the environment was initialized in object mode.

Environment Handle Attributes

A-8 Oracle Call Interface Programmer's Guide

Attribute Datatype
boolean *

OCI_ATTR_PINOPTION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_PIN_DEFAULT for the application associated
with the environment handle.

For example, if OCI_ATTR_PINOPTION is set to OCI_PIN_RECENT, then if
OCIObjectPin() is called with the pin_option parameter set to
OCI_PIN_DEFAULT, then the object is pinned in OCI_PIN_RECENT mode.

Attribute Datatype
OCIPinOpt *

OCI_ATTR_ALLOC_DURATION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_DURATION_DEFAULT for allocation durations
for the application associated with the environment handle.

Attribute Datatype
OCIDuration *

OCI_ATTR_PIN_DURATION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_DURATION_DEFAULT for pin durations for
the application associated with the environment handle.

Attribute Datatype
OCIDuration *

Environment Handle Attributes

Handle and Descriptor Attributes A-9

OCI_ATTR_HEAPALLOC

Mode
READ

Description
The current size of the memory allocated from the environment handle. This may
help you track where memory is being used most in an application.

Attribute Datatype
ub4 *

OCI_ATTR_OBJECT_NEWNOTNULL

Mode
READ/WRITE

Description
When this attribute is set to TRUE, newly created objects have non-NULL attributes.

Attribute Datatype
boolean *

OCI_ATTR_OBJECT_DETECTCHANGE

Mode
READ/WRITE

Description
When this attribute is set to TRUE, applications receive an ORA-08179 error when
attempting to flush an object which has been modified in the server by another
committed transaction.

Attribute Datatype
boolean *

See Also: "Creating Objects" on page 10-33

See Also: "Implementing Optimistic Locking" on page 13-14

Error Handle Attributes

A-10 Oracle Call Interface Programmer's Guide

OCI_ATTR_SHARED_HEAPALLOC

Mode
READ

Description
Returns the size of the memory currently allocated from the shared pool. This
attribute works on any environment handle but the process must be initialized in
shared mode to return a meaningful value. This attribute is read as follows:

ub4 heapsz = 0;
OCIAttrGet((dvoid *)envhp, (ub4)OCI_HTYPE_ENV,
 (dvoid *) &heapsz, (ub4 *) 0,
 (ub4)OCI_ATTR_SHARED_HEAPALLOC, errhp);

Attribute Datatype
ub4 *

OCI_ATTR_WALL_LOC

Mode
READ/WRITE

Description
If the authentication method is SSL authentication, this attribute contains the
location of the client wallet.

Attribute Datatype
OraText *

Error Handle Attributes

OCI_ATTR_DML_ROW_OFFSET

Mode
READ

Description
Returns the offset (into the DML array) at which the error occurred.

Attribute Datatype
ub4 *

Service Context Handle Attributes

Handle and Descriptor Attributes A-11

Service Context Handle Attributes

OCI_ATTR_ENV

Mode
READ

Description
returns the environment context associated with the service context.

Attribute Datatype
OCIEnv **

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle release 7
mode (for example, through an OCISvcCtxToLda() call). A nonzero (true) return
value indicates that the application is currently running in Oracle release 8 mode, a
zero (false) return value indicates that the application is currently running in Oracle
release 7 mode.

Attribute Datatype
ub1 *

Example
The following code sample shows how this parameter is used:

in_v8_mode = 0;
OCIAttrGet ((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (ub1 *)&in_v8_mode,
 (ub4) 0, OCI_ATTR_IN_V8_MODE, errhp);
if (in_v8_mode)
 fprintf (stdout, "In V8 mode\n");
else
 fprintf (stdout, "In V7 mode\n");

Service Context Handle Attributes

A-12 Oracle Call Interface Programmer's Guide

OCI_ATTR_SERVER

Mode
READ/WRITE

Description
When read, returns the pointer to the server context attribute of the service context.

When changed, sets the server context attribute of the service context.

Attribute Datatype
OCIServer ** / OCIServer *

OCI_ATTR_SESSION

Mode
READ/WRITE

Description
When read, returns the pointer to the authentication context attribute of the service
context.

When changed, sets the authentication context attribute of the service context.

Attribute Datatype
OCISession **/ OCISession *

OCI_ATTR_STMTCACHESIZE

Mode
READ/WRITE

Description
The default value of the statement cache size is 20, for a statement cache enabled
session. The user can increase or decrease this value, by setting this attribute on the
service context handle.

Attribute Datatype
ub4 */ ub4

Server Handle Attributes

Handle and Descriptor Attributes A-13

OCI_ATTR_TRANS

Mode
READ/WRITE

Description
When read, returns the pointer to the transaction context attribute of the service
context.

When changed, sets the transaction context attribute of the service context.

Attribute Datatype
OCITrans ** / OCITrans *

Server Handle Attributes

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the server context.

Attribute Datatype
OCIEnv **

OCI_ATTR_EXTERNAL_NAME

Mode
READ/WRITE

Description
The external name is the user-friendly global name stored in
sys.props$.value$, where name = 'GLOBAL_DB_NAME'. It is not guaranteed
to be unique unless all databases register their names with a network directory
service.

Database names can be exchanged with the server in case of distributed transaction
coordination. Server database names can only be accessed if the database is open at
the time the OCISessionBegin() call is issued.

Server Handle Attributes

A-14 Oracle Call Interface Programmer's Guide

Attribute Datatype
OraText ** (READ) / OraText * (WRITE)

OCI_ATTR_FOCBK

Mode
READ/WRITE

Description

Attribute Datatype
OCIFocbkStruct *

OCI_ATTR_INTERNAL_NAME

Mode
READ/WRITE

Description
Sets the client database name that will be recorded when performing global
transactions. The name can be used by the DBA to track transactions that may be
pending in a prepared state due to failures.

Attribute Datatype
OraText ** (READ) / OraText * (WRITE)

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle release 7
mode (for example, through an OCISvcCtxToLda() call). A nonzero (TRUE)
return value indicates that the application is currently running in Oracle release 8
mode, a zero (FALSE) return value indicates that the application is currently
running in Oracle release 7 mode.

Attribute Datatype
ub1 *

See Also: "Application Failover Callbacks in OCI" on page 9-41

Server Handle Attributes

Handle and Descriptor Attributes A-15

OCI_ATTR_NONBLOCKING_MODE

Mode
READ/WRITE

Description
This attribute determines the blocking mode. When read, the attribute value returns
TRUE if the server context is in nonblocking mode. When set, it toggles the
nonblocking mode attribute.

Attribute Datatype
ub1

OCI_ATTR_SERVER_GROUP

Mode
READ/WRITE

Description
An alpha-numeric string not exceeding 30 characters specifying the server group.

Attribute Datatype
ub4

OCI_ATTR_SERVER_STATUS

Mode
READ

Description
Returns the current status of the server handle. Values are:

■ OCI_SERVER_NORMAL - There is an active connection to the server. It means
that the last call on the connection went through. There is no guarantee that the
next call will go through.

■ OCI_SERVER_NOT_CONNECTED - There is no connection to the server.

See Also: "Nonblocking Mode in OCI" on page 2-35

See Also: "Password and Session Management" on page 8-10

Authentication Information Handle

A-16 Oracle Call Interface Programmer's Guide

Attribute Datatype
ub4

Example
The following code sample shows how this parameter is used:

ub4 serverStatus = 0
OCIAttrGet((dvoid *)srvhp, OCI_HTYPE_SERVER,
 (dvoid *)&serverStatus, (ub4 *)0, OCI_ATTR_SERVER_STATUS, errhp);
if (serverStatus == OCI_SERVER_NORMAL)
 printf("Connection is up.\n");
else if (serverStatus == OCI_SERVER_NOT_CONNECTED)
 printf("Connection is down.\n");

Authentication Information Handle
These attributes also apply to the user session handle.

User Session Handle Attributes
These attributes also apply to the authentication information handle.

OCI_ATTR_ACTION

Mode
WRITE

Description
The name of the current action within the current module. Can be set to NULL.
When the current action terminates, set this attribute again with the name of the
next action or NULL, if there is no next action. Can be up to 32 bytes long.

Attribute Datatype
OraText *

Example
OCIAttrSet(session, OCI_HTYPE_SESSION,(dvoid *)"insert into employees",
 (ub4)strlen("insert into employees"), OCI_ATTR_ACTION, error_handle);

See Also: "User Session Handle Attributes" on page A-16

User Session Handle Attributes

Handle and Descriptor Attributes A-17

OCI_ATTR_APPCTX_ATTR

Mode
WRITE

Description
Specifies an attribute name of the externally initialized context.

Attribute Datatype
OraText *

OCI_ATTR_APPCTX_LIST

Mode
READ

Description
Gets the application context list descriptor for the session.

Attribute Datatype
OraText *

OCI_ATTR_APPCTX_NAME

Mode
WRITE

Description
Specifies the namespace of the externally initialized context.

Attribute Datatype
OraText *

OCI_ATTR_APPCTX_SIZE

Mode
WRITE

Description
Initializes the externally initialized context array size with the number of attributes.

User Session Handle Attributes

A-18 Oracle Call Interface Programmer's Guide

Attribute Datatype
OraText *

OCI_ATTR_APPCTX_VALUE

Mode
WRITE

Description
Specifies a value of the externally initialized context.

Attribute Datatype
OraText *

OCI_ATTR_CERTIFICATE

Mode
WRITE

Description
Specifies the certificate of the client for use in proxy authentication.

Attribute Datatype
ub1 *

OCI_ATTR_CERTIFICATE_TYPE

Mode
WRITE

Description
Specifies the type for proxy authentication. If not specified, the default type of X.509
is used.

Attribute Datatype
OraText *

OCI_ATTR_CALL_TIME

Mode
READ

User Session Handle Attributes

Handle and Descriptor Attributes A-19

Description
Returns the server-side time for the preceding call in milliseconds.

Attribute Datatype
ub8

OCI_ATTR_CLIENT_IDENTIFIER

Mode
WRITE

Description
Specifies the user identifier in the session handle. Can be up to 64 bytes long. It can
contain the user name, but you are asked not to include the password for security
reasons. The first character of the identifier should not be ':'. If it is, the behavior is
unspecified.

Attribute Datatype
OraText *

Example
OCIAttrSet(session, OCI_HTYPE_SESSION,(dvoid *)"janedoe",
 (ub4)strlen("janedoe"), OCI_ATTR_CLIENT_IDENTIFIER, error_handle);

OCI_ATTR_CLIENT_INFO

Mode
WRITE

Description
Client application additional information. Can also be set by the
DBMS_APPLICATION_INFO package. It is stored in the V$SESSION view. Up to
64 bytes long.

Attribute Datatype
OraText *

OCI_ATTR_COLLECT_CALL_TIME

Mode
READ/WRITE

User Session Handle Attributes

A-20 Oracle Call Interface Programmer's Guide

Description
When set to TRUE, causes the server to measure call time, in milliseconds, for each
subsequent OCI call.

Attribute Datatype
boolean

OCI_ATTR_DISTINGUISHED_NAME

Mode
WRITE

Description
Specifies distinguished name of the client for use in proxy authentication.

Attribute Datatype
OraText *

OCI_ATTR_INITIAL_CLIENT_ROLES

Mode
WRITE

Description
Specifies the role or roles that the client is to initially possess when the application
server connects to Oracle on its behalf.

Attribute Datatype
ub4

OCI_ATTR_MIGSESSION

Mode
READ/WRITE

Description
Specifies the session identified for the session handle. Allows you to clone a session
from one environment to another, in the same process or between processes. These
processes can be on the same machine or different machines. For a session to be
cloned, the session must be authenticated as migratable.

See Also: "Password and Session Management" on page 8-10

User Session Handle Attributes

Handle and Descriptor Attributes A-21

Attribute Datatype
ub1 *

Example
The following code sample shows how this attribute is used:

OCIAttrSet ((dvoid *) authp, (ub4)OCI_HTYPE_SESSION, (dvoid *) mig_session,
 (ub4) sz, (ub4)OCI_ATTR_MIGSESSION, errhp);

OCI_ATTR_MODULE

Mode
WRITE

Description
The name of the current module running in the client application. When the current
module terminates, call with the name of the new module, or NULL if there is no
new module. Can be up to 48 bytes long.

Attribute Datatype
OraText *

Example
OCIAttrSet(session, OCI_HTYPE_SESSION,(dvoid *)"add_employee",
 (ub4)strlen("add_employee"), OCI_ATTR_MODULE, error_handle);

OCI_ATTR_PASSWORD

Mode
WRITE

Description
Specifies a password to use for authentication.

Attribute Datatype
OraText *

OCI_ATTR_PROXY_CREDENTIALS

Mode
WRITE

Connection Pool Handle Attributes

A-22 Oracle Call Interface Programmer's Guide

Description
Specifies that the credentials of the application server are to be used for proxy
authentication.

Attribute Datatype
ub4

OCI_ATTR_USERNAME

Mode
WRITE

Description
Specifies a user name to use for authentication.

Attribute Datatype
OraText *

Connection Pool Handle Attributes

OCI_ATTR_CONN_TIMEOUT

Mode
READ/WRITE

Description
Connections idle for more than this time value (in seconds) are terminated, to
maintain an optimum number of open connections.This attribute can be set
dynamically. If this attribute is not set, the connections are never timed out.

Attribute Datatype
ub4 */ub4

OCI_ATTR_CONN_NOWAIT

Mode
READ/WRITE

Connection Pool Handle Attributes

Handle and Descriptor Attributes A-23

Description
This attribute determines if retrial for a connection has to be done when all
connections in the pool are found to be busy and the number of connections has
already reached the maximum.

If this attribute is set, an error is thrown when all the connections are busy and no
more connections can be opened. Otherwise the call waits till it gets a connection.

When read, the attribute value is returned as TRUE if it has been set.

Attribute Datatype
ub1 */ub1

OCI_ATTR_CONN_BUSY_COUNT

Mode
READ

Description
Returns the number of busy connections.

Attribute Datatype
ub4 *

OCI_ATTR_CONN_OPEN_COUNT

Mode
READ

Description
Returns the number of open connections.

Attribute Datatype
ub4 *

OCI_ATTR_CONN_MIN

Mode
READ

Description
Returns the number of minimum connections.

Session Pool Handle Attributes

A-24 Oracle Call Interface Programmer's Guide

Attribute Datatype
ub4 *

OCI_ATTR_CONN_MAX

Mode
READ

Description
Returns the number of maximum connections.

Attribute Datatype
ub4 *

OCI_ATTR_CONN_INCR

Mode
READ

Description
Returns the connection increment parameter.

Attribute Datatype
ub4 *

Session Pool Handle Attributes
The attributes used for session pooling are:

OCI_ATTR_SPOOL_BUSY_COUNT

Mode
READ

Description
Returns the number of busy sessions.

Attribute Datatype
ub4 *

Session Pool Handle Attributes

Handle and Descriptor Attributes A-25

OCI_ATTR_SPOOL_GETMODE

Mode
READ/WRITE

Description
This attribute determines the behavior of the session pool when all sessions in the
pool are found to be busy and the number of sessions has already reached the
maximum. Values are:

■ OCI_SPOOL_ATTRVAL_WAIT - the thread waits and blocks until a session is
freed. This is the default value.

■ OCI_SPOOL_ATTRVAL_NOWAIT - an error is returned.

■ OCI_SPOOL_ATTRVAL_FORCEGET - a new session is created even though all
the sessions are busy and the maximum number of sessions has been reached.
OCISessionGet() returns a warning. In this case, if new sessions are created
that have exceeded the maximum, OCISessionGet() returns a warning.

Note that if this value is set, it is possible that there can be an attempt to create
more sessions than can be supported by the instance of the Oracle database
server. In this case, the server will return the following error:

ORA 00018 - Maximum number of sessions exceeded

In this case, the error will be propagated to the session pool user.

When read, the appropriate attribute value is returned.

Attribute Datatype
ub1 */ ub1

OCI_ATTR_SPOOL_INCR

Mode
READ

Description
Returns the session increment parameter.

Attribute Datatype
ub4 *

Session Pool Handle Attributes

A-26 Oracle Call Interface Programmer's Guide

OCI_ATTR_SPOOL_MAX

Mode
READ

Description
Returns the number of maximum sessions.

Attribute Datatype
ub4 *

OCI_ATTR_SPOOL_MIN

Mode
READ

Description
Returns the number of minimum sessions.

Attribute Datatype
ub4 *

OCI_ATTR_SPOOL_OPEN_COUNT

Mode
READ

Description
Returns the number of open sessions.

Attribute Datatype
ub4 *

OCI_ATTR_SPOOL_TIMEOUT

Mode
READ/WRITE

Description
The sessions idle for more than this time (in seconds) are terminated periodically, to
maintain an optimum number of open sessions.This attribute can be set

Transaction Handle Attributes

Handle and Descriptor Attributes A-27

dynamically. If this attribute is not set, the least recently used sessions may be timed
out if and when space in the pool is required.

Attribute Datatype
ub4 */ ub4

OCI_ATTR_SPOOL_STMTCACHESIZE

Mode
READ/WRITE

Description

Enables or disables statement caching on an individual pooled session. Represents the statement cache size for the entire session pool.

Attribute Datatype
ub4 */ ub4

Transaction Handle Attributes

OCI_ATTR_TRANS_NAME

Mode
READ/WRITE

Description
Can be used to establish or read a text string which identifies a transaction. This is
an alternative to using the XID to identify the transaction. The OraText string can be
up to 64 bytes long.

Attribute Datatype
OraText ** (READ) / OraText * (WRITE)

OCI_ATTR_TRANS_TIMEOUT

Mode
READ/WRITE

Description
Can set or read a timeout value used at prepare time.

See Also: "Statement Caching in OCI" on page 9-27

Statement Handle Attributes

A-28 Oracle Call Interface Programmer's Guide

Attribute Datatype
ub4 * (READ) / ub4 (WRITE)

OCI_ATTR_XID

Mode
READ/WRITE

Description
Can set or read an XID which identifies a transaction.

Attribute Datatype
XID ** (READ) / XID * (WRITE)

Statement Handle Attributes

OCI_ATTR_CURRENT_POSITION

Mode
READ

Description
Indicates the current position in the result set. This attribute can only be retrieved. It
cannot be set.

Attribute Datatype
ub4 *

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the statement.

Attribute Datatype
OCIEnv **

Statement Handle Attributes

Handle and Descriptor Attributes A-29

OCI_ATTR_NUM_DML_ERRORS

Mode
READ

Description
Returns the number of errors in the DML operation.

Attribute Datatype
ub4 *

OCI_ATTR_PARAM_COUNT

Mode
READ

Description
This attribute can be used to get the number of columns in the select-list for the
statement associated with the statement handle.

Attribute Datatype
ub4 *

Example
...
int i = 0;
ub4 parmcnt = 0;
ub2 type = 0;
OCIParam *colhd = (OCIParam *) 0; /* column handle */

/* Describe of a select-list */
OraText *sqlstmt = (OraText *)"SELECT * FROM employees WHERE employee_id = 100";

checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 1, 0,
 (OCISnapshot *)0, (OCISnapshot *)0, OCI_DESCRIBE_ONLY));

/* Get the number of columns in the select list */
checkerr(errhp, OCIAttrGet((dvoid *)stmthp, OCI_HTYPE_STMT, (dvoid *)&parmcnt,
 (ub4 *)0, OCI_ATTR_PARAM_COUNT, errhp));

Statement Handle Attributes

A-30 Oracle Call Interface Programmer's Guide

/* go through the column list and retrieve the datatype of each column. We
start from pos = 1 */
for (i = 1; i <= parmcnt; i++)
{
 /* get parameter for column i */
 checkerr(errhp, OCIParamGet((dvoid *)stmthp, OCI_HTYPE_STMT, errhp, (dvoid
**)&colhd, i));

 /* get data-type of column i */
 type = 0;
 checkerr(errhp, OCIAttrGet((dvoid *)colhd, OCI_DTYPE_PARAM,
 (dvoid *)&type, (ub4 *)0, OCI_ATTR_DATA_TYPE, errhp));

}
...

OCI_ATTR_PARSE_ERROR_OFFSET

Mode
READ

Description
Returns the parse error offset for a statement.

Attribute Datatype
ub2 *

OCI_ATTR_PREFETCH_MEMORY

Mode
WRITE

Description
Sets the memory level for top level rows to be prefetched. Rows up to the specified
top level row count are fetched if it occupies no more than the specified memory
usage limit. The default value is 0, which means that memory size is not included in
computing the number of rows to prefetch.

Attribute Datatype
ub4 *

Statement Handle Attributes

Handle and Descriptor Attributes A-31

OCI_ATTR_PREFETCH_ROWS

Mode
WRITE

Description
Sets the number of top level rows to be prefetched. The default value is 1 row.

Attribute Datatype
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Returns the number of rows processed so far after SELECT statements. For INSERT,
UPDATE, and DELETE statements, it is the number of rows processed by the most
recent statement. The default value is 1.

For non-scrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows
fetched into user buffers with the OCIStmtFetch2() calls issued since this
statement handle was executed. Since they are forward sequential only, this also
represents the highest row number seen by the application.

For scrollable cursors, OCI_ATTR_ROW_COUNT will represent the maximum
(absolute) row number fetched into the user buffers. Since the application can
arbitrarily position the fetches, this need not be the total number of rows fetched
into the user's buffers since the (scrollable) statement was executed.

Attribute Datatype
ub4 *

OCI_ATTR_ROWID

Mode
READ

Description
Returns the ROWID descriptor allocated with OCIDescriptorAlloc().

Statement Handle Attributes

A-32 Oracle Call Interface Programmer's Guide

Attribute Datatype
OCIRowid *

OCI_ATTR_ROWS_FETCHED

Mode
READ

Description
Indicates the number of rows that were successfully fetched into the user's buffers
in the last fetch or execute with nonzero iterations. It can be used for both scrollable
and non-scrollable statement handles.

Attribute Datatype
ub4 *

Example
ub4 rows;
ub4 sizep = sizeof(ub4);
OCIAttrGet((dvoid *) stmhp, (ub4) OCI_HTYPE_STMT,
 (dvoid *)& rows, (ub4 *) &sizep, (ub4)OCI_ATTR_ROWS_FETCHED, errhp);

OCI_ATTR_SQLFNCODE

Mode
READ

Description
Returns the function code of the SQL command associated with the statement.

Attribute Datatype
ub2 *

Notes

See Also: "Positioned Updates and Deletes" on page 2-33 and
"DATE" on page 3-15

See Also: The SQL command codes are listed in Table A–1, "SQL
Command Codes" on page A-33

Statement Handle Attributes

Handle and Descriptor Attributes A-33

Table A–1 SQL Command Codes

Code SQL Function Code SQL Function Code SQL Function

01 CREATE TABLE 43 DROP EXTERNAL
DATABASE

85 TRUNCATE TABLE

02 SET ROLE 44 CREATE DATABASE 86 TRUNCATE CLUSTER

03 INSERT 45 ALTER DATABASE 87 CREATE BITMAPFILE

04 SELECT 46 CREATE ROLLBACK
SEGMENT

88 ALTER VIEW

05 UPDATE 47 ALTER ROLLBACK
SEGMENT

89 DROP BITMAPFILE

06 DROP ROLE 48 DROP ROLLBACK
SEGMENT

90 SET CONSTRAINTS

07 DROP VIEW 49 CREATE TABLESPACE 91 CREATE FUNCTION

08 DROP TABLE 50 ALTER TABLESPACE 92 ALTER FUNCTION

09 DELETE 51 DROP TABLESPACE 93 DROP FUNCTION

10 CREATE VIEW 52 ALTER SESSION 94 CREATE PACKAGE

11 DROP USER 53 ALTER USER 95 ALTER PACKAGE

12 CREATE ROLE 54 COMMIT (WORK) 96 DROP PACKAGE

13 CREATE SEQUENCE 55 ROLLBACK 97 CREATE PACKAGE
BODY

14 ALTER SEQUENCE 56 SAVEPOINT 98 ALTER PACKAGE BODY

15 (NOT USED) 57 CREATE CONTROL FILE 99 DROP PACKAGE BODY

16 DROP SEQUENCE 58 ALTER TRACING 157 CREATE DIRECTORY

17 CREATE SCHEMA 59 CREATE TRIGGER 158 DROP DIRECTORY

18 CREATE CLUSTER 60 ALTER TRIGGER 159 CREATE LIBRARY

19 CREATE USER 61 DROP TRIGGER 160 CREATE JAVA

20 CREATE INDEX 62 ANALYZE TABLE 161 ALTER JAVA

21 DROP INDEX 63 ANALYZE INDEX 162 DROP JAVA

22 DROP CLUSTER 64 ANALYZE CLUSTER 163 CREATE OPERATOR

23 VALIDATE INDEX 65 CREATE PROFILE 164 CREATE INDEXTYPE

24 CREATE PROCEDURE 66 DROP PROFILE 165 DROP INDEXTYPE

Statement Handle Attributes

A-34 Oracle Call Interface Programmer's Guide

OCI_ATTR_STATEMENT

Mode
READ

Description
Returns the text of the SQL statement prepared in a statement handle. In UTF-16
mode, the returned statement is in UTF-16 encoding. The length is always in bytes.

25 ALTER PROCEDURE 67 ALTER PROFILE 166 ALTER INDEXTYPE

26 ALTER TABLE 68 DROP PROCEDURE 167 DROP OPERATOR

27 EXPLAIN 69 (NOT USED) 168 ASSOCIATE STATISTICS

28 GRANT 70 ALTER RESOURCE COST 169 DISASSOCIATE
STATISTICS

29 REVOKE 71 CREATE SNAPSHOT LOG 170 CALL METHOD

30 CREATE SYNONYM 72 ALTER SNAPSHOT LOG 171 CREATE SUMMARY

31 DROP SYNONYM 73 DROP SNAPSHOT LOG 172 ALTER SUMMARY

32 ALTER SYSTEM SWITCH
LOG

74 CREATE SNAPSHOT 73 DROP SUMMARY

33 SET TRANSACTION 75 ALTER SNAPSHOT 174 CREATE DIMENSION

34 PL/SQL EXECUTE 76 DROP SNAPSHOT 175 ALTER DIMENSION

35 LOCK 77 CREATE TYPE 176 DROP DIMENSION

36 NOOP 78 DROP TYPE 177 CREATE CONTEXT

37 RENAME 79 ALTER ROLE 178 DROP CONTEXT

38 COMMENT 80 ALTER TYPE 179 ALTER OUTLINE

39 AUDIT 81 CREATE TYPE BODY 180 CREATE OUTLINE

40 NO AUDIT 82 ALTER TYPE BODY 181 DROP OUTLINE

41 ALTER INDEX 83 DROP TYPE BODY 182 UPDATE INDEXES

42 CREATE EXTERNAL
DATABASE

84 DROP LIBRARY 183 ALTER OPERATOR

Table A–1 SQL Command Codes (Cont.)

Code SQL Function Code SQL Function Code SQL Function

Statement Handle Attributes

Handle and Descriptor Attributes A-35

Attribute Datatype
OraText *

OCI_ATTR_STMT_STATE

Mode
READ

Description
Returns the fetch state of that statement. This attribute can be used by the caller to
determine if the session can be used in another service context or if it is still needed
in the current set of data access calls. Basically, if we are in the middle of a
fetch-execute cycle, then we do not want to release the session handle for another
statement execution. Valid values are:

■ OCI_STMT_STATE_INITIALIZED

■ OCI_STMT_STATE_EXECUTED

■ OCI_STMT_STATE_END_OF_FETCH

Attribute Datatype
ub4 *

OCI_ATTR_STMT_TYPE

Mode
READ

Description
The type of statement associated with the handle. Valid values are:

■ OCI_STMT_SELECT

■ OCI_STMT_UPDATE

■ OCI_STMT_DELETE

■ OCI_STMT_INSERT

■ OCI_STMT_CREATE

■ OCI_STMT_DROP

■ OCI_STMT_ALTER

■ OCI_STMT_BEGIN (PL/SQL statement)

Bind Handle Attributes

A-36 Oracle Call Interface Programmer's Guide

■ OCI_STMT_DECLARE (PL/SQL statement)

Attribute Datatype
ub2 *

Bind Handle Attributes

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description

Attribute Datatype
ub4 *

OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
Character set form of the bind handle. The default form is SQLCS_IMPLICIT.
Setting this attribute will cause the bind handle to use the database or national
character set on the client side. Set this attribute to SQLCS_NCHAR for the national
character set or SQLCS_IMPLICIT for the database character set.

Attribute Datatype
ub1 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Character set ID of the bind handle. If the character set of the input data is UTF-16
(replaces the deprecated OCI_UCS2ID, which is retained for backward

See Also: "Buffer Expansion During OCI Binding" on page 5-34

Bind Handle Attributes

Handle and Descriptor Attributes A-37

compatibility), the user has to set the character set ID to OCI_UTF16ID. The bind
value buffer is assumed to be a utext buffer and length semantics for input length
pointers and return values changes to character semantics (number of utexts).
However the size of the bind value buffer in the preceeding OCIBind call has to be
stated in bytes.

If OCI_ATTR_CHARSET_FORM is set, then OCI_ATTR_CHARSET_ID should be
set only afterward. Setting OCI_ATTR_CHARSET_ID prior to setting
OCI_ATTR_CHARSET_FORM will cause unexpected results.

Attribute Datatype
ub2 *

OCI_ATTR_MAXCHAR_SIZE

Mode
WRITE

Description
Sets the number of characters that an application reserves on the server to store the
data being bound.

Attribute Datatype
sb4 *

OCI_ATTR_MAXDATA_SIZE

Mode
READ/WRITE

Description

See Also: "Character Conversion in OCI Binding and Defining"
on page 5-30

See Also: "Using OCI_ATTR_MAXCHAR_SIZE Attribute" on
page 5-33

See Also: "Using OCI_ATTR_MAXDATA_SIZE Attribute" on
page 5-33

Bind Handle Attributes

A-38 Oracle Call Interface Programmer's Guide

Attribute Datatype
sb4 *

OCI_ATTR_PDPRC

Mode
WRITE

Description
Specifies packed decimal precision. For SQLT_PDN values, the precision should be
equal to 2*(value_sz-1). For SQLT_SLS values, the precision should be equal to
(value_sz-1).

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC
attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these
values needs to be changed, a rebind/redefine should be done first, and then the
two attributes should be reset in order.

Attribute Datatype
ub2 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Specifies the scale for packed decimal values.

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC
attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these
values needs to be changed, a rebind/redefine should be done first, and then the
two attributes should be reset in order.

Attribute Datatype
sb2 *

OCI_ATTR_ROWS_RETURNED

Mode
READ

Define Handle Attributes

Handle and Descriptor Attributes A-39

Description
This attribute returns the number of rows that are going to be returned in the
current iteration when we are in the OUT callback function for binding a DML
statement with RETURNING clause.

Attribute Datatype
ub4 *

Define Handle Attributes

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description
This attribute is deprecated.

Sets the number of characters in a character type data. This specifies the number of
characters desired in the define buffer. The define buffer length as specified in the
define call must be greater than number of characters.

Attribute Datatype
ub4 *

OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
The character set form of the define handle. The default form is SQLCS_IMPLICIT.
Setting this attribute will cause the define handle to use the database or national
character set on the client side. Set this attribute to SQLCS_NCHAR for the national
character set or SQLCS_IMPLICIT for the database character set.

Attribute Datatype
ub1 *

Define Handle Attributes

A-40 Oracle Call Interface Programmer's Guide

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
The character set ID of the define handle. If the character set of the output data
should be UTF-16, the user has to set the character set IDOTT to OCI_UTF16ID. The
define value buffer is assumed to be a utext buffer and length semantics for
indicators and return values changes to character semantics (number of utexts).
However the size of the define value buffer in the preceeding OCIDefine call has
to be stated in bytes.

If OCI_ATTR_CHARSET_FORM is set, then OCI_ATTR_CHARSET_ID should be
set only afterward. Setting OCI_ATTR_CHARSET_ID prior to setting
OCI_ATTR_CHARSET_FORM will cause unexpected results.

Attribute Datatype
ub2 *

OCI_ATTR_MAXCHAR_SIZE

Mode
WRITE

Description
Specifies the maximum number of characters the client application allows in the
define buffer.

Attribute Datatype
sb4 *

OCI_ATTR_PDPRC

Mode
WRITE

See Also: "Character Conversion in OCI Binding and Defining"
on page 5-30

See Also: "Using OCI_ATTR_MAXCHAR_SIZE Attribute" on
page 5-33

Describe Handle Attributes

Handle and Descriptor Attributes A-41

Description
Specifies packed decimal precision. For SQLT_PDN values, the precision should be
equal to 2*(value_sz-1). For SQLT_SLS values, the precision should be equal to
(value_sz-1).

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC
attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these
values needs to be changed, a rebind/redefine should be done first, and then the
two attributes should be reset in order.

Attribute Datatype
ub2 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Specifies the scale for packed decimal values.

After a bind or define, this value is initialized to zero. The OCI_ATTR_PDPRC
attribute should be set first, followed by OCI_ATTR_PDSCL. If either of these
values needs to be changed, a rebind/redefine should be done first, and then the
two attributes should be reset in order.

Attribute Datatype
sb2 *

Describe Handle Attributes

OCI_ATTR_PARAM

Mode
READ

Description
Points to the root of the description. Used for subsequent calls to OCIAttrGet()
and OCIParamGet().

Attribute Datatype
ub4 *

Parameter Descriptor Attributes

A-42 Oracle Call Interface Programmer's Guide

OCI_ATTR_PARAM_COUNT

Mode
READ

Description
Returns the number of parameters in the describe handle. When the describe
handle is a description of the select list, this refers to the number of columns in the
select list.

Attribute Datatype
ub4 *

Parameter Descriptor Attributes

LOB Locator Attributes

OCI_ATTR_LOBEMPTY

Mode
WRITE

Description
Sets the internal LOB locator to empty. The locator can then be used as a bind
variable for an INSERT or UPDATE statement to initialize the LOB to empty. Once
the LOB is empty, OCILobWrite() can be called to populate the LOB with data.
This attribute is only valid for internal LOBs (that is, BLOB, CLOB, NCLOB).

Applications should pass address of a ub4 which has a value of 0; for example,
declare:

ub4 lobEmpty = 0

then pass address &lobEmpty.

Attribute Datatype
ub4 *

See Also: For a detailed list of parameter descriptor attributes,
refer to Chapter 6, "Describing Schema Metadata"

Complex Object Attributes

Handle and Descriptor Attributes A-43

Complex Object Attributes

Complex Object Retrieval Handle Attributes

OCI_ATTR_COMPLEXOBJECT_LEVEL

Mode
WRITE

Description
The depth level for complex object retrieval.

Attribute Datatype
ub4 *

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE

Mode
WRITE

Description
Whether to fetch collection attributes in an object type out-of-line.

Attribute Datatype
ub1 *

Complex Object Retrieval Descriptor Attributes

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

Mode
WRITE

Description
A type of REF to follow for complex object retrieval.

Attribute Datatype
dvoid *

See Also: "Complex Object Retrieval" on page 10-21

Advanced Queuing Descriptor Attributes

A-44 Oracle Call Interface Programmer's Guide

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL

Mode
WRITE

Description
Depth level for following REFs of type
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE.

Attribute Datatype
ub4 *

Advanced Queuing Descriptor Attributes

OCIAQEnqOptions Descriptor Attributes
The following attributes are properties of the OCIAQEnqOptions descriptor:

OCI_ATTR_RELATIVE_MSGID

Mode
READ/WRITE

Description
Specifies the message identifier of the message which is referenced in the sequence
deviation operation. This value is valid if and only if OCI_ENQ_BEFORE is
specified in OCI_ATTR_SEQUENCE_DIVISION. This value is ignored if the
sequence deviation is not specified.

Attribute Datatype
OCIRaw *

OCI_ATTR_SEQUENCE_DEVIATION

Mode
READ/WRITE

See Also: Oracle Streams Advanced Queuing User’s Guide and
Reference

Advanced Queuing Descriptor Attributes

Handle and Descriptor Attributes A-45

Description
Specifies whether the message being enqueued should be dequeued before other
message(s) already in the queue.

Attribute Datatype
ub4

Valid Values
The only valid values are:

■ OCI_ENQ_BEFORE - the message is enqueued ahead of the message specified
by OCI_ATTR_RELATIVE_MSGID.

■ OCI_ENQ_TOP - the message is enqueued ahead of any other messages.

OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies the transactional behavior of the enqueue request.

Attribute Datatype
ub4

Valid Values
The only valid values are:

■ OCI_ENQ_ON_COMMIT - the enqueue is part of the current transaction. The
operation is complete when the transaction commits. This is the default case.

■ OCI_ENQ_IMMEDIATE - the enqueue is not part of the current transaction.
The operation constitutes a transaction of its own.

OCIAQDeqOptions Descriptor Attributes
The following attributes are properties of the OCIAQDeqOptions descriptor:

OCI_ATTR_CONSUMER_NAME

Mode
READ/WRITE

Advanced Queuing Descriptor Attributes

A-46 Oracle Call Interface Programmer's Guide

Description
Name of the consumer. Only those messages matching the consumer name are
accessed. If a queue is not set up for multiple consumers, this field should be set to
null.

Attribute Datatype
OraText *

OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore (_) can be
used. If more than one message satisfies the pattern, the order of dequeuing is
undetermined.

Attribute Datatype
OraText *

OCI_ATTR_DEQ_MODE

Mode
READ/WRITE

Description
Specifies the locking behavior associated with the dequeue.

Attribute Datatype
ub4

Valid Values
The only valid values are:

■ OCI_DEQ_BROWSE - read the message without acquiring any lock on the
message. This is equivalent to a SELECT statement.

■ OCI_DEQ_LOCKED - read and obtain a write lock on the message. The lock
lasts for the duration of the transaction. This is equivalent to a SELECT FOR
UPDATE statement.

Advanced Queuing Descriptor Attributes

Handle and Descriptor Attributes A-47

■ OCI_DEQ_REMOVE - read the message and update or delete it. This is the
default. The message can be retained in the queue table based on the retention
properties.

■ OCI_DEQ_REMOVE_NODATA - confirm receipt of the message, but do not
deliver the actual message content.

OCI_ATTR_DEQ_MSGID

Mode
READ/WRITE

Description
Specifies the message identifier of the message to be dequeued.

Attribute Datatype
OCIRaw *

OCI_ATTR_NAVIGATION

Mode
READ/WRITE

Description
Specifies the position of the message that will be retrieved. First, the position is
determined. Second, the search criterion is applied. Finally, the message is retrieved.

Attribute Datatype
ub4

Valid Values
The only valid values are:

■ OCI_DEQ_FIRST_MSG - retrieves the first message which is available and
matches the search criteria. This will reset the position to the beginning of the
queue.

■ OCI_DEQ_NEXT_MSG - retrieves the next message which is available and
matches the search criteria. If the previous message belongs to a message group,
AQ will retrieve the next available message which matches the search criteria
and belongs to the message group. This is the default.

■ OCI_DEQ_NEXT_TRANSACTION - skips the remainder of the current
transaction group (if any) and retrieves the first message of the next transaction

Advanced Queuing Descriptor Attributes

A-48 Oracle Call Interface Programmer's Guide

group. This option can only be used if message grouping is enabled for the
current queue.

■ OCI_DEQ_FIRST_MSG_ONE_GROUP - indicates that a call to
OCIAQDeqArray() will reset the position to the beginning of the queue and
dequeue messages from a single transaction group that are available and match
the search criteria. If the number of messages in the single transaction group
exceeds iters, then you must make a subsequent call to OCIAQDeqArray()
using the OCI_DEQ_NEXT_MSG_ONE_GROUP navigation.

■ OCI_DEQ_NEXT_MSG_ONE_GROUP - indicates that a call to
OCIAQDeqArray() will dequeue the next set of messages (up to iters) that
are available, match the search criteria and belong to the message group.

■ OCI_DEQ_FIRST_MSG_MULTI_GROUP - indicates that a call to
OCIAQDeqArray() will reset the position to the beginning of the queue and
dequeue messages (possibly across different transaction groups) that are
available and match the search criteria, until reaching the iters limit. To
distinguish between transaction groups, a new message property,
OCI_ATTR_TRANSACTION_NO, will be defined. All messages belonging to
the same transaction group will have the same value for this message property.

■ OCI_DEQ_NEXT_MSG_MULTI_GROUP - indicates that a call to
OCIAQDeqArray() will dequeue the next set of messages (possibly across
different transaction groups) that are available and match the search criteria,
until reaching the iters limit. To distinguish between transaction groups, a
new message property, OCI_ATTR_TRANSACTION_NO, will be defined. All
messages belonging to the same transaction group will have the same value for
this message property.

OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies whether the new message is dequeued as part of the current
transaction.The visibility parameter is ignored when using the BROWSE mode.

Attribute Datatype
ub4

Valid Values
The only valid values are:

Advanced Queuing Descriptor Attributes

Handle and Descriptor Attributes A-49

■ OCI_DEQ_ON_COMMIT - the dequeue will be part of the current transaction.
This is the default case.

■ OCI_DEQ_IMMEDIATE - the dequeued message is not part of the current
transaction. It constitutes a transaction on its own.

OCI_ATTR_WAIT

Mode
READ/WRITE

Description
Specifies the wait time if there is currently no message available which matches the
search criteria. This parameter is ignored if messages in the same group are being
dequeued.

Attribute Datatype
ub4

Valid Values
Any ub4 value is valid, but the following predefined constants are provided:

■ OCI_DEQ_WAIT_FOREVER - wait forever. This is the default.

■ OCI_DEQ_NO_WAIT - do not wait.

OCIAQMsgProperties Descriptor Attributes
The following attributes are properties of the OCIAQMsgProperties descriptor:

OCI_ATTR_ATTEMPTS

Mode
READ

Description
Specifies the number of attempts that have been made to dequeue the message. This
parameter cannot be set at enqueue time.

Attribute Datatype
sb4

Advanced Queuing Descriptor Attributes

A-50 Oracle Call Interface Programmer's Guide

Valid Values
Any sb4 value is valid.

OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the identification supplied by the producer for a message at enqueuing.

Attribute Datatype
OraText *

Valid Values
Any string up to 128 bytes is valid.

OCI_ATTR_DELAY

Mode
READ/WRITE

Description
Specifies the number of seconds to delay the enqueued message. The delay
represents the number of seconds after which a message is available for dequeuing.
Dequeuing by msgid overrides the delay specification. A message enqueued with
delay set will be in the WAITING state, when the delay expires the messages goes to
the READY state. DELAY processing requires the queue monitor to be started. Note
that delay is set by the producer who enqueues the message.

Attribute Datatype
sb4

Valid Values
Any sb4 value is valid, but the following predefined constant is available:

■ OCI_MSG_NO_DELAY - indicates the message is available for immediate
dequeuing.

Advanced Queuing Descriptor Attributes

Handle and Descriptor Attributes A-51

OCI_ATTR_ENQ_TIME

Mode
READ

Description
Specifies the time the message was enqueued. This value is determined by the
system and cannot be set by the user.

Attribute Datatype
OCIDate

OCI_ATTR_EXCEPTION_QUEUE

Mode
READ/WRITE

Description
Specifies the name of the queue to which the message is moved to if it cannot be
processed successfully. Messages are moved in two cases: If the number of
unsuccessful dequeue attempts has exceeded max_retries; or if the message has
expired. All messages in the exception queue are in the EXPIRED state.

The default is the exception queue associated with the queue table. If the exception
queue specified does not exist at the time of the move the message will be moved to
the default exception queue associated with the queue table and a warning will be
logged in the alert file. If the default exception queue is used, the parameter will
return a NULL value at dequeue time.

This attribute must refer to a valid queue name.

Attribute Datatype
OraText *

OCI_ATTR_EXPIRATION

Mode
READ/WRITE

Description
Specifies the expiration of the message. It determines, in seconds, the duration the
message is available for dequeuing. This parameter is an offset from the delay.
Expiration processing requires the queue monitor to be running.

Advanced Queuing Descriptor Attributes

A-52 Oracle Call Interface Programmer's Guide

While waiting for expiration, the message remains in the READY state. If the
message is not dequeued before it expires, it will be moved to the exception queue
in the EXPIRED state.

Attribute Datatype
sb4

Valid Values
Any sb4 value is valid, but the following predefined constant is available:

■ OCI_MSG_NO_EXPIRATION - the message will not expire.

OCI_ATTR_MSG_STATE

Mode
READ

Description
Specifies the state of the message at the time of the dequeue. This parameter cannot
be set at enqueue time.

Attribute Datatype
ub4

Valid Values
These are the only values which are returned:

■ OCI_MSG_WAITING - the message delay has not yet been reached.

■ OCI_MSG_READY - the message is ready to be processed.

■ OCI_MSG_PROCESSED - the message has been processed and is retained.

■ OCI_MSG_EXPIRED - the message has been moved to the exception queue.

OCI_ATTR_PRIORITY

Mode
READ/WRITE

Description
Specifies the priority of the message. A smaller number indicates higher priority.
The priority can be any number, including negative numbers.

The default value is zero.

Advanced Queuing Descriptor Attributes

Handle and Descriptor Attributes A-53

Attribute Datatype
sb4

OCI_ATTR_RECIPIENT_LIST

Mode
WRITE

Description
This parameter is only valid for queues which allow multiple consumers. The
default recipients are the queue subscribers. This parameter is not returned to a
consumer at dequeue time.

Attribute Datatype
OCIAQAgent **

OCI_ATTR_SENDER_ID

Mode
READ/WRITE

Description
Identifies the original sender of a message.

Attribute Datatype
OCIAgent *

OCI_ATTR_TRANSACTION_NO

Mode
READ

Description
For transaction-grouped queues, this identifies the transaction group of the
message. This attribute is populated after a successful OCIAQDeqArray() call. All
messages in a group have the same value for this attribute. This attribute cannot be
used by the OCIAQEnqArray() call to set the transaction group for an enqueued
message.

Attribute Datatype
OraText *

Advanced Queuing Descriptor Attributes

A-54 Oracle Call Interface Programmer's Guide

OCI_ATTR_ORIGINAL_MSGID

Mode
READ/WRITE

Description
The ID of the message in the last queue that generated this message. When a
message is propagated from one queue to another, this attribute identifies the ID of
the queue from which it was last propagated. When a message has been propagated
through multiple queues, this attribute identifies the ID of the message in the last
queue that generated this message, not the first queue.

Attribute Datatype
OCIRaw *

OCIAQAgent Descriptor Attributes
The following attributes are properties of the OCIAQAgent descriptor:

OCI_ATTR_AGENT_ADDRESS

Mode
READ/WRITE

Description
Protocol-specific address of the recipient. If the protocol is 0 (default), the address is
of the form [schema.]queue[@dblink].

Attribute Datatype
OraText *

Valid Values
Can be any string up to 128 bytes.

OCI_ATTR_AGENT_NAME

Mode
READ/WRITE

Description
Name of a producer or consumer of a message.

Advanced Queuing Descriptor Attributes

Handle and Descriptor Attributes A-55

Attribute Datatype
OraText *

Valid Values
Can be any Oracle identifier, up to 30 bytes.

OCI_ATTR_AGENT_PROTOCOL

Mode
READ/WRITE

Description
Protocol to interpret the address and propagate the message. The default (and
currently the only supported) value is 0.

Attribute Datatype
ub1

Valid Values
The only valid value is zero, which is also the default.

OCIServerDNs Descriptor Attributes
The following attributes are properties of the OCIServerDNs descriptor:

OCI_ATTR_DN_COUNT

Mode
READ

Description
The number of database servers in the descriptor.

Attribute Datatype
ub2

OCI_ATTR_SERVER_DN

Mode
READ/WRITE

Subscription Handle Attributes

A-56 Oracle Call Interface Programmer's Guide

Description
For read mode, this attribute returns the list of database server distinguished names
that are already inserted into the descriptor.

For write mode, this attribute takes the distinguished name of a database server.

Attribute Datatype
OraText **/OraText *

Subscription Handle Attributes

OCI_ATTR_SERVER_DNS

Mode
READ/WRITE

Description
The distinguished names of the database servers that the client is interested in for
the registration.

Attribute Datatype
OCIServerDNs *

OCI_ATTR_SUBSCR_CALLBACK

Mode
READ/WRITE

Description
Subscription callback. If the attribute OCI_ATTR_SUBSCR_RECPTPROTO is set to
OCI_SUBSCR_PROTO_OCI or is left not set, then this attribute needs to be set
before the subscription handle can be passed into the registration call
OCISubscriptionRegister().

Attribute Datatype
OCISubscriptionNotify *

See Also: "Publish-Subscribe Notification in OCI" on page 9-54

Subscription Handle Attributes

Handle and Descriptor Attributes A-57

OCI_ATTR_SUBSCR_CTX

Mode
READ/WRITE

Description
Context that the client wants to get passed to the user callback denoted by
OCI_ATTR_SUBSCR_CALLBACK when it gets invoked by the system. If the
attribute OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_OCI
or is left not set, then this attribute needs to be set before the subscription handle
can be passed into the registration call OCISubscriptionRegister().

Attribute Datatype
dvoid *

OCI_ATTR_SUBSCR_NAME

Mode
READ/WRITE

Description
Subscription name. All subscriptions are identified by a subscription name. A
subscription name consists of a sequence of bytes of specified length. The length in
bytes of the name needs to be specified as it is not assumed that the name will be
NULL-terminated. This is important because the name could contain multibyte
characters.

Clients will be able to set the subscription name attribute of a Subscription handle
using an OCIAttrSet() call and by specifying a handle type of
OCI_HTYPE_SUBSCR and an attribute type of OCI_ATTR_SUBSCR_NAME.

All of the subscription callbacks need a subscription handle with the
OCI_ATTR_SUBSCR_NAME and OCI_ATTR_SUBSCR_NAMESPACE attributes
set. If the attributes are not set, an error is returned. The subscription name that is
set for the subscription handle must be consistent with its namespace.

Attribute Datatype
OraText *

Subscription Handle Attributes

A-58 Oracle Call Interface Programmer's Guide

OCI_ATTR_SUBSCR_NAMESPACE

Mode
READ/WRITE

Description
Namespace in which the subscription handle is used. The valid values for this
attribute are OCI_SUBSCR_NAMESPACE_AQ and
OCI_SUBSCR_NAMESPACE_ANONYMOUS. The subscription name that is set for
the subscription handle must be consistent with its namespace.

Attribute Datatype
ub4 *

OCI_ATTR_SUBSCR_PAYLOAD

Mode
READ/WRITE

Description
Buffer that corresponds to the payload that needs to be sent along with the
notification. The length of the buffer can also be specified in the same set attribute
call. This attribute needs to be set before a post can be performed on a subscription.
For this release, only an untyped (ub1 *) payload is supported.

Attribute Datatype
ub1 *

OCI_ATTR_SUBSCR_RECPT

Mode
READ/WRITE

Description
The name of the recipient of the notification when the attribute
OCI_ATTR_SUBSCR_RECPTPROTO is set to OCI_SUBSCR_PROTO_MAIL,
OCI_SUBSCR_PROTO_HTTP, or OCI_SUBSCR_PROTO_SERVER.

For OCI_SUBSCR_PROTO_HTTP, OCI_ATTR_SUBSCR_RECPT denotes the HTTP
URL (for example, http://www.oracle.com:80) to which notification is sent. The
validity of the HTTP URL is never checked by the database.

Subscription Handle Attributes

Handle and Descriptor Attributes A-59

For OCI_SUBSCR_PROTO_MAIL, OCI_ATTR_SUBSCR_RECPT denotes the e-mail
address (for example, xyz@oracle.com) to which the notification is sent. The validity
of the e-mail address is never checked by the database system.

For OCI_SUBSCR_PROTO_SERVER, OCI_ATTR_SUBSCR_RECPT denotes the
database procedure (for example: schema.procedure) that will be invoked in the
event of a notification. The subscriber should have appropriate permissions on the
procedure for it to be executed.

Attribute Datatype
OraText *

OCI_ATTR_SUBSCR_RECPTPRES

Mode
READ/WRITE

Description
The presentation with which the client wants to receive the notification. The valid
values for this are OCI_SUBSCR_PRES_DEFAULT and OCI_SUBSCR_PRES_XML.

 If not set, this attribute defaults to OCI_SUBSCR_PRES_DEFAULT.

If the event notification is desired in XML presentation then this attribute should be
set to OCI_SUBSCR_PRES_XML. Otherwise, it should be left not set or set to
OCI_SUBSCR_PRES_DEFAULT.

Attribute Datatype
ub4

OCI_ATTR_SUBSCR_RECPTPROTO

Mode
READ/WRITE

Description
The protocol with which the client wants to receive the notification. The valid
values for this are

■ OCI_SUBSCR_PROTO_OCI

See Also: For information about procedure definition, see
"Notification Procedure" on page 9-62

Direct Path Loading Handle Attributes

A-60 Oracle Call Interface Programmer's Guide

■ OCI_SUBSCR_PROTO_MAIL

■ OCI_SUBSCR_PROTO_SERVER

■ OCI_SUBSCR_PROTO_HTTP

If an OCI client is interested in receiving the event notification, then this attribute
should be set to OCI_SUBSCR_PROTO_OCI.

If you want an e-mail to be sent on event notification, then set this attribute to
OCI_SUBSCR_PROTO_MAIL. If you want a PL/SQL procedure to be invoked in
the database on event notification, then set this attribute to
OCI_SUBSCR_PROTO_SERVER. If you want a HTTP URL to be posted to on event
notification, then set this attribute to OCI_SUBSCR_PROTO_HTTP.

If not set, this attribute defaults to OCI_SUBSCR_PROTO_OCI.

For OCI_SUBSCR_PROTO_OCI, the attributes OCI_ATTR_SUBSCR_CALLBACK
and OCI_ATTR_SUBSCR_CTX must be set before the subscription handle can be
passed into the registration call OCISubscriptionRegister().

For OCI_SUBSCR_PROTO_MAIL, OCI_SUBSCR_PROTO_SERVER, and
OCI_SUBSCR_PROTO_HTTP, the attribute OCI_ATTR_SUBSCR_RECPT must be
set before the subscription handle can be passed into the registration call
OCISubscriptionRegister().

Attribute Datatype
ub4

Direct Path Loading Handle Attributes

Direct Path Context Handle (OCIDirPathCtx) Attributes

OCI_ATTR_BUF_SIZE

Mode
READ/WRITE

See Also: For information about direct path loading and
allocating the direct path handles, see "Direct Path Loading
Overview" on page 12-2 and"Direct Path Loading of Object Types"
on page 12-17

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-61

Description
Sets the size of the stream transfer buffer. Default value is 64KB.

Attribute Datatype
ub4 */ub4 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Default character set ID for the character data. Note that the character set ID can be
overridden at the column level. If character set ID is not specified at the column
level or the table level, then the Global support environment setting is used.

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_DATEFORMAT

Mode
READ/WRITE

Description
Default date format string for SQLT_CHAR to DTYDAT conversions. Note that the
date format string can be overridden at the column level. If date format string is not
specified at the column level or the table level, then the Global Support
environment setting is used.

Attribute Datatype
OraText **/OraText *

OCI_ATTR_DIRPATH_DCACHE_DISABLE

Mode
READ/WRITE

Description
Setting this attribute to 1 indicates that the date cache will be disabled if exceeded.
The default value is 0, which means that lookups in the cache will continue on
cache overflow.

Direct Path Loading Handle Attributes

A-62 Oracle Call Interface Programmer's Guide

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_DIRPATH_DCACHE_HITS

Mode
READ

Description
Queries the number of date cache hits.

Attribute Datatype
ub4 *

OCI_ATTR_DIRPATH_DCACHE_MISSES

Mode
READ

Description
Queries the current number of date cache misses.

Attribute Datatype
ub4 *

OCI_ATTR_DIRPATH_DCACHE_NUM

Mode
READ

Description
Queries the current number of entries in a date cache.

Attribute Datatype
ub4 *

See Also: "Using a Date Cache in Direct Path Loading of Dates in
OCI" on page 12-15 for a complete description of this attribute and
of the four following attributes.

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-63

OCI_ATTR_DIRPATH_DCACHE_SIZE

Mode
READ/WRITE

Description
Sets the date cache size (in elements) for a table. To disable the date cache, set to 0,
which is the default value.

Attribute Datatype
ub4 */ub4 *

OCI_ATTR_DIRPATH_INDEX_MAINT_METHOD

Mode
READ/WRITE

Description
Performs index row insertion on a per row basis.

Valid value is:

OCI_DIRPATH_INDEX_MAINT_SINGLE_ROW

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_DIRPATH_MODE

Mode
READ/WRITE

Description
Mode of the direct path context:

■ OCI_DIRPATH_LOAD-load operation (default)

■ OCI_DIRPATH_CONVERT - convert only operation

Attribute Datatype
ub1 */ub1 *

Direct Path Loading Handle Attributes

A-64 Oracle Call Interface Programmer's Guide

OCI_ATTR_DIRPATH_NOLOG

Mode
READ/WRITE

Description
The NOLOG attribute of each segment determines whether image redo or
invalidation redo is generated:

■ 0 - Use the attribute of the segment being loaded.

■ 1 - No logging. Overrides DDL statement, if necessary.

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_DIRPATH_OBJ_CONSTR

Mode
READ/WRITE

Description
Indicates the object type of a substitutable object table:

OraText *obj_type; /* stores an object type name */
OCIAttrSet((dvoid *)dpctx,
 (ub4)OCI_HTYPE_DIRPATH_CTX,
 (dvoid *) obj_type,
 (ub4)strlen((const char *) obj_type),
 (ub4)OCI_ATTR_DIRPATH_OBJ_CONSTR, errhp);

Attribute Datatype
OraText **/OraText *

OCI_ATTR_DIRPATH_PARALLEL

Mode
READ/WRITE

Description
Setting this value to 1 allows multiple load sessions to load the same segment
concurrently. The default is 0 (not parallel).

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-65

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_DIRPATH_SKIPINDEX_METHOD

Mode
READ/WRITE

Description
Indicates how the handling of unusable indexes will be performed.

Valid values are:

■ OCI_DIRPATH_INDEX_MAINT_SKIP_UNUSABLE (skip unusable indexes)

■ OCI_DIRPATH_INDEX_MAINT_DONT_SKIP_UNUSABLE (do not skip
unusable indexes)

■ OCI_DIRPATH_INDEX_MAINT_SKIP_ALL (skip all index maintenance)

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_LIST_COLUMNS

Mode
READ

Description
Returns the handle to the parameter descriptor for the column list associated with
the direct path context. The column list parameter descriptor can be retrieved after
the number of columns is set with the OCI_ATTR_NUM_COLS attribute.

Attribute Datatype
OCIParam* *

OCI_ATTR_NAME

Mode
READ/WRITE

See Also: "Accessing Column Parameter Attributes" on page A-71

Direct Path Loading Handle Attributes

A-66 Oracle Call Interface Programmer's Guide

Description
Name of the table to be loaded into.

Attribute Datatype
OraText**/OraText *

OCI_ATTR_NUM_COLS

Mode
READ/WRITE

Description
Number of columns being loaded in the table.

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_NUM_ROWS

Mode
READ/WRITE

Description
Read: The number of rows loaded so far.

Write: The number of rows to be allocated for the direct path and the direct path
function column arrays.

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_SCHEMA_NAME

Mode
READ/WRITE

Description
Name of the schema where the table being loaded resides. If not specified, the
schema defaults to that of the connected user.

Attribute Datatype
OraText **/OraText *

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-67

OCI_ATTR_SUB_NAME

Mode
READ/WRITE

Description
Name of the partition, or subpartition, to be loaded. If not specified, the entire table
is loaded. The name must be a valid partition or subpartition name which belongs
to the table.

Attribute Datatype
OraText **/OraText *

Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes
For further explanations of these attributes:

OCI_ATTR_DIRPATH_EXPR_TYPE

Mode
READ/WRITE

Description
Indicates the type of expression specified in OCI_ATTR_NAME in the function
context of a non-scalar column.

Valid values are:

■ OCI_DIRPATH_EXPR_OBJ_CONSTR (the object type name of a column object)

■ OCI_DIRPATH_EXPR_REF_TBLNAME (table name of a reference object)

■ OCI_DIRPATH_EXPR_SQL (a SQL string to derive the column value)

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_LIST_COLUMNS

Mode
READ

See Also: "Direct Path Function Context and Attributes" on
page 12-36

Direct Path Loading Handle Attributes

A-68 Oracle Call Interface Programmer's Guide

Description
Returns the handle to the parameter descriptor for the column list associated with
the direct path function context. The column list parameter descriptor can be
retrieved after the number of columns (number of attributes or arguments
associated with the non-scalar column) is set with the OCI_ATTR_NUM_COLS
attribute.

Attribute Datatype
OCIParam**

OCI_ATTR_NAME

Mode
READ/WRITE

Description
The object type name if the function context is describing a column object, a SQL
function if the function context is describing a SQL string, or a reference table name
if the function context is describing a REF column.

Attribute Datatype
OraText **/OraText *

OCI_ATTR_NUM_COLS

Mode
READ/WRITE

Description
The number of the object attributes to load if the column is a column object, or the
number of arguments to process if the column is a SQL string or a REF column. This
parameter must be set before the column list can be retrieved.

Attribute Datatype
ub2 */ub2 *

See Also: "Accessing Column Parameter Attributes" on page A-71

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-69

OCI_ATTR_NUM_ROWS

Mode
READ

Description
The number of rows loaded so far.

Attribute Datatype
ub4 *

Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes

OCI_ATTR_COL_COUNT

Mode
READ

Description
Last column of the last row processed.

Attribute Datatype
ub2 *

OCI_ATTR_NUM_COLS

Mode
READ

Description
Column dimension of the column array.

Attribute Datatype
ub2 *

OCI_ATTR_NUM_ROWS

Mode
READ

Direct Path Loading Handle Attributes

A-70 Oracle Call Interface Programmer's Guide

Description
Row dimension of the column array.

Attribute Datatype
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Number of rows successfully converted in the last call to
OCIDirPathColArrayToStream().

Attribute Datatype
ub4 *

Direct Path Stream Handle (OCIDirPathStream) Attributes

OCI_ATTR_BUF_ADDR

Mode
READ

Description
Buffer address of the beginning of the stream data.

Attribute Datatype
ub1 **

OCI_ATTR_BUF_SIZE

Mode
READ

Description
Size of the stream data in bytes.

Attribute Datatype
ub4 *

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-71

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Number of rows successfully loaded by the last OCIDirPathLoadStream() call.

Attribute Datatype
ub4 *

OCI_ATTR_STREAM_OFFSET

Mode
READ

Description
Offset into the stream buffer of the last processed row.

Attribute Datatype
ub4 *

Direct Path Column Parameter Attributes
The application specifies which columns are to be loaded, and the external format
of the data by setting attributes on each column parameter descriptor. The column
parameter descriptors are obtained as parameters of the column parameter list by
OCIParamGet(). The column parameter list of the table is obtained from the
OCI_ATTR_LIST_COLUMNS attribute of the direct path context. If a column is
non-scalar, then its column parameter list is obtained from the
OCI_ATTR_LIST_COLUMNS attribute of its direct path function context.

Note that all parameters are 1-based.

Accessing Column Parameter Attributes
The following code example illustrates the use of the direct path column parameter
attributes for scalar columns. Before the attributes are accessed, you must first set
the number of columns to be loaded and get the column parameter list from the
OCI_ATTR_LIST_COLUMNS attribute.

See Also: See the data structures defined in the listings in Direct
Path Load Example for Scalar Columns on page 12-9

Direct Path Loading Handle Attributes

A-72 Oracle Call Interface Programmer's Guide

...
 /* set number of columns to be loaded */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)dpctx, (ub4)OCI_HTYPE_DIRPATH_CTX,
 (dvoid *)&tblp->ncol_tbl,
 (ub4)0, (ub4)OCI_ATTR_NUM_COLS, ctlp->errhp_ctl));

 /* get the column parameter list */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrGet((dvoid *)dpctx, OCI_HTYPE_DIRPATH_CTX,
 (dvoid *)&ctlp->colLstDesc_ctl, (ub4 *)0,
 OCI_ATTR_LIST_COLUMNS, ctlp->errhp_ctl));

Now you can set the parameter attributes.

 /* set the attributes of each column by getting a parameter handle on each
 * column, then setting attributes on the parameter handle for the column.
 * Note that positions within a column list descriptor are 1-based. */

 for (i = 0, pos = 1, colp = tblp->col_tbl, fldp = tblp->fld_tbl;
 i < tblp->ncol_tbl;
 i++, pos++, colp++, fldp++)
 {
 /* get parameter handle on the column */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIParamGet((CONST dvoid *)ctlp->colLstDesc_ctl,
 (ub4)OCI_DTYPE_PARAM, ctlp->errhp_ctl,
 (dvoid **)&colDesc, pos));

 colp->id_col = i; /* position in column array */

 /* set external attributes on the column */
 /* column name */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)colp->name_col,
 (ub4)strlen((const char *)colp->name_col),
 (ub4)OCI_ATTR_NAME, ctlp->errhp_ctl));

 /* column type */
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->exttyp_col, (ub4)0,
 (ub4)OCI_ATTR_DATA_TYPE, ctlp->errhp_ctl));

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-73

 /* max data size */
OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&fldp->maxlen_fld, (ub4)0,
 (ub4)OCI_ATTR_DATA_SIZE, ctlp->errhp_ctl));

 if (colp->datemask_col) /* set column (input field) date mask */
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)colp->datemask_col,
 (ub4)strlen((const char *)colp->datemask_col),
 (ub4)OCI_ATTR_DATEFORMAT, ctlp->errhp_ctl));
 }
 if (colp->prec_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->prec_col, (ub4)0,
 (ub4)OCI_ATTR_PRECISION, ctlp->errhp_ctl));
 }
 if (colp->scale_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->scale_col, (ub4)0,
 (ub4)OCI_ATTR_SCALE, ctlp->errhp_ctl));
 }
 if (colp->csid_col)
 {
 OCI_CHECK(ctlp->errhp_ctl, OCI_HTYPE_ERROR, ociret, ctlp,
 OCIAttrSet((dvoid *)colDesc, (ub4)OCI_DTYPE_PARAM,
 (dvoid *)&colp->csid_col, (ub4)0,
 (ub4)OCI_ATTR_CHARSET_ID, ctlp->errhp_ctl));
 }
 /* free the parameter handle to the column descriptor */
 OCI_CHECK((dvoid *)0, 0, ociret, ctlp,
 OCIDescriptorFree((dvoid *)colDesc, OCI_DTYPE_PARAM));
 }
...

Direct Path Loading Handle Attributes

A-74 Oracle Call Interface Programmer's Guide

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Character set ID for character column. If not set, the character set ID defaults to the
character set ID set in the direct path context.

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_DATA_SIZE

Mode
READ/WRITE

Description
Maximum size in bytes of the external data for the column. This can affect
conversion buffer sizes.

Attribute Datatype
ub4 */ub4 *

OCI_ATTR_DATA_TYPE

Mode
READ/WRITE

Description
Returns or sets the external datatype of the column. Valid datatypes are:

■ SQLT_CHR

■ SQLT_DATE

■ SQLT_TIMESTAMP

■ SQLT_TIMESTAMP_TZ

■ SQLT_TIMESTAMP_LTZ

■ SQLT_INTERVAL_YM

■ SQLT_INTERVAL_DS

Direct Path Loading Handle Attributes

Handle and Descriptor Attributes A-75

■ SQLT_INT

■ SQLT_UIN

■ SQLT_FLT

■ SQLT_PDN

■ SQLT_BIN

■ SQLT_NUM

■ SQLT_NTY

■ SQLT_REF

■ SQLT_VST

■ SQLT_VNU

Attribute Datatype
ub2 */ub2 *

OCI_ATTR_DATEFORMAT

Mode
READ/WRITE

Description
Date conversion mask for the column. If not set, the date format defaults to the date
conversion mask set in the direct path context.

Attribute Datatype
OraText **/OraText *

OCI_ATTR_DIRPATH_OID

Mode
READ/WRITE

Description
Indicates that the column to load into is a an object table's object id column.

Attribute Datatype
ub1 */ub1 *

Direct Path Loading Handle Attributes

A-76 Oracle Call Interface Programmer's Guide

OCI_ATTR_DIRPATH_SID

Mode
READ/WRITE

Description
Indicates that the column to load into is a nested table's setid column.

Attribute Datatype
ub1 */ub1 *

OCI_ATTR_NAME

Mode
READ/WRITE

Description
Returns or sets the name of the column that is being loaded.

Attribute Datatype
OraText **/OraText *

OCI_ATTR_PRECISION

Mode
READ/WRITE

Description
Returns or sets the precision.

Attribute Datatype
ub1 */ub1 * for explicit describes

sb2 */sb2 * for implicit describes

OCI_ATTR_SCALE

Mode
READ/WRITE

Process Handle Attributes

Handle and Descriptor Attributes A-77

Description
Returns or sets the scale (number of digits to the right of the decimal point) for
conversions from packed and zoned decimal input datatypes.

Attribute Datatype
sb1 */sb1 *

Process Handle Attributes
The parameters for the shared system can be set and read using the OCIAttrSet()
and OCIAttrGet() calls. The handle type to be used is the process handle
OCI_HTYPE_PROC.

The OCI_ATTR_MEMPOOL_APPNAME, OCI_ATTR_MEMPOOL_HOMENAME,
and OCI_ATTR_MEMPOOL_INSTNAME attributes specify the application, home,
and instance names that can be used together to map the process to the right shared
pool area. If these attributes are not provided, internal default values are used. The
following are valid settings of the attributes for specific behaviors:

■ Instance name, application name (unqualified): This allows only executables
with a specific name to attach to the same shared subsystem. For example, this
allows an OCI application named Office to connect to the same shared
subsystem regardless of the directory Office resides in.

■ Instance name, home name: This allows a set of executables in a specific home
directory to attach to the same instance of the shared subsystem. For example,
this allows all OCI applications residing in the ORACLE_HOME directory to
use the same shared subsystem.

■ Instance name, home name, application name (unqualified): This allows only a
specific executable to attach to a shared subsystem. For example, this allows one
application named Office in the ORACLE_HOME directory to attach to a given
shared subsystem.

OCI_ATTR_MEMPOOL_APPNAME

Mode
READ/WRITE

See Also: OCI_ATTR_SHARED_HEAPALLOC on page A-10

Process Handle Attributes

A-78 Oracle Call Interface Programmer's Guide

Description
Executable name or fully-qualified path name of the executable.

Attribute Datatype
OraText *

OCI_ATTR_MEMPOOL_HOMENAME

Mode
READ/WRITE

Description
Directory name where the executables that use the same shared subsystem instance
are located.

Attribute Datatype
OraText *

OCI_ATTR_MEMPOOL_INSTNAME

Mode
READ/WRITE

Description
Any user-defined name to identify an instance of the shared subsystem.

Attribute Datatype
OraText *

OCI_ATTR_MEMPOOL_SIZE

Mode
READ/WRITE

Description
Size of the shared pool in bytes. This attribute is set as follows:

ub4 plsz = 1000000;
OCIAttrSet((dvoid *)0, (ub4) OCI_HTYPE_PROC,
 (dvoid *)&plsz, (ub4) 0, (ub4) OCI_ATTR_POOL_SIZE, 0);

Attribute Datatype
ub4 *

Process Handle Attributes

Handle and Descriptor Attributes A-79

OCI_ATTR_PROC_MODE

Mode
READ

Description
Returns all the currently set process modes. The value read contains the OR'ed
value of all the currently set OCI process modes. To determine if a specific mode is
set, the value should be OR'ed with that mode. For example:

ub4 mode;
boolean is_shared;

OCIAttrGet((dvoid *)0, (ub4)OCI_HTYPE_PROC,
 (dvoid *) &mode, (ub4 *) 0,
 (ub4)OCI_ATTR_PROC_MODE, 0);

is_shared = mode | OCI_SHARED;

Attribute Datatype
ub4 *

Process Handle Attributes

A-80 Oracle Call Interface Programmer's Guide

OCI Demonstration Programs B-1

B
OCI Demonstration Programs

Oracle provides code examples illustrating the use of OCI calls. These programs are
provided for demonstration purposes, and are not guaranteed to run on all
operating systems.

The demonstration programs are available with your Oracle installation. The
location, names, and availability of the programs may vary on different operating
systems. On a UNIX workstation, the programs are installed in the
$ORACLE_HOME/rdbms/demo directory.

The $ORACLE_HOME/rdbms/demo directory contains not only demos but the file
named Makefile that must be used as a template on how to build your own OCI
applications or external procedures. Development of new Makefiles to build an
OCI application or an external procedure should consist of the customizing of the
Makefile provided by adding your own macros to the link line. However, Oracle
requires that you keep the macros provided in the demo Makefile, as it will result
in easier maintenance of your own Makefiles. On Windows systems, make.bat
is the analogous file in the samples directory.

When a specific header or SQL file is required by the application, these files are also
included. Review the information in the comments at the beginning of the
demonstration programs for setups and hints on running the programs.

Table B–1, "OCI Demonstration Programs" lists the important demonstration
programs and the OCI features that they illustrate.

Table B–1 OCI Demonstration Programs

Program Name Features Illustrated

cdemo81.c Using basic SQL processing with release 8 and later functionality.

cdemo82.c Performing basic processing of user-defined objects.

B-2 Oracle Call Interface Programmer's Guide

cdemocor.c Using complex object retrieval (COR) to improve performance.

cdemodr1.c,
cdemodr2.c,
cdemodr3.c

Using INSERT/UPDATE/DELETE statements with RETURNING
clause used with basic datatypes, LOBs and REFs.

cdemodsa.c Describing information about a table.

cdemodsc.c Describing information about an object type.

cdemofo.c Registering and operating application failover callbacks.

cdemolb.c Create and insert LOB data and then read, write, copy, append and
trim the data.

cdemolb2.c Writing and reading of CLOB/BLOB columns with stream mode and
callback functions.

cdemolbs.c Writing and reading to LOBs with the LOB buffering system.

cdemobj.c Pinning and navigation of REF object.

cdemorid.c Using INSERT, UPDATE, DELETE statements and fetches to get
multiple rowids in one round-trip.

cdemoses.c Using session switching and migration.

cdemothr.c Using the OCIThread package.

cdemosyev.c Registering predefined subscriptions and specifying a callback
function to be invoked for client notifications (for more information
about Advanced Queuing, see Oracle Streams Advanced Queuing
User’s Guide and Reference).

ociaqdemo00.c,
ociaqdemo01.c,
ociaqdemo02.c

Advanced queuing.

cdemodp.c,
cdemodp_lip.c

Loading data with the direct path load functions.

cdemdpco.c

cdemdpno.c

cdemdpin.c

cdemdpit.c

cdemdpro.c

cdemdpss.c

Loading a column object with the direct path load functions.

Loading a nested column object with the direct path load functions.

Loading derived type (inheritance) - direct path.

Loading an object table with inheritance - direct path.

Loading a reference with the direct path load functions.

Loading SQL strings with the direct path load functions.

Table B–1 OCI Demonstration Programs (Cont.)

Program Name Features Illustrated

OCI Demonstration Programs B-3

cdemoucb.c,
cdemoucbl.c

Using static and dynamic user callbacks.

cdemoupk.c,
cdemoup1.c,
cdemoup2.c

Using dynamic user callbacks with multiple packages.

cdemodt.c Datetime and interval example.

cdemosc.c Scrollable cursor.

cdemol2l.c Accesses LOBs using the LONG API.

cdemoin1.c Inheritance demo which modifies an inherited type in a table and
displays a record from the table.

cdemoin2.c Inheritance demo to do attribute substitutability.

cdemoin3.c Inheritance demo that describes an object, inherited types, object
tables, and a sub-table.

cdemoanydata1.c Anydata demo. Inserts and selects rows to and from anydata table.

cdemoanydata2.c Anydata demo. Creates a type piecewise using
OCITypeBeginCreate() and then describes the new type created.

cdemosp.c Session pooling.

cdemocp.c Connection pooling.

cdemocpproxy.c Connection pooling with proxy functionality.

cdemostc.c Statement caching.

cdemouni.c Program for OCI UTF16 API.

nchdemo1.c Shows nchar implicit conversion feature and codepoint feature.

Table B–1 OCI Demonstration Programs (Cont.)

Program Name Features Illustrated

B-4 Oracle Call Interface Programmer's Guide

OCI Function Server Round Trips C-1

C
OCI Function Server Round Trips

This appendix provides information about server round trips incurred during
various OCI calls. This information can be useful to programmers when
determining the most efficient way to accomplish a particular task in an application.

This appendix contains these topics:

■ Overview of Server Round Trips

■ Relational Function Round Trips

■ LOB Function Round Trips

■ Object and Cache Function Round Trips

■ Describe Operation Round Trips

■ Datatype Mapping and Manipulation Function Round Trips

■ Any Type and Data Function Round Trips

■ Other Local Functions

Overview of Server Round Trips

C-2 Oracle Call Interface Programmer's Guide

Overview of Server Round Trips
This appendix provides information about server round trips incurred during
various OCI calls. This information can be useful when determining the most
efficient way to accomplish a particular task in an application.

Relational Function Round Trips
The number of server round trips required by OCI relational functions are listed in
Table C–1:

Table C–1 Server Round Trips for Relational Operations

Function # of Server Round Trips

OCIBreak() 1

OCIEnvCreate() 0

OCIEnvInit() 0

OCIErrorGet() 0

OCIInitialize() 0

OCILdaToSvcCtx() 0

OCILogoff() 1

OCILogon() 1

OCIPasswordChange() 1

OCIReset() 0

OCIServerAttach() 1

OCIServerDetach() 1

OCIServerVersion() 1

OCISessionBegin() 1

OCISessionEnd() 1

OCISvcCtxToLda() 0

OCIStmtExecute() 1

OCIStmtFetch() 0 or 1

OCIStmtGetPieceInfo() 1

LOB Function Round Trips

OCI Function Server Round Trips C-3

LOB Function Round Trips
Table C–2 lists the server round trips incurred by the OCILob*() calls.

For calls whose number of round trips is "0 or 1", if LOB buffering is on, and the
request can be satisfied in the client, no round trips are incurred.

OCIStmtPrepare() 0

OCIStmtSetPieceInfo() 0

OCITerminate() 1

OCITransCommit() 1

OCITransDetach() 1

OCITransForget() 1

OCITransPrepare() 1

OCItransRollback() 1

OCITransStart() 1

OCIUserCallbackGet() 0

OCIUserCallbackregister() 0

Note: To minimize the number of round trips, you can use the
data interface for LOBs. You can bind or define character data for a
CLOB column or RAW data for a BLOB column.

See Also:

■ "Binding LOB Data" on page 5-11 for usage and examples for
both INSERT and UPDATE statements

■ "Defining LOB Data" on page 5-21 for usage and examples of
SELECT statements

Table C–1 Server Round Trips for Relational Operations (Cont.)

Function # of Server Round Trips

LOB Function Round Trips

C-4 Oracle Call Interface Programmer's Guide

Table C–2 Server Round Trips for OCILob*() Calls

Function # of Server Round Trips

OCILobAppend() 1

OCILobAssign() 0

OCILobCharSetForm() 0

OCILobCharSetId() 0

OCILobClose() 1

OCILobCopy() 1

OCILobCopy2() 1

OCILobCreateTemporary() 1

OCILobDisableBuffering() 0

OCILobEnableBuffering() 0

OCILobErase() 1

OCILobErase2() 1

OCILobFileClose() 1

OCILobFileCloseAll() 1

OCILobFileExists() 1

OCILobFileGetName() 0

OCILobFileIsOpen() 1

OCILobFileOpen() 1

OCILobFileSetName() 0

OCILobFlushBuffer() 1 for each modified page in the buffer for this LOB

OCILobFreeTemporary() 1

OCILobGetChunkSize() 1

OCILobGetLength() 1

OCILobGetLength2() 1

OCILobGetStorageLimit() 1

OCILobIsEqual() 0

OCILobIsOpen() 1

Object and Cache Function Round Trips

OCI Function Server Round Trips C-5

Object and Cache Function Round Trips
Table C–3 lists the number of server round trips required for the object and cache
functions. These values assume the cache is in a warm state, meaning that the type
descriptor objects required by the application have been loaded.

OCILobIsTemporary() 0

OCILobLoadFromFile() 1

OCILobLoadFromFile2() 1

OCILobLocatorAssign() 1 round trip if either the source or the destination
locator refers to a temporary LOB

OCILobLocatorIsInit() 0

OCILobOpen() 1

OCILobRead() 0 or 1

OCILobRead2() 0 or 1

OCILobTrim() 1

OCILobTrim2() 1

OCILobWrite() 0 or 1

OCILobWrite2() 0 or 1

OCILobWriteAppend() 0 or 1

OCILobWriteAppend2() 0 or 1

Table C–3 Server Round Trips for Object and Cache Functions

Function # of Server Round Trips

OCIObjectNew() 0

OCIObjectPin() 1; 0 if the desired object is already in cache

OCIObjectUnpin() 0

OCIObjectPinCountReset() 0

OCIObjectLock() 1

OCIObjectMarkUpdate() 0

Table C–2 Server Round Trips for OCILob*() Calls (Cont.)

Function # of Server Round Trips

Describe Operation Round Trips

C-6 Oracle Call Interface Programmer's Guide

Describe Operation Round Trips
The number of server round trips required by OCIDescribeAny(),
OCIAttrGet(), and OCIParamGet() are listed in Table C–4:

OCIObjectUnmark() 0

OCIObjectUnmarkByRef() 0

OCIObjectFree() 0

OCIObjectMarkDelete() 0

OCIObjectMarkDeleteByRef() 0

OCIObjectFlush() 1

OCIObjectRefresh() 1

OCIObjectCopy() 0

OCIObjectGetTypeRef() 0

OCIObjectGetObjectRef() 0

OCIObjectGetInd() 0

OCIObjectExists() 0

OCIObjectIsLocked() 0

OCIObjectIsDirty() 0

OCIObjectPinTable() 1

OCIObjectArrayPin() 1

OCICacheFlush() 1

OCICacheRefresh() 1

OCICacheUnpin() 0

OCICacheFree() 0

OCICacheUnmark() 0

Table C–3 Server Round Trips for Object and Cache Functions (Cont.)

Function # of Server Round Trips

Datatype Mapping and Manipulation Function Round Trips

OCI Function Server Round Trips C-7

Datatype Mapping and Manipulation Function Round Trips
The number of round trips for the datatype mapping and manipulation functions
are listed in Table C–5. The asterisks in the table indicate that all functions with a
particular prefix incur the same number of server round trips. For example,
OCINumberAdd(), OCINumberPower(), and OCINumberFromText() all incur
zero server round trips.

Table C–4 Server Round Trips for Describe Operations

Function # of Server Round Trips

OCIDescribeAny() 1 round trip to get the REF of the type descriptor object

OCIAttrGet() 2 round trips to describe a type if the type objects are not in
the object cache

1 round trip for each collection element, or each type
attribute, method, or method argument descriptor. 1 more
round trip if using OCI_ATTR_TYPE_NAME, or
OCI_ATTR_SCHEMA_NAME on the collection element, type
attribute, or method argument.

0 if all the type objects to be described are already in the
object cache following the first OCIAttrGet() call.

OCIParamGet() 0

Table C–5 Server Round Trips for Datatype Manipulation Functions

Function # of Server Round Trips

OCINumber*() 0

OCIDate*() 0

OCIString*() 0

OCIRaw*() 0

OCIRef*() 0

OCIColl*() 0; 1 if the collection is not loaded in the cache

OCITable*() 0; 1 if the nested table is not loaded in the cache

OCIIter*() 0; 1 if the collection is not loaded in the cache

Any Type and Data Function Round Trips

C-8 Oracle Call Interface Programmer's Guide

Any Type and Data Function Round Trips
The number of server round trips required by Any Type and Data functions are
listed in Table C–6. The functions not listed do not generate any round trips.

Other Local Functions
The functions listed in Table C–7 are local and do not require a server round trip:

Table C–6 Server Round Trips for Any Type and Data Functions

Function # of Server Round Trips

OCIAnyDataAttrGet() 0; 1 if the type information is not loaded in the cache

OCIAnyDataAttrSet() 0; 1 if the type information is not loaded in the cache

OCIAnyDataCollGetElem() 0; 1 if the type information is not loaded in the cache

Table C–7 Locally Processed Functions

Local Function Name Notes

OCIAttrGet() When describing an object type, this call
does make one round trip to fetch the type
descriptor object.

OCIAttrSet()

OCIBindByName()

OCIBindByPos()

OCIBindDynamic()

OCIBindObject()

OCIBindArrayOfStruct()

OCIDefineByPos()

OCIDefineDynamic()

OCIDefineArrayOfStruct()

OCIDefineObject()

OCIDescriptorAlloc()

OCIDescriptorFree()

OCIEnvInit()

Other Local Functions

OCI Function Server Round Trips C-9

OCIEnvCreate()

OCIErrorGet()

OCIHandleAlloc()

OCIHandleFree()

OCILdaToSvcCtx()

OCISvcCtxToLda()

OCIStmtGetBindInfo()

OCIStmtPrepare()

OCIStmtGetBindInfo()

OCIStmtPrepare()

OCIStmtFetch() May be local if retrieving pre-fetched rows

Table C–7 Locally Processed Functions (Cont.)

Local Function Name Notes

Other Local Functions

C-10 Oracle Call Interface Programmer's Guide

Getting Started with OCI for Windows D-1

D
Getting Started with OCI for Windows

This appendix describes only the features of OCI that apply to the Windows NT,
Windows 2000, and Windows XP operating systems.

This chapter contains these topics:

■ What Is Included in the OCI Package for Windows?

■ Oracle Directory Structure for Windows

■ Sample OCI Programs for Windows

■ Compiling OCI Applications for Windows

■ Linking OCI Applications for Windows

■ Running OCI Applications for Windows

■ The Oracle XA Library

■ Using the Object Type Translator for Windows

What Is Included in the OCI Package for Windows?

D-2 Oracle Call Interface Programmer's Guide

What Is Included in the OCI Package for Windows?
The Oracle Call Interface for Windows package includes:

■ Oracle Call Interface (OCI)

■ Required Support Files (RSFs)

■ Oracle Universal Installer

■ Header files for compiling OCI applications

■ Library files for linking OCI applications

■ Sample programs for demonstrating how to build OCI applications

The OCI for Windows package includes the additional libraries required for linking
your OCI programs on Windows NT, and Windows 2000.

Oracle Directory Structure for Windows
When you install OCI, Oracle Universal Installer creates an
ORACLE_BASE\ORACLE_HOME directory on the hard drive of your computer. The
default Oracle home directory is C:\oracle\ora10.

The OCI files are located in the ORACLE_BASE\ORACLE_HOME directory, as are the
library files needed to link and run OCI applications, and link with other Oracle for
Windows NT products, such as Oracle Forms.

The ORACLE_BASE\ORACLE_HOME directory contains the following directories that
are relevant to OCI:

See Also: "OCI Instant Client" on page 1-22 for a simplified OCI
installation option.

Table D–1 ORACLE_HOME Directories and Contents

Directory Name Contents

\bin Executable and help files

\oci Oracle Call Interface directory for Windows files

\oci\include Header files, such as oci.h and ociap.h

\oci\samples Sample programs

\precomp\admin\ottcfg.cfg Object Type Translator utility and default configuration
file

Compiling OCI Applications for Windows

Getting Started with OCI for Windows D-3

Sample OCI Programs for Windows
When OCI is installed, a set of sample programs and their corresponding project
files are copied to the ORACLE_BASE\ORACLE_HOME\oci\samples subdirectory.
Oracle recommends that you build and run these sample programs to verify that
OCI has been successfully installed and to familiarize yourself with the steps
involved in developing OCI applications.

To build a sample, run a batch file(make.bat)at the command prompt. For
example, to build the cdemo1.c sample, enter the following command:

C:> make cdemo1

After you finish using these sample programs, you can delete them if you choose.

A sample OCI application specific to Windows operating systems is included.
cdemomt.c demonstrates OCI multithreading, the thread safety feature of the
database. This sample program requires the emp table from the default database.
The program spawns two simultaneous threads that attempt to insert different
employee names with the same ID numbers. Thread synchronization is
demonstrated.

ociucb.c should be compiled using ociucb.bat. This batch file creates a DLL
and places it in the ORACLE_BASE\ORACLE_HOME\bin directory. To load user
callback functions, set the environment/registry variable ORA_OCI_UCBPKG to
OCIUCB.

Compiling OCI Applications for Windows
When you compile an OCI application, you must include the appropriate OCI
header files. The header files are located in the
\ORACLE_BASE\ORACLE_HOME\oci\include directory.

For example, if you are using Microsoft Visual C++ 6.0, you would need to put in
the appropriate path, \oracle\ora10\oci\samples, in the Directories page of
the Options dialog in the Tools menu.

Note: Only Microsoft Visual C++ 6.0 and higher is supported for
the current release.

Linking OCI Applications for Windows

D-4 Oracle Call Interface Programmer's Guide

Linking OCI Applications for Windows
The OCI calls are implemented in dynamic link libraries (DLLs) that Oracle
provides. The DLLs are located in the ORACLE_BASE\ORACLE_HOME\bin
directory and are part of the Required Support Files (RSFs).

To use the Oracle DLLs to make OCI calls, you can either dynamically load the DLL
and function entry points, or you can link your application with the import library
oci.lib. Oracle only provides the oci.lib import library for use with the
Microsoft Compiler. Other compilers, such as Borland, though likely compatible
with the Oracle DLLs, are not tested and supported by Oracle for use with OCI.

When using oci.lib with the Microsoft Compiler, you do not have to indicate any
special link options.

oci.lib
oci.lib is a single, programmatic interface to Oracle. Oracle has removed any
version number from the library name.

Client DLL Loading When Using LoadLibrary()
The following directories are searched in this order by LoadLibrary():

■ Directory from which the application is loaded

■ Current directory

■ Windows NT or Windows 2000:

■ 32-bit Windows system directory (system32). Use the
GetWindowsDirectory() function to obtain the path of this directory.

■ 16-bit Windows directory (system). There is no Win32 function that
obtains the path of this directory, but it is searched.

■ Directories that are listed in the PATH environment variable

See Also: Your compiler's documentation for specific information
about compiling your application and special compiler options

The Oracle XA Library

Getting Started with OCI for Windows D-5

Running OCI Applications for Windows
To run an OCI application, ensure that the entire corresponding set of Required
Support Files (RSFs) is installed on the computer that is running your OCI
application.

The Oracle XA Library
The XA Application Program Interface (API) is typically used to enable an Oracle
database to interact with a transaction processing (TP) monitor, such as:

■ BEA Tuxedo

■ IBM Transarc Encina

■ IBM CICS

You can also use TP monitor statements in your client programs. The use of the XA
API is supported from OCI.

The Oracle XA Library is automatically installed as part of Enterprise Edition.
Table D–2 lists the components created in your Oracle home directory:

Compiling and Linking an OCI Program with the Oracle XA Library

To compile and link an OCI program:
1. Compile program.c by using Microsoft Visual C++, making sure to include

ORACLE_BASE\ORACLE_HOME\rdbms\xa in your path.

2. Link program.obj with the following libraries shown in Table D–3:

Table D–2 Oracle XA Components

Component Location

oraxa10.lib ORACLE_BASE\ORACLE_HOME\rdbms\xa

xa.h ORACLE_BASE\ORACLE_HOME\rdbms\demo

Table D–3 Link Libraries

Library Location

oraxa10.lib ORACLE_BASE\ORACLE_HOME\rdbms\xa

oci.lib ORACLE_BASE\ORACLE_HOME\oci\lib\msvc

The Oracle XA Library

D-6 Oracle Call Interface Programmer's Guide

3. Run program.exe.

Using XA Dynamic Registration
The database supports the use of XA dynamic registration. XA dynamic registration
improves the performance of applications interfacing with XA-compliant TP
monitors. For TP Monitors to use XA dynamic registration with an Oracle database
on Windows NT, you must add either an environmental variable or a registry
variable to the Windows NT computer on which your TP monitor is running. See
either of the following sections for instructions:

■ Adding an Environmental Variable for the Current Session

■ Adding a Registry Variable for All Sessions

Adding an Environmental Variable for the Current Session
Adding an environmental variable at the command prompt affects only the current
session.

To add an environmental variable:
From the computer where your TP monitor is installed, enter the following at the
command prompt:

C:\> set ORA_XA_REG_DLL = vendor.dll

where vendor.dll is the TP monitor DLL provided by your vendor.

Adding a Registry Variable for All Sessions
Adding a registry variable affects all sessions on your Windows NT computer. This
is useful for computers where only one TP monitor is running.

To add a registry variable:
1. Go to the computer where your TP monitor is installed.

2. On Windows NT or Windows 2000, enter the following at the command
prompt:

C:\> regedt32

The Registry Editor window appears.

3. Go to HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOMEID.

Using the Object Type Translator for Windows

Getting Started with OCI for Windows D-7

4. Choose the Add Value option in the Edit menu. The Add Value dialog box
appears.

5. Enter ORA_XA_REG_DLL in the Value Name text box.

6. Select REG_EXPAND_SZ from the Datatype list box.

7. Choose OK. The String Editor dialog box appears.

8. Type vendor.dll in the String field, where vendor.dll is the TP monitor
DLL provided by your vendor.

9. Choose OK. The Registry Editor adds the parameter.

10. Choose Exit from the Registry menu.

The registry exits.

XA and TP Monitor Information
Refer to the following general information about XA and TP monitors:

■ Distributed TP: The XA Specification (C193) published by the Open Group. The
Open Group, 1010 El Camino Real, Suite 380, Menlo Park, CA 94025, U.S.A.

■ See the Web site at:

http://www.opengroup.org/publications/catalog/tp.htm

■ Your specific TP monitor documentation

Using the Object Type Translator for Windows
The Object Type Translator (OTT) is used to create C struct representations of
objects that have been created and stored in a database.

To take advantage of objects run OTT against the database, and a header file is
generated that includes the C structs. For example, if a PERSON type has been
created in the database, OTT can generate a C struct with elements corresponding
to the attributes of PERSON. In addition, a null indicator struct is created that
represents null information for an instance of the C struct.

The INTYPE file tells the OTT which object types should be translated. This file also
controls the naming of the generated structs.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for more information about the Oracle XA Library
and using XA dynamic registration

Using the Object Type Translator for Windows

D-8 Oracle Call Interface Programmer's Guide

Note that the CASE specification inside the INTYPE files, such as CASE=LOWER,
applies only to C identifiers that are not specifically listed, either through a TYPE or
TRANSLATE statement in the INTYPE file. It is important to provide the type name
with the appropriate cases, such as TYPE Person and Type PeRsOn, in the INTYPE
file.

OTT on Windows NT can be invoked from the command line. Additionally, a
configuration file may be named on the command line. For Windows NT, the
configuration file is ottcfg.cfg, located in
ORACLE_BASE\ORACLE_HOME\precomp\admin.

Note: The INTYPE File Assistant is not available, starting with
release 10.1.

Index-1

Index
A
ADO. See attribute descriptor object
ADT. See object type
advantages

OCI, 1-3
allocation duration

example, 13-16
of objects, 13-15

application failover
callback registration, 9-43
OCI callbacks, 9-41

AQ. See Streams Advanced Queuing.
argument attributes, 6-17
arrays

binds, 11-34
defines, 11-37
DML, maximum rows, 5-4
skip parameter for, 5-24

arrays of structures, 5-23
indicator variables, 5-25
OCI calls used, 5-25
skip parameters, 5-23

atomic NULLs, 10-30
attribute descriptor object, 11-25
attributes

of handles, 2-12
of objects, 10-17
of parameter descriptors, 6-5
of parameters, 6-5

authentication
by Distinguished Name, 8-15
by X.509 Certificate, 8-15
management, 8-10

authentication information handle attributes, A-16
authorize functions, 15-4

B
batch error mode, 4-8, 4-9
BFILE

datatype, 3-23
bin directory, D-2
BINARY_DOUBLE, 3-7
BINARY_FLOAT, 3-7
bind functions, 15-68
bind handle

attributes, A-36
description, 2-10

bind operation, 4-5, 5-2, 11-32
associations made, 5-2
example, 5-6
initializing variables, 5-3
LOBs, 5-10
named datatypes, 11-32
named versus positional, 5-3
OCI array interface, 5-4
OCI_DATA_AT_EXEC mode, 5-16
PL/SQL, 5-4
positional versus named, 5-3
REF cursor variables, 5-17
REFs, 11-33
steps used, 5-6

binding
arrays, 11-34
buffer expansion, 5-34
OCINumber, 11-39
PL/SQL placeholders, 2-37

Index-2

summary, 5-9
BLOB

datatype, 3-23
BLOBs (binary large objects)

datatype, 3-23
blocking modes, 2-35
branches

detaching, 8-6
resuming, 8-6

buffer expansion during binding, 5-34
buffering LOB operations, 7-11
building OCI applications on Unix, B-1

C
C datatypes

manipulating with OCI, 11-4
cache functions

server round trips, C-5
callbacks

application failover, 9-41
dynamic registrations, 9-35
for LOB operations, 7-14
for reading LOBs, 7-14
for writing LOBs, 7-16
from external procedures, 9-40
LOB streaming interface, 7-14
parameter modes, 15-98
registration for application failover, 9-43
restrictions, 9-38
user-defined functions, 9-30

canceling OCI calls, 2-32
cancelling a cursor, 16-13
cartridge functions, 19-1
CASE OTT parameter, 14-32
cdemomt.c, D-3
CHAR

external datatype, 3-18
character length semantics, 5-34, 5-35, 6-23
character set form, 5-30
character set ID, 5-30

Unicode, A-36, A-40
CHARZ

external datatype, 3-19
CLOB

datatype, 3-23
code

example programs, B-1
list of demonstration programs, B-1

CODE OTT parameter, 14-30
coding guidelines

reserved words, 2-33
coherency

of object cache, 13-4
collections

attributes, 6-12
data manipulation functions, 11-18
describing, 6-2
description, 11-17
functions for manipulating, 11-18
multi level, 11-22
scanning functions, 11-19

column objects
direct path loading of, 12-19

columns
attributes, 6-5, 6-15

commit, 2-24
in object applications, 13-15
one-phase for global transactions, 8-7
two-phase for global transactions, 8-7

compiling
OCI applications, D-3
OCI with Oracle XA, D-5
Oracle XA Library, D-5

complex object retrieval, 10-21
implementing, 10-24
navigational prefetching, 10-25

complex object retrieval (COR) descriptor, 2-17
attributes, A-43

complex object retrieval (COR) handle, 2-11
attributes, A-43

CONFIG OTT parameter, 14-31
configuration files, D-2

location, D-2
connect functions, 15-4
connection mode

nonblocking, 2-35
connection pooling, 9-10, 9-23

code example, 9-17
consistency

Index-3

of object cache, 13-4
copying

objects, 10-33
COR, see complex object retrieval
creating

objects, 10-33
cursor cancellation, 16-13

D
data cartridges

OCI functions, 2-2, 19-1
data definition language

SQL statements, 1-7
data manipulation language

SQL statements, 1-7
data structures

new for 8.0, 2-4
database connection

for object applications, 10-10
databases

attributes, 6-20
describing, 6-2

datatypes
ANSI DATE, 3-24
BFILE, 3-23
binding and defining, 11-38
BLOBs (binary large objects), 3-23
CLOB, 3-23
conversions, 3-27
direct path loading, 12-3, A-74
external, 3-4, 3-8
FILE, 3-23
for piecewise operations, 5-41
internal, 3-4
internal codes, 3-5
INTERVAL DAY TO SECOND, 3-26
INTERVAL YEAR TO MONTH, 3-25
manipulating with OCI, 11-4
mapping and manipulation functions, C-7
mapping from Oracle to C, 11-2
mapping, Oracle methodology, 11-4
mapping, OTT, 14-10
NCLOB, 3-24
Oracle, 3-2

TIMESTAMP, 3-24
TIMESTAMP WITH LOCAL TIME ZONE, 3-25
TIMESTAMP WITH TIME ZONE, 3-25

DATE
external datatype, 3-15

date cache, 12-15
DATE, ANSI

datatype, 3-24
datetime

avoiding unexpected results, 3-26
datetime and date

migration rules, 3-31
DDL. See data definition language
default file name extensions

OTT, 14-41
default name mapping

OTT, 14-41
define

arrays, 11-37
return and error codes, 2-27

define functions, 15-68
define handle

attributes, A-39
description, 2-10

define operation, 4-16, 5-17, 11-35
example, 5-18
LOBs, 5-20
named datatypes, 11-35
piecewise fetch, 5-22
PL/SQL output variables, 5-22
REFs, 11-35
steps used, 5-18

defining
OCINumber, 11-39

deletes
positioned, 2-33

demonstration programs, B-1, D-3
list, B-1

describe
explicit, 4-15
explicit and implicit, 6-5
implicit, 4-12
of collections, 6-2
of databases, 6-2
of packages, 6-2

Index-4

of schemas, 6-2
of sequences, 6-2
of stored functions, 6-2
of stored procedures, 6-2
of synonyms, 6-2
of tables, 6-2
of types, 6-2
of views, 6-2
select-list, 4-11

describe functions, 15-68
describe handle

attributes, A-41
description, 2-10

describe operation
server round trips, C-6

describe, explicit, 4-12
describe, implicit, 4-12
descriptor, 2-13

allocating, 2-21
complex object retrieval, 2-17
objects, 11-25
parameter, 2-16
ROWID, 2-16
snapshot, 2-15

descriptor functions, 15-48
descriptor objects, 11-25
detaching branches, 8-6
direct path

of date columns, 12-15
direct path function context, 12-5
direct path handles, 2-11
direct path loading, 12-2

column array handle attributes, A-69
column parameter attributes, A-71
context handle attributes, A-60
datatypes of columns, 12-3, A-74
direct path column array handle, 12-6
direct path context handle, 12-5
direct path stream handle, 12-7
example, 12-9
functions, 12-8, 16-149
handle attributes, A-60
handles, 12-4
in pieces, 12-34
limitations, 12-9

stream handle attributes, A-70
directory structures, D-2
DML. See data manipulation language
DML with RETURNING clause

See RETURNING clause
duration

example, 13-16
of objects, 13-15

dynamic registration
Oracle XA Library, D-6

E
embedded objects

fetching, 10-15
embedded SQL, 1-10

mixing with OCI calls, 1-10
EMP table, D-3
enhanced DML array, 4-9
enhanced DML array feature, 4-8
environment handle

attributes, A-3
description, 2-8

error codes
define calls, 2-27
navigational functions, 17-6

error handle
attributes, A-10
description, 2-8

errors
handling, 2-26
handling in object applications, 10-37

ERRTYPE OTT parameter, 14-31
example

demonstration programs, B-1
nonblocking mode, 2-36

executing SQL statements, 4-7
execution

against multiple servers, 4-5
modes, 4-8

execution snapshots, 4-8
explicit describe, 4-12
extensions

OTT default file name, 14-41
external datatypes, 3-4, 3-8

Index-5

CHAR, 3-18
CHARZ, 3-19
conversions, 3-27
DATE, 3-15
FLOAT, 3-13
INTEGER, 3-12
LOBs, 3-21
LONG, 3-15
LONG RAW, 3-17
LONG VARCHAR, 3-17
LONG VARRAW, 3-18
named datatypes, 3-20
NUMBER, 3-11
RAW, 3-16
REF, 3-20
ROWID, 3-21
SQLT_BLOB, 3-21
SQLT_CLOB, 3-21
SQLT_NCLOB, 3-21
SQLT_NTY, 3-20
SQLT_REF, 3-20
STRING, 3-13
UNSIGNED, 3-17
VARCHAR, 3-15
VARCHAR2, 3-10
VARNUM, 3-14
VARRAW, 3-17

external procedure functions
return codes, 19-3
with_context type, 19-3

external procedures
OCI callbacks, 9-40

Externally Initialized Context, 8-21

F
failover

callback example, 9-43
failover callbacks, 9-41
failover callbacks structure and parameters, 9-42
fetch

piecewise, 5-40, 5-45
fetch operation, 4-16

LOB data, 4-17
setting prefetch count, 4-17

FILE
associating with OS file, 7-3
datatype, 3-23

fine grained access control
partitioned, 8-16

FLOAT
external datatype, 3-13

flushing, 13-11
object changes, 10-14
objects, 13-11

freeing
objects, 10-33, 13-9

functions
attributes, 6-8

G
generic documentation references

compiling and linking OCI applications, D-3,
D-4

demonstration programs, D-3
invoking OTT from the command line, D-8
thread safety, D-3
XA linking file names

global transactions, 8-3
globalization support, 2-39

OCI functions, 2-2
GTRID. See transaction identifier

H
handle attributes, 2-12

reading, 2-12
setting, 2-12

handle functions, 15-48
handles, 2-4

advantages of, 2-8
allocating, 2-6, 2-21
bind handle, 2-10
C datatypes, 2-5
child freed when parent freed, 2-8
define handle, 2-10
describe handle, 2-10
direct path, 2-11
environment handle, 2-8

Index-6

error handle, 2-8
freeing, 2-6
process attributes, A-77
server handle, 2-9
service context handle, 2-8
statement handle, 2-10
subscription, 2-11, 9-57
transaction handle, 2-9
types, 2-5
user session handle, 2-9

header files
location of, D-2, D-3

HFILE OTT parameter, 14-31

I
implicit describe, 4-12
include directory, D-2
indicator variables, 2-30

arrays of structures, 5-25
for named datatypes, 2-29, 2-31
for REF, 2-29
for REFs, 2-31
named datatype defines, 11-36
PL/SQL OUT binds, 11-36
REF defines, 11-36
with named datatype bind, 11-34
with REF bind, 11-34

INITFILE OTT parameter, 14-30
INITFUNC OTT parameter, 14-31
initialize functions, 15-4
inserts

piecewise, 5-40, 5-42
Instant Client feature, 1-22
INTEGER

external datatype, 3-12
internal codes for datatypes

datatype codes, 3-5
internal datatypes, 3-4

conversions, 3-27
INTERVAL DAY TO SECOND datatype, 3-26
INTERVAL YEAR TO MONTH datatype, 3-25
intype file

providing when running OTT, 14-9
structure of, 14-34

INTYPE File Assistant, D-7
INTYPE OTT parameter, 14-29

K
key words, 2-33

L
LDAP registration of publish-subscribe

notification, 9-59
libraries

oci.lib, D-4
linking

OCI applications, D-4
OCI with Oracle XA, D-5
Oracle XA Library, D-5

lists
attributes, 6-19

lmsgen utility, 2-47
LoadLibrary, D-4
LOB functions, 16-23

server round trips, C-3
LOB locator, 2-15

attributes, A-42
LOBs

amount and offset parameters, 16-25
attributes of transient objects, 7-4
binding, 5-10
buffering, 7-11
callbacks, 7-14
character sets, 16-25
creating, 7-2
creating temporary, 7-18
defining, 5-20
duration of temporary, 7-19
example of temporary, 7-20
external datatypes, 3-21
failover does not work, 9-45
fetching data, 4-17
fixed-width character sets, 16-25
freeing temporary, 7-18
greater than 4GB, 7-5
locator, 2-15
modifying, 7-2

Index-7

OCI functions, 7-10
size maximum, 7-5
temporary, 7-17
varying-width character sets, 16-25

locator, 2-13
for LOB datatype, 2-15

locking, 13-13
objects, 13-13
optimistic model, 13-14

LONG
external datatype, 3-15

LONG RAW
external datatype, 3-17

LONG VARCHAR
external datatype, 3-17

LONG VARRAW
external datatype, 3-18

M
make.bat, D-3
Makefile (Unix), B-1
marking

objects, 13-10
MDO. See method descriptor object
meta-attributes

of objects, 10-17
of persistent objects, 10-17
of transient objects, 10-20

method descriptor object, 11-25
migration

7.x to 8.0, 1-20
session, 8-10, 15-32

miscellaneous functions, 16-215
multiple servers

executing statement against, 4-5
multithreaded development

basic concepts, 9-2
multithreading, D-3

N
named datatypes

binding, 11-32
binding and defining, 11-38

defining, 11-35
definition, 3-20
external datatypes, 3-20
indicator variables, 2-31
indicator variables for, 2-29

native double, 3-26
native float, 3-26
navigation, 13-18
navigational functions

error codes, 17-6
return values, 17-5
terminology, 17-3

NCHAR
issues, 5-30

NCLOB
datatype, 3-24

nested table
element ordering, 11-21
functions for manipulating, 11-21

nested tables
direct path loading of, 12-17

NLS_LANG, 2-39
NLS_NCHAR, 2-39
nonblocking mode, 2-35

example, 2-36
non-final object tables

direct path loading of, 12-33
no-op

definition, 17-24
NULL indicator

setting for an object attribute, 10-32
NULL indicator struct, 10-30

generated by OTT, 10-8
nullness

of objects, 10-30
NULLs

atomic, 10-30
inserting, 2-30
inserting into database, 2-29
inserting using indicator variables, 2-29

NUMBER
external datatype, 3-11

Index-8

O
object

view, 10-20
object applications

commit, 13-15
database connection, 10-10
rollback, 13-15

object cache, 13-2
coherency, 13-4
consistency, 13-4
initializing, 10-9
loading objects, 13-7
memory parameters, 13-5
operations on, 13-6
removing objects, 13-7
setting the size of, 13-5

object functions
See navigational functions.
server round trips, C-5

object identifier
for persistent objects, 10-5

object reference, 10-35
object reference. See REFs
object runtime environment

initializing, 10-9
object tables

direct path loading of, 12-32
object type

representing in C applications, 10-8
object type translator

sample output, 10-8
See OTT
use with OCI, 10-8

Object Type Translator (OTT), D-7
objects

accessing with OCI, 14-23
allocation duration, 13-15
array pin, 10-13
attributes, 10-17

manipulating, 10-13
client-side cache, 13-2
copying, 10-33
creating, 10-33
duration, 13-15

flushing, 13-11
flushing changes, 10-14
freeing, 10-33, 13-9
lifetime, 17-2
LOB attributes of transient objects, 7-4
locking, 13-13
manipulating with OCI, 14-23
marking, 10-14, 13-10
memory layout of instance, 13-17
memory management, 13-2
meta-attributes, 10-17
navigation, 13-18

simple, 13-18
NCHAR and NVARCHAR2 attribute of, 11-3
NULLs, 10-30
OCI object application structure, 10-3
persistent, 10-5
pin count, 10-29
pin duration, 13-15
pinning, 10-11, 13-7
refreshing, 13-12
secondary memory, 13-17
terminology, 17-2
top-level memory, 13-17
transient, 10-5, 10-6
types, 10-5, 17-2
unmarking, 13-10
unpinning, 10-29, 13-9
use with OCI, 10-2

OCI, 11-31
aborting calls, 2-32
accessing and manipulating objects, 14-23
advantages, 1-3
object support, 1-5
Oracle XA Library, D-5
overview, 1-2
parts of, 1-4
sample programs, D-3

OCI application
compiling, 1-3
general structure, 2-2
initialization example, 2-22
linking, 1-3
steps, 2-18
structure, 2-2

Index-9

structure using objects, 10-3
terminating, 2-25
using the OTT with, 14-22
with objects

initializing, 10-9
OCI applications

compiling, D-3
linking, D-4
running, D-5

oci directory, D-2
OCI environment

initializing for objects, 10-9
OCI functions

canceling calls, 2-32
data cartridges, 2-2
globalization, 2-2
not supported, 1-20
obsolescent, 1-18
return codes, 2-26, 2-28

OCI navigational functions, 13-20
flush functions, 13-21
mark functions, 13-21
meta-attribute accessor functions, 13-22
miscellaneous functions, 13-22
naming scheme, 13-20
pin/unpin/free functions, 13-20

OCI process
initializing for objects, 10-9

OCI program. See OCI application
OCI relational functions

connect, authorize, and initialize, 15-4
guide to reference entries, 19-2
Streams Advanced Queuing and

publish-subscribe, 16-114
OCI_ATTR_ACTION, 8-21, A-16
OCI_ATTR_AGENT_ADDRESS, A-54
OCI_ATTR_AGENT_NAME, A-54
OCI_ATTR_AGENT_PROTOCOL, A-55
OCI_ATTR_ALLOC_DURATION

environment handle attribute, A-8
OCI_ATTR_APPCTX_ATTR, 8-22, A-17
OCI_ATTR_APPCTX_LIST, 8-22, A-17
OCI_ATTR_APPCTX_NAME, 8-22
OCI_ATTR_APPCTX_SIZE, 8-22, A-17
OCI_ATTR_APPCTX_VALUE, 8-22, A-18

OCI_ATTR_ATTEMPTS, A-49
OCI_ATTR_AUTOCOMMIT_DDL

attribute, 6-21
OCI_ATTR_BIND_DN, A-3
OCI_ATTR_BUF_ADDR, A-70
OCI_ATTR_BUF_SIZE, A-60, A-70
OCI_ATTR_CACHE

attribute, 6-15
OCI_ATTR_CACHE_ARRAYFLUSH, 13-11

environment handle attribute, A-4
OCI_ATTR_CACHE_MAX_SIZE, 13-5

environment handle attribute, A-4
OCI_ATTR_CACHE_OPT_SIZE, 13-5

environment handle attribute, A-4
OCI_ATTR_CALL_TIME, 8-20, A-18
OCI_ATTR_CATALOG_LOCATION

attribute, 6-20
OCI_ATTR_CERTIFICATE, A-18
OCI_ATTR_CERTIFICATE_TYPE, A-18
OCI_ATTR_CHAR_COUNT

bind handle attribute, A-36
define handle attribute, A-39

OCI_ATTR_CHAR_SIZE, 6-15
attribute, 6-23

OCI_ATTR_CHAR_USED, 6-15
attribute, 6-24

OCI_ATTR_CHARSET_FORM, 5-31, 6-18
attribute, 6-11, 6-14, 6-16
bind handle attribute, A-36
define handle attribute, A-39

OCI_ATTR_CHARSET_ID, 5-31, A-61, A-74
attribute, 6-11, 6-14, 6-16, 6-18, 6-20
bind handle attribute, A-36
define handle attribute, A-40

OCI_ATTR_CLIENT_IDENTIFIER, 8-16, A-19
OCI_ATTR_CLIENT_INFO, 8-21, A-19
OCI_ATTR_CLUSTERED

attribute, 6-7
OCI_ATTR_COL_COUNT, A-69
OCI_ATTR_COLLECT_CALL_TIME, 8-20, A-19
OCI_ATTR_COLLECTION_ELEMENT

attribute, 6-9
OCI_ATTR_COLLECTION_TYPECODE

attribute, 6-9
OCI_ATTR_COMMENT

Index-10

attribute, 6-21, 6-22
OCI_ATTR_COMPLEXOBJECT_ COLL_

OUTOFLINE
COR handle attribute, A-43

OCI_ATTR_COMPLEXOBJECT_LEVEL
COR handle attribute, A-43

OCI_ATTR_COMPLEXOBJECTCOMP _TYPE_
LEVEL

COR descriptor attribute, A-44
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

COR descriptor attribute, A-43
OCI_ATTR_CONDITION

attribute, 6-21
OCI_ATTR_CONN_BUSY_COUNT, A-23
OCI_ATTR_CONN_INCR, A-24
OCI_ATTR_CONN_MAX, A-24
OCI_ATTR_CONN_MIN, A-23
OCI_ATTR_CONN_NOWAIT, A-22, A-23
OCI_ATTR_CONN_OPEN_COUNT, A-23
OCI_ATTR_CONN_TIMEOUT, A-22
OCI_ATTR_CONSUMER_NAME, A-45
OCI_ATTR_CORRELATION, A-46, A-50
OCI_ATTR_CURRENT_POSITION

attribute, 4-19, A-28
OCI_ATTR_CURSOR_COMMIT_ BEHAVIOR

attribute, 6-20
OCI_ATTR_DATA_SIZE, 6-15, 6-23, A-74

attribute, 6-10, 6-13, 6-16, 6-17
OCI_ATTR_DATA_TYPE, A-74

attribute, 6-10, 6-13, 6-16, 6-17
OCI_ATTR_DATE_FORMAT, A-61
OCI_ATTR_DATEFORMAT, A-75
OCI_ATTR_DBA

attribute, 6-7
OCI_ATTR_DELAY, A-50
OCI_ATTR_DEQ_MODE, A-46
OCI_ATTR_DEQ_MSGID, A-47
OCI_ATTR_DESC_PUBLIC, 15-104
OCI_ATTR_DIRPATH_DCACHE_

DISABLE, 12-16, A-61
OCI_ATTR_DIRPATH_DCACHE_HITS, 12-16,

A-62
OCI_ATTR_DIRPATH_DCACHE_MISSES, 12-16,

A-62
OCI_ATTR_DIRPATH_DCACHE_NUM, 12-16,

A-62
OCI_ATTR_DIRPATH_DCACHE_SIZE, 12-16,

A-63
OCI_ATTR_DIRPATH_EXPR_TYPE direct path

function attribute, A-67
OCI_ATTR_DIRPATH_EXPR_TYPE function

context attribute, 12-37
OCI_ATTR_DIRPATH_INDEX_MAINT_

METHOD, A-63
OCI_ATTR_DIRPATH_MODE, A-63
OCI_ATTR_DIRPATH_NOLOG, A-64
OCI_ATTR_DIRPATH_OBJ_CONSTR, 12-36, A-64
OCI_ATTR_DIRPATH_OBJ_CONSTR direct path

context attribute, 12-35
OCI_ATTR_DIRPATH_OID, A-75
OCI_ATTR_DIRPATH_PARALLEL, 12-3, A-64
OCI_ATTR_DIRPATH_SID column array

attribute, 12-43
OCI_ATTR_DIRPATH_SKIPINDEX_

METHOD, A-65
OCI_ATTR_DISTINGUISHED_NAME, 8-15, A-20
OCI_ATTR_DML_ROW_OFFSET

error handle attribute, A-10
OCI_ATTR_DN_COUNT, A-55
OCI_ATTR_DURATION

attribute, 6-7
OCI_ATTR_ENCAPSULATION

attribute, 6-12
OCI_ATTR_ENQ_TIME, A-51
OCI_ATTR_ENV, A-28

server handle attribute, A-13
service context handle attribute, A-11

OCI_ATTR_ENV_CHARSET_ID, 2-40
environment handle attribute, A-5

OCI_ATTR_ENV_NCHARSET_ID, 2-40
environment handle attribute, A-5

OCI_ATTR_ENV_UTF16
environment handle attribute, A-5

OCI_ATTR_EVAL_CONTEXT_NAME
attribute, 6-21, 6-22

OCI_ATTR_EVAL_CONTEXT_OWNER
attribute, 6-21, 6-22

OCI_ATTR_EVALUATION_FUNCTION
attribute, 6-22

OCI_ATTR_EXCEPTION_QUEUE, A-51

Index-11

OCI_ATTR_EXPIRATION, A-51
OCI_ATTR_EXTERNAL_NAME, 8-7

server handle attribute, A-13
OCI_ATTR_FOCBK

server handle attribute, A-14
OCI_ATTR_FSPRECISION

attribute, 6-11
OCI_ATTR_HAS_DEFAULT

attribute, 6-17
OCI_ATTR_HAS_FILE

attribute, 6-9
OCI_ATTR_HAS_LOB

attribute, 6-9
OCI_ATTR_HAS_NESTED_TABLE

attribute, 6-9
OCI_ATTR_HEAPALLOC

environment handle attribute, A-9
OCI_ATTR_HW_MARK

attribute, 6-15
OCI_ATTR_IN_V8_MODE

server handle attribute, A-14
service context handle attribute, A-11

OCI_ATTR_INCR
attribute, 6-15

OCI_ATTR_INDEX_ONLY
attribute, 6-7

OCI_ATTR_INITIAL_CLIENT_ROLES, 8-16, A-20
OCI_ATTR_INTERNAL_NAME, 8-7

server handle attribute, A-14
OCI_ATTR_IOMODE

attribute, 6-18
OCI_ATTR_IS_CONSTRUCTOR

attribute, 6-12
OCI_ATTR_IS_DESTRUCTOR

attribute, 6-12
OCI_ATTR_IS_FINAL_METHOD

attribute, 6-12
OCI_ATTR_IS_FINAL_TYPE

attribute, 6-10
OCI_ATTR_IS_INCOMPLETE_TYPE

attribute, 6-9
OCI_ATTR_IS_INSTANTIABLE_METHOD

attribute, 6-12
OCI_ATTR_IS_INSTANTIABLE_TYPE

attribute, 6-10

OCI_ATTR_IS_INVOKER_RIGHTS
attribute, 6-8, 6-10

OCI_ATTR_IS_MAP
attribute, 6-12

OCI_ATTR_IS_NULL
attribute, 6-16, 6-18

OCI_ATTR_IS_OPERATOR
attribute, 6-12

OCI_ATTR_IS_ORDER
attribute, 6-12

OCI_ATTR_IS_OVERRIDING_METHOD
attribute, 6-12

OCI_ATTR_IS_PREDEFINED_TYPE
attribute, 6-9

OCI_ATTR_IS_RNDS
attribute, 6-12

OCI_ATTR_IS_RNPS
attribute, 6-12

OCI_ATTR_IS_SELFISH
attribute, 6-12

OCI_ATTR_IS_SUBTYPE
attribute, 6-10

OCI_ATTR_IS_SYSTEM_GENERATED_TYPE
attribute, 6-9

OCI_ATTR_IS_SYSTEM_TYPE
attribute, 6-9

OCI_ATTR_IS_TEMPORARY
attribute, 6-7

OCI_ATTR_IS_TRANSIENT_TYPE
attribute, 6-9

OCI_ATTR_IS_WNDS
attribute, 6-12

OCI_ATTR_IS_WNPS
attribute, 6-12

OCI_ATTR_LDAP_AUTH, A-6
OCI_ATTR_LDAP_CRED, A-6
OCI_ATTR_LDAP_CTX, A-7
OCI_ATTR_LDAP_HOST, A-7
OCI_ATTR_LDAP_PORT, A-7
OCI_ATTR_LEVEL

attribute, 6-17
OCI_ATTR_LFPRECISION

attribute, 6-11
OCI_ATTR_LINK

attribute, 6-14, 6-18

Index-12

OCI_ATTR_LIST_ACTION_CONTEXT
attribute, 6-21

OCI_ATTR_LIST_ARGUMENTS
attribute, 6-8, 6-12

OCI_ATTR_LIST_COLUMNS, A-65
attribute, 6-7

OCI_ATTR_LIST_COLUMNS direct path function
context attribute, A-67

OCI_ATTR_LIST_OBJECTS
attribute, 6-20

OCI_ATTR_LIST_RULES
attribute, 6-22

OCI_ATTR_LIST_SCHEMAS
attribute, 6-20

OCI_ATTR_LIST_SUBPROGRAMS
attribute, 6-8

OCI_ATTR_LIST_TABLE_ALIASES
attribute, 6-22

OCI_ATTR_LIST_TYPE
attribute, 6-19

OCI_ATTR_LIST_TYPE_ATTRS
attribute, 6-9

OCI_ATTR_LIST_TYPE_METHODS
attribute, 6-9

OCI_ATTR_LIST_VARIABLE_TYPES
attribute, 6-22

OCI_ATTR_LOBEMPTY
LOB locator attribute, A-42

OCI_ATTR_LOCKING_MODE
attribute, 6-21

OCI_ATTR_MAP_METHOD
attribute, 6-10

OCI_ATTR_MAX
attribute, 6-14

OCI_ATTR_MAX_CATALOG_ NAMELEN
attribute, 6-20

OCI_ATTR_MAX_COLUMN_ NAMELEN
attribute, 6-20

OCI_ATTR_MAX_PROC_NAMELEN
attribute, 6-20

OCI_ATTR_MAXCHAR_SIZE, A-37, A-40
attribute, 5-33

OCI_ATTR_MAXCHAR_SIZE attribute, 5-33
OCI_ATTR_MAXDATA_SIZE

attribute, 5-33

bind handle attribute, A-37
use with binding, 5-33

OCI_ATTR_MEMPOOL_APPNAME, A-77
OCI_ATTR_MEMPOOL_HOMENAME, A-78
OCI_ATTR_MEMPOOL_INSTNAME, A-78
OCI_ATTR_MEMPOOL_SIZE, A-78
OCI_ATTR_MIGSESSION

user session handle attribute, A-20
OCI_ATTR_MIN

attribute, 6-14
OCI_ATTR_MODULE, 8-21, A-21
OCI_ATTR_MSG_STATE, A-52
OCI_ATTR_NAME, A-65, A-76

attribute, 6-8, 6-10, 6-12, 6-13, 6-14, 6-16, 6-17,
6-22, 6-23

OCI_ATTR_NAME column array attribute, 12-41
OCI_ATTR_NAME direct path function context

attribute, A-68
OCI_ATTR_NAME function context

attribute, 12-36
OCI_ATTR_NAVIGATION, A-47
OCI_ATTR_NCHARSET_ID

attribute, 6-20
OCI_ATTR_NONBLOCKING_MODE

server handle attribute, 2-35, A-15
OCI_ATTR_NOWAIT_SUPORT

attribute, 6-21
OCI_ATTR_NUM_COLS, A-66, A-69

attribute, 6-7
OCI_ATTR_NUM_COLS direct path function

context attribute, 12-38, A-68
OCI_ATTR_NUM_DML_ERRORS, A-29
OCI_ATTR_NUM_ELEMENTS

attribute, 6-13
OCI_ATTR_NUM_HANDLES attribute, 6-19
OCI_ATTR_NUM_PARAMS

attribute, 6-6
OCI_ATTR_NUM_ROWS, A-69
OCI_ATTR_NUM_ROWS attribute, 12-44
OCI_ATTR_NUM_ROWS direct path context

attribute, A-66
OCI_ATTR_NUM_ROWS direct path function

context attribute, A-69
OCI_ATTR_NUM_ROWS function context

attribute, 12-40

Index-13

OCI_ATTR_NUM_TYPE_ATTRS
attribute, 6-9

OCI_ATTR_NUM_TYPE_METHODS
attribute, 6-9

OCI_ATTR_OBJ_ID
attribute, 6-6

OCI_ATTR_OBJ_NAME
attribute, 6-6

OCI_ATTR_OBJ_SCHEMA
attribute, 6-6

OCI_ATTR_OBJECT
environment handle attribute, A-7

OCI_ATTR_OBJECT_DETECTCHANGE, 13-15
environment handle attribute, 13-14, A-9

OCI_ATTR_OBJECT_NEWNOTNULL, 17-48
environment handle attribute, A-9

OCI_ATTR_OBJID
attribute, 6-7, 6-14

OCI_ATTR_ORDER
attribute, 6-15

OCI_ATTR_ORDER_METHOD
attribute, 6-10

OCI_ATTR_ORIGINAL_MSGID, A-54
OCI_ATTR_OVERLOAD

attribute, 6-8
OCI_ATTR_PARAM

describe handle attribute, A-41
use when an attribute is itself a

descriptor, 15-50
OCI_ATTR_PARAM_COUNT

describe handle attribute, A-42
OCI_ATTR_PARAM_COUNT statement handle

attribute, A-29
OCI_ATTR_PARSE_ERROR_OFFSET statement

handle attribute, A-30
OCI_ATTR_PARTITIONED

attribute, 6-7
OCI_ATTR_PASSWORD, 8-17

user session handle attribute, A-21
OCI_ATTR_PDPRC, A-38, A-40
OCI_ATTR_PDSCL

bind handle attribute, A-38, A-41
OCI_ATTR_PIN_DURATION

environment handle attribute, A-8
OCI_ATTR_PINOPTION

environment handle attribute, A-8
OCI_ATTR_POSITION

attribute, 6-17
OCI_ATTR_PRECISION, A-76

attribute, 6-5, 6-11, 6-13, 6-16, 6-17
OCI_ATTR_PREFETCH_MEMORY statement

handle attribute, A-30
OCI_ATTR_PREFETCH_ROWS

statement handle attribute, A-31
OCI_ATTR_PRIORITY, A-52
OCI_ATTR_PROC_MODE, A-79
OCI_ATTR_PROXY_CREDENTIALS, 8-15, A-21
OCI_ATTR_PTYPE

attribute, 6-6
OCI_ATTR_RADIX

attribute, 6-18
OCI_ATTR_RECIPIENT_LIST, A-53
OCI_ATTR_REF_TDO

attribute, 6-7, 6-9, 6-11, 6-14, 6-16, 6-18
OCI_ATTR_RELATIVE_MSGID, A-44
OCI_ATTR_ROW_COUNT, 4-19, A-31, A-70, A-71
OCI_ATTR_ROWID

statement handle attribute, A-31
OCI_ATTR_ROWS_FETCHED, 4-19, A-32
OCI_ATTR_ROWS_RETURNED

bind handle attribute, A-38
use with callbacks, 5-30

OCI_ATTR_SAVEPOINT_SUPPORT
attribute, 6-20

OCI_ATTR_SCALE, A-76
attribute, 6-11, 6-13, 6-16, 6-17

OCI_ATTR_SCHEMA_NAME, A-66
attribute, 6-10, 6-11, 6-13, 6-14, 6-16, 6-18

OCI_ATTR_SENDER_ID, A-53
OCI_ATTR_SEQ

attributes, 6-14
OCI_ATTR_SEQUENCE_DEVIATION, A-44
OCI_ATTR_SERVER

service context handle attribute, A-12
OCI_ATTR_SERVER_DN, A-55
OCI_ATTR_SERVER_DNS, A-56
OCI_ATTR_SERVER_GROUP

server handle attribute, A-15
OCI_ATTR_SERVER_STATUS, 2-26

server handle attribute, A-15

Index-14

OCI_ATTR_SESSION
service context handle attribute, A-12

OCI_ATTR_SHARED_HEAP_ALLOC
environment handle attribute, A-10

OCI_ATTR_SPOOL_BUSY_COUNT, A-24
OCI_ATTR_SPOOL_GETMODE, A-25
OCI_ATTR_SPOOL_INCR, A-25
OCI_ATTR_SPOOL_MAX, A-26
OCI_ATTR_SPOOL_MIN, A-26
OCI_ATTR_SPOOL_OPEN_COUNT, A-26
OCI_ATTR_SPOOL_STMTCACHESIZE, A-27
OCI_ATTR_SPOOL_TIMEOUT, A-26
OCI_ATTR_SQLFNCODE

statement handle attribute, A-32
OCI_ATTR_STATEMENT statement handle

attribute, A-34
OCI_ATTR_STMT_STATE, A-35
OCI_ATTR_STMT_TYPE

statement handle attribute, A-35
OCI_ATTR_STMTCACHESIZE, 9-30, 15-37, A-12
OCI_ATTR_STREAM_OFFSET, A-71
OCI_ATTR_SUB_NAME, A-67

attribute, 6-18
OCI_ATTR_SUBSCR_CALLBACK, A-56
OCI_ATTR_SUBSCR_CTX, A-57
OCI_ATTR_SUBSCR_NAME, A-57
OCI_ATTR_SUBSCR_NAMESPACE, A-58
OCI_ATTR_SUBSCR_PAYLOAD, A-58
OCI_ATTR_SUBSCR_RECPT, A-58
OCI_ATTR_SUBSCR_RECPTPRES, A-59
OCI_ATTR_SUBSCR_RECPTPROTO, A-59
OCI_ATTR_SUBSCR_SERVER_DN descriptor

handle, 9-60
OCI_ATTR_SUPERTYPE_NAME

attribute, 6-10
OCI_ATTR_SUPERTYPE_SCHEMA_NAME

attribute, 6-10
OCI_ATTR_TABLE_NAME

attribute, 6-22
OCI_ATTR_TABLESPACE

attribute, 6-7
OCI_ATTR_TIMESTAMP

attribute, 6-6
OCI_ATTR_TRANS

service context handle attribute, A-13

OCI_ATTR_TRANS_NAME, 8-4
transaction handle attribute, A-27

OCI_ATTR_TRANS_TIMEOUT
transaction handle attribute, A-27

OCI_ATTR_TRANSACTION_NO, A-53
OCI_ATTR_TYPE_NAME

attribute, 6-11, 6-13, 6-16, 6-18
OCI_ATTR_TYPECODE

attribute, 6-9, 6-10, 6-13, 6-17
OCI_ATTR_USERNAME

user session handle attribute, A-22
OCI_ATTR_VALUE

attribute, 6-23
OCI_ATTR_VERSION

attribute, 6-20
OCI_ATTR_VISIBILITY, A-45, A-48
OCI_ATTR_WAIT, A-49
OCI_ATTR_WALL_LOC, A-10
OCI_ATTR_XID, 8-4

transaction handle attribute, A-28
OCI_BIND_SOFT, 15-74, 15-79
OCI_CONTINUE, 2-27
OCI_CPOOL_REINITIALIZE, 15-6
OCI_CRED_EXT, 15-31
OCI_CRED_PROXY, 8-14
OCI_CRED_RDBMS, 8-14, 15-31
OCI_DATA_AT_EXEC, 15-74, 15-79
OCI_DEFAULT, 9-3, 15-6
OCI_DEFINE_SOFT, 15-94
OCI_DIRPATH_DATASAVE_FINISH, 16-160
OCI_DIRPATH_DATASAVE_SAVEONLY, 16-160
OCI_DIRPATH_EXPR_OBJ_CONSTR, 12-36, 12-37
OCI_DIRPATH_EXPR_REF_TBLNAME, 12-27,

12-38
OCI_DIRPATH_EXPR_SQL, 12-37, 12-38
OCI_DIRPATH_OID column array attribute, 12-43
OCI_DTYPE_AQAGENT, 2-14
OCI_DTYPE_AQDEQ_OPTIONS, 2-14
OCI_DTYPE_AQENQ_OPTIONS, 2-14
OCI_DTYPE_AQMSG_PROPERTIES, 2-14
OCI_DTYPE_AQNFY, 2-14
OCI_DTYPE_COMPLEXOBJECTCOMP, 2-14
OCI_DTYPE_DATE, 2-13
OCI_DTYPE_FILE, 2-13
OCI_DTYPE_INTERVAL_DS, 2-14

Index-15

OCI_DTYPE_INTERVAL_YM, 2-13
OCI_DTYPE_LOB, 2-13
OCI_DTYPE_PARAM, 2-13, 15-49, 15-64

when used, 15-50
OCI_DTYPE_ROWID, 2-13
OCI_DTYPE_SNAP, 2-13
OCI_DTYPE_SRVDN, 2-14
OCI_DTYPE_TIMESTAMP, 2-13
OCI_DTYPE_TIMESTAMP_LTZ, 2-13
OCI_DTYPE_TIMESTAMP_TZ, 2-13
OCI_DURATION_SESSION, 13-8, 16-26, 19-12,

20-7, 20-21, 20-27, 20-38
OCI_DURATION_STATEMENT, 16-26, 19-12,

20-7, 20-21, 20-27, 20-38
OCI_DURATION_TRANS, 13-8
OCI_DYNAMIC_FETCH, 15-94
OCI_ERROR, 2-26, 8-7
OCI_EVENTS

mode for receiving notifications, 9-57
OCI_EXT_CRED, 8-14
OCI_HTYPE_AUTHINFO, 2-5, 9-20
OCI_HTYPE_BIND, 2-5
OCI_HTYPE_COMPLEXOBJECT, 2-5
OCI_HTYPE_COR, 15-64
OCI_HTYPE_CPOOL, 2-5, 9-13
OCI_HTYPE_DEFINE, 2-5
OCI_HTYPE_DESCRIBE, 2-5
OCI_HTYPE_DIRPATH_COLUMN_ARRAY, 2-5
OCI_HTYPE_DIRPATH_CTX, 2-5
OCI_HTYPE_DIRPATH_FN_CTX, 2-5
OCI_HTYPE_DIRPATH_STREAM, 2-5
OCI_HTYPE_ENV, 2-5
OCI_HTYPE_ERROR, 2-5
OCI_HTYPE_PROC, 2-5
OCI_HTYPE_SERVER, 2-5
OCI_HTYPE_SESSION, 2-5
OCI_HTYPE_SPOOL, 2-5
OCI_HTYPE_STMT, 2-5, 15-49, 15-64
OCI_HTYPE_SUBSCRIPTION, 2-5
OCI_HTYPE_SVCCTX, 2-5
OCI_HTYPE_TRANS, 2-5
OCI_INVALID_HANDLE, 2-26
OCI_LOCK_NONE, 13-13
OCI_LOCK_X, 13-13
OCI_LOCK_X_NOWAIT, 13-13, 13-14

parameter usage, 13-14
OCI_LTYPE_ARG_FUNC list attribute, 6-19
OCI_LTYPE_ARG_PROC list attribute, 6-19
OCI_LTYPE_DB_SCH list attribute, 6-19
OCI_LTYPE_SCH_OBJ list attribute, 6-19
OCI_LTYPE_SUBPRG list attribute, 6-19
OCI_LTYPE_TYPE_ARG_FUNC list attribute, 6-19
OCI_LTYPE_TYPE_ARG_PROC list attribute, 6-19
OCI_LTYPE_TYPE_ATTR list attribute, 6-19
OCI_LTYPE_TYPE_METHOD list attribute, 6-19
OCI_MIGRATE, 8-10
OCI_NEED_DATA, 2-27
OCI_NEW_LENGTH_SEMANTICS, 15-10
OCI_NLS_MAXBUFSZ, 21-7
OCI_NO_DATA, 2-26
OCI_NO_MUTEX, 9-3
OCI_PIN_ANY, 13-7
OCI_PIN_LATEST, 13-7
OCI_PIN_RECENT, 13-7
OCI_PTYPE_ARG

attributes, 6-17
OCI_PTYPE_COL

attributes, 6-15
OCI_PTYPE_COLL

attributes, 6-12
OCI_PTYPE_DATABASE

attributes, 6-20
OCI_PTYPE_EVALUATION CONTEXT

attributes, 6-22
OCI_PTYPE_FUNC

attributes, 6-8
OCI_PTYPE_LIST

attributes, 6-19
OCI_PTYPE_NAME_VALUE

attributes, 6-23
OCI_PTYPE_PKG

attributes, 6-8
OCI_PTYPE_PROC

attributes, 6-8
OCI_PTYPE_RULE_SET

attributes, 6-21
OCI_PTYPE_RULES

attributes, 6-21
OCI_PTYPE_SCHEMA

attributes, 6-19

Index-16

OCI_PTYPE_SYN
attributes, 6-14

OCI_PTYPE_TABLE
attributes, 6-7

OCI_PTYPE_TABLE_ALIAS
attributes, 6-22

OCI_PTYPE_TYPE
attributes, 6-8

OCI_PTYPE_TYPE_ATTR
attributes, 6-10

OCI_PTYPE_TYPE_FUNC
attributes, 6-11

OCI_PTYPE_TYPE_PROC
attributes, 6-11

OCI_PTYPE_VARIABLE_TYPE
attributes, 6-23

OCI_PTYPE_VIEW
attributes, 6-7

OCI_SESSRLS_RETAG, 15-45, 15-46
OCI_STILL_EXECUTING, 2-27, 2-35
OCI_STMT_SCROLLABLE_READONLY

attribute, 4-19
OCI_SUBSCR_PROTO_HTTP, A-60
OCI_SUBSCR_PROTO_MAIL, A-60
OCI_SUBSCR_PROTO_OCI, A-59
OCI_SUBSCR_PROTO_SERVER, A-60
OCI_SUCCESS, 2-26, 8-7
OCI_SUCCESS_WITH_INFO, 2-26
OCI_THREADED, 9-3
OCI_TRANS_LOOSE, 8-5
OCI_TRANS_READONLY, 8-3, 8-10
OCI_TRANS_RESUME, 8-9
OCI_TRANS_SERIALIZABLE, 8-3
OCI_TRANS_TIGHT, 8-5
OCI_TRANS_TWOPHASE, 8-9
OCI_TYPECODE

values, 3-33, 3-35
OCI_TYPECODE_NCHAR, 11-31
OCI_UTF16ID, 2-39
OCIAnyDataAccess(), 20-12
OCIAnyDataAttrGet(), 20-14
OCIAnyDataAttrSet(), 20-17
OCIAnyDataBeginCreate(), 20-20
OCIAnyDataCollAddElem(), 20-22
OCIAnyDataCollGetElem(), 20-24

OCIAnyDataConvert(), 20-26
OCIAnyDataDestroy(), 20-29
OCIAnyDataEndCreate(), 20-30
OCIAnyDataGetCurrAttrNum(), 20-31
OCIAnyDataGetType(), 20-32
OCIAnyDataIsNull(), 20-33
OCIAnyDataSetAddInstance(), 20-36
OCIAnyDataSetBeginCreate(), 20-38
OCIAnyDataSetDestroy(), 20-40
OCIAnyDataSetEndCreate(), 20-41
OCIAnyDataSetGetCount(), 20-42
OCIAnyDataSetGetInstance(), 20-43
OCIAnyDataSetGetType(), 20-44
OCIAnyDataTypeCodeToSqlt(), 11-31, 20-34
OCIAQAgent

descriptor attributes, A-54
OCIAQDeq(), 16-115
OCIAQDeqArray(), 16-118
OCIAQDeqOptions

descriptor attributes, A-45
OCIAQEnq(), 16-121
OCIAQEnqArray(), 16-134
OCIAQEnqOptions

descriptor attributes, A-44
OCIAQListen(), 16-136
OCIAQMsgProperties

descriptor attributes, A-49
OCIArray, 11-17

binding and defining, 11-17, 11-38
OCIArray manipulation

code example, 11-19
OCIAttrGet(), 15-49

used for describing, 4-12
OCIAttrSet(), 15-52
OCIAuthInfo definition, 9-20
OCIAuthInfo handle attributes, A-16
OCIBindArrayOfStruct(), 15-69
OCIBindByName(), 15-71
OCIBindByPos(), 15-77
OCIBindDynamic(), 15-82
OCIBindObject(), 15-87
OCIBreak(), 16-216

use of, 2-32, 2-36
OCICacheFlush(), 17-9
OCICacheFree(), 17-53

Index-17

OCICacheRefresh(), 17-11
OCICacheUnmark(), 17-18
OCICacheUnpin(), 17-54
OCICharSetConversionIsReplacementUsed(), 21-6

6
OCICharSetToUnicode(), 21-67
OCIColl, 11-17

binding and defining, 11-17
OCICollAppend(), 18-6
OCICollAssign(), 18-8
OCICollAssignElem(), 18-10
OCICollGetElem(), 18-12
OCICollGetElemArray(), 18-15
OCICollIsLocator(), 18-17
OCICollMax(), 18-18
OCICollSize(), 18-19
OCICollTrim(), 18-21
OCIComplexObject

use of, 10-24
OCIComplexObjectComp

use of, 10-24
OCIConnectionPoolCreate(), 15-5
OCIConnectionPoolDestroy(), 15-8
OCIContextClearValue(), 19-23
OCIContextGenerateKey(), 19-24
OCIContextGetValue(), 19-22
OCIContextSetValue(), 19-20
OCIDate, 11-6

binding and defining, 11-6, 11-38
OCIDate manipulation

code example, 11-6
OCIDateAddDays(), 18-36
OCIDateAddMonths(), 18-37
OCIDateAssign(), 18-38
OCIDateCheck(), 18-39
OCIDateCompare(), 18-41
OCIDateDaysBetween(), 18-42
OCIDateFromText(), 18-43
OCIDateGetDate(), 18-45
OCIDateGetTime(), 18-46
OCIDateLastDay(), 18-47
OCIDateNextDay(), 18-48
OCIDateSetDate(), 18-50
OCIDateSetTime(), 18-51
OCIDateSysDate(), 18-52

OCIDateTimeAssign(), 18-55
OCIDateTimeCheck(), 18-57
OCIDateTimeCompare(), 18-59
OCIDateTimeConstruct(), 18-61
OCIDateTimeConvert(), 18-63
OCIDateTimeFromArray(), 18-65
OCIDateTimeFromText(), 18-67
OCIDateTimeGetDate(), 18-69
OCIDateTimeGetTime, 18-71
OCIDateTimeGetTime(), 18-71
OCIDateTimeGetTimeZoneName(), 18-73
OCIDateTimeGetTimeZoneOffset(), 18-75
OCIDateTimeIntervalAdd(), 18-77
OCIDateTimeIntervalSub(), 18-79
OCIDateTimeSubtract(), 18-81
OCIDateTimeSysTimeStamp(), 18-82
OCIDateTimeToArray(), 18-83
OCIDateToText(), 18-53
OCIDateZoneToZone(), 18-87
OCIDefineArrayOfStruct(), 15-90
OCIDefineByPos(), 15-92
OCIDefineDynamic(), 15-97
OCIDefineObject(), 15-100
OCIDescribeAny(), 15-102

usage examples, 6-25
using, 6-2

OCIDescriptorAlloc(), 15-54
OCIDescriptorFree(), 15-57
OCIDirPathAbort(), 16-150
OCIDirPathColArray context, 12-5
OCIDirPathColArrayEntryGet(), 16-151
OCIDirPathColArrayEntrySet(), 16-153
OCIDirPathColArrayReset(), 16-157
OCIDirPathColArrayRowGet(), 16-155
OCIDirPathColArrayToStream(), 16-158
OCIDirPathCtx context, 12-5
OCIDirPathDataSave(), 16-160
OCIDirPathFinish(), 16-161
OCIDirPathFlushRow(), 16-162
OCIDirPathFuncCtx, 12-5
OCIDirPathPrepare(), 16-165
OCIDirPathStream context, 12-5
OCIDirPathStreamLoad(), 16-163
OCIDirPathStreamReset(), 16-167
OCIDuration

Index-18

use of, 13-8, 13-15
OCIDurationBegin(), 16-26, 19-12
OCIDurationEnd(), 16-28, 19-14
OCIEnvCreate(), 15-9
OCIEnvInit(), 15-12
OCIEnvNlsCreate(), 2-39, 5-32, 15-14
OCIErrorGet(), 16-217
OCIExtProcAllocCallMemory(), 19-5
OCIExtProcGetEnv(), 19-9
OCIExtProcRaiseExcp(), 19-6
OCIExtProcRaiseExcpWithMsg(), 19-7
OCIExtractFromFile(), 19-32
OCIExtractFromList(), 19-40
OCIExtractFromStr(), 19-33
OCIExtractInit(), 19-26
OCIExtractReset(), 19-28
OCIExtractSetKey(), 19-30
OCIExtractSetNumKeys(), 19-29
OCIExtractTerm(), 19-27
OCIExtractToBool(), 19-35
OCIExtractToInt(), 19-34
OCIExtractToList(), 19-39
OCIExtractToOCINum(), 19-38
OCIFileClose(), 19-47
OCIFileExists(), 19-53
OCIFileInit(), 19-43
OCIFileRead(), 19-48
OCIFileSeek(), 19-51
OCIFileTerm(), 19-44
OCIFileWrite(), 19-50
OCIFormatInit(), 19-57
OCIFormatString(), 19-59
OCIFormatTerm(), 19-58
OCIHandleAlloc(), 15-59
OCIHandleFree(), 15-62
OCIInd

use of, 10-30
OCIInitialize(), 15-18
OCIIntervalAssign(), 18-91
OCIIntervalCheck(), 18-92
OCIIntervalCompare(), 18-94
OCIIntervalDivide(), 18-96
OCIIntervalFromNumber(), 18-97
OCIIntervalFromText(), 18-98
OCIIntervalFromTZ(), 18-100

OCIIntervalGetDaySecond(), 18-102
OCIIntervalGetYearMonth(), 18-104
OCIIntervalMultiply(), 18-105
OCIIntervalSetDaySecond(), 18-107
OCIIntervalSetYearMonth(), 18-109
OCIIntervalToText(), 18-114
OCIIter, 11-17

binding and defining, 11-17
usage example, 11-19

OCIIterCreate(), 18-22
OCIIterDelete(), 18-24
OCIIterGetCurrent(), 18-25
OCIIterInit(), 18-27
OCIIterNext(), 18-29
OCIIterPrev(), 18-31
OCILdaToSvcCtx(), 16-220
oci.lib, D-4
OCILobAppend(), 16-29
OCILobAssign(), 16-31
OCILobCharSet(), 16-33, 16-34
OCILobClose(), 16-35
OCILobCopy(), 16-37
OCILobCopy2(), 16-40
OCILobCreateTemporary(), 16-41
OCILobDisableBuffering(), 16-43
OCILobEnableBuffering(), 16-44
OCILobErase(), 16-45
OCILobErase2(), 16-47
OCILobFileClose(), 16-48
OCILobFileCloseAll(), 16-49
OCILobFileExists(), 16-50
OCILobFileGetName(), 16-51
OCILobFileIsOpen(), 16-53
OCILobFileOpen(), 16-55
OCILobFileSetName(), 16-57
OCILobFlushBuffer(), 16-59
OCILobFreeTemporary(), 16-61
OCILobGetChunkSize(), 16-62
OCILobGetLength(), 16-64
OCILobGetLength2(), 16-66
OCILobGetStorageLimit(), 16-67
OCILobIsEqual(), 16-68
OCILobIsOpen(), 16-69
OCILobIsTemporary(), 16-71
OCILobLoadFromFile(), 16-72

Index-19

OCILobLoadFromFile2(), 16-74
OCILobLocatorAssign(), 16-75
OCILobLocatorIsInit(), 16-77
OCILobOpen(), 16-79
OCILobRead(), 16-81
OCILobRead2(), 16-87
OCILobTrim(), 16-92
OCILobTrim2(), 16-94
OCILobWrite(), 16-95
OCILobWrite2(), 16-101
OCILobWriteAppend(), 16-106
OCILobWriteAppend2(), 16-110
OCILockOpt

possible values, 17-30, 17-60
OCILogoff(), 15-21
OCILogon(), 15-22

using, 2-21
OCILogon2(), 15-24
OCIMemoryAlloc(), 19-15
OCIMemoryFree(), 19-18
OCIMemoryResize(), 19-17
OCIMessageClose(), 21-74
OCIMessageGet(), 21-75
OCIMessageOpen(), 21-76
OCIMultiByteInSizeToWideChar(), 21-19
OCIMultiByteStrCaseConversion(), 21-21
OCIMultiByteStrCat(), 21-22
OCIMultiByteStrcmp(), 21-23
OCIMultiByteStrcpy(), 21-25
OCIMultiByteStrlen(), 21-26
OCIMultiByteStrncat(), 21-27
OCIMultiByteStrncmp(), 21-28
OCIMultiByteStrncpy(), 21-30
OCIMultiByteStrnDisplayLength(), 21-31
OCIMultiByteToWideChar(), 21-32
OCIMultiTransPrepare(), 16-204
OCINlsCharSetConvert(), 21-69
OCINlsCharSetIdToName(), 21-5
OCINlsCharSetNameTold(), 21-6
OCINlsEnvironmentVariableGet(), 2-39, 5-32, 21-7
OCINlsGetInfo(), 2-40, 21-9
OCINlsNameMap(), 21-14
OCINlsNumericInfoGet(), 21-12
OCINumber, 11-13

bind example, 11-39

binding and defining, 11-13, 11-38
define example, 11-39

OCINumber manipulation
code example, 11-13

OCINumberAbs(), 18-118
OCINumberAdd(), 18-119
OCINumberArcCos(), 18-120
OCINumberArcSin(), 18-121
OCINumberArcTan(), 18-122
OCINumberArcTan2(), 18-123
OCINumberAssign(), 18-124
OCINumberCeil(), 18-125
OCINumberCompare(), 18-126
OCINumberCos(), 18-127
OCINumberDec(), 18-128
OCINumberDiv(), 18-129
OCINumberExp(), 18-130
OCINumberFloor(), 18-131
OCINumberFromInt(), 18-132
OCINumberFromReal(), 18-134
OCINumberFromText(), 18-135
OCINumberHypCos(), 18-137
OCINumberHypSin(), 18-138
OCINumberHypTan(), 18-139
OCINumberInc(), 18-140
OCINumberIntPower(), 18-141
OCINumberIsInt(), 18-142
OCINumberIsZero(), 18-143
OCINumberLn(), 18-144
OCINumberLog(), 18-145
OCINumberMod(), 18-146
OCINumberMul(), 18-147
OCINumberNeg(), 18-148
OCINumberPower(), 18-149
OCINumberPrec(), 18-150
OCINumberRound(), 18-151
OCINumberSetPi(), 18-152
OCINumberSetZero(), 18-153
OCINumberShift(), 18-154
OCINumberSign(), 18-155
OCINumberSin(), 18-156
OCINumberSqrt(), 18-157
OCINumberSub(), 18-158
OCINumberTan(), 18-159
OCINumberToInt(), 18-160

Index-20

OCINumberToReal(), 18-162
OCINumberToRealArray(), 18-163
OCINumberToText(), 18-165
OCINumberTrunc(), 18-167
OCIObjectArrayPin(), 17-55
OCIObjectCopy(), 17-35
OCIObjectExists(), 17-27
OCIObjectFlush(), 17-13
OCIObjectFree(), 17-57
OCIObjectGetAttr(), 17-38
OCIObjectGetInd(), 17-40

example of use, 10-32
OCIObjectGetObjectRef(), 17-41
OCIObjectGetTypeRef(), 17-42
OCIObjectIsDirty(), 17-32
OCIObjectIsLocked(), 17-33
OCIObjectLifetime

possible values, 17-29
OCIObjectLock(), 17-43
OCIObjectLockNoWait(), 17-44
OCIObjectMarkDelete(), 17-19
OCIObjectMarkDeleteByRef(), 17-21
OCIObjectMarkStatus

possible values, 17-30
OCIObjectMarkUpdate(), 17-22
OCIObjectNew(), 17-46
OCIObjectPin(), 17-59
OCIObjectPinCountReset(), 17-62
OCIObjectPinTable(), 17-64
OCIObjectRefresh(), 17-15
OCIObjectSetAttr(), 17-50
OCIObjectUnmark(), 17-24
OCIObjectUnmarkByRef(), 17-25
OCIObjectUnpin(), 17-66
OCIParamGet(), 15-64

used for describing, 4-12
OCIParamSet(), 15-66
OCIPasswordChange(), 16-222
OCIPinOpt

use of, 13-7
OCIRaw, 11-16

binding and defining, 11-16, 11-38
OCIRaw manipulation

code example, 11-17
OCIRawAllocSize(), 18-169

OCIRawAssignBytes(), 18-170
OCIRawAssignRaw(), 18-171
OCIRawPtr(), 18-172
OCIRawResize(), 18-173
OCIRawSize(), 18-175
OCIRef, 11-24

binding and defining, 11-24
usage example, 11-24

OCIRefAssign(), 18-177
OCIRefClear(), 18-178
OCIRefFromHex(), 18-179
OCIRefHexSize(), 18-181
OCIRefIsEqual(), 18-182
OCIRefIsNull(), 18-183
OCIRefToHex(), 18-184
OCIReset(), 16-225

use of, 2-36
OCIRowid ROWID descriptor, 2-16
OCIRowidToChar(), 16-226
OCIServerAttach(), 15-27

shadow processes, 15-28
OCIServerDetach(), 15-30
OCIServerDNs descriptor attributes, A-55
OCIServerVersion(), 16-227
OCISessionBegin(), 2-22, 2-41, 15-31
OCISessionEnd(), 15-35
OCISessionGet(), 15-36
OCISessionPoolCreate(), 15-40
OCISessionPoolDestroy(), 15-44
OCISessionRelease(), 15-45
OCIStmtExecute(), 16-5

prefetch during, 4-7
use of iters parameter, 4-7

OCIStmtFetch(), 16-9
OCIStmtFetch2(), 4-19, 16-11
OCIStmtGetBindInfo(), 15-105
OCIStmtGetPieceInfo(), 16-14
OCIStmtPrepare(), 16-16

preparing SQL statements, 4-4
OCIStmtPrepare2(), 16-18
OCIStmtRelease(), 16-20
OCIStmtSetPieceInfo(), 16-21
OCIString, 11-15

binding and defining, 11-15, 11-38
OCIString manipulation

Index-21

code example, 11-16
OCIStringAllocSize(), 18-187
OCIStringAssign(), 18-188
OCIStringAssignText(), 18-189
OCIStringGetEncoding(), 18-191
OCIStringPtr(), 18-191
OCIStringResize(), 18-192
OCIStringSize(), 18-194
OCISubscriptionDisable(), 16-138
OCISubscriptionEnable(), 16-140
OCISubscriptionPost(), 16-142
OCISubscriptionRegister(), 16-144
OCISubscriptionUnRegister(), 16-147
OCISvcCtxToLda(), 16-229
OCITable, 11-17

binding and defining, 11-17, 11-38
OCITableDelete(), 18-196
OCITableExists(), 18-198
OCITableFirst(), 18-199
OCITableLast(), 18-201
OCITableNext(), 18-202
OCITablePrev(), 18-204
OCITableSize(), 18-206
OCITerminate(), 15-47
OCIThread package, 9-4
OCIThreadClose(), 16-170
OCIThreadCreate(), 16-171
OCIThreadHandleGet(), 16-173
OCIThreadHndDestroy(), 16-174
OCIThreadHndInit(), 16-175
OCIThreadIdDestroy(), 16-176
OCIThreadIdGet(), 16-177
OCIThreadIdInit(), 16-178
OCIThreadIdNull(), 16-179
OCIThreadIdSame(), 16-180
OCIThreadIdSet(), 16-181
OCIThreadIdSetNull(), 16-182
OCIThreadInit(), 16-183
OCIThreadIsMulti(), 16-184
OCIThreadJoin(), 16-185
OCIThreadKeyDestroy(), 16-186
OCIThreadKeyGet(), 16-187
OCIThreadKeyInit(), 16-188
OCIThreadKeySet(), 16-190
OCIThreadMutexAcquire(), 16-191

OCIThreadMutexDestroy(), 16-192
OCIThreadMutexInit(), 16-193
OCIThreadMutexRelease(), 16-194
OCIThreadProcessInit(), 16-195
OCIThreadTerm(), 16-196
OCITransCommit(), 16-198
OCITransDetach(), 16-201
OCITransForget(), 16-203
OCITransMultiPrepare(), 8-8
OCITransPrepare(), 16-205
OCITransRollback(), 16-206
OCITransStart(), 16-207
OCIType

description, 11-25
OCITypeAddAttr(), 20-5
OCITypeArrayByName(), 17-69
OCITypeArrayByRef(), 17-72
OCITypeBeginCreate(), 20-6
OCITypeByName(), 17-74
OCITypeByRef(), 17-77
OCITypeElem

description, 11-25
OCITypeEndCreate(), 20-8
OCITypeMethod

description, 11-25
OCITypeSetBuiltin(), 20-9
OCITypeSetCollection(), 20-10
OCIUnicodeToCharSet(), 21-71
OCIUserCallbackGet(), 16-231
OCIUserCallbackRegister(), 16-234
OCIWideCharInSizeToMultiByte(), 21-33
OCIWideCharIsAlnum(), 21-53
OCIWideCharIsAlpha(), 21-54
OCIWideCharIsCntrl(), 21-55
OCIWideCharIsDigit(), 21-56
OCIWideCharIsGraph(), 21-57
OCIWideCharIsLower(), 21-58
OCIWideCharIsPrint(), 21-59
OCIWideCharIsPunct(), 21-60
OCIWideCharIsSingleByte(), 21-61
OCIWideCharIsSpace(), 21-62
OCIWideCharIsUpper(), 21-63
OCIWideCharIsXdigit(), 21-64
OCIWideCharMultiByteLength(), 21-35
OCIWideCharStrCaseConversion(), 21-36

Index-22

OCIWideCharStrcat(), 21-38
OCIWideCharStrchr(), 21-39
OCIWideCharStrcmp(), 21-40
OCIWideCharStrcpy(), 21-42
OCIWideCharStrlen(), 21-43
OCIWideCharStrncat(), 21-44
OCIWideCharStrncmp(), 21-45
OCIWideCharStrncpy(), 21-47
OCIWideCharStrrchr(), 21-48
OCIWideCharToLower(), 21-49
OCIWideCharToMultiByte(), 21-50
OCIWideCharToUpper(), 21-51
OCIXmlDbFreeXmlCtx(), 13-24, 22-5
ocixmldb.h header file, 13-24
OCIXmlDbInitXmlCtx(), 13-24, 22-6
OID. See object identifier
opaque, definition of, 1-2
optimistic locking

implementing, 13-14
Oracle Call Interface. See OCI
Oracle Call Interface. See OCI
Oracle datatypes, 3-2

mapping to C, 11-2
Oracle XA Library

additional documentation, D-7
compiling and linking an OCI program, D-5
dynamic registration, D-6
functions, D-5
overview, D-5

Oracle9i database
transaction processing monitor, D-5

orasb8 datatype, 7-5
oratypes.h

contents, 3-37
only supported means of supplying parameters

to the OCI, 3-37
oraub8 datatype, 7-5
ORE. See object runtime environment
OTT

command line, 14-6
command line syntax, 14-27
creating types in the database, 14-5
datatypes mapping, 14-10
intype file, 14-34
outtype file, 14-21

overview, 14-2
parameters, 14-28
providing an intype file, 14-9
reference, 14-26
restriction, 14-42
using, 14-1

OTT (Object Type Translator), D-7
OTT initialization function

calling, 14-24
tasks of, 14-26

OTT parameter TRANSITIVE, 14-33
OTT parameter URL, 14-33
OTT parameters

CASE, 14-32
CODE, 14-30
CONFIG, 14-31
ERRTYPE, 14-31
HFILE, 14-31
INITFILE, 14-30
INITFUNC, 14-31
INTYPE, 14-29
OUTTYPE, 14-29
SCHEMA_NAMES, 14-33
USERID, 14-29
where they appear, 14-33

OTT. See object type translator
ottcfg.cfg, D-2
outtype file, 14-34

when running OTT, 14-21
OUTTYPE OTT parameter, 14-29

P
packages

attributes, 6-8
describing, 6-2

parameter descriptor, 2-16
attributes, 6-5, A-42

parameter descriptor object, 11-25
parameters

attributes, 6-5
buffer lengths, 15-3, 16-3
modes, 15-2, 16-2
passing strings, 2-29
string length, 15-3, 16-3

Index-23

partitioned fine grained access control, 8-16
password management, 8-10, 8-12
PDO. See parameter descriptor object
persistent objects, 10-5

meta-attributes, 10-17
piecewise binds and defines for LOBs, 5-47
piecewise fetch, 5-45
piecewise operations, 5-42

fetch, 5-40, 5-46
in PL/SQL, 5-45
insert, 5-40
update, 5-40
valid datatypes, 5-41

pin count, 10-29
pin duration

example, 13-16
of objects, 13-15

pinning, 13-7
pinning objects, 13-7
PL/SQL, 1-9

binding and defining nested tables, 5-39
binding and defining REF cursors, 5-39
binding placeholders, 2-37
defining output variables, 5-22
piecewise operations, 5-45
uses in OCI applications, 2-37
using in OCI applications, 2-37
using in OCI programs, 5-7

positioned, 2-33
deletes, 2-33

prefetching
during OCIStmtExecute(), 4-7
setting prefetch memory size, 4-17
setting row count, 4-17

prepare multiple branches in a single message, 8-8
procedures

attributes, 6-8
process

handle attributes, A-77
proxy authentication, 8-17
publish-subscribe

_SYSTEM_TRIG_ENABLED parameter, 9-63
COMPATIBLE parameter, 9-56
example, 9-63
functions, 9-56

handle attributes, 9-57, A-56
LDAP registration, 9-59
notification callback, 9-61
notification feature, 9-54
subscription handle, 9-57

publish-subscribe functions, 16-114

Q
query

explicit describe, 4-15
query. See SQL query

R
RAW

external datatype, 3-16
REF

external datatype, 3-20
REF columns

direct path loading of, 12-25
REF cursors variables

binding and defining, 5-39
reference. See REFs
refreshing, 13-12

objects, 13-12
REFs

binding, 11-33
cursor variables, binding, 5-17
defining, 11-35
indicator variables for, 2-29, 2-31
retrieving from server, 10-10

registering
user callbacks, 9-31

registry
REGEDT32, D-6

relational functions, C-8
server round trips, C-2

required support files, D-2
reserved namespaces, 2-34
reserved words, 2-33
result set, 4-18
resuming branches, 8-6
return values

navigational functions, 17-5

Index-24

RETURNING clause
binding with, 5-27
error handling, 5-28
initializing variables, 5-27
using with OCI
with REFs, 5-28

rollback, 2-24
in object applications, 13-15

round trips
See server round trips

ROWID
external datatype, 3-21
logical, 3-6
Universal ROWID, 3-6
used for positioned updates and deletes, 2-33

ROWID descriptor, 2-16
RSFs, D-2
running OCI applications, D-5

S
sample programs, B-1, D-3
samples directory, D-2
sb1

definition, 3-37
sb2

definition, 3-37
sb4

definition, 3-37
SCHEMA_NAMES OTT parameter, 14-33

usage, 14-38
SCHEMA.QUEUE, 16-146
SCHEMA.QUEUE:CONSUMER_NAME, 16-146
schemas

attributes, 6-19, 6-21, 6-22, 6-23
describing, 6-2

scrollable cursor
example, 4-20

scrollable cursors, 4-18
secondary memory

of object, 13-17
select-list

describing, 4-11
sequences

attributes, 6-14

describing, 6-2
server handle

attributes, A-13
description, 2-9
setting in service context, 2-9

server round trips
cache functions, C-5
datatype mapping and manipulation

functions, C-7
describe operation, C-6
LOB functions, C-3
object functions, C-5
relational functions, C-8

servers compatibility, 1-16
service context handle

attributes, A-11
description, 2-8
elements of, 2-8

session
migration, 8-10, 15-32

session management, 8-10, 8-12
session pool handle

attributes, A-24
session pooling, 9-17, 9-23

tagging, 9-18
session pooling example, 9-23
session pooling, functionality, 9-18
signal handler, 9-2
skip parameters

for arrays of structures, 5-23
for standard arrays, 5-24

snapshot descriptor, 2-15
snapshots

executing against, 4-8
SQL query

binding placeholders. See bind operation
defining output variables, 4-16, 5-17, 11-35
defining output variables. See define operation
fetching results, 4-16
statement type, 1-8

SQL statements, 1-6
binding placeholders in, 4-5, 5-2, 11-32
determining type prepared, 4-4
executing, 4-7
preparing for execution, 4-4

Index-25

processing, 4-2
types

control statements, 1-7
data definition language, 1-7
data manipulation language, 1-7
embedded SQL, 1-10
PL/SQL, 1-9
queries, 1-8

SQLCS_IMPLICIT, 5-31, 16-33, 16-41, 16-84, 16-89,
16-98, 16-104, 16-108, 16-112

SQLCS_NCHAR, 5-31, 16-33, 16-41, 16-84, 16-89,
16-98, 16-104, 16-108, 16-112

SQLT typecodes, 3-35
SQLT_BDOUBLE, 3-26
SQLT_BFLOAT, 3-26
SQLT_IBDOUBLE, 3-7, 6-15
SQLT_IBFLOAT, 3-7, 6-15
SQLT_NTY

bind example, 11-44
define example, 11-46
description, 3-20
preallocating object memory, 11-37

SQLT_REF
definition, 3-20
description, 3-20

stateful sessions, 9-11
stateless sessions, 9-11
statement caching, 9-27

code example, 9-30
statement handle

attributes, A-28
description, 2-10

stored functions
describing, 6-2

stored procedures
describing, 6-2

Streams Advanced Queuing
dequeue function, 16-115
description, 9-48
enqueue function, 16-121
examples, 16-122
functions, 16-114
OCI and, 9-48
OCI descriptors for, 9-49
OCI functions for, 9-48

OCI versus PL/SQL, 9-50
STRING

external datatype, 3-13
strings

passing as parameters, 2-29
structures

arrays of, 5-23
subscription handle, 2-11

attributes, A-56
Supporting UTF-16 Unicode in the OCI, 2-39, 2-40,

2-41, 2-43, 2-44, 2-45
supporting UTF-16 Unicode in the OCI, 2-41
sword

definition, 3-37
synonyms

attributes, 6-14
describing, 6-2

T
tables

attributes, 6-7
describing, 6-2
limitations on OCIDescribe() and

OCIStmtExecute(), 6-4
tagging

session pooling, 9-18, 15-39, 15-45
TDO

definition, 11-33
description, 11-25
in the object cache, 13-23
obtaining, 11-25
type descriptor object. See TDO.

TDO. See type descriptor object
terminology

navigational functions, 17-3
used in this manual, 1-10

thread management functions, 16-168
thread safety, 9-2

advantages of, 9-2
and three-tier architectures, 9-3
basic concepts, 9-2
implementing with OCI, 9-3
mixing 7.x and 8.0 calls, 9-4
required OCI calls, 9-3

Index-26

threads package, 9-4
three-tier architectures

and thread safety, 9-3
TIMESTAMP datatype, 3-24
TIMESTAMP WITH LOCAL TIME

ZONEdatatype, 3-25
TIMESTAMP WITH TIME ZONEdatatype, 3-25
top-level memory

of object, 13-17
transaction handle

attributes, A-27
description, 2-9

transaction identifier, 8-3
transaction processing monitor

additional documentation, D-7
interacting with Oracle9i database, D-5
types, D-5

transactional complexity
levels in OCI, 8-2

transactions
committing, 2-24
functions, 16-197
global, 8-3

branch states, 8-6
branches, 8-4
one-phase commit, 8-7
transactions identifier, 8-3
two-phase commit, 8-7

global examples, 8-8
initialization parameters, 8-8
local, 8-3
OCI functions for

transactions, 8-2
read-only, 8-3
rolling back, 2-24
serializable, 8-3

transient objects, 10-6
LOBs

attributes, 7-4
meta-attributes, 10-20

TRANSITIVE OTT parameter, 14-10, 14-16, 14-33
type attributes

attributes, 6-10
type descriptor object, 10-8, 11-25
type evolution, 10-41

object cache, 13-23
type functions

attributes, 6-11
type inheritance

OTT support, 14-17
type procedures

attributes, 6-11
type reference, 10-35
typecodes, 3-33
types

attributes, 6-8
describing, 6-2

U
ub1

definition, 3-37
ub2

definition, 3-37
ub4

definition, 3-37
Unicode

character set ID, A-40
character set Id, A-36
OCILobRead(), 16-85
OCILobWrite(), 16-99, 16-105

Universal ROWID, 3-6
unmarking, 13-10

objects, 13-10
unpinning, 10-29, 13-9

objects, 13-9
UNSIGNED

external datatype, 3-17
updates, 2-33

piecewise, 5-40, 5-42
positioned, 2-33

upgrading
7.x to 8.0, 1-20
7.x to 8.0 OCI, 1-21

upgrading OCI, 1-16
URL OTT parameter, 14-33
UROWID

Universal ROWID, 3-6
user memory

allocating, 2-18

Index-27

user session handle
attributes, A-16
description, 2-9
setting in service context, 2-9

user-defined callback functions, 9-30
registering, 9-31

USERID OTT parameter, 14-29
utext

Unicode datatype, 5-38
UTF-16 data, sample code, 5-37

V
values, 10-5

in object applications, 10-7
VARCHAR

external datatype, 3-15
VARCHAR2

external datatype, 3-10
VARNUM

external datatype, 3-14
VARRAW

external datatype, 3-17
views

attributes, 6-7
describing, 6-2

W
with_context

argument to external procedure functions, 19-3

X
X.509 vertificate, 8-16
XA. See Oracle XA Library
XA specification, 8-4
XID. See transaction identifier
XML DB functions, 13-24
XML support in OCI, 13-23
xtramem_sz parameter

using, 2-18

Index-28

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What's New in Oracle Call Interface?
	New Features in Oracle Call Interface Release 10.1
	Oracle9i Release 2 (9.2) New Features in Oracle Call Interface
	Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interface
	Oracle9i Release 9.0.0 New Features in Oracle Call Interface

	Part I� OCI Relational Concepts
	1 Introduction and Upgrading
	Overview of OCI
	Advantages of OCI
	Building an OCI Application
	Parts of OCI
	Procedural and Non-Procedural Elements
	Object Support
	SQL Statements
	Encapsulated Interfaces
	Simplified User Authentication and Password Management
	Extensions to Improve Application Performance and Scalability
	OCI Object Support
	Client-Side Object Cache
	Associative and Navigational Interfaces
	OCI Runtime Environment for Objects
	Type Management, Mapping and Manipulation Functions
	Object Type Translator
	OCI Support for Oracle Streams Advanced Queuing
	XA Library Support

	Compatibility and Upgrading
	Simplified Upgrading of Existing OCI Release 7 Applications
	Statically-Linked and Dynamically-Linked Applications
	Obsolete OCI Routines
	OCI Routines Not Supported
	Compatibility Between Different Releases of OCI and Servers
	Upgrading OCI

	OCI Instant Client
	Benefits of Instant Client
	OCI Instant Client Installation Process
	When to Use Instant Client
	Patching Instant Client Shared Libraries
	Regeneration of Data Shared Library
	Database Connection Names for OCI Instant Client
	Environment Variables for OCI Instant Client

	2 OCI Programming Basics
	Overview of OCI Programming
	OCI Program Structure
	OCI Data Structures
	Handles
	Allocating and Freeing Handles
	Environment Handle
	Error Handle
	Service Context and Associated Handles
	Statement, Bind, and Define Handles
	Describe Handle
	Complex Object Retrieval Handle
	Thread Handle
	Subscription Handle
	Direct Path Handles
	Connection Pool Handle
	Handle Attributes

	OCI Descriptors
	Snapshot Descriptor
	LOB and BFILE Locators
	Parameter Descriptor
	ROWID Descriptor
	Date, Datetime, and Interval Descriptors
	Complex Object Descriptor
	Advanced Queuing Descriptors
	User Memory Allocation

	OCI Programming Steps
	OCI Environment Initialization
	Creating the OCI Environment
	Allocating Handles and Descriptors
	Application Initialization, Connection, and Session Creation
	Processing SQL Statements in OCI

	Commit or Rollback
	Terminating the Application
	Error Handling in OCI
	Return and Error Codes for Data
	Functions Returning Other Values

	Additional Coding Guidelines
	Parameter Types
	Inserting Nulls into a Column
	Indicator Variables
	Canceling Calls
	Positioned Updates and Deletes
	Reserved Words

	Nonblocking Mode in OCI
	Using PL/SQL in an OCI Program
	OCI Globalization Support
	Client Character Set Control from OCI
	Code Example for Character Set Control in OCI
	Character Control and OCI Interfaces
	Character Length Semantics in OCI
	Character Set Support in OCI
	Other OCI Globalization Support Functions
	Getting Locale Information in OCI
	Example of Getting Locale Information in OCI
	Manipulating Strings in OCI
	Example of Manipulating Strings in OCI
	Example of Classifying Characters in OCI
	Converting Character Sets in OCI
	Example of Converting Character Sets in OCI
	OCI Messaging Functions
	Example of Retrieving a Message from a Text Message File
	lmsgen Utility

	3 Datatypes
	Oracle Datatypes
	Using External Datatype Codes

	Internal Datatypes
	LONG, RAW, LONG RAW, VARCHAR2
	Character Strings and Byte Arrays
	UROWID
	BINARY_FLOAT and BINARY_DOUBLE

	External Datatypes
	VARCHAR2
	NUMBER
	INTEGER
	FLOAT
	STRING
	VARNUM
	LONG
	VARCHAR
	DATE
	RAW
	VARRAW
	LONG RAW
	UNSIGNED
	LONG VARCHAR
	LONG VARRAW
	CHAR
	CHARZ
	Named Datatypes: Object, VARRAY, Nested Table
	REF
	ROWID Descriptor
	LOB Descriptor
	Datetime and Interval Datatype Descriptors
	Native Float and Native Double
	C Object-Relational Datatype Mappings

	Data Conversions
	Data Conversions for LOB Datatype Descriptors
	Data Conversions for Datetime and Interval Datatypes
	Datetime and Date Upgrading Rules
	Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI

	Typecodes
	Relationship Between SQLT and OCI_TYPECODE Values

	Definitions in oratypes.h

	4 Using SQL Statements in OCI
	Overview of SQL Statement Processing
	Preparing Statements
	Using Prepared Statements on Multiple Servers

	Binding Placeholders in OCI
	Executing Statements
	Execution Snapshots
	Execution Modes of OCIStmtExecute()

	Describing Select-list Items
	Implicit Describe
	Explicit Describe of Queries

	Defining Output Variables in OCI
	Fetching Results
	Fetching LOB Data
	Setting Prefetch Count

	Scrollable Cursors in OCI
	Example of Access on a Scrollable Cursor

	5 Binding and Defining in OCI
	Overview of Binding in OCI
	Named Binds and Positional Binds
	OCI Array Interface
	Binding Placeholders in PL/SQL
	Steps Used in OCI Binding
	PL/SQL Block in an OCI Program

	Advanced Bind Operations in OCI
	Binding LOBs
	Binding in OCI_DATA_AT_EXEC Mode
	Binding Ref Cursor Variables

	Overview of Defining in OCI
	Steps Used in OCI Defining
	Advanced OCI Defines

	Advanced Define Operations in OCI
	Defining LOB Output Variables
	Defining PL/SQL Output Variables
	Defining for a Piecewise Fetch

	Binding and Defining Arrays of Structures in OCI
	Skip Parameters
	OCI Calls Used with Arrays of Structures
	Arrays of Structures and Indicator Variables

	DML with RETURNING Clause in OCI
	Using DML with RETURNING Clause
	Binding RETURNING...INTO variables
	OCI Error Handling
	DML with RETURNING REF...INTO Clause in OCI
	Additional Notes About OCI Callbacks
	Array Interface for DML RETURNING Statements in OCI

	Character Conversion in OCI Binding and Defining
	Choosing Character Set
	Setting Client Character Sets in OCI
	Using OCI_ATTR_MAXDATA_SIZE Attribute
	Using OCI_ATTR_MAXCHAR_SIZE Attribute
	Buffer Expansion During OCI Binding
	Constraint Checking During Defining
	General Compatibility Issues for Character Length Semantics in OCI

	PL/SQL REF CURSORs and Nested Tables in OCI
	Runtime Data Allocation and Piecewise Operations in OCI
	Valid Datatypes for Piecewise Operations
	Types of Piecewise Operations
	Providing INSERT or UPDATE Data at Runtime
	Piecewise Operations with PL/SQL
	Providing FETCH Information at Runtime
	Piecewise Binds and Defines for LOBs

	6 Describing Schema Metadata
	Using OCIDescribeAny()
	Limitations on OCIDescribeAny()
	Notes on Types and Attributes

	Parameter Attributes
	Table Or View Parameters
	Procedure, Function, Subprogram Attributes
	Package Attributes
	Type Attributes
	Type Attribute Attributes
	Type Method Attributes
	Collection Attributes
	Synonym Attributes
	Sequence Attributes
	Column Attributes
	Argument and Result Attributes
	List Attributes
	Schema Attributes
	Database Attributes
	Rule Attributes
	Rule Set Attributes
	Evaluation Context Attributes
	Table Alias Attributes
	Variable Type Attributes
	Name Value Attributes

	Character Length Semantics Support in Describing
	Implicit Describing
	Explicit Describing

	Examples Using OCIDescribeAny()
	Retrieving Column Datatypes for a Table
	Describing the Stored Procedure
	Retrieving Attributes of an Object Type
	Retrieving the Collection Element's Datatype of a Named Collection Type
	Describing with Character Length Semantics

	7 LOB and BFILE Operations
	Using OCI Functions for LOBs
	Creating and Modifying Persistent LOBs
	Associating a BFILE in a Table with an Operating System File
	LOB Attributes of an Object
	Writing to a LOB Attribute of an Object
	Transient Objects with LOB Attributes

	Array Interface for LOBs
	Using LOBs of Size Greater than 4 GB
	New Functions for the Increased LOB Sizes
	Compatibility and Migration

	LOB and BFILE Functions in OCI
	Improving LOB Read/Write Performance
	LOB Buffering Functions
	Functions for Opening and Closing LOBs
	LOB Read and Write Callbacks

	Temporary LOB Support
	Creating and Freeing Temporary LOBs
	Temporary LOB Durations
	Take Care When Assigning Pointers
	Temporary LOB Example

	8 Managing Scalable Platforms
	OCI Support for Transactions
	Levels of Transactional Complexity
	Simple Local Transactions
	Global Transactions
	Transaction Examples
	Initialization Parameters

	Password and Session Management
	OCI Authentication Management
	OCI Password Management
	OCI Session Management

	Middle-Tier Applications in OCI
	OCI Attributes for Middle-Tier Applications
	OCI Middle-Tier Example
	End-to-End Application Tracing

	Externally Initialized Context in OCI
	Externally Initialized Context Attributes in OCI
	Using OCISessionBegin() with an Externally initialized Context

	9 OCI Programming Advanced Topics
	Overview of OCI Multithreaded Development
	Advantages of OCI Thread Safety
	OCI Thread Safety and Three-Tier Architectures
	Implementing Thread Safety

	The OCIThread Package
	Initialization and Termination
	Passive Threading Primitives
	Active Threading Primitives

	Connection Pooling in OCI
	OCI Connection Pooling Concepts
	OCI Calls for Connection Pooling
	Examples of OCI Connection Pooling

	Session Pooling in OCI
	Functionality of OCI Session Pooling
	Homogeneous and Heterogeneous Session Pools
	Using Tags in Session Pools
	OCI Handles for Session Pooling
	Using OCI Session Pooling
	OCI Calls for Session Pooling
	Example of OCI Session Pooling

	When to Use Connection Pooling, Session Pooling, or Neither
	Functions for Session Creation
	Choosing Between Different Types of OCI Sessions

	Statement Caching in OCI
	Statement Caching without Session Pooling in OCI
	Statement Caching with Session Pooling in OCI
	Rules for Statement Caching in OCI
	OCI Statement Caching Code Example

	User-Defined Callback Functions in OCI
	Registering User Callbacks in OCI
	OCI Callbacks from External Procedures

	Application Failover Callbacks in OCI
	Failover Callback Overview
	Failover Callback Structure and Parameters
	Failover Callback Registration
	Failover Callback Example
	Handling OCI_FO_ERROR

	OCI and Streams Advanced Queuing
	OCI Streams Advanced Queuing Functions
	OCI Streams Advanced Queuing Descriptors
	Streams Advanced Queuing in OCI Versus PL/SQL

	Publish-Subscribe Notification in OCI
	Publish-Subscribe Registration Functions in OCI
	Notification Callback in OCI
	Notification Procedure
	Publish-Subscribe Direct Registration Example
	Publish-Subscribe LDAP Registration Example

	Part II� OCI Object Concepts
	10 OCI Object-Relational Programming
	OCI Object Overview
	Working with Objects in OCI
	Basic Object Program Structure
	Persistent Objects, Transient Objects, and Values

	Developing an OCI Object Application
	Representing Objects in C Applications
	Initializing Environment and Object Cache
	Making Database Connections
	Retrieving an Object Reference from the Server
	Pinning an Object
	Manipulating Object Attributes
	Marking Objects and Flushing Changes
	Fetching Embedded Objects
	Object Meta-Attributes
	Complex Object Retrieval
	COR Prefetching
	OCI Versus SQL Access to Objects
	Pin Count and Unpinning
	NULL Indicator Structure
	Creating Objects
	Freeing and Copying Objects
	Object Reference and Type Reference
	Creating Objects Based on Object Views or User-Defined OIDs
	Error Handling in Object Applications

	Type Inheritance
	Substitutability
	NOT INSTANTIABLE Types and Methods
	OCI Support for Type Inheritance
	OTT Support for Type Inheritance

	Type Evolution

	11 Object-Relational Datatypes in OCI
	Overview of OCI Functions for Objects
	Mapping Oracle Datatypes to C
	OCI Type Mapping Methodology

	Manipulating C Datatypes with OCI
	Precision of Oracle Number Operations

	Date (OCIDate)
	Date Example

	Datetime and Interval (OCIDateTime, OCIInterval)
	Datetime Functions
	Datetime Example
	Interval Functions

	Number (OCINumber)
	Number Example

	Fixed or Variable-Length String (OCIString)
	String Functions
	String Example

	Raw (OCIRaw)
	Raw Functions
	Raw Example

	Collections (OCITable, OCIArray, OCIColl, OCIIter)
	Generic Collection Functions
	Collection Data Manipulation Functions
	Collection Scanning Functions
	Varray/Collection Iterator Example
	Nested Table Manipulation Functions
	Nested Table Locators

	Multilevel Collection Types
	Multilevel Collection Type Example

	REF (OCIRef)
	REF Manipulation Functions
	REF Example

	Object Type Information Storage and Access
	Descriptor Objects

	AnyType, AnyData and AnyDataSet Interfaces
	Type Interfaces
	OCIAnyData Interfaces
	NCHAR Typecodes for OCIAnyData Functions
	OCIAnyDataSet Interfaces

	Binding Named Datatypes
	Named Datatype Binds
	Binding REFs
	Information for Named Datatype and REF Binds

	Defining Named Datatypes
	Defining Named Datatype Output Variables
	Defining REF Output Variables
	Information for Named Datatype and REF Defines, and PL/SQL OUT Binds

	Binding And Defining Oracle C Datatypes
	Bind and Define Examples
	Salary Update Examples

	SQLT_NTY Bind/Define Example
	Bind Example
	Define Example

	12 Direct Path Loading
	Direct Path Loading Overview
	Datatypes Supported for Direct Path Loading
	Direct Path Handles
	Direct Path Interface Functions
	Limitations and Restrictions of the Direct Path Load Interface
	Direct Path Load Example for Scalar Columns
	Using a Date Cache in Direct Path Loading of Dates in OCI

	Direct Path Loading of Object Types
	Direct Path Loading of Nested Tables
	Direct Path Loading of Column Objects
	Direct Path Loading of SQL String Columns
	Direct Path Loading of REF Columns
	NOT FINAL Object and REF Columns
	Direct Path Loading of Object Tables
	Direct Path Loading a NOT FINAL Object Table

	Direct Path Loading in Pieces
	Loading Object Types in Pieces

	Direct Path Context Handles and Attributes for Object Types
	Direct Path Context Attributes
	Direct Path Function Context and Attributes
	Direct Path Column Parameter Attributes
	Direct Path Function Column Array Handle for Non-scalar Columns

	13 Object Advanced Topics in OCI
	The Object Cache and Memory Management
	Cache Consistency and Coherency
	Object Cache Parameters
	Object Cache Operations
	Loading and Removing Object Copies
	Making Changes to Object Copies
	Synchronizing Object Copies with Server
	Object Locking
	Commit and Rollback in Object Applications
	Object Duration
	Memory Layout of an Instance

	Object Navigation
	Simple Object Navigation

	OCI Navigational Functions
	Pin/Unpin/Free Functions
	Flush and Refresh Functions
	Mark and Unmark Functions
	Object Meta-Attribute Accessor Functions
	Other Functions

	Type Evolution and the Object Cache
	OCI Support for XML
	XML Context
	XML Data on the Server
	Using OCI XML DB Functions

	14 Using the Object Type Translator with OCI
	OTT Overview
	What Is the Object Type Translator?
	Creating Types in the Database
	Invoking OTT

	The OTT Command Line
	OTT Command Line Invocation Example

	The Intype File
	OTT Datatype Mappings
	Mapping Object Datatypes to C
	OTT Type Mapping Example
	Null Indicator Structs
	OTT Support for Type Inheritance

	The Outtype File
	Using OTT with OCI Applications
	Accessing and Manipulating Objects with OCI
	Calling the Initialization Function
	Tasks of the Initialization Function

	OTT Reference
	OTT Command Line Syntax
	OTT Parameters
	Where OTT Parameters Can Appear
	Structure of the Intype File
	Nested Included File Generation
	SCHEMA_NAMES Usage
	Default Name Mapping
	OTT Restriction on File Name Comparison

	Part III� OCI Reference
	15 OCI Relational Functions
	Introduction to the Relational Functions
	Connect, Authorize, and Initialize Functions
	OCIConnectionPoolCreate()
	OCIConnectionPoolDestroy()
	OCIEnvCreate()
	OCIEnvInit()
	OCIEnvNlsCreate()
	OCIInitialize()
	OCILogoff()
	OCILogon()
	OCILogon2()
	OCIServerAttach()
	OCIServerDetach()
	OCISessionBegin()
	OCISessionEnd()
	OCISessionGet()
	OCISessionPoolCreate()
	OCISessionPoolDestroy()
	OCISessionRelease()
	OCITerminate()

	Handle and Descriptor Functions
	OCIAttrGet()
	OCIAttrSet()
	OCIDescriptorAlloc()
	OCIDescriptorFree()
	OCIHandleAlloc()
	OCIHandleFree()
	OCIParamGet()
	OCIParamSet()

	Bind, Define, and Describe Functions
	OCIBindArrayOfStruct()
	OCIBindByName()
	OCIBindByPos()
	OCIBindDynamic()
	OCIBindObject()
	OCIDefineArrayOfStruct()
	OCIDefineByPos()
	OCIDefineDynamic()
	OCIDefineObject()
	OCIDescribeAny()
	OCIStmtGetBindInfo()

	16 More OCI Relational Functions
	Introduction to More Relational Functions
	Statement Functions
	OCIStmtExecute()
	OCIStmtFetch()
	OCIStmtFetch2()
	OCIStmtGetPieceInfo()
	OCIStmtPrepare()
	OCIStmtPrepare2()
	OCIStmtRelease()
	OCIStmtSetPieceInfo()

	LOB Functions
	OCIDurationBegin()
	OCIDurationEnd()
	OCILobAppend()
	OCILobAssign()
	OCILobCharSetForm()
	OCILobCharSetId()
	OCILobClose()
	OCILobCopy()
	OCILobCopy2()
	OCILobCreateTemporary()
	OCILobDisableBuffering()
	OCILobEnableBuffering()
	OCILobErase()
	OCILobErase2()
	OCILobFileClose()
	OCILobFileCloseAll()
	OCILobFileExists()
	OCILobFileGetName()
	OCILobFileIsOpen()
	OCILobFileOpen()
	OCILobFileSetName()
	OCILobFlushBuffer()
	OCILobFreeTemporary()
	OCILobGetChunkSize()
	OCILobGetLength()
	OCILobGetLength2()
	OCILobGetStorageLimit()
	OCILobIsEqual()
	OCILobIsOpen()
	OCILobIsTemporary()
	OCILobLoadFromFile()
	OCILobLoadFromFile2()
	OCILobLocatorAssign()
	OCILobLocatorIsInit()
	OCILobOpen()
	OCILobRead()
	OCILobRead2()
	OCILobTrim()
	OCILobTrim2()
	OCILobWrite()
	OCILobWrite2()
	OCILobWriteAppend()
	OCILobWriteAppend2()

	Streams Advanced Queuing and Publish-Subscribe Functions
	OCIAQDeq()
	OCIAQDeqArray()
	OCIAQEnq()
	OCIAQEnqArray()
	OCIAQListen()
	OCISubscriptionDisable()
	OCISubscriptionEnable()
	OCISubscriptionPost()
	OCISubscriptionRegister()
	OCISubscriptionUnRegister()

	Direct Path Loading Functions
	OCIDirPathAbort()
	OCIDirPathColArrayEntryGet()
	OCIDirPathColArrayEntrySet()
	OCIDirPathColArrayRowGet()
	OCIDirPathColArrayReset()
	OCIDirPathColArrayToStream()
	OCIDirPathDataSave()
	OCIDirPathFinish()
	OCIDirPathFlushRow()
	OCIDirPathLoadStream()
	OCIDirPathPrepare()
	OCIDirPathStreamReset()

	Thread Management Functions
	OCIThreadClose()
	OCIThreadCreate()
	OCIThreadHandleGet()
	OCIThreadHndDestroy()
	OCIThreadHndInit()
	OCIThreadIdDestroy()
	OCIThreadIdGet()
	OCIThreadIdInit()
	OCIThreadIdNull()
	OCIThreadIdSame()
	OCIThreadIdSet()
	OCIThreadIdSetNull()
	OCIThreadInit()
	OCIThreadIsMulti()
	OCIThreadJoin()
	OCIThreadKeyDestroy()
	OCIThreadKeyGet()
	OCIThreadKeyInit()
	OCIThreadKeySet()
	OCIThreadMutexAcquire()
	OCIThreadMutexDestroy()
	OCIThreadMutexInit()
	OCIThreadMutexRelease()
	OCIThreadProcessInit()
	OCIThreadTerm()

	Transaction Functions
	OCITransCommit()
	OCITransDetach()
	OCITransForget()
	OCITransMultiPrepare()
	OCITransPrepare()
	OCITransRollback()
	OCITransStart()

	Miscellaneous Functions
	OCIBreak()
	OCIErrorGet()
	OCILdaToSvcCtx()
	OCIPasswordChange()
	OCIReset()
	OCIRowidToChar()
	OCIServerVersion()
	OCISvcCtxToLda()
	OCIUserCallbackGet()
	OCIUserCallbackRegister()

	17 OCI Navigational and Type Functions
	Introduction to the Navigational and Type Functions
	OCI Flush or Refresh Functions
	OCICacheFlush()
	OCICacheRefresh()
	OCIObjectFlush()
	OCIObjectRefresh()

	OCI Mark or Unmark Object and Cache Functions
	OCICacheUnmark()
	OCIObjectMarkDelete()
	OCIObjectMarkDeleteByRef()
	OCIObjectMarkUpdate()
	OCIObjectUnmark()
	OCIObjectUnmarkByRef()

	OCI Get Object Status Functions
	OCIObjectExists()
	OCIObjectGetProperty()
	OCIObjectIsDirty()
	OCIObjectIsLocked()

	OCI Miscellaneous Object Functions
	OCIObjectCopy()
	OCIObjectGetAttr()
	OCIObjectGetInd()
	OCIObjectGetObjectRef()
	OCIObjectGetTypeRef()
	OCIObjectLock()
	OCIObjectLockNoWait()
	OCIObjectNew()
	OCIObjectSetAttr()

	OCI Pin, Unpin, and Free Functions
	OCICacheFree()
	OCICacheUnpin()
	OCIObjectArrayPin()
	OCIObjectFree()
	OCIObjectPin()
	OCIObjectPinCountReset()
	OCIObjectPinTable()
	OCIObjectUnpin()

	OCI Type Information Accessor Functions
	OCITypeArrayByName()
	OCITypeArrayByRef()
	OCITypeByName()
	OCITypeByRef()

	18 OCI Datatype Mapping and Manipulation Functions
	Introduction to Datatype Mapping and Manipulation Functions
	OCI Collection and Iterator Functions
	OCICollAppend()
	OCICollAssign()
	OCICollAssignElem()
	OCICollGetElem()
	OCICollGetElemArray()
	OCICollIsLocator()
	OCICollMax()
	OCICollSize()
	OCICollTrim()
	OCIIterCreate()
	OCIIterDelete()
	OCIIterGetCurrent()
	OCIIterInit()
	OCIIterNext()
	OCIIterPrev()

	OCI Date, Datetime, and Interval Functions
	OCIDateAddDays()
	OCIDateAddMonths()
	OCIDateAssign()
	OCIDateCheck()
	OCIDateCompare()
	OCIDateDaysBetween()
	OCIDateFromText()
	OCIDateGetDate()
	OCIDateGetTime()
	OCIDateLastDay()
	OCIDateNextDay()
	OCIDateSetDate()
	OCIDateSetTime()
	OCIDateSysDate()
	OCIDateToText()
	OCIDateTimeAssign()
	OCIDateTimeCheck()
	OCIDateTimeCompare()
	OCIDateTimeConstruct()
	OCIDateTimeConvert()
	OCIDateTimeFromArray()
	OCIDateTimeFromText()
	OCIDateTimeGetDate()
	OCIDateTimeGetTime()
	OCIDateTimeGetTimeZoneName()
	OCIDateTimeGetTimeZoneOffset()
	OCIDateTimeIntervalAdd()
	OCIDateTimeIntervalSub()
	OCIDateTimeSubtract()
	OCIDateTimeSysTimeStamp()
	OCIDateTimeToArray()
	OCIDateTimeToText()
	OCIDateZoneToZone()
	OCIIntervalAdd()
	OCIIntervalAssign()
	OCIIntervalCheck()
	OCIIntervalCompare()
	OCIIntervalDivide()
	OCIIntervalFromNumber()
	OCIIntervalFromText()
	OCIIntervalFromTZ()
	OCIIntervalGetDaySecond()
	OCIIntervalGetYearMonth()
	OCIIntervalMultiply()
	OCIIntervalSetDaySecond()
	OCIIntervalSetYearMonth()
	OCIIntervalSubtract()
	OCIIntervalToNumber()
	OCIIntervalToText()

	OCI NUMBER Functions
	OCINumberAbs()
	OCINumberAdd()
	OCINumberArcCos()
	OCINumberArcSin()
	OCINumberArcTan()
	OCINumberArcTan2()
	OCINumberAssign()
	OCINumberCeil()
	OCINumberCmp()
	OCINumberCos()
	OCINumberDec()
	OCINumberDiv()
	OCINumberExp()
	OCINumberFloor()
	OCINumberFromInt()
	OCINumberFromReal()
	OCINumberFromText()
	OCINumberHypCos()
	OCINumberHypSin()
	OCINumberHypTan()
	OCINumberInc()
	OCINumberIntPower()
	OCINumberIsInt()
	OCINumberIsZero()
	OCINumberLn()
	OCINumberLog()
	OCINumberMod()
	OCINumberMul()
	OCINumberNeg()
	OCINumberPower()
	OCINumberPrec()
	OCINumberRound()
	OCINumberSetPi()
	OCINumberSetZero()
	OCINumberShift()
	OCINumberSign()
	OCINumberSin()
	OCINumberSqrt()
	OCINumberSub()
	OCINumberTan()
	OCINumberToInt()
	OCINumberToReal()
	OCINumberToRealArray()
	OCINumberToText()
	OCINumberTrunc()

	OCI Raw Functions
	OCIRawAllocSize()
	OCIRawAssignBytes()
	OCIRawAssignRaw()
	OCIRawPtr()
	OCIRawResize()
	OCIRawSize()

	OCI Ref Functions
	OCIRefAssign()
	OCIRefClear()
	OCIRefFromHex()
	OCIRefHexSize()
	OCIRefIsEqual()
	OCIRefIsNull()
	OCIRefToHex()

	OCI String Functions
	OCIStringAllocSize()
	OCIStringAssign()
	OCIStringAssignText()
	OCIStringPtr()
	OCIStringResize()
	OCIStringSize()

	OCI Table Functions
	OCITableDelete()
	OCITableExists()
	OCITableFirst()
	OCITableLast()
	OCITableNext()
	OCITablePrev()
	OCITableSize()

	19 OCI Cartridge Functions
	Introduction to External Procedure and Cartridge Services Functions
	Cartridge Services — OCI External Procedures
	OCIExtProcAllocCallMemory()
	OCIExtProcRaiseExcp()
	OCIExtProcRaiseExcpWithMsg()
	OCIExtProcGetEnv()

	Cartridge Services — Memory Services
	OCIDurationBegin()
	OCIDurationEnd()
	OCIMemoryAlloc()
	OCIMemoryResize()
	OCIMemoryFree()

	Cartridge Services — Maintaining Context
	OCIContextSetValue()
	OCIContextGetValue()
	OCIContextClearValue()
	OCIContextGenerateKey()

	Cartridge Services — Parameter Manager Interface
	OCIExtractInit()
	OCIExtractTerm()
	OCIExtractReset()
	OCIExtractSetNumKeys()
	OCIExtractSetKey()
	OCIExtractFromFile()
	OCIExtractFromStr()
	OCIExtractToInt()
	OCIExtractToBool()
	OCIExtractToStr()
	OCIExtractToOCINum()
	OCIExtractToList()
	OCIExtractFromList()

	Cartridge Services — File I/O Interface
	OCIFileInit()
	OCIFileTerm()
	OCIFileOpen()
	OCIFileClose()
	OCIFileRead()
	OCIFileWrite()
	OCIFileSeek()
	OCIFileExists()
	OCIFileGetLength()
	OCIFileFlush()

	Cartridge Services — String Formatting Interface
	OCIFormatInit()
	OCIFormatTerm()
	OCIFormatString()
	Format Modifiers
	Format Codes
	Example

	20 OCI Any Type and Data Functions
	Introduction to Any Type and Data Interfaces
	OCI Type Interface Functions
	OCITypeAddAttr()
	OCITypeBeginCreate()
	OCITypeEndCreate()
	OCITypeSetBuiltin()
	OCITypeSetCollection()

	OCI Any Data Interface Functions
	OCIAnyDataAccess()
	OCIAnyDataAttrGet()
	OCIAnyDataAttrSet()
	OCIAnyDataBeginCreate()
	OCIAnyDataCollAddElem()
	OCIAnyDataCollGetElem()
	OCIAnyDataConvert()
	OCIAnyDataDestroy()
	OCIAnyDataEndCreate()
	OCIAnyDataGetCurrAttrNum()
	OCIAnyDataGetType()
	OCIAnyDataIsNull()
	OCIAnyDataTypeCodeToSqlt()

	OCI Any Data Set Interface Functions
	OCIAnyDataSetAddInstance()
	OCIAnyDataSetBeginCreate()
	OCIAnyDataSetDestroy()
	OCIAnyDataSetEndCreate()
	OCIAnyDataSetGetCount()
	OCIAnyDataSetGetInstance()
	OCIAnyDataSetGetType()

	21 OCI Globalization Support Functions
	Introduction to Globalization Support in OCI
	OCI Locale Functions
	OCINlsCharSetIdToName()
	OCINlsCharSetNameTold()
	OCINlsEnvironmentVariableGet()
	OCINlsGetInfo()
	OCINlsNumericInfoGet()

	OCI Locale-Mapping Function
	OCINlsNameMap()

	OCI String Manipulation Functions
	OCIMultiByteInSizeToWideChar()
	OCIMultiByteStrCaseConversion()
	OCIMultiByteStrCat()
	OCIMultiByteStrcmp()
	OCIMultiByteStrcpy()
	OCIMultiByteStrlen()
	OCIMultiByteStrncat()
	OCIMultiByteStrncmp()
	OCIMultiByteStrncpy()
	OCIMultiByteStrnDisplayLength()
	OCIMultiByteToWideChar()
	OCIWideCharInSizeToMultiByte()
	OCIWideCharMultiByteLength()
	OCIWideCharStrCaseConversion()
	OCIWideCharStrcat()
	OCIWideCharStrchr()
	OCIWideCharStrcmp()
	OCIWideCharStrcpy()
	OCIWideCharStrlen()
	OCIWideCharStrncat()
	OCIWideCharStrncmp()
	OCIWideCharStrncpy()
	OCIWideCharStrrchr()
	OCIWideCharToLower()
	OCIWideCharToMultiByte()
	OCIWideCharToUpper()

	OCI Character Classification Functions
	OCIWideCharIsAlnum()
	OCIWideCharIsAlpha()
	OCIWideCharIsCntrl()
	OCIWideCharIsDigit()
	OCIWideCharIsGraph()
	OCIWideCharIsLower()
	OCIWideCharIsPrint()
	OCIWideCharIsPunct()
	OCIWideCharIsSingleByte()
	OCIWideCharIsSpace()
	OCIWideCharIsUpper()
	OCIWideCharIsXdigit()

	OCI Character Set Conversion Functions
	OCICharSetConversionIsReplacementUsed()
	OCICharSetToUnicode()
	OCINlsCharSetConvert()
	OCIUnicodeToCharSet()

	OCI Messaging Functions
	OCIMessageClose()
	OCIMessageGet()
	OCIMessageOpen()

	22 OCI XML DB Functions
	Introduction to XML DB Support in OCI
	OCI XML DB Functions
	OCIXmlDbFreeXmlCtx()
	OCIXmlDbInitXmlCtx()

	A Handle and Descriptor Attributes
	Conventions
	Environment Handle Attributes
	Error Handle Attributes
	Service Context Handle Attributes
	Server Handle Attributes
	Authentication Information Handle
	User Session Handle Attributes
	Connection Pool Handle Attributes
	Session Pool Handle Attributes
	Transaction Handle Attributes
	Statement Handle Attributes
	Bind Handle Attributes
	Define Handle Attributes
	Describe Handle Attributes
	Parameter Descriptor Attributes
	LOB Locator Attributes
	Complex Object Attributes
	Complex Object Retrieval Handle Attributes
	Complex Object Retrieval Descriptor Attributes

	Advanced Queuing Descriptor Attributes
	OCIAQEnqOptions Descriptor Attributes
	OCIAQDeqOptions Descriptor Attributes
	OCIAQMsgProperties Descriptor Attributes
	OCIAQAgent Descriptor Attributes
	OCIServerDNs Descriptor Attributes

	Subscription Handle Attributes
	Direct Path Loading Handle Attributes
	Direct Path Context Handle (OCIDirPathCtx) Attributes
	Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes
	Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes
	Direct Path Stream Handle (OCIDirPathStream) Attributes
	Direct Path Column Parameter Attributes

	Process Handle Attributes

	B OCI Demonstration Programs
	C OCI Function Server Round Trips
	Overview of Server Round Trips
	Relational Function Round Trips
	LOB Function Round Trips
	Object and Cache Function Round Trips
	Describe Operation Round Trips
	Datatype Mapping and Manipulation Function Round Trips
	Any Type and Data Function Round Trips
	Other Local Functions

	D Getting Started with OCI for Windows
	What Is Included in the OCI Package for Windows?
	Oracle Directory Structure for Windows
	Sample OCI Programs for Windows
	Compiling OCI Applications for Windows
	Linking OCI Applications for Windows
	oci.lib
	Client DLL Loading When Using LoadLibrary()

	Running OCI Applications for Windows
	The Oracle XA Library
	Compiling and Linking an OCI Program with the Oracle XA Library
	Using XA Dynamic Registration
	XA and TP Monitor Information

	Using the Object Type Translator for Windows

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

