ORACLE

Oracle® Call Interface
Programmer's Guide

10g Release 1 (10.1)
Part No. B10779-01

December 2003

Oracle Call Interface Programmer's Guide, 10g Release 1 (10.1)
Part No. B10779-01

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.
Primary Author: Jack Melnick

Contributors: A. Ahluwalia, C. Baird, A. Bande, D. Banerjee, S. Banerjee, M. Bastawala, E. Belden, Jenny
Chai, S. Chandiramani, S. Chandrasekar, Thomas H. Chang, D. Chatterjee, D. Chiba, L. Chidambaran, D.
Frumkin, J. Greenberg, W. He, N. Ikeda, S. Kaluskar, R. Kasamsetty, H. Kelly, S. Kotsovolos, S.
Krishnaswamy, Geoff Lee, R. Leyderman, Annie Liu, K. Mohan, E. Paapanen, R. Pingte, D. Saha, H.
Slattery, Steven Sun, A. Tarachandani, R. Thammaiah, B. Thome, B. Trute, A. Tsukerman, Wei Wang,
Daniel M. Wong, Longying Zhao

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, PL/SQL, Pro*C/C++, Pro*COBOL,
Pro*FORTRAN, Oracle Store, Oracle7, and SQL*Net are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

SeNd US YOUT COMMEBNTS ...ttt XXXV
PRI AC ...ttt ettt ettt ettt ettt ettt ettt ettt XXXVii
YN [111 o1 TSRS XXXViii
OFQANIZATION ...t b b ettt ek bbb bbbt b et bttt XXXViii
Related DOCUMEBNTATIONcoviiiiiceicceee ettt et e st b it s st e s s be s st e e sbaessbessbbessaeesran s xlii
(O00] 0 1V/=T 01 1] o 1T TR xliv
Documentation ACCESSIDITYccoviiiiii e Xlvii
What's New in Oracle Call INTEITACET? ... xlix
New Features in Oracle Call Interface Release 10.1..........ccovvvviiiiiiiiecee et [
Oracle9i Release 2 (9.2) New Features in Oracle Call Interfacecccccoceevevevevicicicce e lii
Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interfacec.ccoooeeiiiiniiiiiiciiicens liv
Oracle9i Release 9.0.0 New Features in Oracle Call Interface.........coccoevvveeieeiiii e Ivi
Volume 1

Part1 OCI Relational Concepts

1 Introduction and Upgrading

(@ YT V1=V 1 @ L O S 1-2
YN Yz T o] 7 Vo =TS | i © L O S 1-3
Building an OCI APPLHICALIONoiiiiiiiiieeeee et snen 1-3
T 30) 0 L USSP 1-4

Procedural and Non-Procedural EIEMENTSccoiiiiiiiiiiiie et 1-4

ODJECE SUPPOIT. ..ttt bbbt bbbt bbbt b bbbt bbbt e 1-5
] @] I v= 1 (] =T o1 SO PSP 1-6
ENcapsulated INTEITACESooi i e 1-11
Simplified User Authentication and Password Management............ccocovvevnenncnecieennas 1-11
Extensions to Improve Application Performance and Scalability..........cccccocovevveiiivinennnnn, 1-12
OCT ODJECE SUPPOIT ...ttt ettt b bbb bbbt b et e e e b b e 1-13
Client-Side ODJECT CACNEovieiiciieeeee ettt 1-13
Associative and Navigational INterfaces..........ccovvveiiiiiiiicisie e 1-13
OCI Runtime Environment for ODJECESccviviiiiiiie et 1-14
Type Management, Mapping and Manipulation FUNCLIONS ... 1-15
ODbJECt TYPE TraNSIALONcevcieceiee et naer e neerenns 1-15
OCI Support for Oracle Streams Advanced QUEUINGccccrirerirerenieneie e 1-16
XA LIDEANY SUPPOIT ..ottt ettt bbbttt 1-16
Compatibility and Upgrading ... nne s 1-16
Simplified Upgrading of Existing OCI Release 7 Applicationsccccooeveieicinicnnenne. 1-16
Statically-Linked and Dynamically-Linked Applicationsccccoeoviiiiiiniicnnciece 1-17
ODSOIEte OCT ROULINES.c.oitiieiiieiiriee ettt ettt st sb ettt sb e et be et e 1-18
OCI ROULINES NOT SUPPOITEA.......eiiiitiiiiiie et 1-20
Compatibility Between Different Releases of OCl and Servers........ccccoceeeveveiceicnnennne. 1-20
(11 To | =T [T 1K 1@ LSRR 1-21
OCHT INSTANT CHIBNT......ciiiiiie bbb bbb ettt e st e b et be b b 1-22
Benefits Of INSTANT CHENT........oiiiiee e et 1-23
OCI Instant Client INStallation ProCeSS.........coiiiiiiiieiee e 1-23
When to USe INSTANT CHENToouiiiiiie e 1-24
Patching Instant Client Shared LiDraries..........cocovieiiiiiiiieiseesese e 1-25
Regeneration of Data Shared LIiDrary ... 1-25
Database Connection Names for OCI Instant Client...........c.ccocoooiininininencieceeee 1-25
Environment Variables for OCI Instant CHENt ... 1-26

OCI Programming Basics

Overview Of OCI ProgrammMiNg ..ot sre e 2-2
OCT Program STTUCTULIEcoveieieeieseesesie e etteste e e steeaesseeseesseestessaestesseeseeassesseessesseensesseensesseesensnens 2-2
O C] DALA STIUCTUIESoutiiiiiiieeeestee sttt ettt st et e e bt e bt e b e s bt e s e bt e st e ebeenreabe e b e sbeeneeanees 2-4
L F= T o 1 =SSOSR PR PR 2-4

Allocating and Freeing HandIes...........covoiiieii i 2-6

ENVIFrONMENT HANAIE. ..o ettt nee 2-8
ErrOr HANAIE. ... bbbttt sttt 2-8
Service Context and Associated HanNdIEs...........cocoiiiiiiiiiiine e 2-8
Statement, Bind, and Defing HaNAIES...........ccoooiiiiiicicce e 2-10
DESCrIDE HANAIE......c.o it sb e b et ab e 2-10
Complex Object Retrieval Handle.. ..o 2-11
THread HANAIE ..o e ettt sbe b e 2-11
SUBSCHIPLION HANAIE.......co i eene e srenrens 2-11
DireCt Path HANAIEScueiiiiii et 2-11
ConNection POOI HANAIE...........ooi e 2-12
HaNAIE ALIFIDULEScveiieece ettt b e sb et e sb e sbe e 2-12
(@104 [B =T ol g o) (o] £ TSP TTOUSOURUPURPRURN 2-13
SNAPSNOT DESCIIPTONc.veiieeiiitieietet ettt bbbttt bbb 2-15
LOB and BFILE LOCALOISviiitiietiiieiesieie sttt ettt st s sbe bbb 2-15
Parameter DESCIIPTONcoiiiiiie ettt bbb b bbbttt et et bbb e 2-16
ROWID DESCIIPTON ...ttt ettt bbbt b ettt ettt 2-16
Date, Datetime, and INterval DeSCHIPLOIScococieiercirese e 2-17
CoMPIEX ODJECE DESCIIPLON ..ottt ettt b et sne s 2-17
Advanced QUEUING DESCIIPIONScuiviiirieirieirieisieeete ettt sttt sb et sr e ane e ene e 2-17
User Memory AOCALIONccccviiiiie et e e e snesre e e 2-18
OCI ProgramimMiNg STEPScoueciiirieiiiatesie ettt ettt b ettt sb e bt ettt e s es s e b e e beebesbesbesbea 2-18
OCI Environment INItialiZation.........ccocooiiiiiiiiee e 2-19
Creating the OCI ENVIFONMENT.........cccoiiiiieieisece st e e e snesnessesresnens 2-20
Allocating Handles and DESCIIPIONS.oiiiiiiieieieiee ettt 2-21
Application Initialization, Connection, and Session Creationcc.ccoceveveveveeienencnn, 2-21
Processing SQL Statements iN OCHc.ocviiiiiicicieeceees e 2-24
ComMmMIt OF ROIDACK ... et 2-24
Terminating the APPHICALION ..ot e 2-25
ST a o]l o F-TaTo | 1T a T T g T O ISR 2-26
Return and Error Codes fOr DAtcoeueiiiiiiiiiee e 2-27
Functions Returning Other VAlUESccccooiiiiiiiiiccc s 2-28
Additional Coding GUIAEIINEScccoceiiiiceces e nee e 2-29
ParAMELET TYPES ..t bbbt h e r e r e e 2-29
INserting NUTIS INTO @ COIUMN ...o.oiiiii e 2-29

vi

aTo [or=N (o] gV Z-V g T= 1 o] [T R 2-30

CANCEIING CallS.....iiiiii bbbt 2-32
Positioned Updates and DEIELeS..........cccvceieieeicisece et 2-33
RESEIVEA WOTTS ...ttt bbb bbb bbb ettt et et b b neas 2-33
NONBIOCKING MOAE 1N OCH ...t 2-35
Using PL/SQL iN @n OCH PrOgram......ccccccieiireeieieeieesese et e e ssesse s e ensesessesssssesses 2-37
OCI GloDbalization SUPPOKT... ..ot ettt b e 2-39
Client Character Set Control from OCH ... s 2-39
Code Example for Character Set Control in OClc.cooiviviiiiin s 2-39
Character Control and OCI INErTACESccoiiiiiieec s 2-40
Character Length Semantics iN OCH ... 2-40
Character Set SUPPOIT N OCHocv i re e 2-41
Other OCI Globalization SUPPOIt FUNCLIONS ..o 2-41
Getting Locale INformation iN OCH ..o 2-41
Example of Getting Locale Information in OCl ..o 2-42
Manipulating Strings iN OCH.......coi i 2-43
Example of Manipulating Strings in OCl.........ccoiiiiiiiiiieiee e 2-43
Example of Classifying Characters in OCl..........ccocciviiiiiieinninie e 2-44
Converting Character SIS iN OCcoiiieiiiice e 2-45
Example of Converting Character Sets in OCH ..o 2-45
OCI MEeSSAQING FUNCLIONS.ccuiiiie ittt sn et e e en e e e aneenenns 2-46
Example of Retrieving a Message from a Text Message File ..., 2-47
IMISPEN UTHTITY ..ttt 2-47
Datatypes
OFACIE DALALYPES ... ettt ettt b et b bbbt b et b et eb et eb bkt e b bt s b bt sb bt ab e st ab e ere e 3-2
Using External DatatyPe COOES.cccciviieieieiee et e e e e esnesne e s 3-4
INTEINAL DATALYPESviitiieitiiteite ettt bbb st b e b st b et h e bt bttt nbe b b e 3-4
LONG, RAW, LONG RAW, VARCHAR2Zccot ittt sttt 3-6
Character Strings and BYTE ATTAYS......ccoiiieierieerereeieeesie et sestese e see e e saeseessesesessessesseses 3-6
UROWID ...ttt sttt sb et b ettt ettt et et st et et e st et e sb et e st e s e ebesesbeseabe e 3-6
BINARY_FLOAT and BINARY_DOUBLEcccciiiiiiiiiise e 3-7
=T b L D=1 =1 Y o1 3-8
VARCHARZ. ...ttt ettt s ettt ettt bt e b b nrne 3-10
INUMBERottt ettt ekt e b et e se st e st et et et e s et e s e be b e te st enenrns 3-11

1 2 SO OTPRR 3-13
STRING .ottt b e bbbt bbb stttk skttt et nn e 3-13
VARNUM L.ttt ettt ettt et et e sa et e st et e st e s e ebe e e be e eae e ete e 3-14
LONG ..ottt ettt sttt b et b e b et e b e e ket ek et ek et E et et e e e Re e b e R e ebe e et e e ebe e are e 3-15
VARCHAR .ot b et bbb e b et bbbt e bbbt ne e re e 3-15
DATE .ottt bbbttt R R bR bRt bRt ARttt ettt e 3-15
RAWV Lttt b et b etk e Rt R et Rt R bRt R et R et R bRt R ettt n et enen 3-16
VARRAW ..ottt b et b et b et b et e btk ekt st b e s e bt et b e e b e R e b e b e a e re e 3-17
LONG RAW ..ottt ettt b et b e etttk sttt e b e b et e st et e s b e s e ebe e e be e abe e abe e 3-17
UNSIGINED ...ttt ettt s et s et s bttt et et bene st s e nene st enen 3-17
LONG VARCHAR. ..ottt et ettt et ne bbb b 3-17
LONG VARRAW ..ottt sb ettt et ettt se et st besbe s e sbe e ebe e ebe e nte e 3-18
L0 N OSSR 3-18
CHARZ ...ttt b bbbt b et bbbttt 3-19
Named Datatypes: Object, VARRAY, Nested Tablec.ccoconininiiniicece, 3-20
REF .ttt Rt R bRt Rt ARt R ARt Rt R bRt R et et et nennenen 3-20
ROWID DESCIIPLOLvvciiiee sttt see e ettt ste st s resbe st se e e ense e eneeneesaaneenearenrenes 3-21
LOB DESCIITON ...cutieeeieiet ettt sttt b ekt b e bbb s b b et s et e it et e et e be b e 3-21
Datetime and Interval Datatype DeSCriPTOrS. ..ot 3-24
Native Float and Native DOUDIE............cccoiiiiiiiie e 3-26
C Obiject-Relational Datatype MapPingscoceveiririerinireresiene e 3-26
(D21 e W00 1V /=T 5] o] o 1P ROSS PR PRTR 3-27
Data Conversions for LOB Datatype DeSCriptors.........cccoiviivrvvierienisiesesesereeseeeseseseseenees 3-29
Data Conversions for Datetime and Interval Datatypes.........c.ccocovereiereneieieieeseneeeees 3-29
Datetime and Date Upgrading RUIES ..o 3-31
Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OClccccccceevivennnee. 3-31
TYPECOUES ...ttt bbbttt h b bt b b e e bt e bt e b e e R nb b e b e e et R b e Rt et e ne e bt bbb nnen 3-33
Relationship Between SQLT and OCI_TYPECODE ValUes.........ccccvereieneneieinecceenee 3-35
DefinitioNs IN OratyPeS.N ... e 3-37

Using SQL Statements in OCI

Overview of SQL StatemMent PrOCESSINGc.oivveieiieciee e sre s 4-2
Preparing STAtEMENTScoiiii et e b ettt b bbbt bbb b e 4-4
Using Prepared Statements on MUItiple SEIVErS ..o 4-5

Vii

viii

Binding P1acenolders iN OCH ..ottt aesreens 4-5

EXECULING STATEIMENTS ...ttt bbbttt ettt 4-7
EXECULION SNAPSNOLS....ciiiiiiiiiie ettt eeneete e snesrenre s 4-8
Execution Modes of OCISTMEEXECULE()vvcvveiveiiiiiiie ettt 4-8

Describing SEIeCt-TiSt ITEMS ... 4-11
L] o] Lot Tl | o= S 4-12
EXPlicit DesCribe Of QUETIESooviiiiiiicee e et 4-15

Defining Output Variables iN OCH ...t 4-16

FEECNING RESUILS ...ttt sttt e et e e e e eneereeneanearenrn 4-16
FELChING LOB DaAla........cciiiiieiiiieie ettt ettt este e e saeestesaaeseesnaeseenreens 4-17
Setting PrefetCh COUNT ..o 4-17

SCrollable CUISOrS iN OCHciiiiciec s 4-18
Example of Access on a Scrollable CUrSOr ... 4-20

Binding and Defining in OCI

Overview of BiNAIiNG iN OCH ...ttt eesreanes 5-2
Named Binds and PositioNal BiNAS...........ccoviiiiiiieicese e 5-3
(O T8 I N 4 - |V 1 0] =] - Lot S 5-4
Binding Placeholders in PLZSQLc.viioiiiicce ettt 5-4
Steps Used iN OCH BINAINGccoiiiiiiiiiiiiiistesie et 5-6
PL/ZSQL BIOCK iN @an OCI Programcc.cociiieieisesesese e sese e seesiesaeseesesaees e esessessesnessesseses 5-7
Advanced Bind OperationNs iN OCH ... 5-9
BINAING LOBS ...ttt ettt b ekttt bbb 5-10
Binding in OCI_DATA AT _EXEC MOGEccocoveiviriicese s sne s 5-16
Binding Ref CUrsor VariabIEsoov it 5-17
Overview Of DefiniNg iN OC| ... e 5-17
Steps Used iN OCI DEFININGcvvvie et re e 5-18
AAVANCEA OCT DEFINES ..ottt bbbttt ebe b e b b 5-19
Advanced Define Operations iN OCH ... s 5-20
Defining LOB OULPUL Variablescccoeiiieieicecese e ane s 5-20
Defining PL/SQL Output VariabIes ..o 5-22
Defining for a PIeCeWISe FETCN..........ooiiiiic e 5-22
Binding and Defining Arrays of Structures in OClccocvivviiiivinince e 5-23
SKIP PAFBIMELELS ...t b e bbb bbbttt be b e 5-23
OCI Calls Used with Arrays Of STFUCTUIESccoviiiiiiiieiiee e 5-25

Arrays of Structures and Indicator Variables...........cccoceviieiiiiie i 5-25

DML with RETURNING Clause iN OCl......ccccciiiiiiiciinieiesieie ettt 5-25
Using DML with RETURNING ClaUSE.........covcieieicieiie e 5-26
Binding RETURNING...INTO Variablesccccciviiiiiiiiiece e 5-27
OCTEITor HANAIING ..ottt 5-28
DML with RETURNING REF...INTO Clause in OCl.........cccoiinninniineiineieseiesie e 5-28
Additional Notes About OCI Callbacks..........ccooeiiiiiiiiii e 5-30
Array Interface for DML RETURNING Statements in OClcccooviniiniiniincincns 5-30

Character Conversion in OCI Binding and Definingc..ccoccvivviiviiiinienn e 5-30
(O pToToF [To @1 gF: U= 1oy 1= g1 OSSR 5-30
Setting Client Character Sets iN OCHccoiiiiiii e 5-32
Using OCI_ATTR_MAXDATA_SIZE AriDULEccooiriiiiiees 5-33
Using OCI_ATTR_MAXCHAR_SIZE ALIIDULE ..o 5-33
Buffer Expansion DUring OCI BindiNgcccoiiiiiiiiniiiccseeeee s 5-34
Constraint Checking DUring DefiniNgccccovvviiiiiieiic e 5-35
General Compatibility Issues for Character Length Semantics in OClccccccovienne 5-36

PL/SQL REF CURSORSs and Nested Tables in OCH ... 5-39

Runtime Data Allocation and Piecewise Operations in OCl........cccccocvvviveiencicisiese e 5-40
Valid Datatypes for PieCewWise OPEIatioNsccociurieirereiinene e 5-41
TyPES Of PIECEWISE OPEIALIONS.......c.ciiieiitirieteriete ettt 5-41
Providing INSERT or UPDATE Data at RUNTIME........ccccccovvivieiirece e 5-42
Piecewise Operations With PLZSQL ..o e 5-45
Providing FETCH Information at RUNTIMEccooiiiiiiiicceeee s 5-45
Piecewise Binds and Defines fOr LOBS.........ccccciiiiiiiienresese s 5-47

6 Describing Schema Metadata

R aTo @ IO I ToTTot g o1y AN o)V () 6-2
Limitations on OCIDESCHBEANY()cviiieiiiiei e 6-4
Notes 0N TYPES aNd ALLFIDULES. ..o 6-4

Parameter ALIFTDULES ..ottt ettt eb e nnens 6-5
Table OF VIEW PAFAIMETETSouiiiiiieieee ettt sb e sb e 6-7
Procedure, Function, Subprogram AttribDULESccoiiiiiii i 6-8
o To] 1 Vo [= I AN 1] 0T =SSR 6-8
TYPE ATLIIDULES ...ttt ettt b et bbb b e 6-8
Type ALHDULE ALIFIDULESoiiiiii e 6-10

Type Method ATLIIDULESoiiiiiiieie e 6-11

COlIECHION ATIFIDULES ...t sttt sre e 6-12
SYNONYM ATLFIDULES ...ttt en e e e neenenns 6-14
SEOUENCE ATLITDULES. ...ttt se ettt sbe e 6-14
COlUMN ALIFIDULES ...ttt se ettt n e sbe et 6-15
Argument and ReSUIt ATFIDULESccoovieiirce e 6-17
LIST ATLFIDULES ...ttt bbb bbbttt e et e be et sbe b 6-19
SCNEMA ATFIDULES. ...ttt st se ettt be b neas 6-19
Database ALIFIDULES ..ot 6-20
RUIE ALIFIDULES ... e ettt ettt b e 6-21
RUIE St ATIIDULES ...ttt st ettt te st sbeneas 6-21
Evaluation Context ALLFIDULES ..o e e 6-22
Table AlIaS ATIDULES ..ot 6-22
Variable TYPe AIFIDULES ... s 6-23
Name Value AIFIDULES ..o e 6-23
Character Length Semantics Support in Describing.........c.ccociiiiiiniiiiieeee 6-23
IMPLICIT DESCIIDING ...ttt bttt 6-24
SOt [Tod) A 1= o]] o 1 o SR 6-24
Examples USing OCIDESCIHDEANY ()....oiiiiiiieeeee s 6-25
Retrieving Column Datatypes for @ Table.........cocoiiiiiiiiiiee e 6-25
Describing the Stored ProCEAUIE........ccci et ene s 6-27
Retrieving Attributes of an ODJECT TYPE....cooi i 6-29
Retrieving the Collection Element's Datatype of a Named Collection Type..........c.ccc..... 6-31
Describing with Character Length SEMantiCSccocvvvviivviiiiininie e 6-33

LOB and BFILE Operations

Using OCI FUNCLIONS FOF LOBSociiiiie ettt sne e s 7-2
Creating and Modifying PersiSteNt LOBS..........cccci oot 7-2
Associating a BFILE in a Table with an Operating System File ... 7-3
LOB Attributes 0f an ODJECT........ccocoiiiiiiieie e 7-3

Writing to a LOB Attribute of an ODJECT...........cccvooiiiiie e 7-4

Transient Objects With LOB ALFDULESccoiiiiriiiiieee e 7-4
YN VA L =T = ToT= T o]l T 2 T 7-4
Using LOBs 0f Size Greater than 4 GBi..........cccooe i 7-5

New Functions for the INCreased LOB SIZES.........oooiiii ittt e 7-6

Compatibility aNd MIQrationcoooiiiiiii et 7-7

LOB and BFILE FUNCLIONS TN OCHouiiiiiiieeeee st 7-10
Improving LOB Read/WTrite PerfOrmManceccocvveieiceeinie s sesese e srese e 7-10
LOB BUFfering FUNCLIONScooieiiiiieii ettt ettt re s 7-11
Functions for Opening and CloSiNG LOBSccciiiiiiniireiesieesese s 7-12
LOB Read and Write CallDaCKS ..o 7-14

Temporary LOB SUPPOIT ...t bbb sne e 7-17
Creating and Freeing Temporary LOBS ... e 7-18
Temporary LOB DUFAIONScoovveieieicieieses sttt e sne e snenns 7-19
Take Care When AsSIgNING POINTESccccoviiiiie ettt 7-20
Temporary LOB EXAMPIE ...ttt 7-20

Managing Scalable Platforms

OCI SUPPOIT FOr TrANSACTIONScviiiiiiiitiiiteeei bbbttt 8-2
Levels of Transactional COMPIEXItYcccovciciiieces e 8-2
SIMPIE LOCAl TraNSACHIONSciuiieeieiieie ettt ettt sb bbb 8-3
(€1 (o] o T LI I =10 1T- To1 £ o] 1TSS 8-3
TranSaCtioN EXAMPIESccuiiviiiie e et sne s nenne s 8-8
INITIAlIZAtION PAraMETEIS.ceiiiiiieee et 8-8
Password and Session Man@gEMENT..........ccoiiiiiiiiiiieiieeee ettt 8-10
OCI Authentication Management..........c.ooveveiiirei e srens 8-10
OCI Password ManagemENTcciiiieiiiie ettt te e e te s e sreenresneenes 8-12
OCI SESSION MANAGEMIENT ...ttt ettt b bttt 8-12
Middle-Tier ApplicationNs iN OCH ..o e 8-13
OCI Attributes for Middle-Tier APPlICAtIONS.coceiiiiiiiine e 8-14
OCI Middle-Tier EXAMPIEc.ooiiiiiiieee e 8-17
[SlaTo B (ol =l alo IVAN o] o] [To=1 A To] o I I - Vo | T [8-20
Externally Initialized ConteXt iN OCl ..o 8-21
Externally Initialized Context Attributes in OCl ..o 8-22
Using OClSessionBegin() with an Externally initialized Context...........ccccoeevveiiivecvcnnnnnn 8-23

OCI Programming Advanced Topics

Overview of OCI Multithreaded DeVElOPMENT ... 9-2
Advantages of OCI Thread Safety ..o e 9-2
OCI Thread Safety and Three-Tier ArchiteCtUures...........cccvveiireiiieiieisee e 9-3

Xi

Xii

Implementing Thread SAfEtY ... 9-3

The OCITRread PACKAgE.covciiiiiiiic bbb 9-4
Initialization and TerMINAIONc.cciiiiii e 9-6
Passive Threading PrimitiVES..........cccciiiiiiiiece sttt sre s 9-7
Active Threading PrimitiVES e 9-9

©fe]] T=To1 o] o 2o Te] KT oo I 1 1K L3 IS 9-10
OCI Connection POOIING CONCEPLS.......couiiirieieieieiieiee sttt 9-10
OCI Calls for ConNection POOIINGccuiiiiiiiiiiiiii e 9-12
Examples of OCI Connection POOKINGccccoveviiiieiisice e 9-17

SeSSION POOHNG IN OC ...ttt esre e e nre e 9-17
Functionality of OCI SesSion POOIINGccciiiiiiiiiicicsc e 9-18
Homogeneous and Heterogeneous SeSSioN POOISccccvvviiiieneniene e 9-19
USIiNg Tags iN SESSION POOISccuiciiiici ettt st 9-19
OCI Handles for SeSSioN POOKINGc.coeiieiiiiiieieeieie ettt 9-19
(R [lo @ L@ IST=TX] o] o I =0 To] {110 o TSR 9-20
OCI Calls for SESSION POOIINGccviieiiicieiiee sttt sre e sre s 9-21
Example of OCI SeSSioN POOIINGccooiiiiiieincee e 9-23

When to Use Connection Pooling, Session Pooling, or Neither..........cccccoceveveiciiinccnininnnnns 9-23
FUNCLIONS fOr SESSION CrEALIONc..oiiiiieieiee e e 9-24
Choosing Between Different Types 0f OCI SESSIONS........ccccvreireireiineieneiesenese e 9-26

Statement Caching iN OCH ..o e neerenre e 9-27
Statement Caching without Session Pooling in OCI ..o 9-27
Statement Caching with Session Pooling in OCH ... 9-28
Rules for Statement Caching iN OCl ..o s 9-29
OCI Statement Caching Code EXamMPIe.........ccooiiiiiiiiiiiiiie s 9-30

User-Defined Callback FUNCLIONS 1IN OCHovoiiiiiiee s 9-30
Registering User Callbacks iN OClc.cooiiiiiciieiese e 9-31
OCI Callbacks from EXternal ProCEAUIES........c..ooiieiiiiiiieie s 9-40

Application Failover Callbacks in OCH ...t 9-41
Failover CallDack OVEINVIEW ..ottt 9-41
Failover Callback Structure and Parameters ... 9-42
Failover Callback REGISTIatioNccooiirieirieiieisee et 9-43
Failover Callback EXAMPIEccoiiieicceeec e ere s 9-43
Handling OCI_FO_ERRORccciiiiiiiiiiees ettt st 9-45

OCI and Streams Advanced QUEUING.......c.ciriiriirieirieese ettt 9-48

OCI Streams Advanced QUEeUING FUNCLIONScccocveiiiiiine e 9-48

OCI Streams Advanced QUEUING DESCIIPLOIS ..o 9-49
Streams Advanced Queuing in OCI Versus PLZSQLccocvvveviiineneseeeese e 9-50
Publish-Subscribe Notification in OCH ... 9-54
Publish-Subscribe Registration FUNCtIONS iN OCl.........cccoooiiiiiiiiiiiees 9-56
Notification Callback iN OCHl ..o 9-61
NOTITICALION PrOCEAUIE ...ttt bbb e 9-62
Publish-Subscribe Direct Registration EXample ..o 9-63
Publish-Subscribe LDAP Registration EXamPlecccocvivvviieiiinienie v 9-69

Part Il

OCI Object Concepts

10 OCI Object-Relational Programming

(@108 @ oY T=Tox A @ A= Y T2V PSSRSR 10-2
Working With ODBJEctS iN OCH ..o 10-3
BasiC ODJeCt Program STFUCTUNEc.eiviiiiiieitiete ettt 10-3
Persistent Objects, Transient Objects, and ValUesccocvvveviviiiiinienie e 10-5
Developing an OCI Object APPHICAtION.......cccoiiiiiiiii e 10-7
Representing Objects in C APPLICATIONS..........cciiiiiiicice s 10-8
Initializing Environment and Object CaChe ..o 10-9
Making Database CONNECLIONScccciieiiiiieicie ettt beene s 10-10
Retrieving an Object Reference from the SErver ... 10-10
PIiNNING @N ODJECL.... ...ttt r e e neerenrs 10-11
Manipulating Object AtIrDULES. ..o 10-13
Marking Objects and FIUShING Changesccociiiiiiiiieiiece e 10-14
Fetching EMbedded ODBJECTS. ..o ens 10-15
ODbjJECt MEta-AtLIIDULESooeiie ettt re e ae s 10-17
Complex ODJECT RELMEVAL.........cciiiiiiiiiietee s 10-21
LT @ L o =1) (ol T [PPSR 10-25
OCI Versus SQL ACCESS 10 ODJECLS ...uvcviiiieiiiicieciese ettt sre s 10-28
Pin Count and UNPINMINGccooiiiiiiieee et 10-29
NULL INAICALON STFUCLUIE ...ttt s 10-30
(01 =T] Lo I @ o] 1= £ USRS 10-33
Freeing and CopYiNg ODJECES.......ccciiiiiiiiiiiiie ettt 10-35
Object Reference and Type REFEIrENCEovcveveicicec e 10-35

Xiii

11

Xiv

Creating Objects Based on Object Views or User-Defined OIDS.........c..cccccveeviiieinennnn, 10-35

Error Handling in Object APPLICAtIONSccceiiiiiiiiieieeee e 10-37
B/ 0 LI L =T 1= g oSSR 10-37
SUBSTITULADTTITY ... ettt e e re e 10-38
NOT INSTANTIABLE Types and Methods ... 10-39
OCI Support for TYpe INNEIITANCE.........ccoiiieie e 10-39
OTT Support for TYPe INNEITANCE........ccoiiiiieeeeee e 10-41
TYPE EVOIUTION ..ottt ettt bbbt b et nnne 10-41
Object-Relational Datatypes in OCI
Overview of OCI FUNCLIONS TOr ODJECES........coviiiiieiicie e 11-2
Mapping Oracle DatatyPes 10 C........ccvviiieiiiirire e a e neere e sneas 11-2
OCI Type Mapping Methodologyccccieiiriiiieece s 11-4
Manipulating C Datatypes With OCH..........ccooiiiiiiiiiicc s 11-4
Precision of Oracle NUmMber Operationscc.coeviiiiveiieinnn e 11-6
(DL L (@ 104 - =) USSR 11-6
DAte EXAMPIE ... 11-6
Datetime and Interval (OCIDateTime, OCIHINterval)........c.cccooviviiiiiiiiisese e 11-8
DAtetime FUNCLIONS.coiiiii et sb e ettt ebe b sbesne s 11-9
Datetime EXAMPIE.......ciiiiiii bbb 11-10
INTENVAL FUNCLIONSviiiict bbbttt et e 11-11
N[0T ol 01T (@13 1 \N U] s 1 o = o TSP S P 11-13
NUMDEE EXAMPIE ...ttt 11-13
Fixed or Variable-Length String (OCISIriNg) ...cccoovveieieeicisese e 11-15
I 1 [T T U T £ o o LSS 11-15
SEING EXAMPIE ..ottt ettt 11-16
L TV (@ 1@ 1 1YY RS URSSSSSRR 11-16
RAW FUNCLIONS ...ttt bbb bbb ettt be e 11-16
RAW EXAMPIE ...t bbbt bbbt 11-17
Collections (OClTable, OCIArray, OCICOIl, OCIHHLEN).....ccccvvvviieiise e 11-17
Generic Collection FUNCLIONS ..ot 11-18
Collection Data Manipulation FUNCLIONS ... 11-18
Collection SCaNNING FUNCLIONS.........c.ccoiiiiiiiiise et ne e eneas 11-19
Varray/Collection Iterator EXamMPIe.........ooooiiiiiiiiiiiin e 11-19
Nested Table Manipulation FUNCLIONSccoeoiiiiiiiiiiee s 11-21

12

LTS =10 B =T o] [I 1ot | (o] < 11-22

MUItIHEVE]D COIIECTION TYPES ..ttt 11-22
Multilevel Collection TYPe EXAMPIEcocvvieieicce e ene s 11-23
[y (@103 1 2= i OSSOSO 11-24
REF Manipulation FUNCLIONS ..ot 11-24
S o U o] o] -SSR SSSS 11-24
Object Type Information Storage and ACCESSc.covciriiiiinire e e 11-25
DESCIIPTOr ODJECTSoviiiieiicteieete ettt bbb bbb 11-25
AnyType, AnyData and AnyDataSet INterfaces........ccovvvvivviviieiiniiinine e 11-26
TYPE INTEITACES ...ttt bbbt b bbb ettt et be e 11-27
OCIANYDALA INTEITACES. ...t 11-30
NCHAR Typecodes for OCIAnyData FUNCLIONS..........ccooviviiviiesnne e 11-31
OCIANYDAtASEt INTEITACEScveiieeiecieee ettt sre s 11-32
Binding NAmMed DatatyPeS........ccoiueriiirieiiiieiriee ettt 11-32
Named DatatyPe BiNAS.........ccociiiiiiiiiie e scsiee et se e enaeresneanens 11-32
BINAING REFS .. .ottt et ae et e s ae e te s aeeste s e e stesnaesteareens 11-33
Information for Named Datatype and REF BiNdS ..o 11-34
Defining Named DatatyPeSccccviiiiieieriiieesee e et st et e e eseereeneeneerenres 11-35
Defining Named Datatype Output Variables ... 11-35
Defining REF Output Variables. ... 11-35
Information for Named Datatype and REF Defines, and PL/SQL OUT Binds.............. 11-36
Binding And Defining Oracle C DatatyPesS.........ccceeieieireiieisiese st 11-38
Bind and Define EXAMPIESciiiiiiiiiie et 11-39
Salary Update EXAMPIES.......cccviiiiiirie e e sttt e neeneeresne e 11-41
SQLT_NTY Bind/Defing EXamMPIeccooiiiiiiieeeee e 11-44
BiNd EXAMPIE ..ottt re e 11-44
DEfiNE EXAMPIC.. ..ttt sttt et e e e re e ane s 11-46
Direct Path Loading
Direct Path LOAding OVEIVIEW........cccciiiviieicieiee ettt st a e re e snesrenne s 12-2
Datatypes Supported for Direct Path LOading.........ccccceoiriiiiiiinininee e 12-3
DireCt Path HANAIESooueiiiiiiie et ettt sae e 12-4
Direct Path INterface FUNCLIONS ..o 12-8
Limitations and Restrictions of the Direct Path Load Interface...........ccccoceoiiiiiininnnnn. 12-9
Direct Path Load Example for Scalar COIUMNS...........ccooiiiiiiiiicsceeseesee e 12-9

XV

Using a Date Cache in Direct Path Loading of Dates in OClcccccccovevivievecicce e, 12-15

Direct Path Loading Of ODJECt TYPEScciiiiiiiiiie e 12-17
Direct Path Loading of Nested TableScccoovvvircieiiercise e 12-17
Direct Path Loading of Column ODjJECtS.........cccviiiiiiiiiecce e 12-19
Direct Path Loading of SQL String COlUMNS.........cciiiiiiiiieceee s 12-22
Direct Path Loading of REF COIUMNS..........ccoiiiiiiccese s 12-25
NOT FINAL Object and REF COIUMNScc.ocviiiiiicecc sttt 12-30
Direct Path Loading of ODJECt TADIEScooveiiiiiiiee s 12-32
Direct Path Loading a NOT FINAL Object Tablecccoivviiiiiivievece e 12-33

Direct Path LOAdiNg IN PIECES ..ottt sttt 12-34
Loading ODjJect TYPES IN PIECESciiiiieicreee s 12-34

Direct Path Context Handles and Attributes for Object Types......ccccocvivivvivcnevcveccicceea, 12-35
Direct Path Context ATLHDULESccoiiiiiiiieeee e 12-35
Direct Path Function Context and AtriDULEScocoiiiiiii i 12-36
Direct Path Column Parameter AtriDULES. ..o 12-40
Direct Path Function Column Array Handle for Non-scalar Columns..............c.cccccveee.. 12-43

13 Object Advanced Topics in OCI

The Object Cache and Memory Management...........cccocvvieiieieireie s 13-2
Cache Consistency and CONEIENCYcccciiiiiiiiiiii e 13-4
ODbject CaChe PArameterscociviiiiieresese ettt sttt e n e neenenns 13-5
ODbject CaChe OPEIALIONSc.ccuiiiiieitiiirie sttt se ettt ebe e 13-6
Loading and RemMoVing ODJECt COPIEScuiviiriiiiiisieieie et 13-7
Making Changes t0 ODJECT COPIESciveiverieieieieeee e 13-10
Synchronizing Object COPIes WIth SEIVET ..o 13-11
ODJECE LOCKINGttt bbbt 13-13
Commit and Rollback in Object APPlICAtIONSccvcveieecicce e 13-15
(@] o) =Tod i T U] =1 o] o PSS 13-15
Memory Layout Of @n INSTANCEcooviiiiiiieiiere et 13-17

(@] o] T=To1 f AN -1V [= L o 1SS 13-18
SIMple ODJECt NAVIGATIONc.oiiiiiiiie e e e eneas 13-18

OCI Navigational FUNCLIONS ..ot 13-20
PiNZUNPINZFIEe FUNCLIONSc.coviciicece ettt neene e 13-20
Flush and Refresh FUNCLIONSooiiiii e 13-21
Mark and UnNmark FUNCHIONS.cooiiiiieeeeeee et 13-21

XVi

14

Object Meta-Attribute ACCESSOr FUNCLIONScciiiiiiie et 13-22

(@1 =T g Sl U o Tod o] o -SRI 13-22
Type Evolution and the ObjJect CaChecccoeieiicicces e 13-23
OCH SUPPOIE TOF XIMIL ..t bbb bbb ettt ettt 13-23

KIMIL CONEEXT ...ttt bt ettt b e b e b e bt b b e bt eb b e bt es b e sbeenbeebeennesbeaneas 13-24

XML DAta 0N ThE SEIVET ...oeiiiiiiiiieciecte ettt 13-24

USIiNg OCI XIML DB FUNCLIONSooiuiiiiiieie sttt sve e resnn et ae e annens 13-24

Using the Object Type Translator with OCI
OTT OVEIVIBW ...ttt bttt h b et bt bt ekt e bt e b e b s b e b et neenses b e b e e bt ebenbeabesben 14-2
What Is the Object Type TranSIator? ..o e 14-2

Creating TYpPes iN the Database........ccccceiverieiieieiee e e e sne s 14-5

A7] (] T 8 I SRR 14-5
The OTT COMMANT LINE ..ottt st sttt st besbesnesreneas 14-6

OTT Command Line Invocation EXamMpPIe........ccccvoiieiiiininsisise e 14-6
THRE TNEYPE FHIE .. bbb bbbttt e e bbbt b e 14-9
OTT DatatyPe MaPPINGScovevereeierieiirieiiriee ettt ettt sr bbbt b e ebe st b e ebe e ene e 14-10

Mapping Object DatatyPes t0 Ccccviviiiirereriiee et ena e e ane s 14-12

OTT Type Mapping EXAMPIEcccoiieeee e 14-13

NUIT TNAICALOT STFUCTS.......cviitiiiceiciise sttt et e e s re e ane s 14-16

OTT Support for TYPe INNEITANCE........ccoeccec e 14-17
THE OULLYPE FIIE ... bbbttt b e bbb 14-21
Using OTT With OCI APPHICATIONS ..o 14-22

Accessing and Manipulating Objects With OClccccooeiviiiinicsi e 14-23

Calling the Initialization FUNCLION ..o 14-24

Tasks of the Initialization FUNCHION..........cocoiiiiiiieee e 14-26
OTT REFEIENCE ...ttt bbb et b et bbb bt e b e et et e ebe e 14-26

OTT ComMMaNd LiNE SYNTAXccueeiiiiieiiiieiiceese st ste ettt enaeste s e sreeneesre e 14-27

OTT PAAMETEIS ...ttt b e e bt be b e e besb e e b e eb e e bt eabenbeennesbeannas 14-28

Where OTT Parameters Can APPEANcccvieieruirieriereeeeieiesessestessessesseseeseessessesssssessssessessens 14-33

Structure of the INLYPE FIl.......ooiiiie e 14-34

Nested Included File GENErationcoiieieiiiieiee e ene s 14-36

SCHEMAL_NAMES USAQE......ccoeiiiiiitiiitirieiirieie ettt sttt snenes 14-38

Default Name MapPPiNgccoiiiiiee bbb bbb et sbe e ene s 14-41

OTT Restriction on File Name COMPATiSONc.ccoiiiiiiiniiiieeseeie e 14-42

XVii

Volume 2

Part Il OCI Reference

15 OCI Relational Functions

Introduction to the Relational FUNCLIONS ... 15-2
Connect, Authorize, and Initialize FUNCLIONScccoiiiiiieiieee e 15-4
(@104 [0o] aTal=Tod Aol aloTe] [OF =TT =T () USSR 15-5
OCICONNECIONPOOIDESIIOY () ...euveveeeiiteiirieiesiee sttt ettt ene b 15-8
L@ T | 1O T (- SR 15-9
L@ 101 =1 01V 1o 1 1 ISR 15-12
OCIENVNISCIEALE(). . cveveeveieteriete sttt sttt sttt b ettt bbb bbbt nnne 15-14
1O 1O I 11 AT 1L T4= (SO SSSRPRN 15-18
(@103 1 ol o] 1) H OSSOSO 15-21
O CTLOGON() -tttk b bbbt bt b et b etk e bbbt bbb bt bbbt r et nn e 15-22
L@ 10 | 0T o] o 2 () USSR 15-24
(@104 R T=T V=T N = Vol o1 S OSRR 15-27
OCISEIVEIDELACN() ... ettt bbbt 15-30
OCISESSIONBEGIN() veuveverierreeeeetieese s sese sttt e e e e e ese e e s e e sestestessesaesaeseesesteseenseneeneanenneas 15-31
(O 104 I T= 1T o] o] =1 T [) IS 15-35
O CISESSTONGEL() +.veveverereeteieete ettt bbbt b etk se bbb bbb bbb b nnne 15-36
OCISESSIONPOOICIEALE() . v vevvevreriereieeesisieseste et e et e ettt te st saebe e see e enaeneaneeneas 15-40
OCISESSIONPOOIDESIIOY() ...vvivveiieeiesiee ettt ettt te e st eesae et e st e besraenteenee e 15-44
OCISESSIONREIEASE() ...vveveieteieete ettt bbbt 15-45
L@ 1O =T 11 T UL (SRS 15-47
Handle and DesCriptor FUNCLIONS.........cooiiiiiiieie et e 15-48
(@ 1081 N 1 4 ¢ €T 1) OSSOSO 15-49
L@ T AN 11 3= () SRS 15-52
OCIDESCIIPTOIAIIOC() ..ottt sb e bbbt ene 15-54
OCIDESCHIPLOMFIEE() ...ttt bbbt b ettt 15-57
L@ 1O | o F=TaTo | 1= AN I o Lo SRS 15-59
(@10 | o gl | 1= T PSR 15-62
O CTPAIAMGETL(). .+ e veveiteieitetete ettt bbbt bt bttt b ekttt nr et bbb r e nnns 15-64
L@ 1O |2 U= 10 0157 1 SRS 15-66
Bind, Define, and Describe FUNCLIONSoooiiiiiiiic e 15-68

Xviii

(@104 12 [To VAN g = | Y@) 151 1 U (o £ USRS 15-69

OCIBINABYNGAIME() ..ttt bt et nb s 15-71
L@ 1O =775 o | 2377 20T) TSP 15-77
(@104 12 1o To | V0 F= Vo o (o (USSR 15-82
L@ 1081211 aTe (@] 0] [=To1) ISR 15-87
OCIDEfINEAITAYOTFSIIUCL() ...vvveveieieiriee e riee ettt neerenne e 15-90
OCIDEFINEBYPOS() ...veiveeieciee ittt sttt ettt st ste e st ae e e besta et e eneesbeensenreeneesreanees 15-92
OCIDEFINEDYNAIMIC() +..euveveteiiiteiisteieteeet ettt bbbt et et bbb 15-97
(@10 [D= 110110 o] 1=Tox { (PSSP 15-100
L@ 101 1 =T od] o 1=Y N V7 (PSSR 15-102
OCISIMEIGEIBINAINTO() ...ttt bbb 15-105

16 More OCI Relational Functions

Introduction to More Relational FUNCLIONS ..o 16-2
SEALEMENT FUNCLIONS ...ttt ettt ettt bt neens 16-4
(O 104 1] 1 11T oL U (= SRS 16-5
L@ 108 1] 40 0 1 T=1 (o o IR 16-9
L@ 108 1S 1 1 T=] (o o 2 PP 16-11
OCISTMEGELPIECEINTO() c.vivieiieiie ettt e st e sre s 16-14
OCISEMEPTEPAIE() +-veveveretertetieteeat ettt ettt ettt b et sb et b e bbb bbbt st nb st es et nnenes 16-16
(O 108 1S (g (o =T 0 T= L ISP 16-18
OCISTMIREIEASE() ... e eveeeeciee ittt ettt e s e e aeste e be st e et e asaesbeensenteeneesreannes 16-20
OCISIMESELPIECEINTO() ...viviveiieieisteet bbb 16-21
LOB FUNCLIONS ...ttt bbbttt bbb b 16-23
(@104 118 T o] o] =7=To T[T) ISR 16-26
OCIDUFAtIONENC() ...cvevieeiiiteiisiest bbbt b s 16-28
L@ 10 | W0} 072N o o 1= g Lo) RSP P 16-29
(@104 1 o] oY AN1S] o | o T USSR 16-31
OCILODCNAISEIFOIMI() . vcviiteiiiteiisteiet ettt 16-33
L@ 10 | o] o1 T= 1 #51=1 o Lo [TSP 16-34
(O 10 1 o] o104 [11T) LSRR 16-35
O CTLODCOPY () vvereerereererrerenieiistei sttt ettt ettt b ettt b e bbb bbbttt ne et b st nn et 16-37
L@ 10 | o] oT@50] 0) V721 | RSP 16-40
OCILODCIreate TEMPOIAIY ()c.eeveivereerieieieeieieieee ettt bbbttt ene e ebe e 16-41
OCILObDIiSableBUTTEING() ..o.vivereireiitiietiiieteree et 16-43

Xix

(@ 10] | Io] o] =t g F=1 o] Lo =AW 1 1 (=TT oL | FS OSSR 16-44

O CTLODEFASE() vttt bbbttt b ekttt 16-45
1O 1O | o] o] =1 =TSy TSSO 16-47
(@104 | o] o]] (=103 [0 1:1=T | OSSR 16-48
OCILODFIIECIOSEATI() ... ettt 16-49
1O 1O | o] o] =1 [T oo q 1] £ TSRS 16-50
(@104 1 o] o]] (e CT=] A=V =T) ISR 16-51
OCILODFIIEISOPEN() vttt ettt bbbt 16-53
(@108 1 o] o] =1 =10 o 1= o |) 1RSSR 16-55
(@10 1 o] o]] [eITy { N F= 10 1= OSSR 16-57
OCILODFIUSNBUTTEI() ...ttt 16-59
1O 10 | Wo] o] =l =Tl =T 0 Y 0 To] = Y/ (SRS 16-61
OCILODGELCRUNKSIZE() ..ottt sttt sttt sttt sttt sb et bbb e 16-62
OCILODGETLENGEN()....e ettt bbbt 16-64
1@ 10 | o] 1€ 1= 1 =T o 1 o 2) TSSO 16-66
@104 | o] oT€1<1 1] (o] - Te [=1 I o 11 {1 16-67
OCILODBISEQUAI() -+ttt bbb et 16-68
L@ 10 | o] o] F=1@ o= o 1) PSSRSO 16-69
OCILODISTEMPOIAIY() .. ecueeueeiieiieieie ittt b b b e b e e e eneas 16-71
OCILOBLOAAFIOMEFIIE() ..viiiviieeiieeieiiee e 16-72
@104 | Io] o] Ia T Vo | =i fo] o 01 =T =1 () SRS 16-74
(@104 | o] o] IaTor- 1 (o] 77 ANST:Y o]) PSR 16-75
OCILODLOCALOITSINIT() ...eveeeteieteiieie et 16-77
L@ 10 | o] o 1@ -1 o () RSSO 16-79
(@031 o] o1 L: - Lo [OSSOSO 16-81
(@101 1o] o1 - Lo 121 | OSSOSO 16-87
L@ 10 | o] o 1 1 1 1 1 SRRSO 16-92
(@ 1031 o) o I 10122 (OSSOSO 16-94
(@108 1Io] o) VL] (= (OSSPSR 16-95
L@ 1O [o] o 1YL | (=1 TSRS 16-101
OCILODWIITEAPPENA() . vttt ettt ane 16-106
OCILODWILEAPPENAZ2() ...eviieeiieeierieie sttt ettt sr et n e en e ene e 16-110
Streams Advanced Queuing and Publish-Subscribe Functions............cccccocvvviiviiviininnn, 16-114
O CTAQDEY() 1+vevererverearereateseeteseateseeresteesterestereste e abe e steseaseseatessateseesessetessesessesesseseasesensesensenens 16-115

OCTAQDEGATTAY() +-vvereereeererieteriete sttt sttt sttt sr ettt ebe e ebe e ebesbebesbebesbeseabeseabe e anesearenea 16-118

OCTAQENG() cereveveeeerereeeseeeesseeeeessseeesssssessssseeessseeessssessssssesseseseessessssssseesssessessesssesseeseed 16-121

OCIAQENGATTAY() -+tveteeeterteiesteestet sttt ettt et se et se ettt sb et b et b et eb et ebe e b e b e nnebennebe e 16-134
(@ 10 1 @ 11 (= o [PSSP 16-136
OCISUBSCIIPLIONDISADIE() ... ve ettt 16-138
OCISUbSCrIPtIONENADIE() ..o 16-140
(@108 U] oT-Tod g1 o £ T0] 1o]) 1RSSR 16-142
OCISUDSCIIPLIONREGISTEI() ...ttt bbbt e et ens 16-144
OCISUDSCHIPLIONUNREGISTEN ()vveveieeieieiieteriet et 16-147
Direct Path Loading FUNCLIONS...........cov i 16-149
OCIDITPAtNADOIT() ...ttt sttt et et be et e ebeseeteseereneas 16-150
OCIDirPathColAITayENTIYGEL() ..o.voeeereriirerieie ettt 16-151
OCIDirPathCoOIAITAYENTIYSEL() .oveiverieieiiericieieieee et e aenaeneens 16-153
OCIDIirPathCOIAITaYROWGEL()c.eeiviiiieiieiieiieie sttt ettt enae s 16-155
OCIDirPathCOIATITAYRESEL() ...vcveiveeeireiiieiiete ettt 16-157
OCIDirPathColAIrray TOSIEAM() .ovevveierieieieeereee e et e e e ereenes 16-158
OCIDIrPatNDataSaVE()......ecoviieeiriieeitesee e sie sttt ste et s reesre e e sae e sre e e steesaesreenee e 16-160
OCIDIrPAtNFINISN() ...vcveivciiiiciiccsese sttt st et e e e 16-161
OCIDIrPathFIUSNROW()vviiiiiiieccree ettt e naenaens 16-162
OCIDIrPathLoadStream().......ccceviieeiesie ettt st e st esre s 16-163
OCIDIrPAtNPIEPAIE() ...eveveieeieiteiieieiiteiet ettt sb et b et eb e eb e nn e e e 16-165
OCIDIrPathStreamMRESEL() ..vvviverierierirererierieteee et sr e e e e e e erennes 16-167
Thread Management FUNCLIONS ..ottt 16-168
OCITRIEAACIOSE() ... vttt ettt eb et b e e bbb e 16-170
(@ 10 I] == o [=TT T) SRS 16-171
OCIThreadHaNAIEGEL()ccveieeieiie ettt ena e 16-173
OCIThreadHNADESTIOY() ...vcveiveieireiiiieieieieete ettt sr et b e b nne e 16-174
(@ 10 I I] == To | 1aTo 1 oV) ISP 16-175
L@ 10d Il T =T=To | Fo 1oLy o)V () TSR 16-176
OCITRIEAAIAGEL() ..vvvveveveieiieesieeste ettt ettt se et et et e ebesaereseere e 16-177
(@ 10 I] =Y= o | Fo | 1 1 (PSSP 16-178
OCITRIrEAAIANUIT() ... veveiveiiieeisie ettt ettt see e e 16-179
OCITRreadldSAME()covevereeierieeriee ettt eb e bbb 16-180
(@ 10 I] =T=To | [o IS (RSP 16-181
OCITHreadldSEINUII()c.viveiieiieieese ettt se et neas 16-182
OCITRFEAINTE() ..veveeeeereet ittt bbb e 16-183

XXi

OCITRFEAAISMUILI) v eeeeeeceseseeses e sseeeeseeeseseseesseseeesseseesseseessssseeese e seseseee 16-184

OCITRFEAAIONN() .ttt ettt ettt b bbb bbb b e en e ene e 16-185
OCIThreadKeYDESIIOY (). veveeerrreriiresiestestesestessesiesesseeseesessessessessessessessesaessessesessssssesesessens 16-186
(O 10d Il T == To | (=YL T (SRR 16-187
OCITRIEAdKEYTNIT() vvevereeeterieteieeieriee ettt sb e 16-188
(O 1O I] == o | (1=) ISP 16-190
OCIThreadMUTEXACGUITE() -...eeveerertertirieriesteie ettt ettt sb et sr e e et ebesbe e sne 16-191
OCIThreadMUEEXDESTIOY() ... veveverireeiireeierieiistee sttt ettt ettt sr bbb e b ene e 16-192
OCIThreadMULEXTNIT()eveeeeeeeese st e e e e eneeresnesneas 16-193
OCIThreadMULEXREIEASE() ...c.veiveeeeiiieiiecie it eie sttt sttt e s re b e sre s 16-194
OCITHreadProCeSSINIT() ...c.vovirieeirieiirieiere ettt sb e 16-195
(O 1O I] == o [=T o TSP RSSR 16-196
TranSACtION FUNCLIONSoiuiiiiitiiiieee et sttt be st 16-197
OCITraNSCOMMUIT()...eoveeeteieteieete ettt ettt bbbt b et eb e b e ere e 16-198
(O 1O I -1 1S 11 7 U]) RSP SSS 16-201
(O 1] I I - U g IS o o 1= 1) PSR 16-203
OCITranSMUILIPIEPAIE().....c.coveirieiirieirieirieesie ettt 16-204
OCITIANSPIEPAIE() .ovvevveveereereeieresesesesestestesestessesteseee et esessessestestesaessesteseesesseseaseeseasessesnens 16-205
(O 10d I = Ta TSR] || o= Ted 1) SRR 16-206
OCTTIANSSTANT() .+ vveveereiete ettt b et bbbttt nr et sb bt sb e bt ab et eb e ene e ere e 16-207
MISCEIIANEOUS FUNCLIONS ...ttt bbbt 16-215
L@ 10127 == 1 IO O PSPPSRI 16-216
1O 101 =1 ¢ (o] (11 [FOT TS TSP T ST PO PP OO PP PPTPIURTPUPTUPPPIN 16-217
OCILAQTOSVCCEX() 1erververrereereeieresiesesestestestesessessessesesseeseasessessessessessessesseseessessesssssssesesesnens 16-220
(O 10d | o= TSI V1Y o] o [0 o TV Vo T) ISR 16-222
O CTRESEE() .. vvveveitereeteiete ettt ettt ettt sttt b s e sb e e e b e e e be e e be e ebe st ebesaebess et e sb et e sbesesbeseabe e ebeseare e 16-225
(O 10 |2 {0)11V T I o 101 o - U) ISP 16-226
(@104 Rt oV =T Y =T 5 o] o]) PSSR 16-227
OCISVCCEXTOLAA() vttt et bbbt nr et sr et b e b e b e ene e 16-229
(O 108 [0 L= @ || o= Yol (=]) ISP 16-231
OCIUSerCallbackRegISTEN()ccveiveiieiieiieitieiese ettt s te e re e reenbesre s 16-234

17 OCI Navigational and Type Functions

Introduction to the Navigational and Type FUNCLIONSccccoviiiiinininine e 17-2
OCI Flush or Refresh FUNCLIONS............ciiiiiicc ettt st 17-8

XXii

(O 104 (0= ot 1= o U o) SRS 17-9

OCICACHERETIESN() ...ttt b s 17-11
L@ 10 (@] o] =Tw1 £ U] o RSP 17-13
(@104 (@] o] =Toi £ L= i =T o) USRS 17-15
OCI Mark or Unmark Object and Cache FUNCLIONScoccoiiiiriiiniiineiiceseese e 17-17
L@ 108 [@F: 1ol 0 T-10 LT o' FoT 5 (RSP 17-18
(@104 (@] o =Tt 0}V o U L] [=] =T ISR S 17-19
OCIODbjectMarkDeleteBYRET()coiiriiririiiiiieiiieiiriesiest st 17-21
(O 108 [@] o] =To 1Y = 10T 0T £ T RSP 17-22
(@104 (@] o] =To {81 a0 =T (USSR 17-24
OCIO0DbjectUNMArkBYRET()c.eviuiiitiieiiieitieeresesie e 17-25
OCI Get Object Status FUNCLIONS ... 17-26
(@104 [0 o =To £ =bq 1] £ () USRS 17-27
OCIODJECIGEIPTOPEITY() . vvvevereristeiiteeetereet ettt st bbb 17-28
L@ 10 [@] o] =Tw1 d =1 B 71 g 1Y/ RSP 17-32
(104 (@] o] =To1 § 1Y I Tod 1= [) SRS TS 17-33
OCI Miscellaneous ObjJect FUNCTIONS ..ot 17-34
L@ 10 [@] o] =Te1 (@o] o)Y/) ISP 17-35
(@104 (@] o =To (1] 7 1 SRS 17-38
1010310 o] [=To1 (C1=1 1 oo [I TSRO TSSO POURTTROPPPPTON 17-40
(O 101 [@] o] [=To (€1=1 (@] o1 =To1 1 2 =]) RSP 17-41
OCIODJECtGELTYPERET()...ceeteiteitiite sttt ettt 17-42
O CTODJECILOCK() - -vveveveeeresteiest sttt b bbbttt et b s 17-43
(O 108 [@] o] =To1 { IoTod (N [0 N VAT 1) (PP 17-44
L@ 10310 o] 1=To1 { N oY (RS RSRRR 17-46
O CTODJECISETALLI() ..veveveierteiertei sttt ettt b bbbt bbbt bbbt nb ettt b et 17-50
OCI Pin, Unpin, and Free FUNCLIONS ... 17-52
(O 104 (0= ol o 1= =TT) TSRS 17-53
OCICACHEUNPIN() ..ttt bbb bbbttt 17-54
(O 101 (@] o] 1=To1 7N -\ Y/ T T ISP 17-55
(O 104 (@] o =Tod { ol =TT ISR 17-57
L@ 10310 o] 1-To1 {11 o1 SRRSO 17-59
OCIODJECtPINCOUNTRESEL() ..vvveveieieiieie ettt seeneerenne e 17-62
(@104 [0 o =Tod {1 o I 1= o] [=T) I USSR 17-64
OCIODJECTUNPIN() .ttt bbbttt ettt bt 17-66

XXii

OCI Type Information ACCESSOr FUNCLIONS.........c.coiiiiiiiiieicnise e 17-68

OCITYPEAITAYBYNGAIME() ...viicveieieiieie ittt 17-69

OCITYPEAITAYBYRET() ...eeeieeee ettt st st e e eneeneas 17-72

OCITYPEBYNGAIME() ... ettt ettt sttt b bbb b b bbb e e seaneene s 17-74

OCITYPEBYRET() ..ttt bbb 17-77
Volume 3

18 OCI Datatype Mapping and Manipulation Functions

XXV

Introduction to Datatype Mapping and Manipulation FUNCLIONS ..o 18-2
OCI Collection and Iterator FUNCLIONSccooiiiiiiiiieiee e 18-5
(101 (070117 2N o] 1] o T [1TSS P TR POPRURURUR 18-6
O CTCOIASSIGN() - tvereeteiete ettt b et bbbt se et nb bt b bt eb et e bt r e e en e ene e 18-8
1O 1O [@011 ANXS] o o] =1 U=T o o (SRS SSSTSSPRPRN 18-10
(@104 [00] | (€11 4 =1 [T o o) SR 18-12
OCICOHGELEIEMATTAY() -+ eeveeeterietesieie sttt sttt sttt b bbbt nnns 18-15
1@ 10 [@01 11 1] I Tor 1 o] ¢ () SRS 18-17
(@103 100] 1 11V, - V1 | OSSOSO 18-18
(@ 10310101 15] 12T OSSOSO 18-19
L@ 1O [@01 I I 10) ISR 18-21
(O 1O 1 =T @1 = 1L) TSRS 18-22
OCTITEIDEIETE() ..ottt ettt ettt 18-24
OCIHHErGELCUITENT() cvevvevverieeeeeee ettt e et te e sreste e se et e e e eneeneeneaneaneas 18-25
L@ 1011 =T [T PSSO SO T SO P S 18-27
O CTIEEIINEXE() - veveevereeteeet etttk bbbttt bbb bbbt bbb nn s 18-29
L@ 1O 11 (=1 5 - TSRS 18-31
OCI Date, Datetime, and Interval FUNCLIONScoooiiiiiiiiiii s 18-33
OCIDALEATADAYS() ... evevereerereeterieie ettt sttt ettt et r bbb bbbt nnes 18-36
101 [D=1 1=Y Ao [0 11V, o] o1 1 o]) ISR 18-37
L@ 10 =1 =Y AN o 1 PSS 18-38
OCIDALECNECK() +.vvveveteieteieet ettt bttt ettt bbbt 18-39
OCIDAtECOMPAIE() .. veuvereerrereereereeeiestesestesesteseseesseseseessesseresseasessessessessesseseessessessessesnesensens 18-41
OCIDAteDAYSBEIWEEN()cveiieiieeie sttt ettt s te e sre e s teesae e e saeste e besraenaeenee e 18-42
OCIDALEFTOMTEXL() . ettt ettt ettt b bbbt et 18-43
OCIDAtEGEIDALE() ..evvevveveerrereeieereeese st se e seste et e e e st esee e s e erestesresrestesaeseesesaeseenseneeneaneaneas 18-45

(@ 10d =1 (=T C 1) 1T ¢ =T) USRS 18-46

OCIDALELASTDAY () +..erveververerreiinteiisteist ettt ettt sb et b et bbbt bbbt nb et nb st b s b nnenes 18-47
OCIDALENEXIDAY() .+ vvveererreriiriesiesiesiesieie et eteeee et ere s e ssesre e sresreseestesaessetesaenseseeseeseeseasessenes 18-48
OCIDALESEIDALE()veiveeeecieeiie ettt e sre e e s e e ae s te e beste et e are et e entenreenrenreanns 18-50
OCIDALESEITIME() +.vevevereiirieieri ettt b bbbt bt e bt b st nb et b e b nnenes 18-51
O L1 [B 1 (=1}] B T 1 (=] (RSP 18-52
(@ 10d =1 (= [l 1) SRS TS 18-53
OCIDALETIMEASSTIGN() - evereeterteiesteiet ettt sb bbbt bt e bbbt r et n et nnenes 18-55
(O 1O | B - 1 (= T 21T 1= o3 1 TSP 18-57
OCIDAtETIMECOMPATE() +.vevetetetereenieie ettt ettt sb et bbbt bbbt e e st e e e e eneebesre e 18-59
OCIDAtETIMECONSTIUCT() «.vevvvereiteriiteieteeet ettt bbbttt n e 18-61
(O 101 | B 1 (=Y T 21T @] A V7=T o) PP 18-63
OCIDAteTIMEFFOMATTAY() .. veiveiieeieiieete sttt este et ste e sre e e s teesae s e e bestaesbeasaesbeensesreannesreenees 18-65
OCIDAtETIMEFTOMTEXL() .e.veveiveieieiiiteiet ettt n e 18-67
OCIDAtETIMEGEIDALE() ..vvvvveverieiierierieie et e e e ettt sr e ae e e e ese e e enenrenneans 18-69
OCIDAtETIMEGELTIME() vovveieieeiieeie ettt te e be st et e ereesbeeneesreeneesreenees 18-71
OCIDateTimeGetTimeZoNeNAME()......coovireireirieirieest e 18-73
OCIDateTimeGetTimeZoNEOTFFSEL()......ccivereierieeee et 18-75
OCIDateTimelNterValAAA()cccveveieee et 18-77
OCIDateTimeINterValSUD()coviiiiiiiie s 18-79
OCIDAteTIMESUDLIACT() ...vvvveieisieiie e neeresne e 18-81
OCIDateTimeSySTImMESTAMP() «..coververreieieieieeeee ettt 18-82
OCIDALETIMETOATTAY() v eveverrereatesiateietertete sttt ettt ss ettt bbbt e bt ne bbbt bbb b nbenes 18-83
OCIDAETIMETOTEXL() cvveverrererrrrrierieriiriesiestesteieeeeeeeres e sresre s e sresreseestessessesesaenseseeseesessensessenns 18-85
OCIDAtEZONETOZONE() c.veiveeieiiieiieeieseeeste ettt et et s e e sre e aeste e aeste e bestaebeaseesbeansenreeneesreanees 18-87
OCHINTENVAIAAU() ..ttt bbbttt b s 18-89
OCHNIEIVAIASSION() 1.vvveeeeeeesiesiesese ettt s re et sa e e e e e s eseereeneeneerenrenes 18-91
OCHNTErVAICRECK() .. veeie ettt ettt et e e e te e e aeannes 18-92
OCHNTErVAICOMPAIE() ... cveveieiteiiiteiet ettt bbbttt e 18-94
OCHNIENVAIDIVIAE() ..vvve ettt na s e e eneerenre e 18-96
OCHNtervalFromMNUMBDEI()...cc.oeiiic e 18-97
OCHNTENVAIFIOMTEXE() ..vcveveiiiteiieteiet ettt 18-98
(@ 108§ g1 T Yz 1L (] 1 174) SRS 18-100
OCIHINtervalGetDaySECON()vciviieeiiesieiesie sttt ettt esre s e sreenee s 18-102
OCIINterval GetYearMONTN()ccoviiiiiiiieie e 18-104

XXV

XXVi

OCHNIENVAIMUITIPIY() e et 18-105

OCIHINtErvalSEtDAYSECONT() .. vovevevereeierieierieiesiee ettt ettt sr e eb e sn e ere e 18-107
OCIIntervalSetYearMONtN()c.ccvcv i ene 18-109
OCHNTErVAISUDTIACT() ...veeve ettt st re et e re e e sne s 18-111
OCHNtErVAITONUMDET() ...ttt 18-113
OCHNIENVAITOTEXL() cvevevvereereee ettt ettt sre st e e e e e eseeneeneeresnenneas 18-114
OCI NUMBER FUNCLIONSotiiiiieiiteiie ettt sttt sttt st ssene e 18-116
OCTNUMDBDEIADS() 1.ttt ettt sr et b bbb e b e ere e 18-118
1O 108 | N[10 0] =1 o AN'e (o [TSRS 18-119
OCINUMDBDEFATCCOS() ..vvevveitieiieiee it see e seeste et e te e s e et e ste et e steessesseesressaesteasaesteestesreensenseenes 18-120
OCTNUMDBEIATCTSIN() «vevveteieteieete ettt ettt se et sr bbbt b et ab e ene e ere e 18-121
OCINUMDBELATCTAN() c.vevveveereeieetese e sesesestes e seeseestesee e eseatesressessestesressesseseensesseseeseaseasessessens 18-122
@104 L NIT g g] o] N ol IF- U 12) ISR 18-123
OCINUMDBDEIASSIGN() «.veveeveietiieete ettt b et st se et e bbbt sb e eb e b e ere e 18-124
(O 1O | N[T] o =] O T I RSP RSS 18-125
OCTNUMDBEICIMIP() -+ttt ettt beeb et bbb st e e s e et ebesbesae b 18-126
OCTNUIMDBDEICOS() -t eveevereerereete ettt sttt sb et b ettt b e et et se bt sb b e sbes e b e e ebe e ene e ane e 18-127
L@ 1O | N[T 0] o =1 5 1= o) TSP RSSRN 18-128
OCINUMDBEIDIV() 1ttt sttt ettt et ettt et e te st etesbesesbe e abe e nbeseerenens 18-129
OCTNUMDBEIEXP() «verveveeeteieeteriete ettt ettt ettt sr et bbb eb e b e ene e 18-130
(O 1O | N[T a] o =T To o) RSP RSSN 18-131
OCINUMDBEIFIOMINT() c.eeeieieee ettt re e sre s 18-132
OCINUMDBEIFIOMREAI() ... vttt 18-134
OCINUMDBEIFIOMTEXL() .vevveveereeresiesesiseseste e see st eee e eseere e sre e sresae e sae s eseeseeseeneeresnesnens 18-135
OCINUMDBEIHYPCOS() vttt sttt ettt b et st sb et ettt enesbe e ane 18-137
OCINUMDBEIHYPSIN() ..ttt sb e sn e 18-138
OCINUMDBEIHYPTAN() v veveereeieeiesese sttt ettt st e see e e esaeneeneeresnesnens 18-139
L@ 104 1 NIT 0] o] o g Vo (SRR 18-140
OCINUMDBEINTNTPOWET() ...ttt en e 18-141
L@ 1O | N0 1] o =T S]] (TSP RSSN 18-142
(@104 L NIT 0] o] g ESW =T o] ISR 18-143
OCTNUMDBEILN() -1ttt b ettt bbbt sr bbbt b e b e ere e 18-144
1O 1O | N[1o 0] =1 I T) TSP PSSRN 18-145
L@ 104 1 NNIT 0] oT=T 41V o T [ISR 18-146
OCINUMDBEIIMUI() c.v vttt b bbb e b re e 18-147

L@ 104 AT g g] oT=T o \N 1= T TSR 18-148

OCINUMDBDEIPOWET() ...ttt b et eb et b et b e sr b nn e nna 18-149
(@ 1O | N0 L] o =T o o =Tl (SRS 18-150
(@104 1NNIW g g] oT=T ¢ Lo TU oo) IS 18-151
OCTNUMDBEISEIPI() vttt ettt sb et b e e b eb e nn et ne e nna 18-152
(@108 | T ai] o =T ST 7= o | SRS 18-153
OCINUMDBEISRITL() ..veveviieeiiieeseese bbbttt et see e see e e 18-154
OCTNUMDBEISIGN() 1ttt r et eb e b ebese b nn b e b e 18-155
(@ 108 | N1 Tai0] 0 =T 571) SRS 18-156
OCTNUMDBEISGIT() -ttt b ettt b b b bbbttt e e et ereers 18-157
OCINUMDBEISUD() vttt 18-158
(@ 108 | N[T o] o =]l Ir- U) SR PS 18-159
(@104 AW o] o] gl Io] 1] (PSS 18-160
OCINUMDBEITOREAI() ..ttt 18-162
OCINUMDBEITOREAIATITAY() «.vviveveiieitisieieitesieieee et e sttt sn e e e e eneerennes 18-163
(@104 1AW o] o] gl ol ot A) OSSR 18-165
OCINUMDBEITIUNC() vttt ettt sb et b et bt sb et b e e b e b nn et nnere e 18-167
OCH RAW FUNCLIONS ...ttt ettt sttt sttt 18-168
OCIRAWAIIOCSIZE() . veveveriieeiisieisteeste sttt ettt sttt et e sbe e ebe e ebeseeteseeteseereneas 18-169
OCIRAWASSIGNBYTES() ...vcveveierieiiiteisieiest ettt eb et 18-170
OCIRAWASSIGNRAW() «..vvveeeeieiiesiesiesesies ettt esae e e esas e e sseste s e sresaesteseessessesaessesseseeneensasenses 18-171
O CTRAWPTI() 1.ttt ettt ettt sa ettt sb e s et e b e e ebe e ebe e ebe e ebeneebeneete e 18-172
OCTRAWRESIZE() ...ttt etttk b bbbt b et b e e b et e nn et e b e 18-173
(@ 1O | =YV 4= SR 18-175
OCT RET FUNCLIONS ...ttt bbb bbb e et se b ens 18-176
O CTRETASSIGN() -ttt ettt ettt ettt et bbbt b et b et b et eb e e b nn b e nn b e nnebe e 18-177
(@ 10 |2 =] {0 LT U SRR 18-178
L@ 101 IR T] o] 0 1 1= PSS 18-179
O CTRETHEXSIZE() vttt ettt b et b et bt eb e n b nn e nn e e 18-181
(@ 1O |- i 15 =0 10 (SRS 18-182
OCITREFISNUII() vttt sttt ettt e e teseere e 18-183
OCITRETTOHEX() v.vtvveveietisieie sttt sttt ettt st sttt e b et e e s b e e abe e ebe e etessetesaeteseereneas 18-184
(@108 I3 1 1 T [N 11 1 (01 1 Lo} o 1RSSR 18-186
(@101 B (g [To AN | [0 Tors =T) IS 18-187
OCISEIINGASSIGN() +vevevereetirteiestee ettt ettt bbbt eb et b e e b e b e nnebeneere e 18-188

XXVil

19

XXviii

OCISINGASSIGNTEXL() cve e iteeie ittt s sa e se e te e e s teeraesreenbesraenbesreenes 18-189

OCISTIINGPII() ettt et ekttt e bbbt b bt b et eb e ene e re e 18-191
OCISINGRESIZE() 1.veveeereereeeee ettt sttt te e e r e besre st e e see s eseesaeseeneeresnesnens 18-192
(@104 1] ([T0 RS 4= SRR 18-194
(@103 B F-1 o] [= U o Tod A o] o RSOSSN 18-195
(O 1O [I 1] 1= 1= [=T ISP 18-196
(O 10 I 1= T o] Lo T 1] £ SR 18-198
OCITADIEFIIST() ... ettt ettt b et b et b e b e b ere e 18-199
(O 1O I 1] 1= I T3) SRS SSSN 18-201
OCITADIENEXL() 1+ttt sttt ettt sttt et st besberesbeseebe e ebe e nbeseere e 18-202
OCITADIEPIEV() ...ttt ettt bbbt b e sn e are e 18-204
(O 1O I 1o 1IN 18-206
OCI Cartridge Functions
Introduction to External Procedure and Cartridge Services FUNCLIONS..........ccccoovevienniens 19-2
Cartridge Services — OCI External ProCeAUIES...........coviiiiiieni i 19-4
OCIEXtProCAHOCCAIMEMOIY() .. .ottt ettt 19-5
OCIEXIPTOCRAISEEXCP() «vevveveevrererreirestesiestesiesiesiessestessesesssesessessessessessessessessessessessesssssesssessessenses 19-6
OCIEXtProcRaiSEEXCPWITIIMSH() ...cveiveriiiiiieie e 19-7
OCIEXIPTOCGETENV() ...ttt ettt ettt ettt sb et eb e bbb 19-9
Cartridge Services — MEMOIY SEIVICESccoviueieiieeeeeesie e se e ste et se e see e enaerennes 19-11
@101 1 18T o] a1 =7=To |1 1) ISR 19-12
OCIDUFAtIONENG() ...eviiieiiiteree ettt bbbttt 19-14
L@ 104 11 1= o 0 ToT 772N | T ol SRS 19-15
(O 101 11V =T 0 o] Y R (=TT 4T) OSSR 19-17
OCIMEMOTYFTEE() .ttt ettt ettt bbbttt nnee 19-18
Cartridge Services — Maintaining CONEXL........c.cccoiviiieirieie s 19-19
(@104 [010] 01123 (I T=T AV =1 [V | PSSR 19-20
OCICONTEXIGEIVAIUR() ... ettt 19-22
OCICONEXLCIEArVAIUE() .vovveveeveeieie sttt sttt st e e e e aneeneas 19-23
(0104 [010] 01 (=) (LTt o 1T o (=] =) Y/ OSSR 19-24
Cartridge Services — Parameter Manager INterface ..o 19-25
L@ T T Tod 1) RSSO 19-26
L@ 1@ | o Tod i I=1 1 (SR R 19-27
OCIEXTFACTRESET() «.vveverieteiiete ettt ettt sttt bbb b et b et b et 19-28

OCIEXIraCtSELNUIMKEYS() ..oveiveeiieiieiiieie sttt ste st ste ettt te st et e enaesbe st e steeneesreennes 19-29

OCIEXTIACISETKEY() - .vvevereieiisteiistei sttt 19-30
(O 1O |t - Tod 1 0] 1 0 T =T S PS 19-32
(O 1 O] | o - Tod 1 o] .0 1] 4) USSR 19-33
OCIEXTFACTTOINT() ..ttt bbbttt 19-34
(O 1O |t Tod o o To] [) ISP 19-35
(O 104 1 o - Tod i 0 1S) USRS 19-36
OCIEXTraCtTOOCTNUMI() .eveiitiiiitiiiteiet ettt 19-38
L@ 1O |t Tod o 1) (PP 19-39
(O 104 1 o - Tod 1 o .1 1) (SRS TS 19-40
Cartridge Services — File 1/O INTErface. ..ot 19-42
L@ 1O | 1= T a1 RSP 19-43
L@ 1] LT 1= =T o 0 PSSR 19-44
OCTFIHEOPEN() .-ttt ettt b bbb bbbt bbbt ne et b et nn et nn s 19-45
L@ 1O | 1T o = (TSP 19-47
L@ T3 1 a1 =T - Lo [TSRS 19-48
L@ TR a1 LY g (T PR RSRRR 19-50
L@ T | 1= =T=] S PP 19-51
L@ T8 a1 T o 1) £ ORI 19-53
OCIFIHEGETLENGELN() ...ttt 19-54
L@ 1O | 1= 0 o T RSP 19-55
Cartridge Services — String Formatting Interfacecccoccviv i 19-56
OCTFOIMALINTT() .ottt bbbt et et 19-57
L@ 1O | o] ¢ 4 T Ll =T ¢ T TSP 19-58
L@ 1@d o T g g T] 1] T T TSRS 19-59
FOrMAat MOGITIEIS ...ttt ene e 19-62
FOPMAL COUBS ...ttt bbb ettt b et b et et sttt ebe e 19-64
EXAIMIPIE. ..t b bbb bbb bbbt r e 19-66

20 OCI Any Type and Data Functions

Introduction to Any Type and Data INterfaces ... 20-2
OCI Type INterface FUNCLIONS ..ot 20-4
L@ 10 i 1Y 0 1=Y Ao [0 N 1 4) TSP 20-5
OCITYPEBEGINCIEALE() ..veveteiteiteite sttt ettt bbbttt e bt ebesbesbesne s 20-6
OCITYPEENUCIEALE() +.vvuveveeeretenisieieteiet stttk bbbttt b e 20-8

XXiX

OCITYPESEIBUITIN() ...t bbbt ebe s 20-9

OCITYPESELCOIECTION() ..ttt e 20-10
OCI Any Data Interface FUNCLIONSc.cooviieieiccicese s 20-11
OCTANYDALAACCESS() +ouvvevveiteereiieeiiesee e sieese s e e st este et e steasesteeaeareasaesseesaesteessestaestesseenseaseenes 20-12
OCIANYDATAATIIGET() ...t eeveieeeieete ettt bbbttt nnne 20-14
OCIANYDATAALIISEE() ..o vevvereereereeiese et te e sresresaeseeste e seeneeneeneaneaneas 20-17
OCIANYDAtaBegiNCIrEate()........cvevveieeiesieeie ettt ste e st e et a et e tesra e aeenee s 20-20
OCIANYDataCOlAAAEIZM() ..o 20-22
OCIANYDataCOIGELEIEMI()....vcveeieieeieeise et e ne e eneas 20-24
@101 AN 0} VZ B -1 -1 @do] 0 V7= { (PSR 20-26
OCIANYDATADESIIOY () .ttt sttt sttt ettt stttk ettt sb et b et 20-29
OCIANYDALAENACTEALE() «.ovvevveeeereiieetesesieseste et et e eeereees e re e tesresteseeseesse e seeseneeseaneanens 20-30
OCIANYDataGetCUITATIINUIM() ...ocveeieieece ettt enae s 20-31
OCIANYDATAGETTYPE() ..veereieterietesieie sttt sttt sttt sttt sb et n bbb bbbt nnes 20-32
OCIANYDALAISNUII() ...t s e e e e aneeneas 20-33
OCIANYDataTYyPeCOAETOSHIT() .vveeverrerieriirterie it 20-34
OCI Any Data Set INterface FUNCLIONScoiiiiiiiiiieeee e 20-35
OCIANYDataSEtAAAINSTANCE() ...vvivveveererieiisiesereeniese et re e sa e eeneeneaneeneas 20-36
OCIANYDataSetBegiNCIrEate() .. .ccceiiveierieeierieieeiesie et ste et te e sre e s sae et e te st aeenee s 20-38
OCIANYDATASEIDESIIOY () .. v evveveieteieeierieie sttt sttt sttt bbbt 20-40
OCIANYDAtaSEtENACIEALE() ...vvevviveeeerieriesesiese et et e ettt s sb e e see e eneeneaneaneas 20-41
OCIANYDAtaSEtGEICOUNT().....cieeieiieeieseesie sttt ste e sre e sttt e s te st e neenae s 20-42
OCIANYDAtaSEtGEtINSTANCE() ... veveveierieierieie et 20-43
OCIANYDAtASELGEITYPE() . vveveereereireatirreriesestesestesiesieseeteseeese e ste e sresaeseeseessesseseessensesesseasens 20-44

21 OCI Globalization Support Functions

Introduction to Globalization SUPPOIrt iN OCl ... e 21-2
OCT LOCAIE FUNCLIONS ...ttt bbb bbb ettt e b e bbb e 21-4
OCINISCharSetlIdTONEAME() ... c.eveeerieiirieiirieesie ettt eb e ne e ene e 21-5
OCINISCharSEtNaMETOIA() ...vcvveveieeerere st erenrs 21-6
OCINISENVironmentVariableGet()........ccovvieiiiiiiiciese e 21-7
O CTNISGELINTO() ..ttt et ettt nb ekt b et b et eb et r e ene e ene e 21-9
OCINISNUMEFICINFOGEL() ..vveveevieieie sttt e e e e eneas 21-12
OCI Locale-Mapping FUNCLION.........coiiiiiiieie et 21-13
OCITNISNAMEMEAP() .- veveereieteriete ettt sttt bbbt bbbt b et bt e 21-14

XXX

OCI String Manipulation FUNCLIONScooiiiiicer e 21-16

OCIMUultiBytelNSize TOWIdECRNAI()......cviveviiieirieiricrie e 21-19
OCIMUltiByteStrCaseCoNVEIrSION()ccveiververierieeeieresesesresesessesseseessessessessesesseseesessessessenns 21-21
OCIMUIIBYTESTICAL() ..v.vevvverieieisieieteriete ettt en et es et nsenes 21-22
OCIMUITIBYTESTICIMP() vttt 21-23
OCIMUIIBYLESIICPY ()« v veevereestesiestesiesieie sttt et e e e te s e sttt re et et saenseneeseeneenenrennenns 21-25
OCIMUIIBYTESTIIEN() .t sttt e st e st e be e e sreennes 21-26
OCIMUITIBYTESTINCAL() . cvevevereeeisteiet ettt 21-27
OCIMUILIBYLESIINCMP() cvvvvveiieiieiierieriee et ee ettt st et s se e ens e e e e eneerenne e 21-28
OCIMUITIBYTESIINCPY () -t eveveetenterte sttt e e e et eb e 21-30
OCIMultiByteStrnDisplayLengti() ... 21-31
OCIMUItIBYteTOWIAECRNAN() «.vvvvveieiieie ettt st re e 21-32
OCIWideCharIinSize TOMUILIBYLE()....ccviivieiiiicie ettt 21-33
OCIWideCharMultiBYtELENGN()......covevieeeiiieiiieireese s 21-35
OCIWideCharStrCaseCONVEISION()cceiuerverierieeeeeisesestesese e e seesaesse e saesseseeeesessessessenns 21-36
(@104 ViV To [T @ g T U] £ oF- |) USSR 21-38
OCIWIAECNAISIICNT() c.e.veveteiieteiesteet ettt 21-39
(108 LVAVATo [T @1 o =] 1 (o] 1 0] o P 21-40
O 101 LVAV/To =101 o -1 2] 1 o] 0) V/) ST UOT SO PO RSO PRURTR PR 21-42
OCIWIAECNAISIIIEN() ..ttt 21-43
(O 108 LVA A To [T @1 o= U] 1 g g [or S PS 21-44
OCIWIdECNArSTINCMIP() .+evevertenteite ettt bbb bbbt ae b be e 21-45
OCIWIdECRNAISIINCPY () +veverereresteieteieteseete ettt sttt b bt se et s et n s sn e nnenes 21-47
(O 108 LVA A To [T @1 o=] 1 ¢ (o] o o (TSP 21-48
(@104 ViV ATo [-T@d g T Ul o] 01N Y =T o SRS 21-49
OCIWIdeCharTOMUITIBYEE() ...c.viveiiriieiiieiiiietenieiene sttt 21-50
(@108 LY\ To (1@ o=V o1 o] o 1-1 o (RSP 21-51
OCI Character Classification FUNCLIONSooiiiiiiiinire e 21-52
OCIWIdECNANISAINUIM() .ottt 21-53
OCIWIdeChArISAIPNA()viiiieiiie et reene e 21-54
(O 104 ViV To (=101 g T U F{ @1 o1 1 o [TSRS 21-55
OCIWIdECNANISDIGIT() .. evevererreiiiteiiteiet ettt 21-56
(O 108 LY\ /To [T @1 o = € =1 o] o) RSP 21-57
(104 ViV To [T @1 g T U 1Y I 1YY= () IS STS 21-58
OCIWIECRNAISPIINT() ..ttt bbbttt 21-59

XXXI

22

XXX

(104 VAV To (1@ g T U FY = U T o} { (PSR 21-60

OCIWIdeCharISSINGIEBYLE()eveuereeierieierieie ettt 21-61
OCIWIdECNAITSSPACE() .. evvereereereerieiretesesiesesie e seestesaeseeaeseeresessesre s e srestesaeseesseseseensenseseaseasens 21-62
OCIWIAECNAITSUPPEI()- . veveeieetietiriestesie sttt sttt sb e b se b e aneene s 21-63
OCIWIdECNAFISXAIGIT() ..veveveeeeeieeierieie ettt 21-64
OCI Character Set CONVErsion FUNCLIONSccocoiiiiiiniinenecsiee e 21-65
OCICharSetConversionlsReplacementUsEd().........coeveireiiiiniineiene e 21-66
OCIChArSEITOUNICOAR() ... ccvereeveieierieierieie ettt ettt 21-67
OCINISChArSELCONVEIT()...c.vcveveeieieeeseseseste e stesteste et e et re s sre st e sbe e see s eneeneaneeneas 21-69
(@104 18] oY Tofo o[-l e @4 o T £]=] 1) PSS 21-71
OCI MeSSagING FUNCLIONSoiiiiiiiiiiiiieisieie bbbttt bbbt 21-73
OCIMESSAGECIOSE() «.vvververrereereereeeie sttt s et e e e e st reerestestesbestesteseebesaeseeneeneeneanenneas 21-74
L@ 1O 1V oIS T= Lo [T = o PSS 21-75
OCIMESSAGEOPEN() c.vereteiete ettt sttt sttt ettt b ettt bt ekttt bbbt bbbt b et b et nnns 21-76
OCI XML DB Functions
Introduction to XML DB SUPPOIt iN OCHccooiiiiiiiiiicieieee et 22-2
OCH XML DB FUNCLIONS.......cotitiiiiiiiieieie ettt sttt ettt sttt sr e nnne 22-4
OCIXMIDBFFEEXMICTX() vviveeveiieiieiie sttt st ae st e b e sreesbeensesreeneesreennes 22-5
OCIXMIDBINIEXMICTX() 1.vtvveveieieiiei ittt sttt sr et sb e b e e sbe e sbe e ebesaesesaeseseas 22-6
Handle and Descriptor Attributes

(07010 1V/=T 011 o] 13PTSR PSSR A-3
Environment Handle ATFDULES ..o A-3
Error Handle AIHDULESc.ooiiecc ettt ee e A-10
Service Context Handle AtrIDULES...........ccv o A-11
Server Handle AtrTDULES.........ccooiece e A-13
Authentication Information Handle ... A-16
User Session Handle AIFIDULES ... et A-16
Connection Pool Handle ATtrDULES ..o A-22
Session POOI HaNdle AtrIDULEScoviieicece et A-24
Transaction Handle ArIDULES ..o e A-27
Statement Handle AIrIDULESoovveccccc e e A-28
Bind Handle AtHIDULES ... A-36
Define Handle AIIDULESooi e be e A-39

DeSCribe HanAIe AIIIDULESoooieiieece ettt e st eara e s sbee s A-41

Parameter DesCriptor ALIFIDULEScci i A-42
LOB LOCAtOr ALLIIDULES........ciiieiieiee bbb A-42
Complex ODJeCt AtLIHDULES ..o e A-43
Complex Object Retrieval Handle AttribDULeS..........cccooiiiiiiiiie e A-43
Complex Object Retrieval Descriptor AttriDULEScccovviviiviie e A-43
Advanced Queuing Descriptor AIIDULES..........ccoiiiiiiii e A-44
OCIAQENQOptions Descriptor AttriDULES..........coiiiiiiiiic e A-44
OCIAQDeqOptions Descriptor AttrBULESc.ccvoviie i A-45
OCIAQMsgProperties Descriptor AFHDULES ..o A-49
OCIAQAQgeNt Descriptor AtIrIDULES ... e A-54
OCIServerDNSs Descriptor AttriBULES........ccovciiece e A-55
Subscription Handle ATIFIDULES. ..o A-56
Direct Path Loading Handle ATIIDULEScccooiiiiiniicee e A-60
Direct Path Context Handle (OCIDirPathCtx) Attributes...........ccocvvivvvvinereicceeece e A-60
Direct Path Function Context Handle (OCIDirPathFuncCtx) Attributes.............cccccoeue.ee. A-67
Direct Path Function Column Array Handle (OCIDirPathColArray) Attributes............. A-69
Direct Path Stream Handle (OCIDirPathStream) Attributesccococvvvverercicicece e, A-70
Direct Path Column Parameter AttribDULes...........cooiiiiiii e A-71
Process Handle ALIFIDULES.oi it A-77

OCI Demonstration Programs

OCI Function Server Round Trips

OVerview Of SErver ROUNG TriPS . ..ottt C-2
Relational FUNCLION ROUNG TFIPS .o.voveieieieici sttt sne e C-2
LOB FUNCEION ROUNA THIPS .ttt ettt sbe b b nne s C-3
Obiject and Cache FUNCtION ROUNG TIPS ...c.oiviviiiiieiicirieese e C-5
Describe Operation ROUNG THiPS....coiieiiiieieieiieeeees et se st s e esae e e e ssesresresressessesnens C-6
Datatype Mapping and Manipulation Function Round TripsS.......cccooereeiiiiiiiiniene e C-7
Any Type and Data FUNCLION ROUN TFIPS ...cvoiiiiiiinieiieesieesie st C-8
Other LOCAI FUNCHIONS ...t C-8

XXXiii

D Getting Started with OCI for Windows
What Is Included in the OCI Package for WIiNAOWS? ..o D-2
Oracle Directory Structure fOr WINAOWS..........cccvviiiiieiirccceecee e D-2
Sample OCI Programs fOr WINAOWS ...t e D-3
Compiling OCI Applications FOr WIiNAOWS............cccciiiiiiiieeecseeseeese s D-3
Linking OCI Applications fOr WINAOWS.........ccccciiiiiiicrieceese st s D-4
OCT LTI D-4
Client DLL Loading When Using LoadLibrary().......ccoceoverinninneneeneeneesecseeseeen D-4
Running OCI Applications fOr WINAOWSccoiveiiiiiceecece s D-5
The Oracle XA LIDIAry ...ttt ettt te s e reenee e D-5
Compiling and Linking an OCI Program with the Oracle XA Librarycccccooeeneninen. D-5
Using XA DyNamic REGISTIAtiONccccvciviiiiiiiie et D-6
XA and TP Monitor INFOrMAtIONccoiiiiiiieiieceee e D-7
Using the Object Type Translator Tor WINAOWSccoccoiiiiiiiiiiiiic e D-7
Index

XXXIV

Send Us Your Comments

Oracle Call Interface Programmer's Guide, 10g Release 1 (10.1)
Part No. B10779-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXXV

XXXVI

Preface

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows applications written in C or C++ to interact with one or more Oracle
database servers. OCI gives your programs the capability to perform the full range
of database operations that are possible with an Oracle database server, including
SQL statement processing and object manipulation.

The Preface includes the following sections:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XXXVii

Audience

This guide is intended for programmers developing new applications or converting
existing applications to run in the Oracle environment. This comprehensive
treatment of OCI will also be valuable to systems analysts, project managers, and
others interested in the development of database applications.

This guide assumes that you have a working knowledge of application
programming using C. Readers should also be familiar with the use of Structured
Query Language (SQL) to access information in relational database systems. In
addition, some sections of this guide also assume a knowledge of the basic concepts
of object-oriented programming.

See Also:

« For information about SQL, refer to the Oracle Database SQL
Reference and the Oracle Database Administrator’s Guide.

« For information about basic Oracle concepts, see Oracle
Database Concepts.

« For information about the differences between the Standard
Edition and the Enterprise Edition and all the features and
options that are available to you, see Oracle Database New
Features.

Organization

XXXViii

A brief summary of what you will find in each chapter and appendix follows:

PART I: OCI Relational Concepts

Part | (Chapter 1 through Chapter 9) provides conceptual information about how to
program with OCI to build scalable application solutions that provide access to
relational data in an Oracle database.

Chapter 1, "Introduction and Upgrading"

This chapter introduces you to the Oracle Call Interface and describes special terms
and typographical conventions that are used in describing the interface. This
chapter also discusses features new to the current release.

Chapter 2, "OCI Programming Basics"

This chapter gives you the basic concepts needed to develop an OCI program. It
discusses the essential steps each OCI program must include, and how to retrieve
and understand error messages

Chapter 3, "Datatypes"

Understanding how data is converted between Oracle tables and variables in your
host program is essential for using OCI. This chapter discusses Oracle internal and
external datatypes, and data conversions.

Chapter 4, "Using SQL Statements in OCI"
This chapter discusses the steps involved in SQL statements using OCI.

Chapter 5, "Binding and Defining in OCI"

This chapter discusses OCI bind and define operations in detail, including a
discussion of advanced bind and define operations.

Chapter 6, "Describing Schema Metadata"

This chapter discusses how to use the OCl Descri beAny() call to obtain
information about schema objects and their associated elements.

Chapter 7, "LOB and BFILE Operations"

This chapter describes OCI support for LOB, FILE, and temporary LOB datatypes. It
also describes the support for LOBs of size 4GBytes or greater.

Chapter 8, "Managing Scalable Platforms"

This chapter describes password management, session management, and
end-to-end application tracing.

Chapter 9, "OCI Programming Advanced Topics"

This chapter covers more advanced OCI programming topics, including the OCI
thread support, connection pooling, session pooling, descriptions of user callbacks,
application failover callbacks, Streams Advanced Queuing, and publish-subscribe
notification.

PART II: OCI Object Concepts

Part 1l (Chapter 10 through Chapter 14) describes OCI functionality for accessing
object-relational data with OCI.

XXXIX

xl

Chapter 10, "OCI Object-Relational Programming”

This chapter provides an introduction to the concepts involved when using OCI to
access objects in an Oracle database server. The chapter includes a discussion of
basic object concepts and object navigational access, and the basic structure of
object-relational applications.

Chapter 11, "Object-Relational Datatypes in OCI"

This chapter outlines the object datatypes used in OCI programming. This chapter

discusses the C mappings of user-defined datatypes in an Oracle database, and the
functions that manipulate such data. Binding and defining using these C mappings
is also covered.

Chapter 12, "Direct Path Loading"

This chapter discusses loading of data (scalars, objects) from files into scalar and
object columns using the Direct Path Loading API.

Chapter 13, "Object Advanced Topics in OCI"

This chapter provides an introduction to the concepts involved when using OCI to
access objects in an Oracle database server. This chapter also discusses the Object
Cache, and the use of OCI navigational calls to manipulate objects retrieved from
the server.

Chapter 14, "Using the Object Type Translator with OCI"

This chapter discusses the use of the Object Type Translator to convert database
object definitions to C structures for use in OCI applications.

PART Ill: OCI Reference
Part Il lists OCI function calls in the OCI library and other reference information.

Chapter 15, "OCI Relational Functions"

This chapter contains a list of the most basic OCI relational functions, including
their syntax, comments, parameter descriptions, and other useful information.

Chapter 16, "More OCI Relational Functions™

This chapter continues the OCI relational functions started in the last chapter. It
covers statement functions, as well as LOB, Streams Advanced Queuing and
Publish-Subscribe, Direct Path Loading, thread management, transaction
management and miscellaneous functions.

Chapter 17, "OCI Navigational and Type Functions™"

This chapter contains a list of OCI navigational functions, including syntax,
comments, parameter descriptions, and other useful information.

Chapter 18, "OCI Datatype Mapping and Manipulation Functions"

This chapter contains a list of OCI datatype mapping and manipulation functions,
including syntax, comments, parameter descriptions, and other useful information.

Chapter 19, "OCI Cartridge Functions"

This chapter discusses special OCI functions used by external procedures and
cartridge functions.

Chapter 20, "OCI Any Type and Data Functions”
This chapter describes the OCI Any Type and Data functions.

Chapter 21, "OCI Globalization Support Functions"
This chapter describes the OCI globalization support functions.

Chapter 22, "OCI XML DB Functions"
This chapter describes the XML DB functions.

Appendix A, "Handle and Descriptor Attributes”

This appendix describes the attributes of OCI application handles that can be set or
read using OCI calls.

Appendix B, "OCI Demonstration Programs"

This appendix gives the names of important OCI demonstration programs that are
included with the Oracle installation.

Appendix C, "OCI Function Server Round Trips"

This appendix includes tables which show the estimated number of server round
trips required by various OCI applications.

Appendix D, "Getting Started with OCI for Windows"

This appendix provides introductory information to help you get started with OCI
for Windows.

xli

Where to Begin
Because of the many enhancements to OCI, both new and experienced users should
read the conceptual material in Part 1.

Readers familiar with the current version of OCI and interested in its object
capabilities can skim Part 1 and then begin reading the chapters in Part II.

Readers looking for reference information, such as OCI function syntax and handle
attribute descriptions, go to Part Ill.

Related Documentation

xlii

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oracl estore.oracle.com
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. conf menber shi p/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle. com docunentation/

The Oracle Call Interface Programmer*s Guide does not contain all information that
describes the features and functionality of OCI in the Standard Edition and the
Enterprise Edition products.

Oracle C++ Call Interface

For C++ programmers, the Oracle C++ Call Interface provides OCI functionality for
C++ programs and lets you manipulate database objects (of user-defined types) as
C++ objects.

Other Sources of Information about OCI
For other sources of information about OCI:

See Also:

For information about the C++ Call interface, refer to Oracle
C++ Call Interface Programmer’s Guide.

For information about cartridge services, and the OCI calls
pertaining to development of data cartridges, refer to Oracle
Data Cartridge Developer®s Guide.

For information about OCI calls pertaining to National
Language and Globalization Support, see the chapter "OCI
Programming" in Oracle Database Globalization Support Guide.

For information about OCI calls pertaining to Advanced
Queuing, see Oracle Streams Advanced Queuing User’s Guide and
Reference.

For information about using OCI with the XA library, see Oracle
Database Application Developer's Guide - Fundamentals.

For more information about using OCI calls to manipulate
LOBs, including code examples, see Oracle Database Application
Developer's Guide - Large Objects.

For a more detailed explanation of object types, see Oracle
Database Application Developer's Guide - Object-Relational
Features.

Other Sources of Information
Oracle Database Installation Guide for Windows

Oracle Database Release Notes for Windows

Oracle Enterprise Manager Administrator’s Guide

Oracle Net Services Administrator's Guide

Oracle Database New Features

Oracle Database Concepts

Oracle Database Reference

Oracle Database Error Messages

xliii

Conventions

xliv

The following notational and text formatting conventions are used in this guide:

General Conventions

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted. In syntax, an ellipsis means that the previous item can be repeated.

monospace font

SQL and C code examples, OCI function names, datatypes, database objects,
packages, usernames, file names, and directory names are shown in monospace
font. Syntax examples are in monospace font also.

italics
Italics are used for emphasis and for the titles of documents.

monospace italic

Monospace italics are used for input OCI parameters in syntax examples.
MONOSPACE UPPERCASE

Monospace uppercase is used for SQL or PL/SQL keywords, such as SELECT or
UPDATE, and for built-in datatypes, such as N\VARCHAR2.

See Also: Oracle Database SQL Reference and the PL/SQL User's
Guide and Reference to see the lists of the keywords and reserved
words for SQL and PL/SQL

bold
Bold is sometimes used in code examples for emphasis.

default font
OCI attributes, such as OCI_ATTR_CACHE_OPT_SIZE, are written in default font.

Conventions for Windows Operating Systems

This document describes the features of Oracle Database for Windows that apply to
the Windows NT Server, Windows 2000, Windows XP, and Windows Server 2003
operating systems.

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory File and directory names are not case c:\winnt"\"systenB2 is the sane as
names sensitive. The following special characters C \ WNNT\ SYSTE\VB2

are not allowed: left angle bracket (<),

right angle bracket (>), colon (), double

quotation marks (), slash (/), pipe (]),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

C\> Represents the Windows command C \oracl e\ or adat a>
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

Special characters The backslash (\) special character is C\>exp scott/tiger TABLES=enp
sometimes required as an escape QUERY=\ "WHERE j ob=" SALESMAN and
character for the double quotation mark gg1 <1600\ "

(") special character at the Windows C\>i np SYSTEM passwor d FROMUSER=scot t

command prompt. Parentheses and the —

single quotation mark () do not require TABLES(enp, dept)
an escape character. Refer to your

Windows operating system

documentation for more information on

escape and special characters.

HOME_NAME Represents the Oracle home name. The C\> net start O acl eHOME NAMETNSLI st ener
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

xlv

Convention Meaning Example
ORACLE_HOVE In releases prior to Oracle8i release 8.1.3, Go to the
and when you installed Oracle components, ORACLE_BASE\ ORACLE_HOVE\ r dbns\ adni n
ORACLE_BASE all subdirectories were located under a directory.

top level ORACLE_HOVE directory. For
Windows NT, the default location was
C:\orant.

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C: \ or acl e. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:\ oracl e\ or ann, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

xlvi

Special Conventions

This guide uses special text formatting to draw the reader's attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of

information that are flagged this way.

Note: The Note flag indicates that the reader should pay
particular attention to the information to avoid a common problem
or increase understanding of a concept.

7.x Upgrade Note: An item marked with "7.x Upgrade Note"
typically alerts the programmer to something that is done much
differently in the releases 8 and later OCI than in the 7.x OCls.

Caution: An item marked Caution indicates something that an
OCI programmer must be careful to do or not do in order for an
application to work correctly.

See Also: Text marked See Also points you to another section of
this guide, or to other documentation, for additional information
about the topic being discussed.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://wmv. oracl e. com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

xIvii

xlviii

What's New In Oracle Call Interface?

The following sections describe the new features in this Oracle Call Interface
manual:

« New Features in Oracle Call Interface Release 10.1
» Oracle9i Release 2 (9.2) New Features in Oracle Call Interface
» Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interface

« Oracle9i Release 9.0.0 New Features in Oracle Call Interface

xlix

New Features in Oracle Call Interface Release 10.1

Native float and double are supported.

See Also:
« "BINARY_FLOAT and BINARY_DOUBLE" on page 3-7
« "Native Float and Native Double" on page 3-26

OCl Descri beAny() supports rules, rule sets, and evaluation contexts.

See Also: "Rule Attributes" on page 6-21, and so on

The OCI Instant Client capability simplifies OCI installation and saves disk
space for application deployment.

See Also: "OCI Instant Client" on page 1-22

Additional information on upgrading to a new release of OCI is available.

See Also: "Compatibility and Upgrading"” on page 1-16

A new discussion describes when to use session pooling or connection pooling.

See Also: "When to Use Connection Pooling, Session Pooling, or
Neither" on page 9-23

Batch array enqueue and dequeue functions and attributes have been added.

See Also:
« "OCI and Streams Advanced Queuing" on page 9-48

« "Streams Advanced Queuing and Publish-Subscribe Functions"
on page 16-114

« "Advanced Queuing Descriptor Attributes" on page A-44

LOBs can be of greater size than 4 GB. There are several new LOB functions
whose names end in "2" that handle LOBs greater and smaller than 4 GB, and
replace deprecated LOB functions without "2".

See Also:
« "Using LOBs of Size Greater than 4 GB" on page 7-5
« "LOB Functions" on page 16-23

Database Globalization Support is now described in this manual.

See Also:
« "OCI Globalization Support" on page 2-39
« "OCI Globalization Support Functions” on page 21-1

Statement Caching has been enhanced.

See Also: "Statement Caching in OCI" on page 9-27

Windows documentation is now included in this guide.

See Also: Appendix D, "Getting Started with OCI for Windows"

There is OCI support for the unified C API which is used for XMLType columns
in tables (and XML documents).

See Also:
« "OCI Support for XML" on page 13-23
« Chapter 22, "OCI XML DB Functions"

There are new or modified functions.

See Also:
« "OCICollGetElemArray()" on page 18-15
« "OCINumberToRealArray()" on page 18-163

« New modes OCI_BIND_SOFT and OCI_DEFINE_SOFT are documented.

See Also:

« "OCIBindByName()" on page 15-71
« "OCIBindByPos()" on page 15-77

« "OCIDefineByPos()" on page 15-92

« New attributes for end-to-end application tracing are described.

See Also:
« "End-to-End Application Tracing" on page 8-20
« "User Session Handle Attributes" on page A-16

« New attributes for Direct Path are described.

See Also:
« "OCI_ATTR_DIRPATH_INDEX_MAINT _METHOD" on
page A-63

« "OCI_ATTR_DIRPATH_SKIPINDEX_METHOD" on page A-65

Oracle9i Release 2 (9.2) New Features in Oracle Call Interface

« Session Pooling

See Also:
« "Session Pooling in OCI" on page 9-17
« "Connect, Authorize, and Initialize Functions" on page 15-4

« "Session Pool Handle Attributes” on page A-24

Statement Caching

See Also:
« "Statement Caching in OCI" on page 9-27

« "Connect, Authorize, and Initialize Functions" on page 15-4

Any Data Enhancements

See Also:

« "OCIlAnyDataTypeCodeToSqlt()" on page 20-34

« "NCHAR Typecodes for OCIAnyData Functions" on page 11-31

NCHAR and Codepoint Support for Objects
Objects can have NCHAR, NCLOB, and NVARCHAR?2 attributes.

See Also:

« "OCI Globalization Support" on page 2-39Table 14-1, "Object
Datatype Mappings for Object Type Attributes”

« "OCI Object Overview" on page 10-2
« Table 10-4, "Attribute Values for New Objects" on page 10-33

« Table 14-1, "Object Datatype Mappings for Object Type
Attributes"

« "OCIEnvNIsCreate()" on page 15-14
« "OCINIsEnvironmentVariableGet()" on page 21-7

Client Character Set Control

See Also: "Client Character Set Control from OCI" on page 2-39

« Database Globalization Support

See Also: "Other OCI Globalization Support Functions” on
page 2-41
« Direct Loading using date_cache

See Also:

« "Using a Date Cache in Direct Path Loading of Dates in OCI" on
page 12-15

« "Direct Path Context Handle (OCIDirPathCtx) Attributes" on
page A-60

« New OTT Option: URL

See Also: "URL" on page 14-33

« Structural changes to this document:

"Statement Functions" on page 16-4 has been moved from chapter 15 to allow

printed copies of this guide to remain in two volumes.

Oracle9i Release 1 (9.0.1) New Features in Oracle Call Interface
« Defining LOB Output Variables

This section has been re-written.

See Also: "Defining LOB Output Variables" on page 5-20

« Supporting UTF-16 Unicode

This discussion has been re-written.

liv

See Also:

"OCI Globalization Support" on page 2-39

"Character Conversion in OCI Binding and Defining" on
page 5-30

"Bind Handle Attributes" on page A-36
"Define Handle Attributes” on page A-39

Advanced Queuing

Changes were made in the interfaces of publish-subscribe notification and in
the OCI function CCl Subscri pti onRegi st er (). Several subscription
handle attributes were modified and several were added. Open registration for
publish-subscribe has been added.

See Also:

"Publish-Subscribe Notification in OCI" on page 9-54
"Publish-Subscribe Registration Functions in OCI" on page 9-56
"OCISubscriptionRegister()" on page 16-144

"Subscription Handle Attributes" on page A-56
"OCIServerDNs Descriptor Attributes" on page A-55
"Environment Handle Attributes" on page A-3

"Publish-Subscribe LDAP Registration Example" on page 9-69

Direct Path Loading

Direct path loading of data into object columns as well as scalar columns, is
now supported. Direct path loading is moved to chapter 12, so that it now
appears after the discussion of objects and their use. Sections on binding and
defining object datatypes are now at the end of chapter 11.

See Also:

Chapter 12, "Direct Path Loading"
"Direct Path Loading Handle Attributes” on page A-60

Oracle9i Release 9.0.0 New Features in Oracle Call Interface

This document has these new features. Each of these features is discussed in greater
detail in the cross-referenced sections:

« Connection Pooling

This feature enables you to multiplex many logical connections over a single
physical connection.

See Also:
« "Connection Pooling in OCI" on page 9-10
« "Connect, Authorize, and Initialize Functions" on page 15-4

« "Connection Pool Handle Attributes" on page A-22

= Scrollable cursors.

Members of a result set can be accessed in non-sequential order.

See Also:
« "Scrollable Cursors in OCI" on page 4-18

. "Statement Functions" on page 16-4

« Globalization support.

Various OCI calls support UTF-16 for SQL statements, data, metadata, objects,
and error messages.

See Also: "OCI Globalization Support” on page 2-39

« Middle-tier applications.

New attributes have been added for client authentication.

See Also: "Middle-Tier Applications in OCI" on page 8-13

« New datatypes.

Datetime and Interval and Daylight Savings datatypes are described in the
following sections:

Ivi

See Also:
« "Datetime and Interval Datatype Descriptors" on page 3-24

« "Datetime and Interval (OClIDateTime, OClInterval)" on
page 11-8

« "Data Conversions for Datetime and Interval Datatypes” on
page 3-29

« and "OCI Date, Datetime, and Interval Functions"” on
page 18-33
« Any Type, AnyData, AnyDataSet.

An OCIlAnyData encapsulates type information as well as a data instance of
that type (that is, self descriptive data). An OCIAnyDataSet encapsulates type
information as well as a set of instances of that type.

See Also: "AnyType, AnyData and AnyDataSet Interfaces” on

page 11-26 and the corresponding new functions in Chapter 20,
"OCI Any Type and Data Functions"

« Using LOB columns instead of LONG columns.
See Also: "Runtime Data Allocation and Piecewise Operations in

OCI" on page 5-40 has been rewritten with new features for support
of LOBs.

« Subtypes of objects can be defined.

See Also:
« "Type Inheritance" on page 10-37
« "OTT Support for Type Inheritance” on page 14-17

« Type evolution.

How the attributes of types can be changed.

See Also: "Type Evolution" on page 10-41

= Multilevel collection types.

Ivii

Collections whose elements are collections.

See Also: "Multilevel Collection Types" on page 11-22

« Externally initialized context.
An externally initialized context is an application context whose attributes can
be initialized from OCI.
See Also:
« "Externally Initialized Context in OCI" on page 8-21
« "User Session Handle Attributes" on page A-16

« Structural changes to this document:
« Chapter 15 of release 8.1.6 has been split into chapters 15 and 16.

« The sections in chapters 15 and 16 have been rearranged in a more logical
order.

« Chapters 17, 18, 19 were chapters 16, 17, 18 in release 8.1.6.
« Chapter 20 has been added.

See Also:

= See the section "Compatibility and Upgrading" on page 1-16 for
information about new calls that supersede existing routines.

= See the table of contents and the index for entries for the new
features.

Iviii

Part |

OCI Relational Concepts

This part contains these chapters:

Chapter 1, "Introduction and Upgrading", provides an introduction to the OCI
and discusses features that are new to this release.

Chapter 2, "OCI Programming Basics", discusses the basic concepts of OCI
programming.

Chapter 3, "Datatypes", describes datatypes used in OCI applications and
within the server.

Chapter 4, "Using SQL Statements in OCI", discusses how to process SQL
statements using OCI.

Chapter 5, "Binding and Defining in OCI", discusses bind and define operations
in detail.

Chapter 6, "Describing Schema Metadata", discusses the OCl Descr i beAny()
function.

Chapter 7, "LOB and BFILE Operations”, discusses the OCI functions that
perform operations on large objects (LOBs) in a database and external LOBs.

Chapter 8, "Managing Scalable Platforms", discusses password and session
management, middle-tier applications, and externally initialized context.

Chapter 9, "OCI Programming Advanced Topics", covers advanced topics in
OCI programming, such as threads, connection pooling, session pooling,
user-defined callbacks, advanced queuing, and publish-subscribe notification.

1

Introduction and Upgrading

This chapter contains these topics:
« Overview of OCI

« Compatibility and Upgrading
» OCI Instant Client

Introduction and Upgrading 1-1

Overview of OCI

Overview of OCI

The Oracle Call Interface (OCI) is an application programming interface (API) that
lets you create applications that use function calls to access an Oracle database
server and control all phases of SQL statement execution. OCI supports the
datatypes, calling conventions, syntax, and semantics of C and C++.

See Also:

« Oracle C++ Call Interface Programmer's Guide

« "Other Sources of Information about OCI" on page xlii

OCI provides:

« Improved performance and scalability through the efficient use of system
memory and network connectivity

« Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

« N-tier authentication
« Comprehensive support for application development using Oracle objects
« Access to external databases

« Applications that support an increasing number of users and requests without
additional hardware investments

OCI lets you manipulate data and schemas in an Oracle database using C
programming language. It provides a library of standard database access and
retrieval functions in the form of a dynamic runtime library (OCI library) that can
be linked in an application at runtime.

OCI has many new features that can be categorized into several primary areas:

« Encapsulated or opaque interfaces, whose implementation details are unknown
« Simplified user authentication and password management

« Extensions to improve application performance and scalability

« Consistent interface for transaction management

« OCIl extensions to support client-side access to Oracle objects

1-2 Oracle Call Interface Programmer's Guide

Overview of OCI

Advantages of OCI

OCI provides significant advantages over other methods of accessing an Oracle
database:

« More fine-grained control over all aspects of application design
« High degree of control over program execution

« Use of familiar third generation language programming techniques and
application development tools, such as browsers and debuggers

« Connection pooling, session pooling, and statement caching that enable
building of scalable applications

« Support of dynamic SQL

« Availability on the broadest range of operating systems of all the Oracle
programmatic interfaces

« Dynamic binding and defining using callbacks
« Description functionality to expose layers of server metadata
« Asynchronous event notification for registered client applications

« Enhanced array data manipulation language (DML) capability for array inserts,
updates, and deletes

« Ability to associate commit requests with executes to reduce round trips

« Optimization of queries using transparent prefetch buffers to reduce round
trips

« Thread safety which eliminates the need for mutual exclusive locks (mutexes)
on OCI handles

Building an OCI Application

You compile and link an OCI program in the same way that you compile and link a
non-database application. There is no need for a separate preprocessing or
precompilation step.

Oracle supports most popular third-party compilers. The details of linking an OCI
program vary from system to system. On some operating systems, it may be
necessary to include other libraries, in addition to the OCI library, to properly link
your OCI programs. See your Oracle system-specific documentation and the
installation guide for more information about compiling and linking an OCI
application for your operating system.

Introduction and Upgrading 1-3

Overview of OCI

Parts of OCI

See Also: Appendix D, "Getting Started with OCI for Windows"

OCI has the following functionality:

APIs to design a scalable, multithreaded application that can support large
numbers of users securely

SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database server

Datatype mapping and manipulation functions, for manipulating data
attributes of Oracle types

Data loading functions, for loading data directly into the database without
using SQL statements

External procedure functions, for writing C callbacks from PL/SQL

Procedural and Non-Procedural Elements

The Oracle Call Interface (OCI) lets you develop scalable, multithreaded
applications in a multitier architecture that combines the non-procedural data
access power of Structured Query Language (SQL) with the procedural capabilities
of C and C++.

In a non-procedural language program, the set of data to be operated on is
specified, but what operations will be performed, or how the operations are to
be carried out is not specified. The non-procedural nature of SQL makes it an
easy language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

In a procedural language program, the execution of most statements depends
on previous or subsequent statements and on control structures, such as loops
or conditional branches, which are not available in SQL. The procedural nature
of these languages makes them more complex than SQL, but it also makes them
more flexible and powerful.

The combination of both non-procedural and procedural language elements in an
OCI program provides easy access to an Oracle database in a structured
programming environment.

OCI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example,

1-4 Oracle Call Interface Programmer's Guide

Overview of OCI

an OCI program can run a query against an Oracle database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM enpl oyees WHERE enpno = :enpnunber;

In the preceding SQL statement, : enpnunber is a placeholder for a value that will
be supplied by the application.

You can also take advantage of PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications
written in SQL alone. OCI also provides facilities for accessing and manipulating
objects in an Oracle database server.

Object Support

OCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a per son object. That object
might have attributes—f i r st _nane, | ast _name, and age—which represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. Using the object type as a structural definition, a
per son object could be created with the attribute values ‘John', 'Bonivento', and
'30". Object types may also contain methods—programmatic functions that represent
the behavior of that object type.

See Also:

« Oracle Database Concepts

« Oracle Database Application Developer's Guide - Object-Relational

Features.

OCI includes functions that extend the capabilities of OCI to handle objects in an
Oracle database server. Specifically, the following capabilities have been added to
OCl:

« Executing SQL statements that manipulate object data and schema information
« Passing of object references and instances as input variables in SQL statements

« Declaring object references and instances as variables to receive the output of
SQL statements

Introduction and Upgrading 1-5

Overview of OCI

« Fetching object references and instances from a database

« Describing the properties of SQL statements that return object instances and
references

» Describing PL/SQL procedures or functions with object parameters or results

« Extension of commit and rollback calls in order to synchronize object and
relational functionality

Additional OCI calls are provided to support manipulation of objects after they
have been accessed by SQL statements. For a more detailed description of
enhancements and new features, refer to "Encapsulated Interfaces" on page 1-11.

SQL Statements

One of the main tasks of an OCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle
recognizes several types of SQL statements:

« Data Definition Language (DDL)
« Control Statements
« Transaction Control
= Session Control
« System Control
« Data Manipulation Language (DML)

« Queries

Note: Queries are often classified as DML statements, but OCI
applications process queries differently, so they are considered
separately here.

« PL/SQL
« Embedded SQL

See Also: Chapter 4, "Using SQL Statements in OCI"

1-6 Oracle Call Interface Programmer's Guide

Overview of OCI

Data Definition Language

Data definition language (DDL) statements manage schema objects in the database.
DDL statements create new tables, drop old tables, and establish other schema
objects. They also control access to schema objects.

The following is an example of creating and specifying access to a table:
CREATE TABLE enpl oyees

(name VARCHAR2(20) ,
ssn VARCHAR2(12) ,
enpno NUMBER(6) ,
ngr NUMBER(6) ,

sal ary NUMBER(6)) ;

GRANT UPDATE, | NSERT, DELETE ON enpl oyees TO donna;
REVOKE UPDATE ON enpl oyees FROM j ani €;

DDL statements also allow you to work with objects in the Oracle database server,
as in the following series of statements which creates an object table:

CREATE TYPE person_t AS OBJECT (
name VARCHAR2(30) ,
ssn VARCHAR2(12) ,
address VARCHAR2(50));

CREATE TABLE person_tab OF person_t;

Control Statements

OCI applications treat transaction control, session control, and system control
statements like DML statements.

See Also: Oracle Database SQL Reference for information about
these types of statements

Data Manipulation Language

Data manipulation language (DML) statements can change data in the database
tables. For example, DML statements are used to:

« Insert new rows into a table
« Update column values in existing rows

« Delete rows from a table

Introduction and Upgrading 1-7

Overview of OCI

« Lock a table in the database
« Explain the execution plan for a SQL statement

« Require an application to supply data to the database using input (bind)
variables

See Also: "Binding Placeholders in OCI" on page 4-5 for more
information about input bind variables

DML statements also allow you to work with objects in the Oracle database server,
as in the following example, which inserts an instance of type per son_t into the
object table per son_t ab:

I NSERT | NTO person_t ab
VALUES (person_t('Steve May','123-45-6789"',' 146 Wnfield Street'));

Queries

Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in
the following example:

SELECT dname FROM dept
VWHERE deptno = 42;

Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name
FROM enpl oyees
VHERE enpno = : enpnunber;

In the preceding SQL statement, : enpnunber is a placeholder for a value that will
be supplied by the application.

« When processing a query, an OCI application also needs to define output
variables to receive the returned results. In the preceding statement, you would
need to define an output variable to receive any name values returned from the

query.

1-8 Oracle Call Interface Programmer's Guide

Overview of OCI

See Also:

« "Overview of Binding in OCI" on page 5-2 for more information
about input bind variables. See the section "Overview of
Defining in OCI" on page 5-17 for information about defining
output variables.

« Chapter 4, "Using SQL Statements in OCI", for detailed
information about how SQL statements are processed in an
OCI program.

PL/SQL

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows a number of constructs to be grouped into a
single block and executed as a unit. Among these are:

One or more SQL statements

Variable declarations

Assignment statements

Procedural control statements (IF... THEN...ELSE statements and loops)

Exception handling

You can use PL/SQL blocks in your OCI program to:

Call Oracle stored procedures and stored functions

Combine procedural control statements with several SQL statements, so that
they are executed as a single unit

Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

Use cursor variables

Access and manipulate objects in an Oracle database server

The following PL/SQL example issues a SQL statement to retrieve values from a
table of employees, given a particular employee number. This example also
demonstrates the use of placeholders in PL/SQL statements.

BEG N

SELECT enane, sal, comm | NTO :enp_name, :salary, :conm ssion
FROM enp

Introduction and Upgrading 1-9

Overview of OCI

VHERE enpno = :enp_nunber;
END;

Note that the placeholders in this statement are not PL/SQL variables. They
represent input values passed to Oracle when the statement is processed. These
placeholders need to be bound to C language variables in your program.

See Also:

« PL/SQL User's Guide and Reference for information about coding
PL/SQL blocks.

« "Binding Placeholders in PL/SQL" on page 5-4 for information
about working with placeholders in PL/SQL.

Embedded SQL

OCI processes SQL statements as text strings that an application passes to Oracle on
execution. The Oracle precompilers (Pro*C/C++, Pro*xCOBOL, Pro*FORTRAN)
allow you to embed SQL statements directly into your application code. A separate
precompilation step is then necessary to generate an executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program.

See Also: Pro*C/C++ Programmer's Guide

Special OCI/SQL Terms

This guide uses special terms to refer to the different parts of a SQL statement. For
example, a SQL statement such as

SELECT cust oner, address
FROM cust omer s

WHERE bus_type = ' SOFTWARE'
AND sal es_vol une = :sal es;

contains the following parts:

« A SQL command - SELECT

= Two select-list items - cust omer and addr ess

= A table name in the FROMclause - cust oner s

« Two column names in the WHERE clause - bus_t ype and sal es_vol une
« Aliteral input value in the WHERE clause - 'SOFTWARE'

1-10 Oracle Call Interface Programmer's Guide

Overview of OCI

« A placeholder for an input variable in the WHERE clause - : sal es

When you develop your OCI application, you call routines that specify to the Oracle
database server the address (location) of input and output variables of your
program. In this guide, specifying the address of a placeholder variable for data
input is called a bind operation. Specifying the address of a variable to receive
select-list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations. These
terms and operations are described in Chapter 4, "Using SQL Statements in OCI".

Encapsulated Interfaces

All the data structures that are used by OCI calls are encapsulated in the form of
opaque interfaces that are called handles. A handle is an opaque pointer to a storage
area allocated by the OCI library that stores context information, connection
information, error information, or bind information about a SQL or PL/SQL
statement. A client allocates a certain types of handles, populates one or more of
those handles through well-defined interfaces, and sends requests to the server
using those handles. In turn, applications can access the specific information
contained in the handle by using accessor functions.

The OCI library manages a hierarchy of handles. Encapsulating the OCI interfaces
by means of these handles has several benefits to the application developer,
including:

« Reduction in the amount of server side state information that needs to be
retained, thereby reducing server-side memory usage

« Improvement of productivity by eliminating the need for global variables,
making error reporting easier, and providing consistency in the way OCI
variables are accessed and used

« Encapsulation of OCI structures in the form of handles makes them opaque,
allowing changes to be made to the underlying structure without affecting
applications

Simplified User Authentication and Password Management

OCI provides application developers with simplified user authentication and
password management in several ways:

« Allows asingle OCI application to authenticate and maintain multiple users

Introduction and Upgrading 1-11

Overview of OCI

« Allows the application to update a user's password, which is particularly
helpful if an expired password message is returned by an authentication
attempt

OCI supports two types of login sessions:

« A simplified login function for sessions by which a single user connects to the
database using a login name and password

« A mechanism by which a single OCI application authenticates and maintains
multiple sessions by separating the login session, which is the session created
when a user logs into an Oracle database, from the user sessions, which are all
other sessions created by a user

Extensions to Improve Application Performance and Scalability

OCI has several enhancements to improve application performance and scalability.
Application performance has been improved by reducing the number of client to
server round trips required and scalability improvements have been made by
reducing the amount of state information that needs to be retained on the server
side. Some of these features include:

« Increased client-side processing, and reduced server-side requirements on
queries

« Implicit prefetching of SELECT statement result sets to eliminate the describe
round trip, reduce round trips, and reduce memory usage

« Elimination of open and closed cursor round trips
« Improved support for multithreaded environments
= Session multiplexing over connections

« Consistent support for a variety of configurations, including standard two-tier
client/server configurations, server-to-server transaction coordination, and
three-tier TP-monitor configurations

« Consistent support for local and global transactions including support for the
XA interface's TM_JOIN operation

« Improved scalability by providing the ability to concentrate connections,
processes, and sessions across users on connections and eliminating the need
for separate sessions to be created for each branch of a global transaction

« Allowing applications to authenticate multiple users and allow transactions to
be started on their behalf

1-12 Oracle Call Interface Programmer's Guide

Overview of OCI

OCI Object Support

OCI provides a comprehensive application programming interface for
programmers seeking to use the Oracle server's object capabilities. These features
can be divided into five major categories:

« Client-Side Object Caching
« Associative and navigational interfaces to access and manipulate objects
« Runtime environment for objects

« Type management functions to access information about object types in an
Oracle database

« Type mapping and manipulation functions for controlling data attributes of
Oracle types

« Object Type Translator utility, for mapping internal Oracle schema information
to client-side language bind variables

Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks object instances that have been
fetched by an OCI application from the server to the client side. The object cache is
created when the OCI environment is initialized. Multiple applications running
against the same server will each have their own object cache. The cache tracks the
objects which are currently in memory, maintains references to objects, manages
automatic object swapping and tracks the meta-attributes or type information about
objects. The object cache provides the following to OCI applications:

« Improved application performance by reducing the number of client/server
round trips required to fetch and operate on objects

« Enhanced scalability by supporting object swapping from the client-side cache

« Improved concurrency by supporting object-level locking

Associative and Navigational Interfaces

Applications using OCI can access objects in the Oracle server through several types
of interfaces:

« Using SQL SELECT, | NSERT, and UPDATE statements

Introduction and Upgrading 1-13

Overview of OCI

Using a C-style pointer chasing scheme to access objects in the client-side cache
by traversing the corresponding smart pointers or REFs

OCI provides a set of functions with extensions to support object manipulation
using SQL SELECT, | NSERT, and UPDATE statements. To access Oracle objects these
SQL statements use a consistent set of steps as if they were accessing relational
tables. OCI provides the following sets of functions required to access objects:

Binding and defining object type instances and references as input and output
variables of SQL statements

Executing SQL statements that contain object type instances and references
Fetching object type instances and references

Describing select-list items of an Oracle object type

OCI also provides a set of functions using a C-style pointer chasing scheme to
access objects once they have been fetched into the client-side cache by traversing
the corresponding smart pointers or REFs. This navigational interface provides
functions for:

Instantiating a copy of a referenceable persistent object, that is, of a persistent
object with object ID in the client-side cache by pinning its smart pointer or REF

Traversing a sequence of objects that are connected to each other by traversing
the REFs that point from one to the other

Dynamically getting and setting values of an object's attributes

OCI Runtime Environment for Objects

OCI provides functions for objects that manages how Oracle objects are used on the
client-side. These functions provide for:

Connecting to an Oracle server in order to access its object functionality,
including initializing a session, logging on to a database server, and registering
a connection

Setting up the client-side object cache and tuning its parameters
Getting errors and warning messages

Controlling transactions that access objects in the server
Associatively accessing objects through SQL

Describing a PL/SQL procedure or function whose parameters or result are
Oracle types

1-14 Oracle Call Interface Programmer's Guide

Overview of OCI

Type Management, Mapping and Manipulation Functions
OCI provides two sets of functions to work with Oracle objects:

« Type Mapping functions allow applications to map attributes of an Oracle
schema represented in the server as internal Oracle datatypes to their
corresponding host language types.

« Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle schema such as setting and getting their
values and flushing their values to the server.

Additionally, the OCl Descri beAny() function provides information about objects
stored in the database.

Object Type Translator

The Object Type Translator (OTT) utility translates schema information about
Oracle object types into client-side language bindings of host language variables,
such as structures. The OTT takes as input an i nt ype file which contains metadata
information about Oracle schema objects. It generates an out t ype file and the
necessary header and implementation files that must be included in a C application
that runs against the object schema. Both OCI applications and Pro*C/C++
precompiler applications may include code generated by the OTT. The OTT has
many benefits including:

« Improves application developer productivity: OTT eliminates the need for you
to code the host language variables that correspond to schema objects.

« Maintains SQL as the data-definition language of choice: By providing the
ability to automatically map Oracle schema objects that are created using SQL
to host language variables, OTT facilitates the use of SQL as the data-definition
language of choice. This in turn allows Oracle to support a consistent model of
data.

« Facilitates schema evolution of object types: OTT regenerates included header
files when the schema is changed, allowing Oracle applications to support
schema evolution.

OTT is typically invoked from the command line by specifying the i nt ype file, the
out t ype file and the specific database connection. With Oracle, OTT can only
generate C structures which can either be used with OCI programs or with the
Pro*C/C++ precompiler programs.

Introduction and Upgrading 1-15

Compatibility and Upgrading

OCI Support for Oracle Streams Advanced Queuing

OCI provides an interface to Oracle's Streams Advanced Queuing (Streams AQ)
feature. Streams AQ provides message queuing as an integrated part of the Oracle
server. Streams AQ provides this functionality by integrating the queuing system
with the database, thereby creating a message-enabled database. By providing an
integrated solution Streams AQ frees you to devote your efforts to your specific
business logic rather than having to construct a messaging infrastructure.

See Also: "OCI and Streams Advanced Queuing" on page 9-48.

XA Library Support
OCI supports the Oracle XA library.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for information about support for the Oracle XA
library.

Compatibility and Upgrading

The following sections discuss issues concerning compatibility between different
versions of OCI client and server, changes in the OCI library routines, and
upgrading an application from the release 7.x OCI to this release of OCI.

Simplified Upgrading of Existing OCI Release 7 Applications

OCI has been significantly improved with many features. Applications written to
work with OCI release 7 have a smooth migration path to this OCI release because
of the interoperability of OCI release 7 clients with this release of the server, and of
clients of this release with an Oracle database version 7 server.

Specifically:

« Applications that use the OCI release 7.3 API will work unchanged against this
release of the server. They do need to be linked with the current client library.

« OClrelease 7 and the OCI calls of this release can be mixed in the same
application and in the same transaction provided they are not mixed within the
same statement execution.

As a result, when migrating an existing OCI version 7 application you have the
following two alternatives:

1-16 Oracle Call Interface Programmer's Guide

Compatibility and Upgrading

Upgrade to the current OCI client but do not modify application: If you choose
to upgrade from an Oracle release 7 OCI client to the current release OCI client,
you need only link the new version of the OCI library and need not recompile
your application. The re-linked Oracle release 7 OCI applications work
unchanged against a current server.

Upgrade to current OCI client and modify application: To use the performance
and scalability benefits provided by the new OCI, however, you will need to
modify your existing applications to use the new OCI programming paradigm,
re-link them with the new OCI library, and run them against the current release
of the server.

If you need to use any of the object capabilities of the current server release, you
will need to upgrade your client to this release of OCI.

Statically-Linked and Dynamically-Linked Applications

Here are the rules for re-linking for a new release.

Statically-linked applications:

Statically-linked applications need to be re-linked for both major and minor
version releases, because the linked Oracle client-side library code may be
incompatible with the error messages in the upgraded ORACLE_HOVME. For
example, if an error message was updated with additional parameters then it
will not be compatible with the statically-linked code.

Dynamically-linked applications:

Dynamically-linked applications need to be re-linked for major version releases
only. OCI applications which are dynamically linked have a hard reference to
thel i bcl nt sh. so. n, where n is the major release number (such as 9.0). For
minor releases like 9.2 where a new client-side library, | i bcl nt sh. so. 9. 2, is
created, OCI has a symbolic link called I i bcl nt sh. so. 9. 0 which points to
i bclntsh.so.9.2.

Applications with a hard link to | i bcl nt sh. so. 9. 0 will continue to work in
a 9.2 ORACLE_HOME. For a major release OCI does not create all the earlier
version symbolic links. In 10.1 thereisno | i bcl nst h. so. 9. 0 which points to
I'i bcl nsth. so. 10. 1. The application with a hard reference to

I'i bcl nsh. so. 9. 0 cannot run in 10.1 ORACLE_HQOVE unless it is re-linked.

Introduction and Upgrading 1-17

Compatibility and Upgrading

See Also:

« Oracle Database Upgrade Guide for the most recently updated
information about compatibility and upgrading

« The server versions supported currently are found on Oracle
iSupport in note 207303.1. See the URL
http://nmetalink.oracl e.com

Obsolete OCI Routines

Release 8.0 of the OCI introduced an entirely new set of functions which were not
available in release 7.3. Oracle continues to support these release 7.3 functions.
Many of the earlier 7.x calls are available, but Oracle strongly recommends that new
applications use the new calls to improve performance and provide increased
functionality.

Table 1-1, "Obsolescent OCI Routines" lists the 7.x OCI calls with their later
equivalents. For more information about the OCI calls, see the function descriptions
in Part 111 of this guide. For more information about the 7.x calls, see the
Programmer*s Guide to the Oracle Call Interface, Release 7.3. These 7.x calls are
obsoleted, meaning that OCI has replaced them with newer calls. While the
obsoleted calls are supported at this time, they may not be supported in all future
versions of OCI.

Note: In many cases the new OCI routines do not map directly
onto the 7.x routines, so it may not be possible to simply replace
one function call and parameter list with another. Additional
program logic may be required before or after the new call is made.
See the remaining chapters of this guide for more information.

Table 1-1 Obsolescent OCI Routines

7.x OCI Routine Equivalent or Similar Later OCI Routine

obi ndps(), obndra(), OClIBi ndByNane(),OCl Bi ndByPos() (Note: additional
obndrn(), obndrv() bind calls may be necessary for some datatypes)

obr eak() OCl Br eak()

ocan() none

ocl ose() Note: cursors are not used in release 8.x or later

1-18 Oracle Call Interface Programmer's Guide

Compatibility and Upgrading

Table 1-1 Obsolescent OCI Routines (Cont.)

7.x OCIl Routine

Equivalent or Similar Later OCI Routine

ocof (), ocon()

ocom()
odefin(),

odescr ()

odessp()
oer hns()
oexec(),

oexfet ()

odefinps()

oexn()

ofen(), ofetch()

of I ng()
oget pi ()
ol og()
ol ogof ()

onbclr (),
onbt st ()

oopen()
oopt ()
oparse()
opi nit()
orol ()
oset pi ()
sql 1 d2()
sql I da()

onbset (),

OClI St nt Execut e() with OCI_COMMIT_ON_SUCCESS
mode

OCI TransCommi t ()

CCl Def i neByPos() (Note: additional define calls may be
necessary for some datatypes)

Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, will most often be done by
calling OCIAttrGet() on the statement handle after SQL
statement execution.

CCl Descri beAny()
OCl Error Get ()
CCl St nt Execut e()

OCl St nt Execut e(), OCl St nt Fet ch() (Note: result set
rows can be implicitly prefetched)

CCl St nt Fet ch()

none

COCl St nt Get Pi ecel nfo()
CCl Logon()

OCl Logof f ()

Note: nonblocking mode can be set or checked by calling
OClI AttrSet () orOCl Attr Cet () on the server context
handle or service context handle

Note: cursors are not used in release 8.x or later
none

CCl St nt Prepar e() ; however, it is all local
OCl EnvCreate()

CCl Tr ansRol | back()

COCl St nt Set Pi ecel nfo()

SQSvecCt xGet or SQLEnvGet

SQSvecCt xGet or SQLEnvGet

Introduction and Upgrading 1-19

Compatibility and Upgrading

Table 1-1 Obsolescent OCI Routines (Cont.)

7.x OCI Routine Equivalent or Similar Later OCI Routine
odsc() Note: see odescr() preceding

oernsg() OCl Error Get ()

ol on() OClI Logon()

orlon() OClI Logon()

onane() Note: see odescr () preceding

osql 3() Note: see opar se() preceding

See Also: For information about the additional functionality
provided by new functions not listed here, see the remaining
chapters of this guide.

OCI Routines Not Supported

Some OCI routines that were available in previous versions of OCI are not
supported in later releases. They are listed in Table 1-2, "OCI Routines Not
Supported":

Table 1-2 OCI Routines Not Supported

OCI Routine Equivalent or Similar Later OCI Routine

obi nd() OCl Bi ndByNane(), OCl Bi ndByPos() (Note:
additional bind calls may be necessary for some
datatypes)

obi ndn() CCl Bi ndByNane(), OCl Bi ndByPos() (Note:
additional bind calls may be necessary for some
datatypes)

odf i nn() CCl Def i neByPos() (Note: additional define calls may
be necessary for some datatypes)

odsr bn() Note: see odescr () in Table 1-1

ol ogon() OClI Logon()

osql () Note: see opar se() Table 1-1

Compatibility Between Different Releases of OCl and Servers

1-20 Oracle Call Interface Programmer's Guide

Compatibility and Upgrading

This section addresses compatibility between different releases of OCI and Oracle
server.

Existing 7.x applications with no new post-release 7.x calls have to be re-linked with
the new client-side library.

The application will not be able to use the object features of Oracle8i or later, and
will not get any of the performance or scalability benefits provided by those OCI
releases.

Upgrading OCI

Programmers who wish to incorporate release post-release 7.x functionality into
existing OCI applications have two options:

« Completely rewrite the application to use only new OCI calls (recommended).

« Incorporate new OCI post-release 7.x calls into the application, while still using
7.x calls for some operations.

This manual should provide the information necessary to rewrite an existing
application to use only new OCI calls.

Adding Post-release 7.x OCI Calls to 7.x Applications

The following guidelines apply to programmers who want to incorporate new
Oracle datatypes and features by using new OCI calls, while keeping 7.x calls for
some operations;

« Change the existing logon to use OCl Logon() instead of ol og() (or other
logon call). The service context handle can be used with new OCI calls or can be
converted into an Lda_Def to be used with 7.x OClI calls.

See Also: See the description of OCl Ser ver Att ach() on
page 16-115 and the description of OCl Sessi onBegi n() on
page 16-115 for information about the logon calls necessary for
applications which are maintaining multiple sessions.

« After the server context handle has been initialized, it can be used with OCI
post-release 7.x calls.

« To use release 7 OCI calls, convert the server context handle to an Lda_ Def
using OCl SvcCt xToLda(), and pass the resulting Lda_Def to the 7.x calls.

Introduction and Upgrading 1-21

OCI Instant Client

Note: If there are multiple service contexts that share the same
server handle, only one can be in Oracle version 7 mode at any one
time.

« To begin using post-release 7.x OCI calls again, the application must convert the
Lda_Def back to a server context handle using OCl LdaToSvcCt x() .

« The application may toggle between the Lda_Def and server context as often
as necessary in the application.

This approach allows an application to use a single connection, but two different
APIs, to accomplish different tasks.

You can mix OCI 7.x and post-release 7.x calls within a transaction, but not within a
statement. This lets you execute one SQL or PL/SQL statement with OCI 7.x calls
and the next SQL or PL/SQL statement within that transaction with post-release 7.x
OCiI calls.

Caution: You cannot open a cursor, parse with OCI 7.x calls and
then execute the statement with post-release 7.x calls.

OCI Instant Client

The Instant Client feature makes it extremely easy to deploy OCI, OCCI, ODBC,
and JDBC-OCI based customer applications by eliminating the need for an
ORACLE_HQOME. The storage space requirement of an OCI application running in
Instant Client mode is significantly reduced compared to the same application
running in a full client side installation. The Instant Client shared libraries only
occupy about one-fourth the disk space of a full client installation.

Table 1-3 shows the Oracle client side files required to deploy an OCI application:

Table 1-3 OCI Instant Client Shared Libraries

UNIX Windows Description

l'ibclnstsh.so.10.1 oci.dll Client Code Library

I i bociei.so oraoci ei 10.dl | OCI Instant Client Data Shared
Library

i bnnz10. so orannzsbb10. dl | Security Library

1-22 Oracle Call Interface Programmer's Guide

OCl Instant Client

Release 10.1 library names are used in the table. The number part of library names
will change in future releases to agree with the release.

To use the Microsoft ODBC and OLEDB driver, oci w32. dl I must also be copied
from ORACLE_HOMEN\Dbin.

Benefits of Instant Client
The benefits of Instant Client are:

« Installation involves copying a small number of files.

« The Oracle client-side number of required files and the total disk storage are
significantly reduced.

« There is no loss of functionality or performance for applications deployed in
Instant Client mode.

« Itis simple for independent software vendors to package applications.

OClI Instant Client Installation Process

The Instant Client libraries can also be installed by choosing the Instant Client
option from the Oracle Universal Installer. The Instant Client libraries can also be
downloaded from the Oracle Technology Network (ot n. or acl e. com) Web site.
The installation process is as simple as:

1. Downloading and installing the Instant Client shared libraries to a directory
suchasinstantclient.

2. Setting the OS shared library path environment variable to the directory from
step 1. For example, on UNIX, set the LD_LIBRARY_PATH to
i nstantcl i ent.OnWindows, set PATH to locate the i nst ant cl i ent
directory.

After completing the above two steps you are ready to run the OCI application.

The OCI application operates in Instant Client mode when the three OCI shared
libraries are accessible through the OS Library Path variable. In this mode, there is
no dependency on ORACLE_HQOVME and none of the other code and data files
provided in ORACLE_HOVE are needed by OCI (except for the t nsnanes. or a file
described later).

If you have done a complete client installation (by choosing the Admin option) the
Instant Client shared libraries are also installed. The location of the Instant Client
shared libraries in a full client installation is:

Introduction and Upgrading 1-23

OCI Instant Client

On UNIX:

I i boci ei.solibraryisin $ORACLE_HOVE/ i nst ant cl i ent

l'i bcl nstsh.so.10.1andlibnnz10. soarein $ORACLE HOVE/ | i b
On Windows:

oraoci ei 10. dl | library isin ORACLE_HOVE\ i nst ant cl i ent

oci .dll,ociw32.dl I, orannzsbb10. dl | are in ORACLE_HOVE\ bi n

By copying the above libraries to a different directory and setting the OS shared
library path to locate this directory you can enable running the OCI application in
Instant Client mode.

Note: All the libraries must be copied from the same
ORACLE_HOME and must be placed in the same directory.

To enable other capabilities such as OCCI and JDBC-OCI, a few other files need to
be copied over as well. In particular, for the JDBC OCI driver, in addition to the
three OCI shared libraries, you must also download OCI JDBC Library (for example
i bocijdbcl10.soonUNIXandoraocijdbcl0.dl I onWindows) and

oj dbcXY. j ar (where XY is the version number, for example, oj dbc14. j ar). All
libraries must be able to be loaded from the library path and oj dbcXY. j ar must
be able to be loaded from CLASSPATH.

Note: On hybrid platforms, such as Sparc64, if the JDBC OCI
driver needs to be operated in the Instant Client mode, the

I i boci ei . so library must be copied from the

ORACLE_HOWE/ i nst ant cl i ent 32 directory. All other Sparc64
libraries needed for the JDBC OCI Instant Client must be copied
from the ORACLE_HOWVE/ | i b32 directory.

For OCCI, the OCCI Library (I i bocci . so. 10. 1 on UNIX and or aocci 10. dl |
on Windows) must also be installed in a directory on the OS Library Path variable.

When to Use Instant Client

Instant Client is a deployment feature and should be used for running production
applications. For development, a full installation is necessary to access OCI header
files, Makefiles, demonstration programs, and so on. In general, all OCI

1-24 Oracle Call Interface Programmer's Guide

OCl Instant Client

functionality is available to an application being run in the Instant Client mode,
except that the Instant Client mode is for client-side operation only. Therefore,
server-side external procedures cannot operate in the Instant Client mode.

Patching Instant Client Shared Libraries

Because Instant Client is a deployment feature, the emphasis has been on reducing
the number and size of files (client footprint) required to run an OCI application.
Hence all files needed to patch Instant Client shared libraries are not available in an
Instant Client deployment. An ORACLE_HOVE based full client installation is
needed to patch the Instant Client shared libraries. The opat ch utility will take care
of patching the Instant Client shared libraries.

After patching the Instant Client shared libraries Oracle recommends generating the
patch inventory information by executing the following command from the
ORACLE_HOWVE/ OPat ch directory:

opatch | sinventory > opatchinv. out
The opat chi nv. out file should be copied along with the patched Instant Client

libraries to the deployment directory. The information in opat chi nv. out will
indicate all the patches that have been applied.

The opat ch inventory information for Instant Client libraries is not needed on the
Windows platform, so this step can be skipped on Windows.

Regeneration of Data Shared Library

The OCI Instant Client Data Shared Library (I i boci ei . so) can be regenerated by
performing the following steps in an Administrator Install of ORACLE_HOVE:

cd $ORACLE_HOVE/ rdbns/1ib
make -f ins_rdbms. nk iliboci ei

A new version of | i boci ei . so based on the current files in the ORACLE_HOVE is
then placed in the ORACLE_HOWME/ i nst ant ¢l i ent directory.

Regeneration of data shared library is not available on Windows platforms.

Database Connection Names for OCI Instant Client

All Oracle net naming methods that do not require use of ORACLE_HOVE or
TNS_ADM N (to locate configuration files such ast nsnames. or a or sql net. or a)

Introduction and Upgrading 1-25

OCI Instant Client

work in the Instant Client mode. In particular, the connect string in the
OCl Server At t ach() call can be specified in the following formats:

« A SQL Connect URL string of the form:

[I'host:[port][/service nane]

such as:
/1 dl sun242: 5521/ bj ava2l

« Asan Oracle Net keyword-value pair. For example:

" (DESCRI PT| ON=(ADDRESS=(PROTOCOL=t cp) (HOST=dl sun242) (PORT=5521))
(CONNECT _DATA=(SERVI CE_NAME=bj ava21)))"

Naming methods that require TNS_ADM Nto locate configuration files continue to
work if the TNS_ADM Nenvironment variable is set.

If the TNS_ADM Nenvironment variable is not set, and TNSNAMES entries such as
i nst 1, and so on, are used, then the ORACLE_HOVE variable must be set, and the
configuration files are expected to be in the $ORACLE_HOVE/ net wor k/ admni n
directory.

Please note that the ORACLE_HOVE variable in this case is only used for locating
Oracle Net configuration files, and no other component of Client Code Library
(OCI, NLS, and so on) uses the value of ORACLE_HOVE.

The bequeath adapter or the empty connect strings are not supported. However, an
alternate way to use the empty connect string is to set the TWD TASK environment
variable on UNIX, or the LOCAL variable on Windows, to either at nsnanes. or a
entry or an Oracle Net keyword-value pair. If TWO TASK or LOCAL is setto a

t nsnanes. or a entry, then the t nsnanes. or a file must be able to be loaded by
TNS_ADM N or ORACLE HOME setting.

Environment Variables for OCI Instant Client

The ORACLE_HOVE environment variable no longer determines the location of NLS,
CORE, and error message files. An OCl-only application should not require
ORACLE_HOME to be set. However, if it is set, it does not have an impact on OCl's
operation. OCI will always obtain its data from the Data Shared Library. If the Data
Shared Library is not available, only then is ORACLE_HOME used and a full client
installation is assumed. Even though ORACLE_HQOVE is not required to be set, if it is
set, then it must be set to a valid operating system path name that identifies a
directory.

1-26 Oracle Call Interface Programmer's Guide

OCl Instant Client

If Dynamic User callback libraries are to be loaded, then as this guide specifies, the
callback package has to reside in ORACLE_HOVE/ | i b (ORACLE_HQVE\ bi n on
Windows). Therefore, ORACLE_HOVE should be set in this case.

Environment variables ORA_NLS33, ORA NLS32, and ORA _NLS are ignored in the
Instant Client mode.

In the Instant Client mode, if the ORA_TZFI LE variable is not set, then the smaller,
default, t i mezone. dat file from the Data Shared Library is used. If the larger

ti mezl rg. dat file is to be used from the Data Shared Library, then set the

ORA _TZFI LE environment variable to the name of the file without any absolute or
relative path names. That is, on UNIX:

setenv ORA TZFILE tinezlrg.dat

On Windows:
set ORA TZFILE tinezlrg.dat

If OCI is not operating in the Instant Client mode (because the Data Shared Library
is not available), then ORA_TZFI LE variable, if set, names a complete path name as
it does in previous Oracle releases.

If TNSNAMES entries are used, then, as mentioned earlier, TNS_ADM Ndirectory
must contain the TNSNAMES configuration files, and if TNS_ADM N s not set, then
the ORACLE_HOME/ net wor k/ adni n directory must contain Oracle Net Services
configuration files.

Introduction and Upgrading 1-27

OCI Instant Client

1-28 Oracle Call Interface Programmer's Guide

2

OCI Programming Basics

This chapter introduces you to the basic concepts involved in programming with

the OCI.

This chapter contains these topics:

« Overview of OCI Programming
« OCI Program Structure

« OCI Data Structures

« Handles

« OCI Descriptors

« OCI Programming Steps

« OCI Environment Initialization
« Commit or Rollback

« Terminating the Application

« Error Handling in OCI

« Additional Coding Guidelines
« Nonblocking Mode in OCI

« Using PL/SQL in an OCI Program
« OCI Globalization Support

OCI Programming Basics 2-1

Overview of OCI Programming

Overview of OCI Programming

This chapter provides an introduction to the concepts and procedures involved in
developing an OCI application. After reading this chapter, you should have most of
the tools necessary to understand and create a basic OCI application.

This chapter is broken down into the following major sections:

« OCI Program Structure - covers the basic structure of, and the major steps
involved in creating an OCI application.

» OCI Data Structures - discusses handles and descriptors.

« OCI Programming Steps - discusses in detail each of the steps involved in
coding an OCI application.

« Error Handling in OCI - covers error handling in OCI applications.

« Additional Coding Guidelines - provides useful information for coding an OCI
application.

= Nonblocking Mode in OCI - covers the use of nonblocking mode to connect to
an Oracle database server.

« Using PL/SQL in an OCI Program - discusses important points for working
with PL/ZSQL in an OCI application.

New users should pay particular attention to the information presented in this
chapter, because it forms the basis for the rest of the material presented in this
guide. The information in this chapter is supplemented by information in later
chapters.

See Also:

« For adiscussion of the OCI functions that apply to a
multilingual environment, see the Oracle Database Globalization
Support Guide

« For adiscussion of the OCI functions that apply to cartridge
services, see the Oracle Data Cartridge Developer's Guide.

OCI Program Structure

2-2

The general goal of an OCI application is to operate on behalf of multiple users. In
an n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that
include exchanging data and performing data processing.

Oracle Call Interface Programmer's Guide

OCI Program Structure

OCI uses the following basic program structure:
1. Initialize the OCI programming environment and threads.
2. Allocate necessary handles, and establish server connections and user sessions.

3. Exchange data with the database server by executing SQL statements on the
server, and perform necessary application data processing.

4. Execute prepared statements, or prepare a new statement for execution.
5. Terminate user sessions and server connections.
6. Free handles.

Figure 2-1, "Basic OCI Program Flow" illustrates the flow of steps in an OCI
application. Each step is described in more detail in the section "OCI Programming
Steps" on page 2-18.

Figure 2-1 Basic OCI Program Flow

Create
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Begin Session

v

Issue SQL
and Process Data

v

Disconnect

v

Free Handles
& Data Structures

Keep in mind that the diagram and the list of steps present a simple generalization
of OCI programming steps. Variations are possible, depending on the functionality
of the program. OCI applications that include more sophisticated functionality, such
as managing multiple sessions and transactions and using objects, require
additional steps.

OCI Programming Basics 2-3

OCI Data Structures

All OCI function calls are executed in the context of an environment. There can be
multiple environments within an OCI process. If an environment requires any
process-level initialization, then it is performed automatically.

Note: Itis possible to have more than one active connection and
statement in an OCI application.

See Also: For information about accessing and manipulating
objects, see Chapter 10, "OCI Object-Relational Programming" and
the subsequent chapters

OCI Data Structures

Handles

Handles and descriptors are opaque data structures which are defined in OCI
applications. They can be allocated directly, through specific allocate calls, or they
can be implicitly allocated by OCI functions.

7.x Upgrade Note: Programmers who have previously written 7.x
OCI applications need to become familiar with these new data
structures which are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or
application behavior. Handles are defined in more detail in the next section:

See Also: Descriptors are discussed in the section "OCI
Descriptors" on page 2-13

Almost all OCI calls include in their parameter list one or more handles. A handle is
an opaque pointer to a storage area allocated by the OCI library. You use a handle to
store context or connection information, (for example, an environment or service
context handle), or it may store information about OCI functions or data (for
example, an error or describe handle). Handles can make programming easier,
because the library, rather than the application, maintains this data.

Most OCI applications need to access the information stored in handles. The get
and set attribute OCI calls, OCl At tr Get () and OCl At tr Set (), access and set this
information.

2-4 Oracle Call Interface Programmer's Guide

Handles

See Also:

"Handle Attributes" on page 2-12

Table 2-1 lists the handles defined for the OCI. For each handle type, the C datatype
and handle type constant used to identify the handle type in OCI calls are listed.

Table 2-1 OCI Handle Types

Description C Datatype Handle Type

OCI environment handle OCl Env OCI_HTYPE_ENV

OCl error handle OCl Error OCI_HTYPE_ERROR
OCI service context handle OCl SveCt x OCI_HTYPE_SVCCTX
OCI statement handle Cl St mt OCI_HTYPE_STMT

OCI bind handle QCl Bi nd OCI_HTYPE_BIND

OCI define handle QOCl Def i ne OCI_HTYPE_DEFINE
OCI describe handle OCl Descri be OCI_HTYPE_DESCRIBE
OCI server handle OCl Server OCI_HTYPE_SERVER
OCI user session handle CCl Sessi on OCI_HTYPE_SESSION
OCI authentication information CCl Aut hl nf o OCI_HTYPE_AUTHINFO
handle

OCI connection pool handle OCl CPool OCI_HTYPE_CPOOL
OCI session pool handle OCl SPool OCI_HTYPE_SPOOL
OCI transaction handle CCl Tr ans OCI_HTYPE_TRANS

OCI complex object retrieval (COR)
handle

OCI thread handle
OCI subscription handle
OCI direct path context handle

OCI direct path function context
handle

OCI direct path column array handle
OCI direct path stream handle
OCI process handle

OCl Conpl exObj ect

OCl Thr eadHand! e
OCl Subscri ption
OClI Di r Pat hCt x

OClI Di r Pat hFuncCt x

OCl Di r Pat hCol Array
CCl Di r Pat hSt ream

QOCl Process

N/A

OCI_HTYPE_COMPLEXOBJECT

OCI_HTYPE_SUBSCRIPTION
OCI_HTYPE_DIRPATH_CTX
OCI_HTYPE_DIRPATH_FN_CTX

OCI_HTYPE_DIRPATH_COLUMN_ARRAY
OCI_HTYPE_DIRPATH_STREAM
OCI_HTYPE_PROCESS

OCI Programming Basics 2-5

Handles

Allocating and Freeing Handles

Your application allocates all handles (except the bind, define, and thread handles)
with respect to a particular environment handle. You pass the environment handle
as one of the parameters to the handle allocation call. The allocated handle is then
specific to that particular environment.

The bind and define handles are allocated with respect to a statement handle, and
contain information about the statement represented by that handle.

Note: The bind and define handles are implicitly allocated by the
OCIl library, and do not require user allocation.

Figure 2-2, "Hierarchy of Handles" illustrates the various types of handles.

2-6 Oracle Call Interface Programmer's Guide

Handles

Figure 2-2 Hierarchy of Handles

Session
Handle

Direct Path
Context Handle

Thread
Handle

COR
Handle

Subscription

DRRE

Handle
Environment . Describe
Handle Handle
Statement
Handle

Service Context
Handle

Error
Handle

Server
Handle

Tl

Connection Pool
Handle

The environment handle is allocated and initialized with a call to
OCl EnvCr eat e() orto OCl EnvN sCr eat e(), one of which is required by all OCI
applications.

All user-allocated handles are initialized using the OCI handle allocation call,
OCl Handl eAl | oc() .

The thread handle is allocated with the OCl Thr eadHndI ni t () call.

An application must free all handles when they are no longer needed. The
OCl Handl eFr ee() function frees all handles.

OCI Programming Basics 2-7

Handles

Note: When a parent handle is freed, all child handles associated
with it are also freed, and can no longer be used. For example,
when a statement handle is freed, any bind and define handles
associated with it are also freed.

Handles lessen the need for global variables. Handles also make error reporting
easier. An error handle is used to return errors and diagnostic information.

See Also: For sample code demonstrating the allocation and use
of OCI handles, see the example programs listed in Appendix B,
"OCI Demonstration Programs"

Environment Handle

The environment handle defines a context in which all OCI functions are invoked.
Each environment handle contains a memory cache, which enables fast memory
access. All memory allocation under the environment handle is done from this
cache. Access to the cache is serialized if multiple threads try to allocate memory
under the same environment handle. When multiple threads share a single
environment handle, they may block on access to the cache.

The environment handle is passed as the parent parameter to the
OCl Handl eAl | oc() call to allocate all other handle types. Bind and define
handles are allocated implicitly.

Error Handle

The error handle is passed as a parameter to most OCI calls. The error handle
maintains information about errors that occur during an OCI operation. If an error
occurs in a call, the error handle can be passed to OCl Er r or Get () to obtain
additional information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because
most OCI calls require an error handle as one of its parameters.

Service Context and Associated Handles

A service context handle defines attributes that determine the operational context for
OCI calls to a server. The service context contains three handles as its attributes, that
represent a server connection, a user session, and a transaction. These attributes are
illustrated in Figure 2-3, "Components of a Service Context":

2-8 Oracle Call Interface Programmer's Guide

Handles

Figure 2-3 Components of a Service Context

Service Context

Handle
Server User Session Transaction
Handle Handle Handle

« Aserver handle identifies a connection to a database. It translates into a physical
connection in a connection-oriented transport mechanism.

« A user session handle defines a user's roles and privileges (also known as the
user's security domain), and the operational context in which the calls execute.

« A transaction handle defines the transaction in which the SQL operations are
performed. The transaction context includes user session state information,
including any fetch state and package instantiation.

Breaking the service context down in this way provides scalability and enables
programmers to create sophisticated multitiered applications and transaction
processing (TP) monitors for execute requests on behalf of multiple users on
multiple application servers and different transaction contexts.

You must allocate and initialize the service context handle with

OCl Handl eAl 'l oc() or OCl Logon() before you can use it. The service context
handle is allocated explicitly by OCl Handl eAl | oc() . It can be initialized using
OClI At tr Set () with the server, session, and transaction handle. If the service
context handle is allocated implicitly using OClI Logon() , it is already initialized.

Applications maintaining only a single user session for each database connection at
any time can call OCl Logon() to get an initialized service context handle.

In applications requiring more complex session management, the service context
must be explicitly allocated, and the server and user session handles must be
explicitly set into the service context. OCl Ser ver Att ach() and

OClI Sessi onBegi n() calls initialize the server and user session handle
respectively.

An application will only define a transaction explicitly if it is a global transaction or
there are multiple transactions active for sessions. It will be able to work correctly
with the implicit transaction created automatically by OCI when the application
makes changes to the database.

OCI Programming Basics 2-9

Handles

See Also:
« "OCI Support for Transactions" on page 8-2

« For more information about establishing a server connection
and user session, see the sections "OCI Environment
Initialization" on page 2-19, and "Password and Session
Management" on page 8-10

Statement, Bind, and Define Handles

A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes.

Figure 2-4 Statement Handles

Statement
Handle
Define Bind
Handle Handle

Information about input and output bind variables is stored in bind handles. The OCI
library allocates a bind handle for each placeholder bound with the

OCl Bi ndByNane() or OCI Bi ndByPos() function. The user does not need to
allocate bind handles. They are implicitly allocated by the bind call.

Fetched data returned by a query (select statement) is converted and retrieved
according to the specifications of the define handles. The OCI library allocates a
define handle for each output variable defined with OCl Def i neByPos() . The user
does not need to allocate define handles. They are implicitly allocated by the define
call.

Bind and define handles are freed when the statement handle is freed or when a
new statement is prepared on the statement handle.

Describe Handle

The describe handle is used by the OCI describe call, OCl Descri beAny() . This call
obtains information about schema objects in a database (for example, functions,
procedures). The call takes a describe handle as one of its parameters, along with

2-10 Oracle Call Interface Programmer's Guide

Handles

information about the object being described. When the call completes, the describe
handle is populated with information about the object. The OCI application can
then obtain describe information through the attributes of parameter descriptors.

See Also: Chapter 6, "Describing Schema Metadata", for more
information about using the OCl Descri beAny() function

Complex Object Retrieval Handle

The complex object retrieval (COR) handle is used by some OCI applications that work
with objects in an Oracle database server. This handle contains COR descriptors,
which provide instructions for retrieving objects referenced by another object.

See Also : "Complex Object Retrieval" on page 10-21

Thread Handle

For information about the thread handle, which is used in multithreaded
applications:

See Also: "The OCIThread Package" on page 9-4

Subscription Handle

The subscription handle is used by an OCI client application that registers and
subscribes to receive notifications of database events or events in the AQ
namespace. The subscription handle encapsulates all information related to a
registration from a client.

See Also: "Publish-Subscribe Notification in OCI" on page 9-54

Direct Path Handles

The direct path handles are necessary for an OCI application that uses the direct
path load engine in the Oracle database server. The direct path load interface
enables the application to access the direct block formatter of the Oracle server.

OCI Programming Basics 2-11

Handles

Figure 2-5 Direct Path Handles

Direct Path
Context Handle

l

Direct Path Direct Path Direct Path
Column Array Stream Function Context
Handle Handle Handle
See Also:

« "Direct Path Loading Overview" on page 12-2

« "Direct Path Loading Handle Attributes” on page A-60

Connection Pool Handle

The connection pool handle is used for applications that pool physical connections
into virtual connections by calling specific OCI functions.

See Also: "Connection Pooling in OCI" on page 9-10

Handle Attributes

All OCI handles have attributes that represent data stored in that handle. You can
read handle attributes using the attribute get call, OCl Att r Get (), and you can
change them with the attribute set call, OCl Att r Set () .

For example, the following statements set the user name in the session handle by
writing to the OCI_ATTR_USERNAME attribute:

text usernanme[] = "hr";
err = OClAttrSet ((dvoid*) nysessp, OCl _HTYPE SESSION, (dvoid*)usernane,
(ub4) strlen((char *)username), OClI _ATTR USERNAME, (OClIError *) nyerrhp);

Some OCI functions require that particular handle attributes be set before the
function is called. For example, when OCl Sessi onBegi n() is called to establish a
user's login session, the user name and password must be set in the user session
handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the
function completes. For example, when OCl St nt Execut e() is called to execute a

2-12 Oracle Call Interface Programmer's Guide

OCI Descriptors

SQL query, describe information relating to the select-list items is returned in the

statement handle.

ub4 parnctnt;

/* get the number of colums in the select list */
err = OClAttrGet ((dvoid *)stmhp, (ub4)QCl _HTYPE STMI, (dvoid *)
&parment, (ub4 *) 0, (ub4)QCl _ATTR_PARAM COUNT, errhp);

See Also:

The description of OCl At t r Get () on page 15-49 for an
example showing the user name and password handle
attributes being set

OCI Descriptors

Appendix A, "Handle and Descriptor Attributes"

OCI descriptors and locators are opaque data structures that maintain data-specific
information. Table 2-2 lists them, along with their C datatype, and the OCI type
constant that allocates a descriptor of that type in a call to

OCl DescriptorAl l oc().The OCl Descri pt or Free() function frees
descriptors and locators.

Table 2-2 Descriptor Types

Description

C Datatype

OCI Type Constant

snapshot descriptor

LOB datatype locator

FILE datatype locator
read-only parameter descriptor
ROW D descriptor

ANSI DATE descriptor

TI MESTAMP descriptor

TI MESTAMP W TH TI ME ZONE
descriptor

TI MESTAMP W TH LOCAL TI ME ZONE

descriptor

I NTERVAL YEAR TO MONTH descriptor

OCl Snapshot
OCl LobLocat or
OCl LobLocat or
OCl Par am

OCl Rowi d

OCl Dat eTi e
OCl Dat eTi e
OCl Dat eTi nme

OCl Dat eTi ne

CCl I nterval

OCI_DTYPE_SNAP
OCI_DTYPE_LOB
OCI_DTYPE_FILE
OCI_DTYPE_PARAM
OCI_DTYPE_ROWID
OCI_DTYPE_DATE
OCI_DTYPE_TIMESTAMP
OCI_DTYPE_TIMESTAMP_TZ

OCI_DTYPE_TIMESTAMP_LTZ

OCI_DTYPE_INTERVAL_YM

OCI Programming Basics 2-13

OCI Descriptors

Table 2-2 Descriptor Types (Cont.)

Description C Datatype OCI Type Constant

I NTERVAL DAY TO SECONDdescriptor OCl | nt er val OCI_DTYPE_INTERVAL_DS

complex object descriptor QOCl Conpl ex(Ohj ect Conp OCI_DTYPE_COMPLEXOBJECTCOMP
advanced queuing enqueue options OCl AQEngOpt i ons OCI_DTYPE_AQENQ_OPTIONS
advanced queuing dequeue options OCl AQDeqOpt i ons OCI_DTYPE_AQDEQ_OPTIONS
advanced queuing message properties OCl AQvsgPr operti es OCI_DTYPE_AQMSG_PROPERTIES
advanced queuing agent OCl AQAgent OCI_DTYPE_AQAGENT

advanced queuing notification OCl AQNot i fy OCI_DTYPE_AQNFY

the distinguished names of the database OCI Ser ver DNs OCI_DTYPE_SRVDN

servers in a registration request

Note: Although there is a single C type for OClLobLocator, this
locator is allocated with a different OCI type constant for internal
and external LOBs. The section below on LOB locators discusses
this difference.

The main purpose of each descriptor type is listed here, and each descriptor type is
described in the following sections:

« OCl Snapshot - used in statement execution

. OCl LOBLocat or - used for LOB (OCI_DTYPE_LOB) or FILE
(OCI_DTYPE_FILE) calls

« OCl Par am- used in describe calls

« OCl Rowi d - used for binding or defining RON D values

« OCl Dat eTi me and OCl | nt er val - used for datetime and interval datatypes
« OCl Conpl exCbj ect Conp - used for complex object retrieval

« OCl AQEngOpt i ons, OCl AQDeqOpt i ons, OCl AQVsgPr operti es,
OCl AQAgent - used for Advanced Queuing

« OCl AQNot i fy -used for publish-subscribe notification
« OC Server DNs - used for LDAP-based publish-subscribe notification

2-14 Oracle Call Interface Programmer's Guide

OCI Descriptors

Snapshot Descriptor

The snapshot descriptor is an optional parameter to the execute call,

OCl St nt Execut e() . It indicates that a query is being executed against a particular
database snapshot which represents the state of a database at a particular point in
time.

Allocate a snapshot descriptor with a call to OCl Descri pt or Al | oc(), by passing
OCI_DTYPE_SNAP as the t ype parameter.

See Also: For more information about OCl St mt Execut e() and
database snapshots, see the section "Execution Snapshots" on
page 4-8

LOB and BFILE Locators

A large object (LOB) is an Oracle datatype that can hold binary (BLOB) or character
(CLOB) data. In the database, an opaque data structure called a LOB locator is stored
in a LOB column of a database row, or in the place of a LOB attribute of an object.
The locator serves as a pointer to the actual LOB value, which is stored in a separate
location.

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAWdata for BLOB
columns.

See Also:
« "Binding LOB Data" on page 5-11
« "Defining LOB Data" on page 5-21

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or
CLOB) or FILE (BFILE). OCI LobXXX functions take a LOB locator parameter
instead of the LOB value. OCI LOB functions do not use actual LOB data as
parameters. They use the LOB locators as parameters and operate on the LOB data
referenced by them.

The LOB locator is allocated with a call to OCl Descri pt or Al | oc(), by passing
OCI_DTYPE_LOB as the t ype parameter for BLOBs or CLOBs, and
OCI_DTYPE_FILE for BFILEs.

OCI Programming Basics 2-15

OCI Descriptors

Caution: The two LOB locator types are not interchangeable.
When binding or defining a BLOB or CLOB, the application must
take care that the locator is properly allocated using
OCI_DTYPE_LOB. Similarly, when binding or defining a BFI LE,
the application must be sure to allocate the locator using
OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the server by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In
this case, the application would first allocate the LOB locator and then use it to
define an output variable. Similarly, a LOB locator can be used as part of a bind
operation to create an association between a LOB and a placeholder in a SQL
statement.

See Also:

« Chapter 7, "LOB and BFILE Operations"
« "Binding LOB Data" on page 5-11

« "Defining LOB Data" on page 5-21

Parameter Descriptor

OCI applications use parameter descriptors to obtain information about select-list
columns or schema objects. This information is obtained through a describe
operation.

The parameter descriptor is the only descriptor type that is not allocated using
OClI Descri ptor Al I oc() . You can obtain it only as an attribute of a describe
handle, statement handle, or through a complex object retrieval handle by
specifying the position of the parameter using an OCl Par anGet () call.

See Also: Chapter 6, "Describing Schema Metadata", and
"Describing Select-list Items" on page 4-11 for more information
about obtaining and using parameter descriptors

ROWID Descriptor

The ROW D descriptor, OCIRowid, is used by applications that need to retrieve and
use Oracle ROWIDs. To work with a RON D using OCI release 8 or later, an
application can define a RON D descriptor for a rowid position in a SQL select-list,

2-16 Oracle Call Interface Programmer's Guide

OCI Descriptors

and retrieve a RON D into the descriptor. This same descriptor can later be bound to
an input variable in an | NSERT statement or WHERE clause.

ROW Ds are also redirected into descriptors using OCl At t r Get () on the statement
handle following an execute.

Date, Datetime, and Interval Descriptors
These descriptors are used by applications which use the date, datetime, or interval
datatypes (OCl Dat e, OCl Dat eTi ne, and OCl | nt er val). These descriptors can be
used for binding and defining, and are passed as parameters to the functions
OCl DescAl | oc() and OCI DescFr ee() to allocate and free memory.
See Also:

« For more information about these datatypes refer to Chapter 3,
"Datatypes".

« The functions which operate on these datatypes are described
in Chapter 18, "OCI Datatype Mapping and Manipulation
Functions"

Complex Object Descriptor

Application performance when dealing with objects may be increased through the
use of complex object retrieval (COR).

See Also: For information about the complex object descriptor
and its use, refer to "Complex Object Retrieval” on page 10-21.

Advanced Queuing Descriptors
Oracle AQ provides message queuing as an integrated part of the Oracle server.

See Also:
« "OCI and Streams Advanced Queuing" on page 9-48
« "Publish-Subscribe Registration Functions in OCI" on page 9-56

OCI Programming Basics 2-17

OCI Programming Steps

User Memory Allocation

The OCI Descri pt or Al | oc() call has an xt r anem sz parameter in its parameter
list. This parameter is used to specify an amount of user memory which should be
allocated along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure
maybe used for application bookkeeping or storing context information.

Using the xt r amem sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each descriptor or locator is allocated
and deallocated. The memory is allocated along with the descriptor or locator, and
freeing the descriptor or locator (with OCl Descr i pt or Fr ee()) frees the user's
data structures as well.

The OCI Handl eAl | oc() call has a similar parameter for allocating user memory
which has the same lifetime as the handle.

The OCI EnvCr eat e() and OCl Envl ni t () calls have a similar parameter for
allocating user memory which has the same lifetime as the environment handle.

OCI Programming Steps

Each of the steps in developing an OCI application is described in detail in the
following sections. Some of the steps are optional. For example, you do not need to
describe or define select-list items if the statement is not a query.

2-18 Oracle Call Interface Programmer's Guide

OCI Environment Initialization

See Also:

« Appendix B, "OCI Demonstration Programs” for an example
showing the use of OCI calls for processing SQL statements.
See the first sample program.

« The special case of dynamically providing data at run time is
described in detail in the section "Runtime Data Allocation and
Piecewise Operations in OCI" on page 5-40.

« Special considerations for operations involving arrays of
structures are described in the section "Binding and Defining
Arrays of Structures in OCI" on page 5-23.

« Refer to the section "Error Handling in OCI" on page 2-26 for an
outline of the steps involved in processing a SQL statement
within an OCI program.

« For information on using the OCI to write multithreaded
applications, refer to "Overview of OCI Multithreaded
Development” on page 9-2.

« For more information about types of SQL statements, refer to
the section "SQL Statements"” on page 1-6.

The following sections describe the steps that are required of an OCI application:

OCI Environment Initialization
Processing SQL Statements in OCI
Commit or Rollback

Terminating the Application

Error Handling in OCI

Application-specific processing will also occur in between any and all of the OCI
function steps.

OCI Environment Initialization

This section describes how to initialize the OCI environment, establish a connection
to a server, and authorize a user to perform actions against the database.

First, the three main steps in initializing the OCI environment are described in the
following sections:

OCI Programming Basics 2-19

OCI Environment Initialization

« "Creating the OCI Environment" on page 2-20
« "Allocating Handles and Descriptors” on page 2-21

« "Application Initialization, Connection, and Session Creation” on page 2-21

Creating the OCI Environment

Each OCI function call is executed in the context of an environment that is created
with the OCl EnvCr eat e() call. This call must be invoked before any other OCI
call is executed. The only exception is the setting of a process-level attribute for the
OCI shared mode.

The node parameter of OCl EnvCr eat e() specifies whether the application calling
the OCI library functions will:

« Runinathreaded environment (nmode = OClI_THREADED).
« Use objects (node = OCI_OBIJECT).

« Use subscriptions (node = OCI_EVENTS).

The mode can be set independently in each environment.

It is necessary to initialize in object mode if the application binds and defines
objects, or if it uses the OCI's object navigation calls. The program may also choose
to use none of these features (nbde = OCI_DEFAULT) or some combination of
them, separating the options with a vertical bar. For example if node =
(OCI_THREADED | OCI_OBIJECT), then the application runs in a threaded
environment and uses objects.

You can specify user-defined memory management functions for each OCI
environment.
See Also:

« OClEnvCreate() onpage15-9and CCl I nitialize() on
page 15-18 for more information about the initialization calls.

« "Overview of OCI Multithreaded Development" on page 9-2.

« Chapter 10, "OCI Object-Relational Programming" and the
chapters that follow it.

« "Publish-Subscribe Notification in OCI" on page 9-54.

2-20 Oracle Call Interface Programmer's Guide

OCI Environment Initialization

Allocating Handles and Descriptors

Oracle provides OCI functions to allocate and deallocate handles and descriptors.
You must allocate handles using OClI Handl eAl | oc() before passing them into an
OCIl call, unless the OCI call, such as OCl Bi ndByPos(), allocates the handles for
you.

You can allocate the types of handles listed in Table 2-1, "OCI Handle Types“with
OCl Handl eAl | oc() Depending on the functionality of your application, it needs
to allocate some or all of these handles.

Application Initialization, Connection, and Session Creation

An application must call OCl EnvCr eat e() to initialize the OCI environment
handle.

Following this step, the application has two options for establishing a server
connection and beginning a user session: Single User, Single Connection; or
Multiple Sessions or Connections.

Note: OCI EnvCr eat e() should be used instead of the
QClInitialize() and OCl Envlnit () calls.
QClInitialize() and OCl Envl nit () calls are supported for
backward compatibility.

Option 1: Single User, Single Connection

This option is the simplified logon method, which can be used if an application
maintains only a single user session for each database connection at any time.

When an application calls OCl Logon() , the OCI library initializes the service
context handle that is passed to it, and creates a connection to the specified server
for the user making the request.

The following is an example of what a call to OCl Logon() might look like:
OCl Logon(envhp, errhp, &svchp, (text *)"hr", namelLen, (text *)"hr",

passwdLen, (text *)"oracledb", dbnanelLen);

The parameters to this call include the service context handle (which are initialized),
the user name, the user's password, and the name of the database that are used to
establish the connection. The server and user session handles are implicitly
allocated by this function.

OCI Programming Basics 2-21

OCI Environment Initialization

If an application uses this logon method, the service context, server, and user
session handles will all be read-only; the application cannot switch session or
transaction by changing the appropriate attributes of the service context handle by
means of an OCl At tr Set () call.

An application that initializes its session and authorization using OCl Logon()
must terminate them using OCl Logof f ().

Option 2: Multiple Sessions or Connections

This option uses explicit attach and begin session calls to maintain multiple user
sessions and connections on a database connection.Specific calls to attach to the
server and begin sessions are:

« OCl ServerAttach() - creates an access path to the data server for OCI
operations.

« OCl Sessi onBegi n() - establishes a session for a user against a particular
server. This call is required for the user to execute operations on the server.

A subsequent call to OCl Sessi onBegi n() using different service context and
session context handles logs off the previous user and causes an error, To run two
simultaneous non-migratable sessions, a second OCl Sessi onBegi n() call must be
made with the same service context handle and a new session context handle.

These calls set up an operational environment that enables you to execute SQL and
PL/SQL statements against a database.

See Also:

« "Nonblocking Mode in OCI" on page 2-35 for information
about specifying a blocking or nonblocking connection in the
OCl Server Att ach() call.

« "Connect, Authorize, and Initialize Functions" on page 15-4.

« Chapter 9, "OCI Programming Advanced Topics", for more
information about maintaining multiple sessions, transactions,
and connections.

Example of Creating and Initializing an OCI Environment
The following example demonstrates the use of creating and initializing an OCI
environment.

. A server context is created and set in the service handle.

2-22 Oracle Call Interface Programmer's Guide

OCI Environment Initialization

« Thenauser session handle is created and initialized using a database user name
and password.

« For the sake of simplicity, error checking is not included.

#i ncl ude <oci. h>

mai n()

{

CCl Env *nyenvhp; /* the environnent handle */
OCl Server *mysrvhp; /* the server handle */

OCl Error *nyerrhp; [* the error handle */

QOCl Sessi on *nyusr hp; /* user session handle */
QOCl SveCt x *nysvchp; /* the service handle */

[* initialize the mde to be the threaded and object environment */
(voi d) OCl EnvCreat e(&nyenvhp, OCl _THREADED| OCl _OBJECT, (dvoid *)O0,
0, 0, 0, (size_t) 0, (dvoid **)0);

/* allocate a server handle */
(voi d) OClHandl eAl'l oc ((dvoid *)nyenvhp, (dvoid **)&nmysrvhp,
OCl _HTYPE_SERVER, 0, (dvoid **) 0);

/* allocate an error handle */
(voi d) OClHandl eAl'l oc ((dvoid *)nyenvhp, (dvoid **)&nyerrhp,
OCl _HTYPE_ERROR, 0, (dvoid **) 0);

/* create a server context */
(void) OCl ServerAttach (mysrvhp, nyerrhp, (text *)"instl_alias",
strlen ("instl_alias"), OCl_DEFAULT);

/* allocate a service handle */
(voi d) OClHandl eAl'l oc ((dvoid *)nmyenvhp, (dvoid **)&mysvchp,
OCl _HTYPE_SVCCTX, 0, (dvoid **) 0);

/* set the server attribute in the service context handl e*/
(void) OClAttrSet ((dvoid *)nysvchp, OCl_HTYPE_SVCCTX,
(dvoid *)nysrvhp, (ub4) 0, OCl _ATTR SERVER nyerrhp);
/* allocate a user session handle */
(voi d) OClHandl eAl'l oc ((dvoid *)myenvhp, (dvoid **)&myusrhp,
OCl _HTYPE_SESSION, 0, (dvoid **) 0);

/* set user nanme attribute in user session handle */

OCI Programming Basics 2-23

Commit or Rollback

(void) OClAttrSet ((dvoid *)nyusrhp, OCl _HTYPE_SESSI ON,
(dvoid *)"hr", (ub4)strlen("hr"),
OCl _ATTR_USERNAME, nyerrhp);

/* set password attribute in user session handle */
(void) OClAttrSet ((dvoid *)myusrhp, OCl_HTYPE_SESSI ON,

(dvoid *)"hr", (ub4)strlien("hr"),

OCl _ATTR_PASSWORD, nyerrhp);

(voi d) QOCl SessionBegin ((dvoid *) nysvchp, nyerrhp, myusrhp,
OCl _CRED RDBMS, OCI _DEFAULT):

/* set the user session attribute in the service context handl e*/

(void) OClAttrSet ((dvoid *)nysvchp, OCl_HTYPE_SVCCTX,
(dvoid *)nmyusrhp, (ub4) 0, OCI _ATTR SESSION, nyerrhp);

The demonstration program cdeno81. c in the deno directory illustrates this
process, with error-checking.

Processing SQL Statements in OCI

A chapter of this manual outlines the specific steps involved in processing SQL
statements in OCI.

See Also: Chapter 4, "Using SQL Statements in OCI"

Commit or Rollback

An application commits changes to the database by calling OCl TransConmi t ().
This call uses a service context as one of its parameters. The transaction is associated
with the service context whose changes are committed. This transaction can be
explicitly created by the application or implicitly created when the application
modifies the database.

Note: Using the OCI_COMMIT_ON_SUCCESS mode of the

OCl Execut e() call, the application can selectively commit
transactions at the end of each statement execution, saving an extra
round trip.

2-24 Oracle Call Interface Programmer's Guide

Terminating the Application

To roll back a transaction, use the OCl Tr ansRol | back() call.

If an application disconnects from Oracle in some way other than a normal logoff,
such as losing a network connection, and OCl Tr ansConmi t () has not been called,
all active transactions are rolled back automatically.

See Also:

= "Service Context and Associated Handles" on page 2-8, and

« "OCI Support for Transactions" on page 8-2

Terminating the Application
An OCI application should perform the following three steps before it terminates:
1. Delete the user session by calling OCl Sessi onEnd() for each session.

2. Delete access to the data source(s) by calling OCl Ser ver Det ach() for each
source.

3. Explicitly deallocate all handles by calling OCl Handl eFr ee() for each handle.

4. Delete the environment handle, which deallocates all other handles associated
with it.

Note: When a parent OCI handle is freed, any child handles
associated with it are freed automatically

The calls to OCl Ser ver Det ach() and OCl Sessi onEnd() are not mandatory, but
are recommended. If the application terminates, and OClI Tr ansConmi t ()
(transaction commit) has not been called, any pending transactions are
automatically rolled back

See Also: For an example showing handles being freed at the end

of an application, refer to the first sample program in Appendix B,
"OCI Demonstration Programs”

OCI Programming Basics 2-25

Error Handling in OCI

Note: If the application uses the simplified logon method of

QOCl Logon() , then a call to OCl Logof f () terminates the session,
disconnects from the server, and frees the service context and
associated handles. The application is still responsible for freeing
other handles it allocated.

Error Handling in OCI

OCI function calls have a set of return codes, listed in Table 2-3, "OCI Return
Codes", which indicate the success or failure of the call, such as OCI_SUCCESS or
OCI_ERROR, or provide other information that may be required by the application,
such as OCI_NEED _DATA or OCI_STILL_EXECUTING. Most OCI calls return one
of these codes.

To verify that the connection to the server is not terminated by the OCI_ERROR, an
application can check the value of the attribute OCI_ATTR_SERVER_STATUS in the
server handle. If the value of the attribute is OCI_SERVER_NOT_CONNECTED,
then the connection to the server and the user session must be re-established.

See Also:

Table 2-3 OCI Return Codes

For exceptions, see "Functions Returning Other Values" on
page 2-28

For complete details and an example of usage, see
"OCIErrorGet()" on page 16-217

"OCI_ATTR_SERVER_STATUS" on page A-15

OCI Return Code

Description

OCI_SUCCESS
OCI_SUCCESS_WITH_INFO

OCI_NO_DATA
OCI_ERROR

OCI_INVALID_HANDLE

The function completed successfully.

The function completed successfully; a call to OCl Er r or Get () returns
additional diagnostic information. This may include warnings.

The function completed, and there is no further data.

The function failed; a call to OCl Er r or Get () returns additional
information.

An invalid handle was passed as a parameter or a user callback is passed an
invalid handle or invalid context. No further diagnostics are available.

2-26 Oracle Call Interface Programmer's Guide

Error Handling in OCI

Table 2-3 OCI Return Codes (Cont.)

OCI Return Code Description
OCI_NEED_DATA The application must provide runtime data.
OCIL_STILL_EXECUTING The service context was established in nonblocking mode, and the current

operation could not be completed immediately. The operation must be called
again to complete. OCl Er r or Get () returns ORA-03123 as the error code.

OCI_CONTINUE This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

If the return code indicates that an error has occurred, the application can retrieve
Oracle-specific error codes and messages by calling OCl Er r or Get () . One of the
parameters to OCl Er r or Get () is the error handle passed to the call that caused

the error.

Note: Multiple diagnostic records can be retrieved by calling

OCl Err or Get () repeatedly until there are no more records
(OCI_NO_DATA is returned). OCl Err or Get () returns at most a
single diagnostic record.

Return and Error Codes for Data

In Table 2—-4, the OCI return code, error number, indicator variable, and column
return code are specified when the data fetched is normal, null, or truncated.

See Also: "Indicator Variables" on page 2-30 for a discussion of
indicator variables.

Table 2-4 Return and Error Codes

Indicator - not

State of Data Return Code provided Indicator - provided
not null or truncated not provided OCI_SUCCESS OCI_SUCCESS
error=0 error =0
indicator =0

OCI Programming Basics 2-27

Error Handling in OCI

Table 2-4 Return and Error Codes (Cont.)

Indicator - not

State of Data Return Code provided Indicator - provided
not null or truncated provided OCI_SUCCESS OCI_SUCCESS
error =0 error =0
return code =0 indicator =0

return code =0

null data not provided OCI_ERROR OCI_SUCCESS
error = 1405 error =0
indicator = -1
null data provided OCI_ERROR OCI_SUCCESS
error = 1405 error =0

return code = 1405 indicator = -1
return code = 1405

truncated data not provided OCI_ERROR OCI_ERROR
error = 1406 error = 1406
indicator = data_len
truncated data provided (T)ﬁlTﬁlLégCESS_WI OCI_SUCCESS_WITH_INFO

error = 24345

error = 24345 indicator = data_len

return code = 1405 return code = 1406

For truncated data, dat a_| en is the actual length of the data that has been
truncated if this length is less than or equal to SB2MAXVAL. Otherwise, the indicator
is set to -2.

Functions Returning Other Values

Some functions return values other than the OCI error codes listed in Table 2-3.
When using these function be aware that they return values directly from the
function call, rather than through an OUT parameter. More detailed information
about each function and its return values is listed in the reference chapters.

2-28 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

Additional Coding Guidelines

This section explains some additional issues when coding OCI applications.

Parameter Types

OCI functions take a variety of different types of parameters, including integers,
handles, and character strings. Special considerations must be taken into account
for some types of parameters, as described in the following sections.

See Also: "Connect, Authorize, and Initialize Functions" on
page 15-4 for more information about parameter datatypes and
parameter passing conventions.

Address Parameters

Address parameters are used to pass the address of the variable to Oracle. You
should be careful when developing in C, since it normally passes scalar parameters
by value.

Integer Parameters

Binary integer and short binary integer parameters are numbers whose size is
system-dependent. See your Oracle system-specific documentation for the size of
these integers on your system.

Character String Parameters

Character strings are a special type of address parameter. Each OCI routine that
enables a character string to be passed as a parameter also has a string length
parameter. The length parameter should be set to the length of the string.

7.x Upgrade Note: Unlike earlier versions of the OCI, you do not
pass -1 for the string length parameter of a null-terminated string.

Inserting Nulls into a Column
You can insert a null into a database column in several ways.

1. One method is to use a literal NULL in the text of an | NSERT or UPDATE
statement. For example, the SQL statement

I NSERT | NTO enpl (enanme, enpno, deptno)

OCI Programming Basics 2-29

Additional Coding Guidelines

VALUES (NULL, 8010, 20)

makes the ENAVE column null.

2. Use indicator variables in the OCI bind call.

See Also: "Indicator Variables" on page 2-30

3. Inserta NULL is to set the buffer length and maximum length parameters both
to zero on a bind call.

Note: Following SQL92 requirements, Oracle returns an error if an
attempt is made to fetch a null select-list item into a variable that
does not have an associated indicator variable specified in the
define call.

Indicator Variables

Each bind and define OCI call has a parameter that associates an indicator variable,
or an array of indicator variables, with a DML statement, a PL/SQL statement, or a
query.

The C language does not have the concept of null values; therefore you associate
indicator variables with input variables to specify whether the associated
placeholder is a NULL. When data is passed to Oracle, the values of these indicator
variables determine whether or not a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned
from Oracle is a NULL or a truncated value. In the case of a NULL fetch in an

OClI St nt Fet ch() call, or a truncation in an OCl St nt Execut e() call, the OCI call
returns OCI_SUCCESS. The output indicator variable is set. If the application
returns a code variable in the subsequent OCl Def i neByPos() call, the OCI assigns
a value of ORA-01405 (for NULL fetch) or ORA-01406 (for truncation) to the return
code variable.

The datatype of indicator variables is sb2. In the case of arrays of indicator
variables, the individual array elements should be of type sb2.

Input

For input host variables, the OCI application can assign the following values to an
indicator variable:

2-30 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

Table 2-5 Input Indicator Values

Input Indicator Value

Action Taken by Oracle

-1

>=0

Oracle assigns a NULL to the column, ignoring the value of the
input variable.

Oracle assigns the value of the input variable to the column.

Output

On output, Oracle can assign the following values to an indicator variable:

Table 2-6 Output Indicator Values

Output Indicator Value

Meaning

-2

>0

The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

The selected value is null, and the value of the output variable is
unchanged.

Oracle assigned an intact value to the host variable.

The length of the item is greater than the length of the output
variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.

Indicator Variables for Named Data Types and REFs

Indicator variables for most datatypes introduced after release 8.0 behave as
described earlier. The only exception is SQLT_NTY (a named datatype). For data of
type SQLT_NTY, the indicator variable must be a pointer to an indicator structure.
Data of type SQLT_REF uses a standard scalar indicator, just like other variable

types.

When database types are translated into C struct representations using the Object
Type Translator (OTT), a null indicator structure is generated for each object type.
This structure includes an atomic null indicator, plus indicators for each object

attribute.

OCI Programming Basics 2-31

Additional Coding Guidelines

See Also:

« Documentation for the OTT in Chapter 14, "Using the Object
Type Translator with OCI", and section "NULL Indicator
Structure” on page 10-30 of this manual for information about
null indicator structures

» Descriptions of OCl Bi ndByNane() and OCl Bi ndByPos()
in"Bind, Define, and Describe Functions" on page 15-68, and
the sections "Information for Named Datatype and REF Binds"
on page 11-34, and "Information for Named Datatype and REF
Defines, and PL/SQL OUT Binds" on page 11-36, for more
information about setting indicator parameters for named
datatypes and REFs

Canceling Calls

On most operating systems, you can cancel long-running or repeated OCI calls, by
entering the operating system's interrupt character (usually CTRL-C) from the
keyboard.

Note: This is not to be confused with cancelling a cursor, which is
accomplished by calling OCl St nt Fet ch() with the nr ows
parameter set to zero.

When you cancel the long-running or repeated call using the operating system
interrupt, the error code ORA-01013 ("user requested cancel of current operation"”) is
returned.

Given a particular service context pointer or server context pointer, the

QOCl Br eak() function performs an immediate (asynchronous) stop of any currently
executing OCI function associated with the server. It is normally used to stop a
long-running OCI call being processed on the server. The OCl Reset () function is
necessary to perform a protocol synchronization on a nonblocking connection after
an OCI application stops a function with OCl Br eak() .

Note: OCI Br eak() is not supported if the server is an NT system.

The status of potentially long-running calls can be monitored through the use of
nonblocking calls.

2-32 Oracle Call Interface Programmer's Guide

Additional Coding Guidelines

See Also: "Nonblocking Mode in OCI" on page 2-35

Positioned Updates and Deletes

You can use the RON D associated with a SELECT...FOR UPDATE OF... statement in a
later UPDATE or DELETE statement. The ROW Dis retrieved by calling

OCl At tr Get () on the statement handle to retrieve the handle's
OCI_ATTR_ROWID attribute.

For example, for a SQL statement such as
SELECT enane FROM enpl WHERE enpno = 7499 FOR UPDATE OF sal

when the fetch is performed, the RON D attribute in the handle contains the row
identifier of the selected row. You can retrieve the RON D into a buffer in your
program by calling OCl At t r Get () as follows:

OCl Rowi d *rowi d; /* the rowid in opaque format */
/* allocate descriptor with OCl DescriptorAlloc() */
status = OCl DescriptorAloc ((dvoid *) envhp, (dvoid **) & ow d,
(ub4) OCI _DTYPE_ROWD, (size_t) 0, (dvoid **) 0);
status = OCIAttrGet ((dvoid*) nystmtp, OCl _HTYPE_STM,
(dvoi d*) rowid, (ub4 *) 0, OCI_ATTR ROND, (OClError *) nyerrhp);

You can then use the saved RON Din a DELETE or UPDATE statement. For example,
if rowi d is the buffer in which the row identifier has been saved, you can later
process a SQL statement such as

UPDATE enpl SET sal =:1 WHERE rowid = :2

by binding the new salary to the : 1 placeholder and r owi d to the : 2 placeholder.
Be sure to use datatype code 104 (RON D descriptor) when binding rowi d to : 2.
Using prefetching, an array of ROWIDs can be selected for use in subsequent batch
updates.

See Also: For more information on ROW Ds, see "UROW!ID" on
page 3-6 and "DATE" on page 3-15.

Reserved Words

Some words are reserved by Oracle. That is, they have a special meaning to Oracle
and cannot be redefined. For this reason, you cannot use them to name database
objects such as columns, tables, or indexes.

OCI Programming Basics 2-33

Additional Coding Guidelines

See Also: To view the lists of the Oracle keywords or reserved
words for SQL and PL/SQL, see the Oracle Database SQL Reference
and the PL/SQL User's Guide and Reference

Oracle Reserved Namespaces

Table 2-7, "Oracle Reserved Namespaces" contains a list of namespaces that are
reserved by Oracle. The initial characters of function names in Oracle libraries are
restricted to the character strings in this list. Because of potential name conflicts, do
not use function names that begin with these characters.

Table 2-7 Oracle Reserved Namespaces

Namespace Library

XA external functions for XA applications only

SQ external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

o od external OCI functions internal OCI functions

UPlI, KP function names from the Oracle UPI layer

NA Oracle Net Native Services Product

NC Oracle Net Rpc Project

ND Oracle Net Directory

NL Oracle Net Network Library Layer

NM Oracle Net Management Project

NR Oracle Net Interchange

NS Oracle Net Transparent Network Service

NT Oracle Net Drivers

NZ Oracle Net Security Service

(03] SQL*Net V1

TTC Oracle Net Two Task

GEN, L, ORA Core library functions

LI, LM LX function names from the Oracle Globalization Support layer

S function names from system-dependent libraries

KO Kernel Objects

2-34 Oracle Call Interface Programmer's Guide

Nonblocking Mode in OCI

For a complete list of functions within a particular namespace, refer to the
document that corresponds to the appropriate Oracle library.

Nonblocking Mode in OCI

The OCI provides the ability to establish a server connection in blocking mode or
nonblocking mode. When a connection is made in blocking mode, an OCI call returns
control to an OCI client application only when the call completes, either
successfully or in error. With the nonblocking mode, control is immediately
returned to the OCI program if the call could not complete, and the call returns a
value of OCI_STILL_EXECUTING.

In nonblocking mode, an application must test the return code of each OCI function
to see if it returns OCI_STILL_EXECUTING. If it does, the OCI client can continue
to process program logic while waiting to retry the OCI call to the server. This
mode is particularly useful in Graphical User Interface (GUI) applications, real-time
applications, and in distributed environments.

The nonblocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application has to check whether the
pending call is finished at the server by executing the call again with the exact same
parameters.

Note: While waiting to retry nonblocking OCI call, the application
may not issue any other OCI calls, or an ORA-03124 error will occur.
The only exceptions to this rule are OCl Br eak() and

OCl Reset ().

Setting Blocking Modes

You can modify or check an application's blocking status by calling OCl At t r Set ()
to set the status, or OCl At t r Get () to read the status on the server context handle
with the at t rt ype parameter set to OCI_ATTR_NONBLOCKING_MODE.

See Also: OCI_ATTR_NONBLOCKING_MODE on page A-15.

Note: Only functions that have server context or a service context
handle as a parameter may return OCI_STILL_EXECUTING.

OCI Programming Basics 2-35

Nonblocking Mode in OCI

Cancelling a Nonblocking Call

You can cancel a long-running OCI call by using the OCl Br eak() function while
the OCI call is in progress. You must then issue an OCl Reset () call to reset the
asynchronous operation and protocol.

Nonblocking Example
The following code is an example of nonblocking mode.

int min (int argc, char **argv)

{
sword retval;
if (retval = InitOClHandles()) /* initialize all handles */
{
printf ("Unable to allocate handles..\n");
exit (EXI T_FAI LURE);
}
if (retval =1logon()) /* log on */
{
printf ("Unable to log on...\n");
exit (EXI T_FAI LURE);
}
if (retval = AllocStnHandl e ()) /* allocate statement handle */
{

printf ("Unable to allocate statement handle...\n");
exit (EXI T_FAI LURE);
}
/* set non-blocking on */
if (retval = OClAttrSet ((dvoid *) srvhp, (ub4) OC _HTYPE_SERVER
(dvoid *) 0, (ub4) O,
(ub4) OCI _ATTR_NONBLOCKI NG_MODE, errhp))
{
printf ("Unable to set non-blocking node...\n");
exit (EXI T_FAILURE);

}

while ((retval = OCl StntExecute (svchp, stmhp, errhp, (ub4)0, (ub4)O0,
(OCl Snapshot *) 0, (OC Snapshot *)0,
OCl _DEFAULT)) == OCl _STI LL_EXECUTI NG
printf (".");
printf ("\n");

if (retval != OCl _SUCCESS || retval != OCl _SUCCESS W TH | NFO)

2-36 Oracle Call Interface Programmer's Guide

Using PL/SQL in an OCI Program

printf("Error in OCl StntExecute...\n");
exit (EXI T_FAI LURE);

if (retval =1logoff ()) /* log out */

printf ("Unable to logout ...\n");
exit (EXI T_FAI LURE);

cl eanup();
return (int)OCl _SUCCESS;

Using PL/SQL in an OCI Program

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL supports
tasks that are more complicated than simple queries and SQL data manipulation
language (DML) statements. PL/SQL lets you group a number of constructs into a
single block and execute it as a unit. These constructs include:

One or more SQL statements
Variable declarations
Assignment statements

Procedural control statements such as | F. . . THEN. . . ELSE statements and
loops

Exception handling

You can use PL/SQL blocks in your OCI program to perform the following
operations:

Call Oracle stored procedures and stored functions

Combine procedural control statements with several SQL statements, to be
executed as a single unit

Access special PL/SQL features such as records, tables, CURSOR FOR loops,
and exception handling

Use cursor variables

OCI Programming Basics 2-37

Using PL/SQL in an OCI Program

« Operate on objects in a server

Note:

=« While the OCI can only directly process anonymous blocks,
and not named packages or procedures, you can always put the
package or procedure call within an anonymous block and
process that block.

« Note that all OUT variables have to be initialized to NULL
(through an indicator of -1, or an actual length of 0) prior to
executing a PL/SQL begin-end block in OCI.

« OCI does not support the PL/SQL RECORD datatype.

« When binding a PL/SQL VARCHAR?2 variable in OCI, the
maximum size of the bind variable is 32512 bytes, because of
the overhead of control structures.

Caution: When writing PL/SQL code, it is important to keep in
mind that the parser treats everything that starts with "--" to a
carriage return as a comment. So if comments are indicated on each
line by "--", the C compiler can concatenate all lines in a PL/SQL
block into a single line without putting a carriage return "\n" for
each line. In this particular case, the parser fails to extract the
PL/SQL code of a line if the previous line ends with a comment. To
avoid the problem, the programmer should put "\n" after each "--"

comment to make sure the comment ends there.

See Also: PL/SQL User's Guide and Reference for information about
coding PL/SQL blocks

2-38 Oracle Call Interface Programmer's Guide

OCI Globalization Support

OCI Globalization Support

The following sections introduce OCI functions that can be used for globalization
purposes, such as deriving locale information, manipulating strings, character set
conversion, and OCI messaging. These functions are also described in detail in
other chapters of this guide because they have multiple purposes and functionality.

Client Character Set Control from OCI

The function OCl EnvNl sCr eat e() enables you to set character set information in
applications, independently from NLS_LANG and NLS_NCHAR settings. One
application can have several environment handles initialized within the same
system environment using different client side character set IDs and national
character set IDs.

OCl EnvN sCreate(OCl Env **envhp, ..., csid, ncsid);

where csi d is the value for character set ID, and ncsi d is the value for national
character set ID. Either can be 0 or OCI_UTF16ID. If both are 0, this is equivalent to
using OCl EnvCr eat e() instead. The other arguments are the same as for the

OCl EnvCreat e() call.

OCl EnvNl sCr eat e() is an enhancement for programmatic control of character
sets, because it validates OCI_UTF16ID.

When character set IDs are set through the function OCI EnvNl sCr eat e() , they
will replace the settings in NLS_LANG and NLS_NCHAR. In addition to all
character sets supported by NLSRTL, OCI_UTF16ID is also allowed as a character
set ID in the OCl EnvNl sCr eat e() function, although this ID is not valid in
NLS_LANG or NLS_NCHAR.

Any Oracle character set ID, except AL16UTF16, can be specified through the
OCl EnvNl sCr eat e() function to specify the encoding of metadata, SQL CHAR
data, and SQL NCHAR data.

You can retrieve character sets in NLS_LANG and NLS_NCHAR through another
function, OCI NIl senvi ronnent Vari abl eGet () .

See Also: "OCIEnvNIsCreate()" on page 15-14

Code Example for Character Set Control in OCI
For a pseudocode fragment that illustrates a sample usage of these calls:

OCI Programming Basics 2-39

OCI Globalization Support

See Also: "Setting Client Character Sets in OCI" on page 5-32

Character Control and OCI Interfaces

OCl Nl sGet I nf o() returns information about OCI_UTF16ID if this value has been
used in OCl EnvNl sCreat e().

OCl At t r Get () returns the character set ID and national character set ID that were
passed into OCl EnvNl sCr eat e() . This is used to get
OCI_ATTR_ENV_CHARSET_ID and OCI_ATTR_ENV_NCHARSET_ID. This
includes the value OCI_UTF16ID.

If both char set and nchar set parameters were set to NULL by
OCl EnvNl sCr eat e(), the character set IDs in NLS_LANG and NLS_NCHAR will
be returned.

OCIAttrSet() sets character IDs as the defaults if OCI_ATTR_CHARSET _FORM is
reset through this function. The eligible character set IDs include OCI_UTF16ID if
OCl EnvNl sCr eat e() has it passed as char set or nchar set .

OCl Bi ndByNarre() and OCl Bi ndByPos() bind variables with default character
set in the OCl EnvNl sCr eat e() call, including OCI_UTF16ID. The actual length
and the returned length are always in bytes if OCl EnvN sCr eat e() is used.

OCl Def i neByPos() defines variables with the value of char set in

OCl EnvNl sCr eat (), including OCI_UTF16ID, as the default. The actual length
and returned length are always in bytes if OCl EnvN sCr eat e() is used. This
behavior for bind and define handles is different from that when OCl EnvCr eat e()
is used and OCI_UTF16ID is the character set ID for the bind and define handles.

Character Length Semantics in OCI

OCI works as a translator between server and client, and passes around character
information for constraint checking.

There are two kinds of character sets, variable-width and fixed-width, as a single
byte character set is just a special case of a fixed-width character set where each byte
stands for one character.

For fixed-width character sets, constraint checking is easier as number of bytes is
simply equal to a multiple of number of characters. Therefore, no scanning of the
entire string is needed to determine the number of characters for fixed-width
character sets. However, for variable-width ones, complete scanning is needed to
determine the number of characters.

2-40 Oracle Call Interface Programmer's Guide

OCI Globalization Support

Character Set Support in OCI

See "Character Length Semantics Support in Describing" on page 6-23 and
"Character Conversion in OCI Binding and Defining" on page 5-30 for a complete
discussion.

Other OCI Globalization Support Functions

Many globalization support functions accept either the environment handle or the
user session handle. The OCI environment handle is associated with the client NLS
environment variables. This environment does not change when ALTER SESSI ON
statements are issued to the server. The character set associated with the
environment handle is the client character set. The OCI session handle (returned by
OCl Sessi onBegi n()) is associated with the server session environment. The NLS
settings change when the session environment is modified with an ALTER SESSI ON
statement. The character set associated with the session handle is the database
character set.

Note that the OCI session handle does not have NLS settings associated with it until
the first transaction begins in the session. SELECT statements do not begin a
transaction.

For complete details and discussions of the functions that follow:

See Also:
« Chapter 21, "OCI Globalization Support Functions"
« Oracle Database Globalization Support Guide

Getting Locale Information in OCI

An Oracle locale consists of language, territory, and character set definitions. The
locale determines conventions such as day and month names, as well as date, time,
number, and currency formats. A globalized application follows a user's locale
setting and cultural conventions. For example, when the locale is set to German,
users expect to see day and month names in German.

See Also:
« "OCI Locale Functions" on page 21-4

« "OCI Locale-Mapping Function" on page 21-13

You can retrieve the following information with the OCl Nl sGet | nf o() function:

OCI Programming Basics 2-41

OCI Globalization Support

« Days of the week (translated)

« Abbreviated days of the week (translated)
« Month names (translated)

« Abbreviated month names (translated)
« Yes/no (translated)

« AM/PM (translated)

« AD/BC (translated)

« Numeric format

« Debit/credit

« Date format

« Currency formats

« Default language

« Default territory

« Default character set

« Default linguistic sort

« Default calendar

Example of Getting Locale Information in OCI

This example code retrieves information and checks for errors.

sword MyPrintLinguisticName(envhp, errhp)
OClEnv *envhp;
OClError *errhp;
{
OraText infoBuf [OCI _NLS_MAXBUFSZ] ;
sword ret;

ret = OCI N sCet I nfo(envhp,
errhp,
i nf oBuf,
(size_t) OCl _NLS_MAXBUFSZ,
(ub2) OCI _NLS_LI NGUI STI C_NAME) ;

if (ret != OO _SUCCESS)

2-42 Oracle Call Interface Programmer's Guide

[* environnment handle */
/* error handle */

/* destination buffer */
[* buffer size */

[* item*/

OCI Globalization Support

{
checkerr(errhp, ret, OC _HTYPE ERROR);

ret = OCl_ERRCR,
}

el se

{
printf("NLS linguistic: %\n", infoBuf);

}

return(ret);

}

Manipulating Strings in OCI

Multibyte strings and wide character strings are supported for string manipulation:

Multibyte strings are encoded in native Oracle character sets. Functions that operate
on multibyte strings take the string as a whole unit with the length of the string
calculated in bytes. Wide character string (wchar) functions provide more
flexibility in string manipulation. They support character-based and string-based
operations where the length the string calculated in characters.

The wide character datatype is Oracle-specific and should not be confused with the
wchar _t datatype defined by the ANSI/ZISO C standard. The Oracle wide character
datatype is always 4 bytes in all operating systems, while the size of wchar _t
depends on the implementation and the operating system. The Oracle wide
character datatype normalizes multibyte characters so that they have a uniform
fixed width for easy processing. This guarantees no data loss for round trip
conversion between the Oracle wide character set and the native character set.

String manipulation can be classified into the following categories:
« Conversion of strings between multibyte and wide character

« Character classifications

« Case conversion

« Calculations of display length

« General string manipulation, such as comparison, concatenation, and searching

See Also: "OCI String Manipulation Functions" on page 21-16

Example of Manipulating Strings in OCI

The following example shows a simple case of manipulating strings.

OCI Programming Basics 2-43

OCI Globalization Support

size_t MyConvert Ml tiByteToW deChar (envhp, dstBuf, dstSize, srcStr)
OCl Env *envhp;
QOCl Wehar *dst Buf ;

size_t dst Si ze;
OraText *srcStr; /* null termnated source string */
{

sword ret;

size t dstLen = 0;
size_t srclen;

/* get length of source string */
srcLen = OCIMul tiByteStrlen(envhp, srcStr);

ret = OCl MultiBytelnSi zeToW deChar (envhp, /* environnment handle */
dst Buf, /* destination buffer */
dst Si ze, /* destination buffer size */
srcStr, /* source string */
srclen, /* length of source string */
&dst Len); /* pointer to destination length */

if (ret 1= OO _SUCCESS)

{
checkerr(envhp, ret, OCl_HTYPE_ENV);

}

return(dstLen);

Example of Classifying Characters in OCI
The OCI character classification functions are described in detail.

See Also: "OCI Character Classification Functions" on page 21-52

The following example shows how to classify characters in OCI.

bool ean Myl sNunber W deChar Stri ng(envhp, srcStr)
OClEnv *envhp;

OCl Wehar *srcStr; /* wide char source string */
{
OCl Whar *pstr = srcStr; /* define and init pointer */
bool ean status = TRUE; /* define and initialize status variable */

[* Check input */
if (pstr == (OClWhar*) NULL)
return(FALSE) ;

2-44 Oracle Call Interface Programmer's Guide

OCI Globalization Support

if (*pstr == (OCl Whar) NULL)

return(FALSE);
I'* check each character for digit */
do
{
if (OCIWdeCharlsDigit(envhp, *pstr) != TRUE)
{
status = FALSE;
br eak; /* non-decimal digit character */
}

} while (*++pstr I'= (OClWhar) NULL);

return(status);

Converting Character Sets in OCI

Conversion between Oracle character sets and Unicode (16-bit, fixed-width Unicode
encoding) is supported. Replacement characters are used if a character has no
mapping from Unicode to the Oracle character set. Therefore, conversion back to
the original character set is not always possible without data loss.

See Also: "OCI Character Set Conversion Functions" on
page 21-65

Example of Converting Character Sets in OCI
The following example shows a simple conversion into Unicode.

/* Exampl e of Converting Character Sets in OCl

___ x|

size_t MyConvertMiltiByteToUni code(envhp, errhp, dstBuf, dstSize, srcStr)
OClEnv *envhp;

OClError *errhp;

ub2 *dst Buf;

size_t dstSize;

OraText *srcStr;

{

size_t dstlen
size_t srclen

inon
L=

OCI Programming Basics 2-45

OCI Globalization Support

OraText tb[OCl _NLS MAXBUFSZ] ; /* NLS info buffer */
ub2 cid; [* OCl Env character set id */

/* get OClEnv character set */

checkerr(errhp, OCIN sCetlnfo(envhp, errhp, th, sizeof(tbh),
OCl _NLS_CHARACTER SET));

cid = OClI N sChar Set NameTol d(envhp, tb);

if (cid == OCl _UTF16l D)
{
ub2 *srcStrb2 = (ub2*)srcStr;
while (*srcStrUpn2++) ++srclen;
srcLen *= sizeof (ub2);
}
el se
srcLen = OCIMul tiByteStrlen(envhp, srcStr);

checkerr(errhp,
CCl NI sChar Set Convert (

envhp, /* environment handle */

errhp, /* error handle */

OCl _UTF16I D, /* Unicode character set id */
dst Buf, /* destination buffer */

dst Si ze, /* size of destination buffer */
cid, [* OClEnv character set id */
srcStr, /* source string */

srclLen, /* length of source string */

&dstlLen)); /* pointer to destination length */

return dstLen/sizeof (ub2);

}

OCI Messaging Functions

The user message API provides a simple interface for cartridge developers to
retrieve their own messages and Oracle messages.

See Also:
» Oracle Data Cartridge Developer's Guide
« "OCI Messaging Functions" on page 21-73

2-46 Oracle Call Interface Programmer's Guide

OCI Globalization Support

Example of Retrieving a Message from a Text Message File

This example creates a message handle, initializes it to retrieve messages from

i mpus. meg, retrieves message number 128, and closes the message handle. It
assumes that OCI environment handles, OCI session handles, product, facility, and
cache size have been initialized properly.

OCl Msg msghnd,; /* message handle */
/* initialize a message handle for retrieving messages from i npus. msg*/
err = OCl MessageQpen(hndl, errhp, &rsghnd, prod, fac, OCl _DURATI ON_SESSI ON) ;
if (err = OCl _SUCCESS)
[* error handling */

/* retrieve the message with nmessage nunber = 128 */
megptr = OCl MessageGet (nmsghnd, 128, nsgbuf, sizeof (nsgbuf));
/* do something with the nessage, such as display it */

/* close the message handl e when there are no nore messages to retrieve */
Qd Messaged ose(hndl, errhp, nsghnd);

Imsgen Utility

The | nsgen utility converts text-based message files (. n5g) into binary format
(. meb) so that Oracle messages and OCI messages provided by the user can be
returned to OCI functions in the desired language.

The BNF Syntax of Imsgen is:

I msgen text_file product facility [language]
where:

« text _fileisamessage text file.

« product isthe name of the product.

« facility isthe name of the facility.

« | anguage is the optional message language corresponding to the language
specified in the NLS_LANG parameter. The language parameter is required if the
message file is not tagged properly with language.

Text message files must follow these guidelines:

« Lines that start with "/ " and "/ / " are treated as internal comments and are
ignored.

OCI Programming Basics 2-47

OCI Globalization Support

« To tag the message file with a specific language, include a line similar to the
following:

CHARACTER_SET_NAME= Japanese_Japan. JALGEUC

« Each message contains 3 fields:

message_nunber, warning_| evel, nessage_text

« The message number must be unique within a message file.
« The warning level is not currently used. Set to 0.

« The message text cannot be longer than 76 bytes.

The following is an example of an Oracle message text file:

| Copyright (c) 2001 by the Oracle Corporation. Al rights reserved.
/ This is a test us7ascii nessage file

CHARACTER SET_NAME= ameri can_anerica. us7ascii

/

00000, 00000, "Export term nated unsuccessfully\n"

00003, 00000, "no storage definition found for segnent(%u, %u)"

Example: Creating a Binary Message File from a Text Message File
The following table contains sample values for the | nsgen parameters:

Parameter Value

pr oduct $HOVE/ myAppl i cati on
facility inmp

| anguage AVERI CAN

text_file i mpus. nsg

The text message file is found in the following location:

$HOVE/ nyApp/ mesg/ i npus. nsg

One of the lines in the text message file is:
00128,2, "Duplicate entry % found in %"

The | nsgen utility converts the text message file (i mpus. nsg) into binary format,
resulting in a file called i npus. nsb:

2-48 Oracle Call Interface Programmer's Guide

OCI Globalization Support

% | megen i npus. msg $HOVE/ nyAppl i cation inp AVERI CAN

The following output results:

Generating nessage file inpus.nsg -->
[home/ scott/ nyAppl i cation/ mesg/ i npus. nsh

NLS Bi nary Message File Ceneration Uility: Version 9.2.0.0.0 -Production

Copyright (c) Oracle Corporation 1979, 2001. Al rights reserved.

CORE 9.2.0.0.0 Production

OCI Programming Basics 2-49

OCI Globalization Support

2-50 Oracle Call Interface Programmer's Guide

3

Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI
applications. It also discusses Oracle datatypes and the conversions between
internal and external representations that occur when you transfer data between
your program and Oracle.

This chapter contains these topics:

Oracle Datatypes
Internal Datatypes
External Datatypes
Data Conversions
Typecodes

Definitions in oratypes.h

See Also: For detailed information about Oracle internal
datatypes, see the Oracle Database SQL Reference

Datatypes 3-1

Oracle Datatypes

Oracle Datatypes

One of the main functions of an OCI program is to communicate with a database
through an Oracle server. The OCI application may retrieve data from database
tables through SQL SELECT queries, or it may modify existing data in tables
through | NSERT, UPDATE, or DELETE statements.

Inside a database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats known as internal datatypes. Examples of
internal datatypes include NUMBER, CHAR, and DATE.

In general, OCI applications do not work with internal datatype representations of
data, but with host language datatypes which are predefined by the language in
which they are written. When data is transferred between an OCI client application
and a database table, the OCI libraries convert the data between internal datatypes
and external datatypes.

External datatypes are host language types that have been defined in the OCI
header files. When an OCI application binds input variables, one of the bind
parameters is an indication of the external datatype code (or SQLT code) of the
variable. Similarly, when output variables are specified in a define call, the external
representation of the retrieved data must be specified.

In some cases, external datatypes are similar to internal types. External types
provide a convenience for the programmer by making it possible to work with host
language types instead of proprietary data formats.

Note: Even though some external types are similar to internal
types, an OCI application never binds to internal datatypes. They
are discussed here because it can be useful to understand how
internal types can map to external types.

The OCI is capable of performing a wide range of datatype conversions when
transferring data between Oracle and an OCI application. There are more OCI
external datatypes than Oracle internal datatypes. In some cases a single external
type maps to an internal type; in other cases multiple external types map to an
single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI
programmer. For example, if you are processing the SQL statement

SELECT sal FROM enp WHERE enpno = :enpl oyee_nunber

3-2 Oracle Call Interface Programmer's Guide

Oracle Datatypes

and you want the salary to be returned as character data, instead of a binary
floating-point format, specify an Oracle external string datatype, such as VARCHAR2
(code = 1) or CHAR (code = 96) for the dt y parameter in the OCl Def i neByPos()
call for the sal column. You also need to declare a string variable in your program
and specify its address in the val uep parameter.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external datatype. You also need to define a
variable of the appropriate type for the val uep parameter.

Oracle performs most data conversions transparently. The ability to specify almost
any external datatype provides a lot of power for performing specialized tasks. For
example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external datatype. See the
description of the DATE external datatype on page 3-15 for more information.

To control data conversion, you must use the appropriate external datatype codes in
the bind and define routines. You must tell Oracle where the input or output
variables are in your OCI program and their datatypes and lengths.

OCI also supports an additional set of OCI typecodes which are used by Oracle's
type management system to represent datatypes of object type attributes. There is a
set of predefined constants which can be used to represent these typecodes. The
constants each contain the prefix OCl _ TYPECODE.

In summary, the OCI programmer must be aware of the following different
datatypes or data representations:

« Internal Oracle datatypes, which are used by table columns in an Oracle
database. These also include datatypes used by PL/SQL which are not used by
Oracle columns (for example, indexed table, boolean, record).

See Also: "Internal Datatypes" on page 3-4

« External OCI datatypes, which are used to specify host language
representations of Oracle data.

See Also: "External Datatypes” on page 3-8, and "Using External
Datatype Codes" on page 3-4

« OCI_TYPECODE values, which are used to Oracle to represent type
information for object type attributes.

Datatypes 3-3

Internal Datatypes

See Also: "Typecodes" on page 3-33, and "Relationship Between
SQLT and OCI_TYPECODE Values" on page 3-35

Information about a column's internal datatype is conveyed to your application in
the form of an internal datatype code. Once your application knows what type of
data will be returned, it can make appropriate decisions about how to convert and
format the output data. The Oracle internal datatype codes are listed in the section
"Internal Datatypes" on page 3-4.

See Also:

« For detailed information about Oracle internal datatypes, see
the Oracle Database SQL Reference.

« For information about describing select-list items in a query,
see the section "Describing Select-list Items" on page 4-11.

Using External Datatype Codes

An external datatype code indicates to Oracle how a host variable represents data in
your program. This determines how the data is converted when returned to output
variables in your program, or how it is converted from input (bind) variables to
Oracle column values. For example, if you want to convert a NUMBER in an Oracle
column to a variable-length character array, you specify the VARCHAR?2 external
datatype code in the OCl Def i neByPos() call that defines the output variable.

To convert a bind variable to a value in an Oracle column, specify the external
datatype code that corresponds to the type of the bind variable. For example, if you
want to input a character string such as 02-FEB-65 to a DATE column, specify the
datatype as a character string and set the length parameter to nine.

It is always the programmer's responsibility to make sure that values are
convertible. If you try to insert the string " MY BIRTHDAY" into a DATE column,
you will get an error when you execute the statement.

See Also: For a complete list of the external datatypes and
datatype codes, see Table 3-2, "External Datatypes and Codes"

Internal Datatypes

Table 3-1 lists the Oracle internal (also known as built-in) datatypes, along with each
type's maximum internal length and datatype code.

3-4 Oracle Call Interface Programmer's Guide

Internal Datatypes

Table 3-1 Internal Oracle Datatypes
Datatype

Internal Oracle Datatype Maximum Internal Length Code
VARCHAR2, NVARCHAR2 4000 bytes 1
NUMBER 21 bytes 2
LONG 2/731-1 bytes (2 gigabytes) 8
DATE 7 bytes 12
RAW 2000 bytes 23
LONG RAW 2/731-1 bytes 24
ROW D 10 bytes 69
CHAR, NCHAR 2000 bytes 96
Bl NARY FLOAT 4 bytes 100
Bl NARY_DOUBLE 8 bytes 101
User-defined type (object type, VARRAY, N/A 108
Nest ed Tabl e)
REF N/A 111
CLOB, NCLOB 128 terabytes 112
BLOB 128 terabytes 113
BFI LE maximum operating system 114

file size
TI MESTAMP 11 bytes 180
TI MESTAMP W TH TI ME ZONE 13 bytes 181
I NTERVAL YEAR TO MONTH 5 bytes 182
| NTERVAL DAY TO SECOND 11 bytes 183
UROW D 3950 bytes 208
TI MESTAMP W TH LOCAL TI ME ZONE 11 bytes 231

See Also:

see the Oracle Database SQL Reference.

For more information about these built-in datatypes,

Datatypes 3-5

Internal Datatypes

LONG, RAW, LONG RAW, VARCHAR?2

You can use the piecewise capabilities provided by OCl Bi ndByNane(),

OCl Bi ndByPos(), OCl Def i neByPos(), OCl St nt Get Pi ecel nfo() and
OCl St nt Set Pi ecel nf o() to perform inserts, updates or fetches involving
column data of these types.

Character Strings and Byte Arrays

You can use five Oracle internal datatypes to specify columns that contain
characters or arrays of bytes: CHAR, VARCHAR2, RAWLONG and LONG RAW

Note: LOBs can contain characters and FILEs can contain binary
data. They are handled differently than other types, so they are not
included in this discussion. See Chapter 7, "LOB and BFILE
Operations", for more information about these datatypes.

CHAR, VARCHARZ2, and LONG columns normally hold character data. RAWand LONG
RAWhold bytes that are not interpreted as characters, for example, pixel values in a
bit-mapped graphic image. Character data can be transformed when passed
through a gateway between networks. Character data passed between machines
using different languages, where single characters may be represented by differing
numbers of bytes, can be significantly changed in length. Raw data is never
converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle
internal datatype for each column in the table. The OCI programmer must be aware
of the many possible ways that character and byte-array data can be represented
and converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

UROWID

The Universal RON D (UROW D) is a datatype that can store both logical and
physical rowids of Oracle tables. Logical rowids are primary key-based logical
identifiers for the rows of Index-Organized Tables (I0Ts).

To use columns of the UROW D datatype, the value of the COMPATI BLE initialization
parameter must be set to 8.1 or higher.

3-6 Oracle Call Interface Programmer's Guide

Internal Datatypes

The following host variables can be bound to Universal ROWIDs:
« SQLT_CHR (VARCHARR)

« SQLT_VCS (VARCHAR)

« SQLT_STR (NULL-terminated string)

« SOQLT_LVC (LONG VARCHAR)

« SLQT_AFC (CHAR)

« SQLT_AVC (CHARZ)

« SQLT_VST (OCI String)

« SQLT_RDD (ROW Ddescriptor)

BINARY_FLOAT and BINARY_DOUBLE

The Bl NARY_FLQOAT and Bl NARY_DOUBLE datatypes represent single-precision
and double-precision floating point values that mostly conform to the IEEE754
standard for Floating Point Arithmetic.

Prior to the addition of these datatypes, all numeric values in an Oracle database
were stored in the Oracle NUMBER format. These new binary floating point types
will not replace Oracle NUMBER. Rather, they are alternatives to Oracle NUMBER that
provide the advantage of using less disk storage.

These internal types are represented by the following codes:
« SQLT_IBFLOAT for Bl NARY_FLQAT.
« SQLT_IBDOUBLE for Bl NARY_DOUBLE.

All the following host variables can be bound to Bl NARY_FLQOAT and
Bl NARY_DOUBLE datatypes:

« SQLT_BFLOAT (native float)

« SQLT_BDOUBLE (native double)
« SQLT_INT (integer)

« SQLT_FLT (float)

« SQLT_NUM (Oracle NUVBER)

« SQLT_UIN (unsigned)

« SQLT_VNU (VARNUM

Datatypes 3-7

External Datatypes

« SQLT_CHR (VARCHAR2)

« SQLT_VCS (VARCHAR)

« SQLT_STR (NULL-terminated String)
« SQLT_LVC (LONGVARCHAR)

« SQLT_AFC (CHAR)

« SQLT_AVC (CHARZ)

« SQLT_VST (OCIString)

For best performance, you are advised to use external types SQLT_BFLOAT and
SQLT_BDOUBLE in conjunction with the Bl NARY_FLOAT and Bl NARY_DOUBLE
datatypes.

External Datatypes

Table 3-2 lists datatype codes for external datatypes. For each datatype, the table
lists the program variable types for C from or to which Oracle internal data is
normally converted.

Table 3-2 External Datatypes and Codes

EXTERNAL DATATYPE CODE PROGRAM VARIABLE OCI DEFINED CONSTANT
VARCHAR2 1 char[n] SQLT_CHR
NUMBER 2 unsigned char[21] SQLT_NUM
8-bit signed | NTEGER 3 signed char SQLT_INT
16-bit signed | NTEGER 3 signed short, signed int SQLT_INT
32-bit signed | NTEGER 3 signed int, signed long SQLT_INT
FLOAT 4 float, double SQLT_FLT
NULL-terminated STRI NG 5 char[n+1] SQLT_STR
VARNUM 6 char[22] SQLT_VNU
LONG 8 char[n] SQLT_LNG
VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS
DATE 12 char[7] SQLT_DAT
VARRAW 15 unsigned SQLT_VBI

char[n+sizeof(short integer)]

3-8 Oracle Call Interface Programmer's Guide

External Datatypes

Table 3-2 External Datatypes and Codes (Cont.)

EXTERNAL DATATYPE CODE PROGRAM VARIABLE OCI| DEFINED CONSTANT

native float 21 float SQLT_BFLOAT

native double 22 double SQLT_BDOUBLE

RAW 23 unsigned char[n] SQLT_BIN

LONG RAW 24 unsigned char[n] SQLT_LBI

UNSI GNED | NT 68 unsigned SQLT_UIN

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

LONG VARRAW 95 unsigned SQLT_LVB
char[n+sizeof(integer)]

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROW D descriptor 104 OCIRowid * SQLT_RDD

NAMED DATATYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF

Character LOB descriptor 112 OClLobLocator (see note2) SQLT_CLOB

Binary LOB descriptor 113 OClLobLocator (see note 2) SQLT_BLOB

Binary FILE descriptor 114 OClLobLocator SQLT_FILE

OCl STRI NGtype 155 OCIString SQLT_VST (see note 1)

OCl DATE type 156 OClDate * SQLT_ODT (see note 1)

ANSI DATE descriptor 184 OClDateTime * SQLT_DATE

TI MESTAMP descriptor 187 OClIDateTime * SQLT_TIMESTAMP

TI MESTAMP W TH TI ME ZONE 188 OClIDateTime * SQLT_TIMESTAMP_TZ

descriptor

I NTERVAL YEAR TO MONTH 189 OClInterval * SQLT_INTERVAL_YM

descriptor

| NTERVAL DAY TO SECOND 190 OClInterval * SQLT_INTERVAL_DS

descriptor

TI MESTAMP W TH LOCAL TI ME 232

ZONE descriptor

OClIDateTime *

SQLT_TIMESTAMP_LTZ

Datatypes 3-9

External Datatypes

VARCHAR2

Note: Where the length is shown as n, it is a variable, and
depends on the requirements of the program (or of the operating
system in the case of RON D).

« For more information on the use of these datatypes, refer to
Chapter 11, "Object-Relational Datatypes in OCI".

« Inapplications using datatype mappings generated by OTT,
CLOBs may be mapped as OCIClobLocator, and BLOBs may be
mapped as OCIBlobLocator. For more information, refer to
Chapter 14, "Using the Object Type Translator with OCI".

The following three types are internal to PL/SQL and cannot be returned as values
by OCI:

. Boolean, SQLT_BOL
. Indexed Table, SQLT_TAB
. Record, SQLT_REC

The VARCHARZ datatype is a variable-length string of characters with a maximum
length of 4000 bytes.

Note: If you are using Oracle objects, you can work with a special
QOCl St ri ng external datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes in OCI"
for more information about this datatype.

Input
The val ue_sz parameter determines the length in the OCl Bi ndByNane() or
OCl Bi ndByPos() call.

If the val ue_sz parameter is greater than zero, Oracle obtains the bind variable
value by reading exactly that many bytes, starting at the buffer address in your
program. Trailing blanks are stripped, and the resulting value is used in the SQL
statement or PL/SQL block. If, in the case of an | NSERT statement, the resulting
value is longer than the defined length of the database column, the | NSERT fails,
and an error is returned.

3-10 Oracle Call Interface Programmer's Guide

External Datatypes

NUMBER

Note: A trailing NULL is not stripped. Variables should be
blank-padded but not NULL-terminated.

If the val ue_sz parameter is zero, Oracle treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that
has a NOT NULL integrity constraint, Oracle issues an error, and the row is not
inserted.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the VARCHARZ string
contains an illegal conversion character, Oracle returns an error and the value is not
inserted into the database.

Output

Specify the desired length for the return value in the val ue_sz parameter of the
OCl Def i neByPos() call, or the val ue_sz parameter of OCl Bi ndByNane() or
OCl Bi ndByPos() for PL/SQL blocks. If zero is specified for the length, no data is
returned.

If you omit the r | enp parameter of OCl Def i neByPos (), returned values are
blank-padded to the buffer length, and NULLSs are returned as a string of blank
characters. If r | enp is included, returned values are not blank-padded. Instead,
their actual lengths are returned in the r | enp parameter.

To check if a NULL is returned or if character truncation has occurred, include an
indicator parameter in the OCl Def i neByPos() call. Oracle sets the indicator
parameter to -1 when a NULL is fetched and to the original column length when the
returned value is truncated. Otherwise, it is set to zero. If you do not specify an
indicator parameter and a NULL is selected, the fetch call returns the error code
OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will
return ORA-1405.

See Also: "Indicator Variables" on page 2-30

You should not need to use NUMBER as an external datatype. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and will expect this
format on input. The following discussion is included for completeness only.

Datatypes 3-11

External Datatypes

INTEGER

Note: If you are using objects in an Oracle database server, you
can work with a special OCl Nunber datatype using a set of
predefined OCI functions. Refer to Chapter 11, "Object-Relational
Datatypes in OCI" for more information about this datatype.

Oracle stores values of the NUMBER datatype in a variable-length format. The first
byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of
the exponent byte is the sign bit; it is set for positive numbers and it is cleared for
negative numbers. The lower 7 bits represent the exponent, which is a base-100 digit
with an offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e) -128 - 65 = Oxc1 -128 -65 = 193 -128 -65
=0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is 96 (101 - 5). Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa
bytes do not have the trailing 102 byte. Because the mantissa digits are stored in
base 100, each byte can represent 2 decimal digits. The mantissa is normalized,;
leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUVBER

If you specify the datatype code 2 in the dt y parameter of an OCl Def i neByPos()
call, your program receives numeric data in this Oracle internal format. The output
variable should be a 21-byte array to accommodate the largest possible number.
Note that only the bytes that represent the number are returned. There is no blank
padding or NULL termination. If you need to know the number of bytes returned,
use the VARNUMexternal datatype instead of NUMBER. See the description of
VARNUM on page 3-14 for examples of the Oracle internal number format.

The | NTEGER datatype converts numbers. An external integer is a signed binary
number; the size in bytes is system dependent. The host system architecture

3-12 Oracle Call Interface Programmer's Guide

External Datatypes

determines the order of the bytes in the variable. A length specification is required
for input and output. If the number being returned from Oracle is not an integer, the
fractional part is discarded, and no error or other indication is returned. If the
number to be returned exceeds the capacity of a signed integer for the system,
Oracle returns an "overflow on conversion" error.

FLOAT

The FLOAT datatype processes numbers that have fractional parts or that exceed the
capacity of an integer. The number is represented in the host system's floating-point
format. Normally the length is either four or eight bytes. The length specification is
required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore Oracle can represent numbers with greater
precision than floating-point representations.

Note: You may receive a round-off error when converting
between FLOAT and NUMBER. Using a FLOAT as a bind variable in a
guery may return an ORA-1403 error. You can avoid this situation
by converting the FLOAT into a STRI NGand then using VARCHAR2
or a NULL-terminated string for the operation.

STRING

The NULL-terminated STRI NGformat behaves like the VARCHAR?2 format, except
that the string must contain a NULL terminator character. This datatype is most
useful for C language programs.

Input

The string length supplied in the OCl Bi ndByName() or OCl Bi ndByPos() call
limits the scan for the NULL terminator. If the NULL terminator is not found within
the length specified, Oracle issues the error

ORA-01480: trailing NULL missing from STR bind value

If the length is not specified in the bind call, the OCI uses an implied maximum
string length of 4000.

The minimum string length is two bytes. If the first character is a NULL terminator
and the length is specified as two, a NULL is inserted in the column, if permitted.

Datatypes 3-13

External Datatypes

VARNUM

Unlike types VARCHAR2 and CHAR a string containing all blanks is not treated as a
NULL on input; it is inserted as is.

Note: Unlike earlier versions of the OCI, in release 8.0 or later,
you cannot pass -1 for the string length parameter of a
NUL L-terminated string

Output

A NULL terminator is placed after the last character returned. If the string exceeds
the field length specified, it is truncated and the last character position of the output
variable contains the NULL terminator.

A NULL select-list item returns a NULL terminator character in the first character
position. An ORA-01405 error is possible, as well.

The VARNUMdatatype is like the external NUMBER datatype, except that the first byte
contains the length of the number representation. This length does not include the
length byte itself. Reserve 22 bytes to receive the longest possible VARNUM Set the
length byte when you send a VARNUMvalue to Oracle.

Table 3-3 shows several examples of the VARNUMvalues returned for numbers in an
Oracle table.

Table 3-3 VARNUM Examples

Decimal Exponent Mantissa Terminator
Value Length Byte Byte Bytes Byte

0 1 128 n/a n/a

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74,34 102

100000 2 195 11 n/a
1234567 5 196 2,24,46, 68 n/a

3-14 Oracle Call Interface Programmer's Guide

External Datatypes

LONG

VARCHAR

DATE

The LONGdatatype stores character strings longer than 4000 bytes. You can store up
to two gigabytes (2731-1 bytes) in a LONG column. Columns of this type are used
only for storage and retrieval of long strings. They cannot be used in functions,
expressions, or WHERE clauses. LONG column values are generally converted to and
from character strings.

Do not create tables with LONGcolumns. Use LOB columns (CLOB, NCLOB, or BLOB)
instead. LONG columns are supported only for backward compatibility.

Oracle also recommends that you convert existing LONG columns to LOB columns.
LOB columns are subject to far fewer restrictions than LONG columns. Furthermore,
LOB functionality is enhanced in every release, but LONG functionality has been
static for several releases.

The VARCHAR datatype stores character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
string. The specified length of the string in a bind or a define call must include the
two length bytes, so the largest VARCHAR string that can be received or sent is 65533
bytes long, not 65535.

The DATE datatype can update, insert, or retrieve a date value using the Oracle
internal date binary format. A date in binary format contains seven bytes, as shown
in Table 3-4.

Table 3-4 Format of the DATE Datatype

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example (for 119 192 11 30 16 18 1

30-NOV-1992, 3:17 PM)

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte
stores the value of the year, which is 1992, as an integer, divided by 100, giving 119
in excess-100 notation. The second byte stores year modulo 100, giving 192. Dates
Before Common Era (BCE) are less than 100. The era begins on 01-JAN-4712 BCE,
which is Julian day 1. For this date, the century byte is 53, and the year byte is 88.

Datatypes 3-15

External Datatypes

The hour, minute, and second bytes are in excess-1 notation. The hour byte ranges
from 1 to 24, the minute and second bytes from 1 to 60. If no time was specified
when the date was created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external datatype, the
database does not do consistency or range checking. All data in this format must be
carefully validated before input.

Note: There is little need to use the Oracle external DATE datatype
in ordinary database operations. It is much more convenient to
convert DATE into character format, because the program usually
deals with data in a character format, such as DD-MON-YY.

When a DATE column is converted to a character string in your program, it is
returned using the default format mask for your session, or as specified in the
I NI T. ORAfile.

See Also: If you are using objects in an Oracle database, you can
work with a special OCl Dat e datatype using a set of predefined
OCI functions.

« Refer to Chapter 11, "Object-Relational Datatypes in OCI" for
more information about this datatype.

« For information about DATETI ME and | NTERVAL datatypes,
refer to "Datetime and Interval Datatype Descriptors” on
page 3-24.

RAW

The RAWdatatype is used for binary data or byte strings that are not to be
interpreted by Oracle, for example, to store graphics character sequences. The
maximum length of a RAWcolumn is 2000 bytes.

See Also: Oracle Database SQL Reference.

When RAWdata in an Oracle table is converted to a character string in a program,
the data is represented in hexadecimal character code. Each byte of the RAWdata is
returned as two characters that indicate the value of the byte, from '00' to 'FF'. If you
want to input a character string in your program to a RAWcolumn in an Oracle
table, you must code the data in the character string using this hexadecimal code.

3-16 Oracle Call Interface Programmer's Guide

External Datatypes

VARRAW

LONG RAW

UNSIGNED

You can use the piecewise capabilities provided by OClI Def i neByPos(),

OCl Bi ndByNare(), OCl Bi ndByPos(), OCl St nt Get Pi ecel nfo(), and

OCl St nt Set Pi ecel nf o() to perform inserts, updates, or fetches involving RAW
(or LONGRAW columns.

See Also: If you are using objects in an Oracle database, you can
work with a special OCl Raw datatype using a set of predefined OCI
functions. Refer to Chapter 11, "Object-Relational Datatypes in OCI"
for more information about this datatype.

The VARRAWdatatype is similar to the RAWdatatype. However, the first two bytes
contain the length of the data. The specified length of the string in a bind or a define
call must include the two length bytes, so the largest VARRAWSstring that can be
received or sent is 65533 bytes, not 65535. For converting longer strings, use the

L ONG VARRAWexternal datatype.

The LONG RAWdatatype is similar to the RAWdatatype, except that it stores raw data
with a length up to two gigabytes (2°31-1 bytes).

The UNSI GNED datatype is used for unsigned binary integers. The size in bytes is
system dependent. The host system architecture determines the order of the bytes in
aword. A length specification is required for input and output. If the number being
output from Oracle is not an integer, the fractional part is discarded, and no error or
other indication is returned. If the number to be returned exceeds the capacity of an
unsigned integer for the system, Oracle returns an "overflow on conversion" error.

LONG VARCHAR

The LONG VARCHAR datatype stores data from and into an Oracle LONGcolumn. The
first four bytes of a LONG VARCHAR contain the length of the item. So, the maximum
length of a stored item is 2°°31-5 bytes.

Datatypes 3-17

External Datatypes

LONG VARRAW

CHAR

The LONG VARRAWdatatype is used to store data from and into an Oracle LONG RAW
column. The length is contained in the first four bytes. The maximum length is
2731-5 bytes.

The CHAR datatype is a string of characters, with a maximum length of 2000. CHAR
strings are compared using blank-padded comparison semantics.

See Also: Oracle Database SQL Reference

Input

The length is determined by the val ue_sz parameter in the OCl Bi ndByNane() or
OClI Bi ndByPos() call.

Note: The entire contents of the buffer (val ue_sz chars) is
passed to the database, including any trailing blanks or NULLs

If the val ue_sz parameter is zero, Oracle treats the bind variable as a NULL,
regardless of its actual content. Of course, a NULL must be allowed for the bind
variable value in the SQL statement. If you try to insert a NULL into a column that
has a NOT NULL integrity constraint, Oracle issues an error and does not insert the
row.

Negative values for the val ue_sz parameter are not allowed for CHARSs.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the CHAR string
contains an illegal conversion character, Oracle returns an error and does not insert
the value. Number conversion follows the conventions established by Globalization
Support settings for your system. For example, your system might be configured to
recognize a comma (,) rather than a period (.) as the decimal point.

Output

Specify the desired length for the return value in the val ue_sz parameter of the
OCl Def i neByPos() call. If zero is specified for the length, no data is returned.

3-18 Oracle Call Interface Programmer's Guide

External Datatypes

CHARZ

If you omit the r | enp parameter of OCl Def i neByPos(), returned values are
blank padded to the buffer length, and NULLs are returned as a string of blank
characters. Ifr | enp is included, returned values are not blank padded. Instead,
their actual lengths are returned in the r | enp parameter.

To check whether a NULL is returned or if character truncation has occurred,
include an indicator parameter or array of indicator parameters in the

OCl Def i neByPos() call. An indicator parameter is set to -1 when a NULL is
fetched and to the original column length when the returned value is truncated.
Otherwise, it is set to zero. If you do not specify an indicator parameter and a NULL
is selected, the fetch call returns an ORA-01405 error.

See Also: "Indicator Variables" on page 2-30

You can also request output to a character string from an internal NUVBER datatype.
Number conversion follows the conventions established by the Globalization
Support settings for your system. For example, your system might use a comma (,)
rather than a period (.) as the decimal point.

The CHARZ external datatype is similar to the CHAR datatype, except that the string
must be NULL-terminated on input, and Oracle places a NULL-terminator character
at the end of the string on output. The NULL terminator serves only to delimit the
string on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the NULL
terminator. For example, if an array in C is declared as

char ny_nun{] = "123.45";

then the length parameter when you bind my_nummust be seven. Any other value
would return an error for this example.

The following new external datatypes were introduced with or after release 8.0.
These datatypes are not supported when you connect to an Oracle release 7 server.

Datatypes 3-19

External Datatypes

Note: Both internal and external datatypes have Oracle-defined
constant values, such as SQLT_NTY, SQLT_REF, corresponding to
their datatype codes. Although the constants are not listed for all of
the types in this chapter, they are used in this section when
discussing new Oracle datatypes. The datatype constants are also
used in other chapters of this guide when referring to these new

types.

Named Datatypes: Object, VARRAY, Nested Table

REF

Named datatypes are user-defined types which are specified with the CREATE TYPE
command in SQL. Examples include object types, varrays, and nested tables. In the
OCI, named datatype refers to a host language representation of the type. The
SQLT_NTY datatype code is used when binding or defining named datatypes.

In a C application, named datatypes are represented as C structs. These structs can
be generated from types stored in the database by using the Object Type Translator.
These types correspond to OCI_TYPECODE_OBJECT.

See Also:

« For more information about working with named datatypes in
the OCI, refer to Part Il of this guide.

« For information about how named datatypes are represented as
C structs, refer to Chapter 14, "Using the Object Type Translator
with OCI".

This is a reference to a named datatype. The C language representation of a REF is a
variable declared to be of type OCl Ref *. The SQLT_REF datatype code is used
when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in
object mode. When REFs are retrieved from the server, they are stored in the
client-side object cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call OCl Obj ect New() , passing OCI_TYPECODE_REF
as the t ypecode parameter.

3-20 Oracle Call Interface Programmer's Guide

External Datatypes

See Also: For more information about working with REFs in the
OCl, refer to Part Il of this guide

ROWID Descriptor

The ROW D datatype identifies a particular row in a database table. RON Dcan be a
select-list item in a query, such as:

SELECT RON' D, enane, enmpno FROM enp

In this case, you can use the returned ROW Din further DELETE statements.

If you are performing a SELECT for UPDATE, the ROW Dis implicitly returned. This
ROW D can be read into a user-allocated ROA D descriptor using OCl Att r Get () on
the statement handle and used in a subsequent UPDATE statement. The prefetch
operation fetches all RON Ds on a SELECT for UPDATE; use prefetching and then a
single row fetch.

You access rowids through the use of a ROW D descriptor, which you can use as a
bind or define variable.

See Also: "OCI Descriptors" on page 2-13 and "Positioned
Updates and Deletes” on page 2-33 for more information about the
use of the ROW D descriptor

LOB Descriptor

A LOB (Large Object) stores binary or character data up to 128 terabytes in length.
Binary data is stored in a BLOB (Binary LOB), and character data is stored in a CLOB
(Character LOB) or NCLOB (National Character LOB).

LOB values may or may not be stored inline with other row data in the database. In
either case, LOBs have the full transactional support of the database server. A
database table stores a LOB locator that points to the LOB value, which may be in a
different storage space.

When an OCI application issues a SQL query which includes a LOB column or
attribute in its select-list, fetching the result(s) of the query returns the locator,
rather than the actual LOB value. In OCI, the LOB locator maps to a variable of type
OCl LobLocat or.

Datatypes 3-21

External Datatypes

Note: Depending on your application, you may or may not want
to use LOB locators. You can use the data interface for LOBs, which
does not require LOB locators. In this interface, you can bind or
define character data for CLOB columns or RAWdata for BLOB
columns.

See Also:

» For more information about descriptors, including the LOB
locator, see the section "OCI Descriptors" on page 2-13

« For more information about LOBs refer to the Oracle Database
SQL Reference and the Oracle Database Application Developer's
Guide - Large Objects.

« "Binding LOB Data" on page 5-11
« "Defining LOB Data" on page 5-21
The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI

functions assume that the locator has already been created, whether or not the LOB
to which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated
with the OCl Descri pt or Al | oc() function.

The locator is always fetched first using SQL or OCl Ohj ect Pi n(), and then
operations are performed using the locator. The OCI functions never take the actual
LOB value as a parameter.

See Also: For more information about OCI LOB functions, see
Chapter 7, "LOB and BFILE Operations"

The datatype codes available for binding or defining LOBs are:

« SQLT_BLOB - a binary LOB datatype.

« SQLT_CLOB - a character LOB datatype.

The NCLOB is a special type of CLOB with the following requirements:

« To write into or read from an NCLOB, the user must set the character set form
(csf rm parameter to be SQLCS_NCHAR.

3-22 Oracle Call Interface Programmer's Guide

External Datatypes

« The amount (ant p) parameter in calls involving CLOBs and NCLOBs is always
interpreted in terms of characters, rather than bytes, for fixed-width character
sets.

See Also: "LOB and BFILE Functions in OCI" on page 7-10

BFILE
Oracle supports access to binary files, or BFI LEs. The BFI LE datatype provides
access to LOBs that are stored in file systems outside an Oracle database.

A BFI LE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server's file system. The locator maintains the directory alias and
the filename.

Binary file LOBs do not participate in transactions. Rather, the underlying operating
system provides file integrity and durability.

The database administrator must ensure that the file exists and that Oracle
processes have operating system read permissions on the file.

The BFI LE datatype allows read-only support of large binary files; you cannot
modify a file through Oracle. Oracle provides APIs to access file data.

The datatype code available for binding or defining BFI LEs is:
» SQLT_BFILE - a binary FILE LOB datatype

See Also: For more information about directory aliases, refer to
the Oracle Database Application Developer's Guide - Large Objects

BLOB

The BLOB datatype stores unstructured binary large objects. BLOBs can be thought
of as bitstreams with no character set semantics. BLOBs can store up to 128 terabytes
of binary data.

BLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. The BLOB value manipulations can be committed or rolled
back. You cannot save a BLOB locator in a variable in one transaction and then use it
in another transaction or session.

CLOB

The CLOB datatype stores fixed- or variable-width character data. CLOBs can store
up to 128 terabytes of character data.

Datatypes 3-23

External Datatypes

CLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. The CLOB value manipulations can be committed or rolled
back. You cannot save a CLOB locator in a variable in one transaction and then use it
in another transaction or session.

NCLOB

An NCLOB is a national character version of a CLOB. It stores fixed-width,
single-byte or multibyte national character set (NCHAR) data, or variable-width
character set data. NCLOBs can store up to 128 terabytes of character text data.

NCL OBs have full transactional support; changes made through the OCI participate
fully in the transaction. NCLOB value manipulations can be committed or rolled
back. You cannot save a NCLOB locator in a variable in one transaction and then use
it in another transaction or session.

Datetime and Interval Datatype Descriptors
The datetime and interval datatype descriptors are briefly summarized here.

See Also: Oracle Database SQL Reference

ANSI DATE

The ANSI DATE is based on the DATE, but contains no time portion. It also has no
time zone. ANSI DATE follows the ANSI specification for the DATE datatype. When
assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of the
Oracle DATE and the timestamp are set to zero. When assigning a DATE or a
timestamp to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TI MESTAMP datatype which contains both
date and time.

TIMESTAMP

The TI MESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus the hour, minute, and second values. It
has no time zone. The TI MESTAMP datatype has the form:

TI MESTAMP(f ract i onal _seconds_preci si on)
where the optional f r act i onal _seconds_pr eci si on specifies the number of

digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

3-24 Oracle Call Interface Programmer's Guide

External Datatypes

TIMESTAMP WITH TIME ZONE

TI MESTAMP W THTI ME ZONE (TSTZ) is a variant of TI MESTAMP that includes an
explicit time zone displacement in its value. The time zone displacement is the
difference in hours and minutes between local time and UTC (Coordinated
Universal Time—formerly Greenwich Mean Time). The TI MESTAMP W THTI ME
ZONE datatype has the form:

TI MESTAMP(fractional _seconds_precision) WTH TI ME ZONE

where fracti onal _seconds_pr eci si on optionally specifies the number of
digits in the fractional part of the SECOND datetime field, and can be a number in
the range 0 to 9. The default is 6.

Two TI MESTAMP W THTI ME ZONE values are considered identical if they represent
the same instant in UTC, regardless of the TI ME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TI MESTAMP W THLOCAL Tl ME ZONE (TSLTZ) is another variant of TI MESTAMP
that includes a time zone displacement in its value. Storage is in the same format as
for TI MESTAMP. This type differs from TI MESTAMP W THTI ME ZONE in that data
stored in the database is normalized to the database time zone, and the time zone
displacement is not stored as part of the column data. When retrieving the data,
Oracle returns it in your local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TI MESTAMP W THLOCAL TI ME ZONE datatype has the form:

TI MESTAMP(f ract i onal _seconds_precision) WTH LOCAL TI ME ZONE
where fracti onal _seconds_pr eci si on optionally specifies the number of

digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

INTERVAL YEAR TO MONTH

| NTERVAL YEAR TOMONTH stores a period of time using the YEAR and MONTH
datetime fields. The | NTERVAL YEAR TOMONTH datatype has the form:

| NTERVAL YEAR(year _precision) TO MONTH

where the optional year _pr eci si on is the number of digits in the YEAR datetime
field. The default value of year _preci si onis2.

Datatypes 3-25

External Datatypes

INTERVAL DAY TO SECOND

| NTERVAL DAY TOSECOND stores a period of time in terms of days, hours, minutes,
and seconds. The | NTERVAL DAY TO SECOND datatype has the form:

| NTERVAL DAY (day_precision) TO SECOND(fractional _seconds_precision)

where:

« day_preci sion isthe optional number of digits in the DAY datetime field. It is
optional. Accepted values are 0 to 9. The default is 2.

fractional _seconds_preci si on is the number of digits in the fractional part
of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

Avoiding Unexpected Results Using Datetime

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTI MEZONE and

SESSI ONTI MEZONE. If the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

Native Float and Native Double

The native float (SQLT_BFLOAT) and native double (SQLT_BDOUBLE) datatypes
represent the single-precision and double-precision floating point values. They are
represented natively, that is, in the host system's floating point format.

Note that these new external types were added to externally represent the

Bl NARY_FLQAT and Bl NARY_DOUBLE internal datatypes. Thus, performance for
the new internal types will be best when used in conjunction with external types
native float and native double respectively. This draws a clear distinction between
the existing representation of floating point values (SQLT_FLT) and these new

types.

C Object-Relational Datatype Mappings

OCI supports Oracle-defined C datatypes for mapping user-defined datatypes to C
representations (for example, OCl Nunber, OCl Ar r ay). OCI provides a set of calls

3-26 Oracle Call Interface Programmer's Guide

Data Conversions

to operate on these datatypes, and to use these datatypes in bind and define
operations, in conjunction with OCI external datatypes.

See Also: For information on using these Oracle-defined C
datatypes, refer to Chapter 11, "Object-Relational Datatypes in OCI"

Data Conversions

Table 3-5 show the supported conversions from internal datatypes to external
datatypes, and from external datatypes into internal column representations, for all
datatypes available through release 7.3. Information about data conversions for
datatypes newer than release 7.3 is listed here:

« REFs stored in the database are converted to SQLT_REF on output.
« SQLT_REF is converted to the internal representation of REFs on input.

« Named datatypes stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

« SQLT_NTY (represented by a C struct in an application) is converted to the
internal representation of the corresponding type on input.

LOBs are shown in Table 3-6, because of the width limitation.
See Also: For information about OCl St ri ng, OCl Nunber, and

other new datatypes, refer to Chapter 11, "Object-Relational
Datatypes in OCI"

Table 3-5 Data Conversions

INTERNAL DATATYPES

EXTERNAL TONG
DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW CHAR
VARCHAR 170 170 170 I/0(1) 1/0(1) 1/0(2) 1/0(3) 1/0(3) -
NUVBER 1/0(4) 170 [- - - - - 1/0(4)
| NTEGER 1/0(4) 170 [- - - - - 1/0(4)
FLOAT 1/0(4) 170 [- - - - - 1/0(4)
STRI NG 170 170 170 I/0(1) 1/0(1) 1/0(2) 1/0(3) 1/0(3,5) 1/0
VARNUM 1/0(4) 170 [- - - - - 1/0(4)

Datatypes 3-27

Data Conversions

Table 3-5 Data Conversions (Cont.)

INTERNAL DATATYPES

EXTERNAL LONG
DATATYPES VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW CHAR
DECI MAL 1/0(4) 170 | - - - - - 1/0(4)
LONG (Vfe) 170 170 I/0(1) 1/0(1) 1/0(2) 1/0(3) 1/0(3,5) 1/0
VARCHAR 170 170 170 I/0(1) 1/0(1) 1/0(2) 1/0(3) 1/0(3,5) 1/0
DATE 170 - | - - 170 - - 170
VARRAW 1/0(6) - I(5,6) - - - 170 170 1/0(6)
RAW 1/0(6) - I(5,6) - - - 170 170 170(6)
LONG RAW O(6) - I(5,6) - - - 170 170 o(6)
UNSI GNED 170(4) 170 | - - - - - 170(4)
LONG 170 170 170 I/0(1) 1/0(1) 1/0(2) 1/0(3) 1/0(3,5) 1/0
VARCHAR
LONG VARRAW 1/0(6) - I(5,6) - - - I/0 1/0 170(6)
CHAR (Vfe) 170 170 I/0(1) 1/0(1) 1/0(2) 1/0(3) 1(3) 170
CHARZ (Vfe) 170 170 I/0(1) 1/0(1) 1/0(2) 1/70(3) 1(3) 170
ROW D 1(1) - - 170 170 - - - 1(1)
descriptor

Legend:

I = Conversion valid for input only

O = Conversion valid for output only

I/0 = Conversion valid for input or output

Notes:

(1) For input, host string must be in Oracle RON Y UROW D format.

On output, column value is returned in Oracle ROA D/ UROW D format.

(2) For input, host string must be in the Oracle DATE character format.

(3) For input, host string must be in hex format.

3-28 Oracle Call Interface Programmer's Guide

On output, column value is returned in Oracle DATE format.

Data Conversions

On output, column value is returned in hex format.
(4) For output, column value must represent a valid number.
(5) Length must be less than or equal to 2000.
(6) On input, column value is stored in hex format.

On output, column value must be in hex format.

Data Conversions for LOB Datatype Descriptors

Table 3-6 Data Conversions for LOBs

EXTERNAL DATATYPES INTERNAL CLOB INTERNAL BLOB
VARCHAR 170

CHAR 170

LONG 170

LONG VARCHAR 170

RAW 170

VARRAW 170

LONG RAW 170

LONG VARRAW 170

Data Conversions for Datetime and Interval Datatypes

You can also use one of the character datatypes for the host variable used in a fetch
or insert operation from or to a datetime or interval column. Oracle will do the
conversion between the character datatype and datetime/interval datatype for you.

Table 3—-7 Data Conversion for Datetime and Interval Types

INTERVAL INTERVAL

External Types/Internal VARCHAR, YEAR TO DAY TO
Types CHAR DATE TS TSTZ TSLTZ MONTH SECOND
VARCHAR2, CHAR 170 170 170 170 170 170 170
DATE 170 170 170 170 170 - -

OCl DATE 170 170 170 170 170 - -

ANSI DATE 170 170 170 170 170 - -

Datatypes 3-29

Data Conversions

Table 3—-7 Data Conversion for Datetime and Interval Types (Cont.)

INTERVAL INTERVAL

External Types/Internal VARCHAR, YEAR TO DAY TO
Types CHAR DATE TS TSTZ TSLTZ MONTH SECOND
TI MESTAMP (TS) 170 170 170 170 170 - -

TI MESTAVMP W TH TI ME 170 170 170 170 170 - -

ZONE (TSTZ)

TI MESTAMP WTH LOCAL 1I/0 170 170 170 170 - -

TI VE ZONE (TSLTZ)

| NTERVAL YEAR TO 170 - - - - 170 -
MONTH

| NTERVAL DAY TO 170 - - - - - 170
SECOND

Assignment Notes

When assigning a source with time zone to a target without a time zone, the time
zone portion of the source is ignored. On assigning a source without a time zone to
a target with a time zone, the time zone of the target is set to the session's default
time zone

When assigning an Oracle DATE to a TI MESTAMP, the Tl ME portion of the DATE is

copied over to the TI MESTAMP. When assigning a TI MESTAMP to Oracle DATE, the
TI ME portion of the result DATE is set to zero. This is done to encourage upgrading
of Oracle DATE to ANSI compliant DATETI ME datatypes

When assigning an ANSI DATE to an Oracle DATE or a TI MESTAMP, the TI ME
portion of the Oracle DATE and the TI MESTAMP are set to zero. When assigning an
Oracle DATE or a TI MESTAMP to an ANSI DATE, the TI ME portion is ignored

When assigning a DATETI ME to a character string, the DATETI ME is converted using
the session's default DATETI ME format. When assigning a character string to a
DATETI ME, the string must contain a valid DATETI ME value based on the session's
default DATETI ME format

When assigning a character string to an | NTERVAL, the character string must be a valid
I NTERVAL character format.

Data Conversion Notes for Datetime and Interval Types

(1) When converting from TSLTZ to CHAR, DATE, TIMESTAMP, and TSTZ, the
value will be adjusted to the session time zone.

3-30 Oracle Call Interface Programmer's Guide

Data Conversions

(2) When converting from CHAR, DATE, and TI MESTAMP to TSLTZ, the session time
zone will be stored in memory.

(3) When assigning TSLTZ to ANSI DATE, the time portion will be zero.

(4) When converting from TSTZ, the time zone which the time stamp is in will be
stored in memory.

(5) When assigning a character string to an interval, the character string must be a
valid interval character format.

Datetime and Date Upgrading Rules

OCI has full forward and backward compatibility between a client application and
the database server as far as the datetime and date columns are concerned.

Pre-9.0 Client with 9.0 or Later Server

The only datetime datatype available to a pre-9.0 application is the DATE datatype,
SQLT_DAT. When a pre-9.0 client that defined a buffer as SQLT_DAT, tries to obtain
data from a TSLTZ column, then only the date portion of the value will be returned
to the client.

Pre-9.0 Server with 9.0 or Later Client

In this case the new client can have a bind or define buffer of type
SQLT_TIMESTAMP_LTZ. The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT_TIMESTAMP_LTZ (or any of the new
datetime datatypes) into a DATE column, an error will be issued since there is
potential data loss in this situation.

When a client has an OUT bind or a define buffer that is of datatype
SQLT_TIMESTAMP_LTZ and the underlying server side SQL buffer or column is of
DATE type, then the session time zone is assigned.

Data Conversion for BINARY_FLOAT and BINARY_DOUBLE in OCI

Table 3-8 shows the supported conversions between internal numerical datatypes
and all relevant external types. An (1) implies that the conversion is valid for input
only (binds), and (O) implies that the conversion is valid for output only (defines),
while an (I70) implies that the conversion is valid for input as well as output (binds
and defines).

Datatypes 3-31

Data Conversions

Table 3-8 Data Conversion for External Datatypes to Internal Numerical Datatypes

External Types/Internal Types BINARY_FLOAT BINARY_DOUBLE
VARCHAR 170 170
VARCHAR2 170 170
NUMBER 170 170
| NTEGER 170 170
FLOAT 170 170
STRI NG 170 170
VARNUM 170 170
LONG 170 170
UNSI GNED | NT 170 170
LONG VARCHAR 170 170
CHAR 170 170
Bl NARY_FLCAT 170 170
Bl NARY_DOUBLE 170 170

Table 3-9 shows the supported conversions between all relevant internal types and
numerical external types. An (I) implies that the conversion is valid for input only
(only for binds), and (O) implies that the conversion is valid for output only (only
for defines), while an (1/0) implies that the conversion is valid for input as well as
output (binds and defines).

Table 3-9 Data Conversions for Internal to External Numerical Datatypes

Internal Types/External Types Native Float Native Double
VARCHAR?2 170 170

NUMBER 170 170

LONG | |

CHAR 170 170
BINARY_FLOAT V4®] 170
BINARY_DOUBLE 170 170

3-32 Oracle Call Interface Programmer's Guide

Typecodes

Typecodes

There is a unique typecode associated with each Oracle type, whether scalar,
collection, reference, or object type. This typecode identifies the type, and is used by
Oracle to manage information about object type attributes. This typecode system is
designed to be generic and extensible, and is not tied to a direct one-to-one
mapping to Oracle datatypes. Consider the following SQL statements:

CREATE TYPE ny_type AS OBJECT
(attrl NUMBER,

attr2 | NTEGER,

attr3 SMALLI NT) ;

CREATE TABLE ny_t abl e AS TABLE OF ny_type;

These statements create an object type and an object table. When it is created,

ny_t abl e will have three columns, all of which are of Oracle NUVBER type,
because SMALLI NT and | NTEGER map internally to NUMBER. The internal
representation of the attributes of my_t ype, however, maintains the distinction
between the datatypes of the three attributes: attr 1 is
OCI_TYPECODE_NUMBER, attr2 is OCI_TYPECODE_INTEGER,andattr 3 is
OCI_TYPECODE_SMALLINT. If an application describes ny_t ype, these
typecodes are returned.

OCl TypeCode is the C datatype of the typecode. The typecode is used by some OCI
functions, like OCl Obj ect New() , where it helps determine what type of object is
created. It is also returned as the value of some attributes when an object is
described; for example, querying the OCI_ATTR_TYPECODE attribute of a type
returns an OCl TypeCode value.

Table 3-10 lists the possible values for an OCl TypeCode. There is a value
corresponding to each Oracle datatype.

Table 3-10 OCITypeCode Values and Datatypes

Value Datatype

OCI_TYPECODE_REF REF

OCI_TYPECODE_DATE DATE
OCI_TYPECODE_TIMESTAMP TIMESTAMP
OCI_TYPECODE_TIMESTAMP_TZ TIMESTAMP WITH TIME ZONE

Datatypes 3-33

Typecodes

Table 3-10 OCITypeCode Values and Datatypes(Cont.)

Value

Datatype

OCI_TYPECODE_TIMESTAMP_LTZ
OCI_TYPECODE_INTERVAL_YM
OCI_TYPECODE_INTERVAL _DS
OCI_TYPECODE_REAL
OCI_TYPECODE_DOUBLE
OCI_TYPECODE_FLOAT
OCI_TYPECODE_NUMBER
OCI_TYPECODE_BFLOAT
OCI_TYPECODE_BDOUBLE
OCI_TYPECODE_DECIMAL
OCI_TYPECODE_OCTET
OCI_TYPECODE_INTEGER
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_RAW
OCI_TYPECODE_VARCHAR?2
OCI_TYPECODE_VARCHAR
OCI_TYPECODE_CHAR

OCI_TYPECODE_VARRAY
OCI_TYPECODE_TABLE
OCI_TYPECODE_CLOB
OCI_TYPECODE_BLOB
OCI_TYPECODE_BFILE
OCI_TYPECODE_OBJECT
OCI_TYPECODE_NAMEDCOLLECTION

TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND
single-precision real

double-precision real

floating-point

Oracle NUMBER

BINARY_FLOAT

BINARY_DOUBLE

decimal

octet

integer

smallint

RAW

variable string ANSI SQL, that is, VARCHAR?2
variable string Oracle SQL, that is, VARCHAR

fixed-length string inside SQL, that is SQL
CHAR

variable-length array (varray)
multiset

character large object (CLOB)
binary large object (BLOB)

binary large object file (BFILE)
named object type, or SYS.XMLType

Domain (named primitive type)

3-34 Oracle Call Interface Programmer's Guide

Typecodes

Relationship Between SQLT and OCI_TYPECODE Values

Oracle recognizes two different sets of datatype code values. One set is
distinguished by the SQLT_ prefix, the other by the OCI _ TYPECCODE _ prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define
operation, enabling you to control data conversions between Oracle and OCI client
applications. The OCI_TYPECODE types are used by Oracle's type system to
reference or describe predefined types when manipulating or creating user-defined

types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE
values. In other cases, however, there is not a direct one-to-one mapping. For
example OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32,
OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and
OCI_TYPECODE_SMALLINT are all mapped to the SQLT_INT type.

Table 3-11 illustrates the mappings between SQLT and OCI_TYPECODE types.

Table 3-11 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename

Oracle Type System Type

Equivalent SQLT Type

BFI LE

BLOB

CHAR

CLOB

COLLECTI ON

DATE

TI MESTAMP

TI MESTAMP W TH TI ME ZONE

TI MESTAMP W TH LOCAL TI ME
ZONE

I NTERVAL YEAR TO MONTH
I NTERVAL DAY TO SECOND
FLOAT

DECI MAL

DOUBLE

OCI_TYPECODE_BFILE
OCI_TYPECODE_BLOB
OCI_TYPECODE_CHAR (n)
OCI_TYPECODE_CLOB
OCI_TYPECODE_NAMEDCOLLECTION
OCI_TYPECODE_DATE
OCI_TYPECODE_TIMESTAMP
OCI_TYPECODE_TIMESTAMP_TZ
OCI_TYPECODE_TIMESTAMP_LTZ

OCI_TYPECODE_INTERVAL_YM
OCI_TYPECODE_INTERVAL_DS
OCI_TYPECODE_FLOAT (b)
OCI_TYPECODE_DECIMAL (p)
OCI_TYPECODE_DOUBLE

SQLT _BFILE
SQLT_BLOB
SQLT_AFC(n) [note 1]
SQLT_CLOB
SQLT_NCO

SQLT_DAT
SQLT_TIMESTAMP
SQLT_TIMESTAMP_TZ
SQLT_TIMESTAMP_LTZ

SQLT_INTERVAL_YM
SQLT_INTERVAL_DS
SQLT_FLT (8) [note 2]
SQLT_NUM (p, 0) [note 3]
SQLT_FLT (8)

Datatypes 3-35

Typecodes

Table 3-11 OCI_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename

Oracle Type System Type

Equivalent SQLT Type

Bl NARY_FLCAT
Bl NARY_DOUBLE
| NTEGER
NUNMBER

COCTET

PO NTER

RAW

REAL

REF

OBJECT or SYS. XM_Type
S| GNEDY(8)

S| GNED(16)

Sl GNED(32)
SMVALLI NT
TABLE [note 6]
TABLE (Indexed table)
UNSI GNEDY 8)
UNSI GNED(16)
UNSI GNED(32)
VARRAY [note 6]
VARCHAR
VARCHAR2

OCI_TYPECODE_BFLOAT
OCI_TYPECODE_BDOUBLE
OCI_TYPECODE_INTEGER
OCI_TYPECODE_NUMBER (p, s)
OCI_TYPECODE_OCTET
OCI_TYPECODE_PTR
OCI_TYPECODE_RAW
OCI_TYPECODE_REAL
OCI_TYPECODE_REF

OCI_TYPECODE_SIGNEDS
OCI_TYPECODE_SIGNED16
OCI_TYPECODE_SIGNED32
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_TABLE
OCI_TYPECODE_ITABLE
OCI_TYPECODE_UNSIGNEDS
OCI_TYPECODE_UNSIGNED16
OCI_TYPECODE_UNSIGNED32
OCI_TYPECODE_VARRAY
OCI_TYPECODE_VARCHAR (n)
OCI_TYPECODE_VARCHAR?2 (n)

SQLT_BFLOAT
SQLT_BDOUBLE
SQLT_INT (i) [note 4]
SQLT_NUM (p, s) [note 5]
SQLT_INT (1)
<NONE>

SQLT_LVB

SQLT_FLT (4)
SQLT_REF
SQLT_NTY
SQLT_INT (1)
SQLT_INT (2)
SQLT_INT (4)
SQLT_INT (i) [note 4]
<NONE>

SQLT_TAB
SQLT_UIN (1)
SQLT_UIN (2)
SQLT_UIN (4)
<NONE>

SQLT_CHR (n) [note 1]
SQLT_VCS (n) [note 1]

Notes:

1. nis the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits.
b is the precision of the number in binary digits.

3. This is equivalent to a NUMBER with no decimal places.

3-36 Oracle Call Interface Programmer's Guide

Definitions in oratypes.h

4. iis the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in
decimal digits.

6. Can only be part of a named collection type.

Definitions in oratypes.h

Throughout this guide you will see references to datatypes like ub2 or sb4, or to
constants like UBAMAXVAL. These types are defined in the or at ypes. h header file,
which is found in the publ i ¢ directory. The exact contents may vary according to
the operating system you are using.

Note: The use of the datatypes in or at ypes. h is the only
supported means of supplying parameters to the OCI.

Datatypes 3-37

Definitions in oratypes.h

3-38 Oracle Call Interface Programmer's Guide

A

Using SQL Statements in OCI

This chapter discusses the concepts and steps involved in processing SQL
statements with the Oracle Call Interface.

This chapter contains these topics:

« Overview of SQL Statement Processing
« Preparing Statements

« Binding Placeholders in OCI

« Executing Statements

« Describing Select-list Items

« Defining Output Variables in OCI

« Fetching Results

« Scrollable Cursors in OCI

Using SQL Statements in OCI 4-1

Overview of SQL Statement Processing

Overview of SQL Statement Processing

Chapter 2, "OCI Programming Basics" discussed the basic steps involved in any
OCl application. This chapter presents a more detailed look at the specific tasks
involved in processing SQL statements in an OCI program.

One of the most common tasks of an OCI program is to accept and process SQL
statements. This section outlines the specific steps involved in this processing.

Once you have allocated the necessary handles and connected to a server, follow the
steps illustrated in Figure 4-1, "Steps In Processing SQL Statements":

Figure 4-1 Steps In Processing SQL Statements

Prepare
Statement

v

Bind
Placeholders*

v

Execute
Statement

v

Describe
Select-list Items*

v

Define
Output Variables*

v

Fetch and
Process Data*

|]

* These steps performed
if necessary

OCIStmtPrepare() or OCIStmtPrepare2()

OCIBindByName() or OCIBindByPos()
OCIBindObject()
OCIBindArrayOfStruct()
OCIBindDynamic()

OCIStmtExecute()

OClIParamGet()
OCIAttrGet()

OCIDefineByPos()
OCIDefineObject()
OClIDefineArrayOfStruct()
OCIDefineDynamic()

OCIStmtFetch()

1. Prepare statement. Define an application request using OCl St nt Pr epar e() or

OClI St nt Pr epar e2().

2. Bind placeholders, if necessary.. For DML statements and queries with input
variables, perform one or more bind calls using

« OCI Bi ndByPos()

4-2 Oracle Call Interface Programmer's Guide

Overview of SQL Statement Processing

« OCl Bi ndByNane()

« OCl Bi ndnj ect ()

« OCl Bi ndDynam c()

« OCBindArrayOf Struct ()

to bind the address of each input variable (or PL/SQL output variable) or array
to each placeholder in the statement.

3. A statement can also be prepared for execution with OCl St nt Pr epar e2(), an
enhanced version of OCl St nt Pr epar e() introduced to support statement
caching.

4. Execute. Call OClI St mt Execut e() to execute the statement. For DDL
statements, no further steps are necessary.

5. Describe, if necessary. Describe the select-list items, if necessary, using
OCl Par antzet () and OCl At tr Get () . This is an optional step; it is not
required if the number of select-list items and the attributes of each item (such
as its length and datatype) are known at compile time.

6. Define, if necessary. For queries, perform one or more define calls to
OCl Def i neByPos(), OCl Def i ne(hj ect (), OCl Def i neDynami c(), or
OCl Defi neArrayOF Struct () to define an output variable for each select-list
item in the SQL statement. Note that you do not use a define call to define the
output variables in an anonymous PL/SQL block. You have done this when
you have bound the data.

7. Fetch, if necessary. For queries, call OCl St nt Fet ch() to fetch the results of the
query.

Following these steps, the application can free allocated handles and then detach
from the server, or it may process additional statements.

7.x Upgrade Note: OCI programs no longer require an explicit
parse step. If a statement must be parsed, that step takes place upon
execution. This means that 8.0 or later applications must issue an
execute command for both DML and DDL statements.

For each of the steps in the diagram, the corresponding OCI function calls are listed.
In some cases multiple calls may be required.

Each step is described in detail in the following sections.

Using SQL Statements in OCI 4-3

Preparing Statements

Note: Some variation in the order of steps is possible. For
example, it is possible to do the define step before the execute if the
datatypes and lengths of returned values are known at compile
time.

Additional steps beyond those listed above may be required if your application
needs to do any of the following:

« initiate and manage multiple transactions
« manage multiple threads of execution

« perform piecewise inserts, updates, or fetches

See Also: "Statement Caching in OCI" on page 9-27

Preparing Statements

SQL and PL/SQL statements are prepared for execution by using the statement
prepare call and any necessary bind calls. In this phase, the application specifies a
SQL or PL/SQL statement and binds associated placeholders in the statement to
data for execution. The client-side library allocates storage to maintain the
statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCl St nt Pr epar e() call and passes to it a previously allocated
statement handle. This is a completely local call, requiring no round trip to the
server. No association is made between the statement and a particular server at this
point.

Following the request call, an application can call OCl Att r Get () on the statement
handle, passing OCI_ATTR_STMT_TYPE to the at t rt ype parameter, to determine
what type of SQL statement was prepared. The possible attribute values and
corresponding statement types are listed in Table 4-1.

Table 4-1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type
OCI_STMT_SELECT SELECT statement
OCI_STMT_UPDATE UPDATE statement
OCI_STMT_DELETE DELETE statement

4-4 Oracle Call Interface Programmer's Guide

Binding Placeholders in OCI

Table 4-1 OCI_ATTR_STMT_TYPE Values and Statement Types (Cont.)

Attribute Value Statement Type
OCI_STMT _INSERT INSERT statement
OCI_STMT_CREATE CREATE statement
OCI_STMT_DROP DROP statement
OCI_STMT_ALTER ALTER statement
OCI_STMT_BEGIN BEGIN... (PL/SQL)
OCI_STMT_DECLARE DECLARE... (PL/SQL)
See Also:

« "Using PL/SQL in an OCI Program" on page 2-37
« Seethe OCl St nt Prepare() call

Using Prepared Statements on Multiple Servers

A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for
the servers. All information about the current service context and statement handle
association is lost when a new association is made.

For example, consider an application such as a network manager, which manages
multiple servers. In many cases, it is likely that the same SELECT statement will
need to be executed against multiple servers to retrieve information for display. The
OCI allows the network manager application to prepare a SELECT statement once
and execute it against multiple servers. It must fetch all of the required rows from
each server prior to reassociating the prepared statement with the next server.

Note: If a prepared statement must be reexecuted frequently on
the same server, it is more efficient to prepare a new statement for
another service context.

Binding Placeholders in OCI

Most DML statements, and some queries (such as those with a WHERE clause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
This data can be constant or literal, known when your program is compiled. For

Using SQL Statements in OCI 4-5

Binding Placeholders in OCI

example, the following SQL statement, which adds an employee to a database
contains several literals, such as 'BESTRY" and 2365:

I NSERT | NTO enp VALUES
(2365, 'BESTRY', 'PROGRAMMER , 2000, 20)

Coding a statement like this into an application would severely limit its usefulness.
You would need to change the statement and recompile the program each time you
add a new employee to the database. To make the program more flexible, you can
write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (: enane), that show where input
data must be supplied by the program.

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, | NSERT, SELECT, or
UPDATE statement, or a PL/SQL block, in any position in the statement where you
can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Placeholders cannot be used to represent other Oracle objects such as tables. For
example, the following is not a valid use of the enp placeholder:

I NSERT | NTO : enp VALUES
(12345, 'CERTEL', '"WRITER, 50000, 30)

For each placeholder in a SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to that placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement.

Binding is used for both input and output variables in non-query operations. In the
following example,

enpno_out, ename_out, job_out, sal _out, and deptno_out

should be bound. These are outbinds (as opposed to regular inbinds).

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno)

4-6 Oracle Call Interface Programmer's Guide

Executing Statements

RETURNI NG
(empno, enane, job, sal, deptno)
I NTO
(:enpno_out, :ename_out, :job_out, :sal _out, :deptno_out)

See Also: For detailed information about implementing bind
operations, refer to Chapter 5, "Binding and Defining in OCI"

Executing Statements

An OCI application executes prepared statements individually using
OCl St nt Execut e() .

When an OCI application executes a query, it receives data from Oracle that
matches the query specifications. Within the database, the data is stored in
Oracle-defined formats. When the results are returned, the OCI application can
request that data be converted to a particular host language format, and stored in a
particular output variable or buffer.

For each item in the select-list of a query, the OCI application must define an output
variable to receive the results of the query. The define step indicates the address of
the buffer and the type of the data to be retrieved.

Note: If output variables are defined for a SELECT statement
before a call to OCl St nt Execut e() , the number of rows specified
by the i t er s parameter are fetched directly into the defined
output buffers and additional rows equivalent to the prefetch count
are prefetched. If there are no additional rows, then the fetch is
complete without calling OCl St nt Fet ch() .

For non-queries, the number of times the statement is executed during array
operationsisequaltoiters - rowoff,whererowof f isthe offset in the bound
array, and is also a parameter of the OCl St nt Execut e() call.

For example, if an array of 10 items is bound to a placeholder for an | NSERT
statement, and i t er s is set to 10, all 10 items will be inserted in a single execute
call when r owof f is zero. If r owof f is set to 2, only 8 items will be inserted.

See Also: "Defining Output Variables in OCI" on page 4-16 for
more information about defining output variables

Using SQL Statements in OCI 4-7

Executing Statements

Execution Snapshots

The OCI St nt Execut e() call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database's committed data.
This is achieved by taking the contents of the snap_out parameter of one

OCl St nt Execut e() call and passing that value as the snap_i n parameter of the
next OCl St nt Execut e() call.

Note: Uncommitted data in one service context is not visible to
another context, even when using the same snapshot.

The datatype of both the snap_out and snap_i n parameter is OCl Snapshot , an
OCI snapshot descriptor that is allocated with the OCI DescAl | oc() function.

See Also: "OCI Descriptors” on page 2-13

It is not necessary to specify a snapshot when calling OCl St mt Execut e() . The
following sample code shows a basic execution in which the snapshot parameters
are passed as NULL.

checkerr(errhp, OC StntExecute(svchp, stnthp, errhp, (ub4) 1, (ub4) 0,
(OCl Snapshot *)NULL, (OCl Snapshot *) NULL, OCI _DEFAULT));

Note: The checkerr () function, which is user-developed,
evaluates the return code from an OCI application.

Execution Modes of OCIStmtExecute()
You can specify several modes for the OCl St nt Execut e() call.

See Also: OCIStmtExecute() on page 16-5 for the values of the
parameter node

Batch Error Mode

OCI provides the ability to perform array DML operations. For example, an
application can process an array of | NSERT, UPDATE, or DELETE statements with a
single statement execution. If one of the operations fails due to an error from the
server, such as a unique constraint violation, the array operation aborts and OCI

4-8 Oracle Call Interface Programmer's Guide

Executing Statements

returns an error. Any rows remaining in the array are ignored. The application must
then reexecute the remainder of the array, and go through the whole process again
if it encounters more errors, which makes additional round trips.

To facilitate processing of array DML operations, OCI provides the batch error mode
(also called the enhanced DML array feature). This mode, which is specified in the
OCl St nt Execut e() call, simplifies DML array processing in the event of one or
more errors. In this mode, OCI attempts to | NSERT, UPDATE, or DELETE all rows,
and collects information about any errors that occurred. The application can then
retrieve error information and reexecute any DML operations which failed during
the first call.In this way, all DML operations in the array are attempted in the first
call, and any failed operations can be reissued in a second call.

Note: This feature is only available to applications linked with the
8.1 or later OCI libraries running against a release 8.1 or later
server. Applications must also be recoded to account for the new
program logic described in this section.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the node parameter of the
OCl St nt Execut e() call.

2. After performing an array DML operation with OCl St nt Execut e() , the
application can retrieve the number of errors encountered during the operation
by calling OCl At t r Get () on the statement handle to retrieve the
OCI_ATTR_NUM_DML_ERRORS attribute. For example:

ub4 numerrs;
OCl AttrGet(stntp, OCl_HTYPE_STMI, &wumerrs, 0, OCI_ATTR_NUM DM._ERRCRS,
errhp);

3. The application extracts each error using OCl Par antzet (), along with its row
information, from the error handle that was passed to the OCl St nt Execut e()
call. In order to retrieve the information, the application must allocate an
additional new error handle for the OCl Par anGet () call, populating the new
error handle with batched error information. The application obtains the syntax
of each error with OCl Er r or Get () , and the row offset into the DML array at
which the error occurred, by calling OCl At t r Get () on the new error handle.

For example, once the num _er r s amount has been retrieved, the application
can issue the following calls:

Using SQL Statements in OCI 4-9

Executing Statements

OClError errhndl, errhp2;
for (i=0; i<numerrs; i++)

OCl Par anet (errhp, OCl _HTYPE ERROR, errhp2, (dvoid **)&errhndl, i);
OCl AttrGet(errhndl, OCl_HTYPE_ERROR &row of fset, O,

OCl _ATTR_DM._ROW OFFSET, errhp2);
OCl ErrorGet(..., errhndl, ...);

Following this, the application can correct the bind information for the
appropriate entry in the array using the diagnostic information retrieved from
the batched error. Once the appropriate bind buffers are corrected or updated,
the application can reexecute the associated DML statements.

Since it cannot be determined at compile time which rows in the first execution
will cause errors, the binds for the subsequent DML should be done
dynamically by passing in the appropriate buffers at runtime. The bind buffers
used in the array binds done on the first DML operation can be reused.

Example of Batch Error Mode

The following code shows an example of how this execution mode might be used.
In this example assume that we have an application which inserts five rows (with
two columns, of types NUVBER and CHAR) into a table. Furthermore, let us assume
only two rows (say, 1 and 3) are successfully inserted in the initial DML operation.
The user then proceeds to correct the data (wrong data was being inserted the first
time) and to issue an update with the corrected data. The user uses statement
handles st nt p1 and st nt p2 to issue the | NSERT and UPDATE respectively.

OCl Bi nd *bi ndpl[2], *bindp2[2];

ub4 numerrs, row_ of f[MAXRONE], nunber [MAXRONS] = {1, 2, 3, 4, 5};
char grade[MAXRONS] = {"A','B'",'C,'D,'E};

OClError *errhp2;

OCl Error *errhndl [MAXROAB] ;

[* Array bind all the positions */
OCl Bi ndByPos (stntpl, &indpl[0],errhp, 1, (dvoid *)&nunber[0],
si zeof (nunber [0]), SQLT_INT, (dvoid *)0, (ub2 *)O0, (ub2 *)0,
0, (ub4 *)0, OCl _DEFAULT);
OCl Bi ndByPos (stntpl, &indpl[1],errhp, 2, (dvoid *)&grade[0],
si zeof (grade[0]), SQLT_CHR, (dvoid *)0, (ub2 *)0, (ub2 *)0,0,
(ub4 *)0, OCl _DEFAULT);
/* execute the array | NSERT */
OCl St nt Execute (svchp, stntpl, errhp,5,0,0,0, OCl _BATCH ERRORS);
/* get the nunber of errors, a different error handler errhp2 is used so that
* the state of errhp is not changed */

4-10 Oracle Call Interface Programmer's Guide

Describing Select-list Items

OCl AttrGet (stmtpl, OCl _HTYPE _STMI, &numerrs, O,
OCl _ATTR_NUM DM__ERRCRS, errhp2);
if (numerrs) {
/* The user can do one of two things: 1) Allocate as nmany */
[* error handl es as nunber of errors and free all handles */
/* at a later time; or 2) Allocate one err handle and reuse */
/* the same handle for all the errors */
for (i =0; i <numerrs; i++) {
OCl Handl eAl l oc((dvoid *)envhp, (dvoid **)&errhndl[i],
(ub4) OCI _HTYPE_ERROR 0, (dvoid *) 0);
OCl Par antet (errhp, OCl _HTYPE_ERROR, errhp2, &errhndl[i], i);
OCl AttrGet (errhndl[i], OCI_HTYPE_ERROR &row off[i], O,
OCl _ATTR_DM._ROW OFFSET, errhp2);
/* get server diagnostics */
OClErrorGet (..., errhndl[i], ...);
}
}
/* make corrections to bind data */
OCl Bi ndByPos (st ntp2, &i ndp2[0], errhp, 1, (dvoid *)O0, si zeof (grade[0]), SQLT_I NT,
(dvoid *)0, (ub2 *)0,(ub2 *)0,0, (ub4 *)0, OCl _DATA AT_EXEC);
OCl Bi ndByPos (stntp2, &i ndp2[1], errhp, 2, (dvoid *)O0, si zeof (nunber[0]), SQLT_DAT,
(dvoid *)0, (ub2 *)0,(ub2 *)0,0, (ub4 *)0, OCl _DATA_AT_EXEC);
/* register the callback for each bind handle, row off and position
* information can be passed to call back function by means of context
* pointers.
*/
OCl Bi ndDynami ¢ (bi ndp2[0], errhp, ctxpl, ny_cal | back, 0, 0);
OCl Bi ndDynani ¢ (bi ndp2[1], errhp, ctxp2, my_cal | back, 0, 0) ;
/* execute the UPDATE statement */
OCl St nt Execute (svchp, stntp2, errhp, numerrs, 0,0, 0, OCl _BATCH_ERRCRS) ;

In this example, OCl Bi ndDynami c() is used with a callback because the user does
not know at compile time what rows will return with errors. With a callback, you
can simply pass the erroneous row numbers, stored in r ow_of f , through the
callback context and send only those rows that need to be updated or corrected. The
same bind buffers can be shared between the | NSERT and the UPDATE executes.

Describing Select-list Items

If your OCI application is processing a query, you may need to obtain more
information about the items in the select-list. This is particularly true for dynamic
gueries whose contents are not known until run time. In this case, the program may

Using SQL Statements in OCI 4-11

Describing Select-list Items

need to obtain information about the datatypes and column lengths of the select-list
items. This information is necessary to define output variables that will receive
query results.

For example, consider a query where the program has no prior information about
the columns in the enpl oyees table:

SELECT * FROM enpl oyees

There are two types of describes available: implicit and explicit.

An implicit describe is one that does not require any special calls to retrieve describe
information from the server, although special calls are necessary to access the
information. An implicit describe allows an application to obtain select-list
information as an attribute of the statement handle after a statement has been executed
without making a specific describe call. It is called implicit, because no describe call
is required. The describe information comes free with the execute.

An explicit describe is one which requires the application to call a particular function
to bring the describe information from the server. An application may describe a
select-list (query) either implicitly or explicitly. Other schema elements must be
described explicitly.

You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCl St nt Execut e(), which does not
execute the statement, but returns the select-list description. For performance
reasons it is recommended that applications take advantage of the implicit describe
that comes free with a standard statement execution.

An explicit describe with the OCl Descri beAny() call obtains information about
schema objects rather than select-lists.

In all cases, the specific information about columns and datatypes is retrieved by
reading handle attributes.

See Also: For information about using OCl Descri beAny() to
obtain metadata pertaining to schema objects, refer to Chapter 6,
"Describing Schema Metadata”

Implicit Describe

After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about multiple select-list items, an application can call
OCl Par antzet () with the pos parameter set to 1 the first time, and then iterate the

4-12 Oracle Call Interface Programmer's Guide

Describing Select-list Items

value of pos and repeat the OCl Par antzet () call until OCI_ERROR with
ORA-24334 is returned. An application could also specify any position n to get a
column at random.

Once a parameter descriptor has been allocated for a position in the select-list, the

application can retrieve specific information by calling OCl At t r Get () on the

parameter descriptor. Information available from the parameter descriptor includes

the datatype and maximum size of the parameter.

The following sample code shows a loop that retrieves the column names and
datatypes corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCl St nt Pr epar e() .

QOCl Param *mypard = (OCl Param *) 0;

ub2 dtype;

t ext *col _nane;

ub4 counter, col _nane_len, char_semantics;
ub2 col _wi dth;

sh4 par m st at us;

text *sqlstnt = (text *)"SELECT * FROM enpl oyees WHERE enpl oyee_id = 100";

checkerr(errhp, OCl StntPrepare(stnthp, errhp, (OaText *)sqlstnt,
(ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl DEFAULT));

checkerr(errhp, OC StntExecute(svchp, stnthp, errhp, 0, 0, (OC Snapshot *)O0,
(OCl Snapshot *)0, OClI _DEFAULT));

/* Request a paraneter descriptor for position 1 in the select-list */

counter = 1;

parm status = OCl ParantGet ((dvoid *)stnthp, OCl_HTYPE_STMI, errhp,
(dvoid **)é&nypard, (ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */

whil e (parmstatus == OCl _SUCCESS) {
/* Retrieve the datatype attribute */
checkerr(errhp, OCl AttrGet((dvoid*) nypard, (ub4) OCl _DTYPE_PARAM
(dvoi d*) &dtype, (ub4 *) 0, (ub4) OCI _ATTR _DATA TYPE,
(CCl Error *) errhp));

/* Retrieve the colum nane attribute */

Using SQL Statements in OCI

4-13

Describing Select-list Items

col _name_len = 0;

checkerr(errhp, OClAttrGet((dvoid*) mypard, (ub4) OCl _DTYPE_PARAM
(dvoi d**) &col name, (ub4 *) &col _nane_len, (ub4) OCl _ATTR NAME,
(CClError *) errhp));

/* Retrieve the length semantics for the colum */
char_semantics = 0;
checkerr(errhp, OClAttrGet((dvoid*) mypard, (ub4) OCl _DTYPE_PARAM
(dvoi d*) &char_semantics, (ub4 *) 0, (ub4) OCl _ATTR CHAR USED,
(CClError *) errhp));
col_width = 0;
if (char_semantics)
/* Retrieve the colum wi dth in characters */
checkerr(errhp, OClAttrGet((dvoid*) nypard, (ub4) OCl _DTYPE_PARAM
(dvoi d*) &col _width, (ub4 *) 0, (ub4) OCl _ATTR CHAR Sl ZE,
(OClError *) errhp));
el se
/* Retrieve the colum width in bytes */
checkerr(errhp, OClAttrGet((dvoid*) nmypard, (ub4) OCl _DTYPE_PARAM
(dvoi d*) &col _width, (ub4 *) 0, (ub4) OCl_ATTR _DATA Sl ZE,
(CClError *) errhp));

/* increment counter and get next descriptor, if there is one */
count er ++;
parm status = OCl ParanGet ((dvoid *)stnthp, OCl_HTYPE_STMI, errhp,
(dvoid **)&nypard, (ub4) counter);
} I* while */

The checker r () function is used for error handling. The complete listing can be
found in the first sample application in Appendix B, "OCI Demonstration
Programs".

The callsto OCl At t r Get () and OCl Par anCet () are local calls that do not require
a network round trip, because all of the select-list information is cached on the
client side after the statement is executed.

See Also:

« Descriptions of OCl Par amGet () and OCl Attr Get ().

« "Parameter Attributes" on page 6-5 for a list of the specific
attributes of the parameter descriptor which may be read by
OCl AttrGet ().

4-14 Oracle Call Interface Programmer's Guide

Describing Select-list Items

Explicit Describe of Queries

You can describe a query explicitly prior to execution. To do this, specify
OCI_DESCRIBE_ONLY as the mode of OCl St mt Execut e() ; this does not execute
the statement, but returns the select-list description.

Note: To maximize performance, it is recommended that
applications execute the statement in default mode and use the
implicit describe that accompanies the execution.

The following code demonstrates the use of explicit describe in a select-list to return
information about columns.

int i =0;

ub4 nuncols = 0;

ub2 type = 0;

OCl Param *col hd = (OCl Param *) 0; /* colum handl e */

text *sqlstnmt = (text *)"SELECT * FROM enpl oyees WHERE enpl oyee_id = 100";

checkerr(errhp, OCl StntPrepare(stnthp, errhp, (OaText *)sqlstnt,
(ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT));

[* initialize svchp, stnhp, errhp, rowoff, iters, snap_in, snap_out */

/* set the execution mode to OCl _DESCRIBE_ONLY. Note that setting the node to
OCl _DEFAULT does an inplicit describe of the statenent in addition to executing
the statenent */

checkerr(errhp, OC StntExecute(svchp, stnthp, errhp, 0, 0,
(OCl Snapshot *) 0, (OCI Snapshot *) 0, OCI _DESCRI BE_ONLY));

/* Get the number of colums in the query */
checkerr(errhp, OClAttrGet((dvoid *)stnthp, OCl_HTYPE_STMI, (dvoid *)&nuncols,
(ub4 *)0, OCI _ATTR PARAM COUNT, errhp));

/* go through the colum list and retrieve the datatype of each colum. W
start frompos = 1 */
for (i =1; i <= nuntols; i++)
{
/* get parameter for colum i */
checkerr(errhp, OC ParanGet((dvoid *)stnthp, OCl _HTYPE STMI, errhp, (dvoid

Using SQL Statements in OCI 4-15

Defining Output Variables in OCI

**)&col hd, i));

/* get data-type of colum i */

type = 0;

checkerr(errhp, OClAttrGet((dvoid *)col hd, OCl _DTYPE_PARAM
(dvoid *)&ype, (ub4 *)0, OCl _ATTR_DATA TYPE, errhp));

Defining Output Variables in OCI

Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list that you want to retrieve data from. The
define step creates an association that determines where returned results are stored,
and in what format.

For example, to process the following statement you would normally need to define
two output variables, one to receive the value returned from the nane column, and
one to receive the value returned from the ssn column:

SELECT name, ssn FROM enpl oyees
VHERE enpno = :enmpnum

See Also: Chapter 5, "Binding and Defining in OCI"

Fetching Results

If an OCI application has processed a query, it is typically necessary to fetch the
results with OCl St nt Fet ch() or with OCl St nt Fet ch2() after the statement has
completed execution. Oracle encourages the use of OCl St mt Fet ch2(), which
supports scrollable cursors.

See Also: "Scrollable Cursors in OCI" on page 4-18

Fetched data is retrieved into output variables that have been specified by define
operations.

4-16 Oracle Call Interface Programmer's Guide

Fetching Results

Note: If output variables are defined for a SELECT statement
before a call to OCl St nt Execut e() , the number of rows specified
by the i t er s parameter is fetched directly into the defined output
buffers

See Also:

« These statements fetch data associated with the sample code in
the section "Steps Used in OCI Defining" on page 5-18. Refer to
that example for more information.

« For information about defining output variables, see the section
"Overview of Defining in OCI" on page 5-17.

Fetching LOB Data

If LOB columns or attributes are part of a select-list, they can be returned as LOB
locators or actual LOB values, depending on how you define them. If LOB locators
are fetched, then the application can perform further operations on these locators
through the OCl LobXXX interfaces.

See Also:

« Chapter 7, "LOB and BFILE Operations", for more information
about working with LOB locators in the OCI.

« "Defining LOB Output Variables" on page 5-20 for usage and
examples of selecting LOB data without the use of locators.

Setting Prefetch Count

In order to minimize server round trips and optimize the performance, the OCI can
prefetch result set rows when executing a query. You can customize this prefetching
by setting either the OCI_ATTR_PREFETCH_ROWS or
OCI_ATTR_PREFETCH_MEMORY attribute of the statement handle using the

OCl At tr Set () function. These attributes are used as follows:

« OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched. If it is
not set, then the default value is 1. If the i t er s parameter of
OCl st nt Execut e() is 0 and prefetching is enabled, the rows are buffered
during calls to OCl St mt Fet ch2() . The prefetch value can be altered after
execution and between fetches.

Using SQL Statements in OCI 4-17

Scrollable Cursors in OCI

« OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be
prefetched. The application then fetches as many rows as will fit into that much
memory.

When both of these attributes are set, the OCI prefetches rows up to the
OCI_ATTR_PREFETCH_ROWS limit unless the OCI_ATTR_PREFETCH_MEMORY
limit is reached, in which case the OCI returns as many rows as will fit in a buffer of
size OCI_ATTR_PREFETCH_MEMORY.

By default, prefetching is turned on, and the OCI fetches an extra row all the time.
To turn prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and
OCI_ATTR_PREFETCH_MEMORY attributes to zero.

Note: Prefetching is not in effect if LONGcolumns are part of the
guery. Queries containing LOB columns can be prefetched, because
the LOB locator, not the data, is returned by the query.

See Also: "Statement Handle Attributes" on page A-28.

Scrollable Cursors in OCI

A cursor is a current position in a result set. Execution of a cursor puts the results of
the query into a set of rows called the result set that can be fetched either
sequentially or non-sequentially. In the latter case the cursor is known as a scrollable
Ccursor.

A scrollable cursor provides support for forward and backward access into the
result set from a given position, using either absolute or relative row number offsets
into the result set.

Rows are numbered starting at one. For a scrollable cursor, you can fetch
previously-fetched rows, the n-th row in the result set, or the n-th row from the
current position. Client-side caching of either the partial or entire result set
improves performance by limiting calls to the server.

Oracle does not support DML operations on scrollable cursors. A cursor cannot be
made scrollable if the LONG datatype is part of the select list.

Moreover, fetches from a scrollable statement handle are based on the snapshot at
execution time. The size of the client cache can be controlled by the existing OCI
attributes OCI_ATTR_PREFETCH_ROWS and OCI_ATTR_PREFETCH_MEMORY.

4-18 Oracle Call Interface Programmer's Guide

Scrollable Cursors in OCI

Note: Do not use scrollable cursors unless you require the
functionality, because they use more server resources and can have
greater response times than non-scrollable cursors.

The OCI St nt Execut e() call has an execution mode for scrollable cursors,
OCI_STMT_SCROLLABLE_READONLY. The default for statement handles is
non-scrollable, forward sequential access only, where the mode is
OCI_FETCH_NEXT. You must set this execution mode each time the statement
handle is executed.

The statement handle attribute OCI_ATTR_CURRENT_POSITION can be retrieved
using OCl At t r Get () only. This attribute cannot be set by the application; it
indicates the current position in the result set.

For non-scrollable cursors, OCI_ATTR_ROW_COUNT is the total number of rows
fetched into user buffers with the OCl St nt Fet ch2() calls since this statement
handle was executed. Since non-scrollable cursors are forward sequential only,
OCI_ATTR_ROW_COUNT also represents the highest row number seen by the
application.

For scrollable cursors, OCI_ATTR_ROW_COUNT will represent the maximum
(absolute) row number fetched into the user buffers. Since the application can
arbitrarily position the fetches, this does not have to be the total number of rows
fetched into the your buffers since the (scrollable) statement was executed.

The attribute OCI_ATTR_ROWS_FETCHED on the statement handle, represents the
number of rows that were successfully fetched into the user's buffers in the last
fetch call or execute. It works for both scrollable and non-scrollable cursors.

Use the OCI St nt Fet ch2() call, instead of the OCl St nt Fet ch() call, which is
retained for backward compatibility. You are encouraged to use

OCl St nt Fet ch2() , for all new applications, even those not using scrollable
cursors. This call also works for non-scrollable cursors, but can raise an error if any
other orientation besides OCI_DEFAULT or OCI_FETCH_NEXT is passed.

Note: If you call OClI St nt Fet ch2() with the nr ows parameter
set to 0, the cursor is cancelled.

Using SQL Statements in OCI 4-19

Scrollable Cursors in OCI

Increasing Scrollable Cursor Performance

Response time is improved if you use OCI client-side prefetch buffers. After calling
OClI St nt Execut e() for a scrollable cursor, call OCI St nt Fet ch2() using
OCI_FETCH_LAST to obtain the size of the result set. Then set
OCI_ATTR_PREFETCH_ROWS to about 20% of that size, and set
OCI_PREFETCH_MEMORY if the result set uses a large amount of memory.

Limitations on the Use of Scrollable Cursors
« Failover does not work with scrollable cursors.

« Remote mapped queries cannot be used with scrollable cursors.

See Also:
« OC Stm Fetch2() on page 16-11
« "Setting Prefetch Count" on page 4-17

Example of Access on a Scrollable Cursor
Assume that a result set is returned by the SQL query:

SELECT enpno, enanme FROM enp

and that the table EMP has 14 rows. One use of scrollable cursors is:

/* execute the scrollable cursor in the scrollable node */
OCl St nt Execut e(svchp, stnthp, errhp, (ub4)0, (ub4)0, (CONST OCl Snapshot *)NULL,
(OCl Snapshot *) NULL, OCI _STMI_SCROLLABLE_READONLY);

/* Fetches rows with absolute row nunbers 6, 7, 8. After this call,
OCl _ATTR_CURRENT_POSITION = 8, OCl _ATTR ROW COUNT = 8 */
checkprint(errhp, OCl StntFetch2(stnthp, errhp, (ub4) 3,

OCl _FETCH ABSOLUTE, (sh4) 6, OCl _DEFAULT);

[* Fetches rows with absolute row nunbers 6, 7, 8. After this call,
OCl _ATTR CURRENT POSITION = 8, OCl _ATTR ROW COUNT = 8 */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 3,

OCl _FETCH_RELATI VE, (sh4) -2, OCl _DEFAULT);

/* Fetches rows with absolute row nunbers 14. After this call,
OCl _ATTR_CURRENT_PCSI TION = 14, OCI _ATTR_ROW COUNT = 14 */
checkprint(errhp, OC StntFetch2(stnmthp, errhp, (ub4) 1,

OCl _FETCH_LAST, (sb4) 0, OCl _DEFAULT);

4-20 Oracle Call Interface Programmer's Guide

Scrollable Cursors in OCI

[* Fetches rows with absolute row number 1. After this call,
OCl _ATTR CURRENT _POSITION = 1, OCl _ATTR ROW COUNT = 14 */
checkprint(errhp, OCl StntFetch2(stnthp, errhp, (ub4) 1,

OCl _FETCH_FI RST, (sb4) 0, OCl_DEFAULT);

/* Fetches rows with absolute row nunbers 2, 3, 4. After this call,
OCl _ATTR CURRENT POSITION = 4, OCl _ATTR ROW COUNT = 14 */
checkprint(errhp, OC StntFetch2(stnthp, errhp, (ub4) 3,

OCl _FETCH_NEXT, (sh4) 0, OCl _DEFAULT);

/* Fetches rows with absolute row nunbers 3,4,5,6,7. After this call,
OCl _ATTR_CURRENT_PCSITION = 7, OCl _ATTR RON COUNT = 14. It is assuned
the user's define menory is allocated. */
checkprint(errhp, OClStntFetch2(stnthp, errhp, (ub4) 5,

OCl _FETCH PRI OR, (sh4) 0, OCl_DEFAULT);

checkprint (errhp, status)
{
ub4 rows_f et ched;
[* This checks for any OCl errors before printing the results of the fetch call
in the define buffers */
checkerr (errhp, status);
checkerr(errhp, OClAttrGet((CONST void *) stmthp, OCl_HTYPE_STM,
(void *) & ows_fetched, (uint *) 0, OCl _ATTR_ROAS_FETCHED, errhp));

Using SQL Statements in OCI 4-21

Scrollable Cursors in OCI

4-22 Oracle Call Interface Programmer's Guide

D

Binding and Defining in OCI

This chapter contains these topics:

Overview of Binding in OCI

Advanced Bind Operations in OCI

Overview of Defining in OCI

Advanced Define Operations in OCI

Binding and Defining Arrays of Structures in OCI
DML with RETURNING Clause in OCI

Character Conversion in OCI Binding and Defining
PL/SQL REF CURSORs and Nested Tables in OCI

Runtime Data Allocation and Piecewise Operations in OCI

Binding and Defining in OCI

5-1

Overview of Binding in OCI

Overview of Binding in OCI

This chapter expands on the basic concepts of binding and defining, and provides
more detailed information about the different types of binds and defines you can
use in OCI applications. Additionally, this chapter discusses the use of arrays of
structures, as well as other issues involved in binding, defining, and character
conversions.

For example, given the | NSERT statement
I NSERT | NTO enp VALUES

(:enpno, :enane, :job, :sal, :deptno)
and the following variable declarations
t ext *ename, *job;

swor d enpno, sal, deptno;

the bind step makes an association between the placeholder name and the address
of the program variables. The bind also indicates the datatype and length of the
program variables, as illustrated in Figure 5-1.

See Also: The code that implements this example is found in the
section "Steps Used in OCI Binding" on page 5-6.

Figure 5-1 Using OCIBindByName() to Associate Placeholders with Program Variables

INSERT INTO enp (empno, ename, job, sal, deptno)

VALUES (:enpno, :enane, :j sal, :deptno)
OCIBindByName () \ v‘\\\
Address = &enpno ename &dept no
Data Type @ i nteger string string i nt eger i nt eger

Length = si zeof (enpno) strlien(enane)+1 strlen(job)+l sizeof(sal) sizeof(deptno)

If you change only the value of a bind variable, it is not necessary to rebind it in
order to execute the statement again. Because the bind is by reference, as long as the
address of the variable and handle remain valid, you can reexecute a statement that
references the variable without rebinding.

5-2 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI

Note: At the interface level, all bind variables are considered at
least | Nand must be properly initialized. If the variable is a pure
QUT bind variable, you can set the variable to 0. You can also
provide a NULL indicator and set that indicator to -1 (NULL).

In the Oracle server, new datatypes have been implemented for named datatypes,
REFs and LOBs, and they may be bound as placeholders in a SQL statement.

Note: For opaque datatypes (descriptors or locators) whose sizes
are not known, pass the address of the descriptor or locator pointer.
Set the size parameter to the size of the appropriate data structure,
(si zeof (structure))

Named Binds and Positional Binds

The SQL statement in the previous section is an example of a named bind. Each
placeholder in the statement has a name associated with it, such as 'ename’ or 'sal'.
When this statement is prepared and the placeholders are associated with values in
the application, the association is made by the name of the placeholder using the
QOCl Bi ndByNarre() call with the name of the placeholder passed in the placeholder
parameter.

A second type of bind is known as a positional bind. In a positional bind, the
placeholders are referred to by their position in the statement rather than their
names. For binding purposes, an association is made between an input value and
the position of the placeholder, using the OCl Bi ndByPos() call.

Using the previous example for a positional bind:

I NSERT | NTO enp VALUES
(:enpno, :enane, :job, :sal, :deptno)

The five placeholders are then each bound by calling OCl Bi ndByPos() and
passing the position number of the placeholder in the posi t i on parameter. For
example, the : enpno placeholder would be bound by calling OCl Bi ndByPos()
with a position of 1, : ename with a position of 2, and so on.

In the case of a duplicate bind, only a single bind call may be necessary. Consider
the following SQL statement, which queries the database for employees whose
commission and salary are both greater than a given amount:

Binding and Defining in OCI 5-3

Overview of Binding in OCI

SELECT enpno FROM enp
WHERE sal > :sone_val ue
AND comm > : some_val ue

An OCI application could complete the binds for this statement with a single call to
OClI Bi ndByNane() to bind the : sone_val ue placeholder by name. In this case,
the second placeholder inherits the bind information from the first placeholder.

OCI Array Interface

You can pass data to Oracle in various ways.

You can execute a SQL statement repeatedly using the OCl St nt Execut e()
routine and supply different input values on each iteration.

You can use the Oracle array interface and input many values with a single
statement and a single call to OCl St nt Execut e() . In this case you bind an array
to an input placeholder, and the entire array can be passed at the same time, under
the control of the iters parameter.

The array interface significantly reduces round trips to the database when you are
updating or inserting a large volume of data. This reduction can lead to
considerable performance gains in a busy client/server environment. For example,
consider an application that needs to insert 10 rows into the database. Calling

OCl St nt Execut e() ten times with single values results in ten network round
trips to insert all the data. The same result is possible with a single call to

OCl St nt Execut e() using an input array, which involves only one network round
trip.

Note: When using the OCI array interface to perform inserts, row
triggers in the database are fired as each row is inserted.

The maximum number of rows allowed in an array DML statement
is 4 gigabytes -1.

Binding Placeholders in PL/SQL

You process a PL/SQL block by placing the block in a string variable, binding any
variables, and then executing the statement containing the block, just as you would
with a single SQL statement.

5-4 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI

When you bind placeholders in a PL/SQL block to program variables, you must
use OCl Bi ndByNane() or OCl Bi ndByPos() to perform the basic binds for host
variables that are either scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN
parameters to a procedure that updates an employee's salary, given the employee
number and the new salary amount:

char plsql_statenment[] = "BEG N
RAI SE_SALARY(: enp_nunber, :new sal);\
END;, " ;

These placeholders can be bound to input variables in the same way as placeholders
in a SQL statement.

When processing PL/SQL statements, output variables are also associated with
program variables using bind calls.

For example, in a PL/SQL block such as

BEG N
SELECT enane, sal , corm | NTO : enp_nane, :salary, :conm ssion
FROM enp
VHERE enpno = :enp_nunber;

END;

you would use OClI Bi ndByNang() to bind variables in place of the : enp_nane,
:sal ary, and : commi ssi on output placeholders, and in place of the input
placeholder : enp_nunber.

7.x Upgrade Note: In the Oracle7 OCI, it was sufficient for
applications to initialize only | Nbind buffers. In later releases, all
buffers, even pure QUT buffers, must be initialized by setting the
buffer length to zero in the bind call, or by setting the
corresponding indicator to -1.

See Also: "Information for Named Datatype and REF Binds" on
page 11-34 for more information about binding PL/SQL
placeholders

Binding and Defining in OCI 5-5

Overview of Binding in OCI

Steps Used in OCI Binding

Placeholders are bound in several steps. For a simple scalar or array bind, it is only
necessary to specify an association between the placeholder and the data, by using
OCl Bi ndByNane() or OCl Bi ndByPos() .

Once the bind is complete, the OCI library knows where to find the input data or
where to put PL/SQL output data when the SQL statement is executed. Program
input data does not need to be in the program variable when it is bound to the
placeholder, but the data must be there when the statement is executed.

The following code example shows handle allocation and binding for each
placeholder in a SQL statement.

/* The SQ statement, associated with stnthp (the statement handl e)

by calling OCl StntPrepare() */

text *insert = (text *) "INSERT |INTO enp(enpno, ename, job, sal, deptno)\
VALUES (:enpno, :enane, :job, :sal, :deptno)";

/* Bind the placeholders in the SQL statenent, one per bind handle. */
checkerr(errhp, OC Bi ndByNanme(stnthp, &bndlp, errhp, (text *) ":ENAME",
strlien(": ENAME"), (ubl *) enane, enanelen+l, SOLT_STR, (dvoid *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCl _DEFAULT));
checkerr(errhp, OC Bi ndByNanme(stnthp, &bnd2p, errhp, (text *) ":JOB",
strien(":JOB"), (ubl *) job, joblen+tl, SQLT_STR, (dvoid *)
& ob_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCl _DEFAULT));
checkerr(errhp, OC Bi ndByNane(stnthp, &nd3p, errhp, (text *) ":SAL",
strlien(":SAL"), (ubl *) &sal, (sword) sizeof(sal), SQLT_INT,
(dvoid *) &sal _ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) O,
OCl _DEFAULT));
checkerr(errhp, OC Bi ndByNanme(stnthp, &bnd4p, errhp, (text *) ":DEPTNO',
strlen(":DEPTNO'), (ubl *) &deptno, (sword) sizeof (deptno), SQLT_INT,
(dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI _DEFAULT));
checkerr(errhp, OC Bi ndByNanme(stnthp, &bnd5p, errhp, (text *) ":EMPNO',
strien(":EMPNO'), (ubl *) &enpno, (sword) sizeof(enpno), SQLT_INT,
(dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,CCl _DEFAULT));

Note: The checkerr () function evaluates the return code from
an OCI application. The code for the function is listed in the section
"Error Handling in OCI" on page 2-26.

5-6 Oracle Call Interface Programmer's Guide

Overview of Binding in OCI

PL/SQL Block in an OCI Program

Perhaps the most common use for PL/SQL blocks in OCl is to call stored
procedures or stored functions. Assume that there is a procedure named
RAISE_SALARY stored in the database, and you embed a call to that procedure in
an anonymous PL/SQL block, and then process the PL/SQL block.

The following program fragment shows how to embed a stored procedure call in an
OCI application. The program passes an employee number and a salary increase as
inputs to a stored procedure called r ai se_sal ary:

rai se_salary (enployee_numIN, sal _increase IN, new salary OUT);

This procedure raises a given employee's salary by a given amount. The increased
salary which results is returned in the stored procedure's variable, new_sal ary,
and the program displays this value.

Note that the PL/SQL procedure argument, new_sal ary, although a PL/SQL OUT
variable, must be bound, not defined. This is further explained in the section on
OCI defines.

/* Define PL/SQL statenent to be used in program */
text *give raise = (text *) "BEA N
RAI SE_SALARY(: enp_nunber, : sal _i ncrease, :new salary);\

END; *;
OCIBind *bndlp = NULL; [* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
CCIBind *bnd3p = NULL; /* the third bind handle */

static void checkerr();
sh4 status;

mai n()
{
swor d enpno, raise, new sal;
dvoi d *tnp;
OCl Sessi on *usrhp = (OCl Session *)NULL;

/* attach to database server, and performnecessary initializations
and aut horizations */

/* allocate a statenment handle */
checkerr(errhp, OCl Handl eAlloc((dvoid *) envhp, (dvoid **) &stnthp,
OCl _HTYPE_STMT, 100, (dvoid **) &np));

/* prepare the statement request, passing the PL/SQL text

Binding and Defining in OCI 5-7

Overview of Binding in OCI

bl ock as the statenent to be prepared */
checkerr(errhp, OClStntPrepare(stnthp, errhp, (text *) give_raise, (ub4)
strlen(give_raise), OCl _NTV_SYNTAX, OCl DEFAULT));

/* bind each of the placeholders to a programvariable */
checkerr(errhp, OC BindByNanme(stnthp, &bndlp, errhp, (text *) ":enp_nunber",
-1, (ubl *) &enpno,
(sword) sizeof (enpno), SQT_INT, (dvoid *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCl _DEFAULT));

checkerr(errhp, OCl Bi ndByNane(stnthp, &nd2p, errhp, (text *) ":sal _increase",
-1, (ubl *) é&raise,
(sword) sizeof(raise), SQT_INT, (dvoid *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCl _DEFAULT));

/* remenber that PL/SQ. OUT variable are bound, not defined */

checkerr(errhp, OClBi ndByName(stnthp, &bnd3p, errhp, (text *) ":new salary",
-1, (ubl *) é&new sal,
(sword) sizeof(new sal), SQLT_INT, (dvoid *) O,
(ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCl _DEFAULT));

/* prompt the user for input values */
printf("Enter the enployee nunber: ");
scanf ("%", &enpno);

[* flush the input buffer */
nyf flush();

printf("Enter enployee's raise: ");
scanf("%d", &raise);

[* flush the input buffer */
nyfflush();

/* execute PL/SQ bl ock*/
checkerr(errhp, OCl StntExecute(svchp, stnthp, errhp, (ub4) 1, (ub4) 0,
(OC Snapshot *) NULL, (OCl Snapshot *) NULL, OCI _DEFAULT));

/* display the new salary, follow ng the raise */
printf("The new salary is %\n", new sal);

}

This example demonstrates how to perform a simple scalar bind where only a
single bind call is necessary. In some cases, additional bind calls are needed to
define attributes for specific bind datatypes or execution modes.

5-8 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

Advanced Bind Operations in OCI

The section "Binding Placeholders in OCI" on page 4-5 discussed how a basic bind
operation is performed to create an association between a placeholder in a SQL
statement and a program variable using OCl Bi ndByNane() or OCl Bi ndByPos() .
This section covers more advanced bind operations, including multi-step binds, and
binds of named datatypes and REFs.

In some cases, additional bind calls are necessary to define specific attributes for
certain bind datatypes or certain execution modes.

The following sections describe these special cases, and the information about
binding is summarized in Table 5-1.

Table 5-1 Information Summary for Bind Types

Type of Bind Bind Datatype Notes

Scalar any scalar datatype Bind a single scalar using OCl Bi ndByName() or
CCl Bi ndByPos() .

Array of Scalars any scalar datatype Bind an array of scalars using OCl Bi ndByName() or
CCl Bi ndByPos() .

Named Datatype SQLT_NTY Two bind calls are required:

« OCl Bi ndByNane() or OCl Bi ndByPos()
. OClIBi ndbj ect ()

REF SQLT_REF Two bind calls are required:
.« OCl Bi ndByNane() or OCl Bi ndByPos()
« OClI Bi ndbj ect ()

LOB SQLT_BLOB Allocate the LOB locator using OCl Descri pt or Al | oc(),
BEILE SOLT CLOB and th_en bind its address, OCl Lprocat or ** with
QLT COCl Bi ndByNamne() or OCl Bi ndByPos(), using one of the
LOB datatypes.

Binding and Defining in OCI 5-9

Advanced Bind Operations in OCI

Table 5-1 Information Summary for Bind Types (Cont.)

Type of Bind Bind Datatype Notes
Array of Structures varies Two bind calls are required:
or Static Arrays « OCl Bi ndByNane() or OCl Bi ndByPos()
. OCBindArrayOf Struct ()
Piecewise Insert varies OClI Bi ndByNane() or OCl Bi ndByPos() is required. The

application may also need to call OCl Bi ndDynarmi c() to
register piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCI St nt , and then bind its
address, OCl St nt ** | using the SQLT_RSET datatype.

See Also:

« "Named Datatype Binds" on page 11-32 For information on
binding named datatypes (objects)

« "Binding REFs" on page 11-33 for information on binding REFs

Binding LOBs
There are two ways of binding LOBs:

« Bind the LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

« Bind the LOB value directly, without using the LOB locator.

Binding LOB Locators

Either a single locator or an array of locators can be bound in a single bind call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, if an application has prepared a SQL statement:

I NSERT | NTO sone_t abl e VALUES (: one_l ob)

where one_| ob is a bind variable corresponding to a LOB column, and has made
the following declaration:

QOCl LobLocator * one_| ob;

Then the following calls would be used to bind the placeholder and execute the
statement:

5-10 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

[* initialize single |ocator */
one_| ob = OCl DescriptorAlloc(...CC _DTYPE_LCB...);

/* pass the address of the locator */
COCl Bi ndByNane(. .., (dvoid *) &one_lob,... SQT_CLOB, ...);
OCl St nt Execute(...,1,...) /* 1is the iters paraneter */

You can also insert an array using the same SQL | NSERT statement. In this case, the
application would include the following code:

OCl LobLocator * |ob_array[10];

for (i=0; i<10, i++)
lob_array[i] = OCl DescriptorAloc(...0C _DTYPE LOB...);
[* initialize array of locators */

OCl Bi ndByName(..., (dvoid *) lob_array,...);
OCI Bi ndArrayOf Struct (...);
QOCl St nt Execute(...,10,...); /[* 10 is the iters paranmeter */

You must allocate descriptors with the OCl Descri pt or Al | oc() routine before
they can be used. In the case of an array of locators, you must initialize each array
element using OCl Descri pt or Al | oc() . Use OCI_DTYPE_LOB as the t ype
parameter when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE
when allocating BFI LEs.

Restrictions on Binding LOB Locators

« Piecewise and callback | NSERT or UPDATE operations are not supported.

« When using a FILE locator as a bind variable for an | NSERT or UPDATE
statement, you must first initialize the locator with a directory alias and

filename, using OCl LobFi | eSet Nare() before issuing the | NSERT or UPDATE
statement.

See Also: Chapter 7, "LOB and BFILE Operations” for more
information about the OCI LOB functions

Binding LOB Data

Oracle allows nonzero binds for | NSERTs and UPDATES of any size LOB. So you can
bind data into a LOB column using OCl Bi ndByPos(), OCl Bi ndByNane(), and
PL/SQL binds.

Binding and Defining in OCI 5-11

Advanced Bind Operations in OCI

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Make sure that your temporary tablespace is big enough to
hold at least the amount of data equal to the sum of all the bind lengths for LOBs. If
your temporary tablespace is extendable, it will be extended automatically after the
existing space is fully consumed. Use the following command to create an
extendable temporary tablespace:

CREATE TABLESPACE ... AUTCEXTENT ON ... TEMPORARY ...;

Restrictions on Binding LOB Data

If a table has both LONGand LOB columns, then you can have binds of greater
than 4 kilobytes for either the LONGcolumn or the LOB columns, but not both in
the same statement.

You cannot bind data of any size to LOB attributes in object-relational
datatypes. For LOB attributes, you need to insert an empty LOB locator and
then modify the contents of the LOB using OCI LOB functions.

In an | NSERT AS SELECT operation, Oracle does not allow binding of any
length data to LOB columns.

Oracle does not do implicit conversions, such as HEX to RAWor RAWto HEX, for
data of size more than 4000 bytes. The following PL/SQL code illustrates this:

create table t (cl clob, c2 blob);
decl are

text varchar(32767);

bi nbuf raw(32767);

begi n
text :=lpad ("a', 12000, 'a');
bi nbuf := utl_raw cast_to raw(text);

- The fol | owi ng works:
insert intot values (text, binbuf);

- The following won't work because Oracle won't do inplicit
- hex to raw conversion.
insert intot (c2) values (text);

- The following won't work because Oracle won't do inplicit
- raw to hex conversion.
insert intot (cl) values (binbuf);

- The following won't work because we can't conbine the
- utl_raw cast_to_raw() operator with the >4k bind.

5-12 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

insert intot (c2) values (utl_raw cast_to_raw(text));

end;
/

If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data is
filtered by a SQL operator, then Oracle will limit the size of the result to at most
4000 bytes.

For example:

create table t (cl clob, c2 blob);

- The foll owing conmand inserts only 4000 bytes because the result of
- LPADis limted to 4000 bytes

insert into t(cl) values (lpad('a', 5000, 'a'));

- The following conmand inserts only 2000 bytes because the result of

- LPAD is linited to 4000 bytes, and the inplicit hex to raw conversion
- converts it to 2000 bytes of RAWdata.

insert into t(c2) values (lpad('a', 5000, 'a'));

Examples of Binding LOB Data

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE foo (a | NTEGER);
CREATE TYPE | ob_typ AS OBJECT (AL CLOB);
CREATE TABLE | ob_long_tab (CL CLOB, C2 CLOB, CT3 lob_typ, L LONG);

Examplel: Binding LOBs

void insert() /* A function in an OCl program */

{

/* The following is allowed */

ubl buffer[8000];

text *insert_sql = (text *) "INSERT INTO lob_long_tab (C1, C2, L) \

VALUES (:1, :2, :3)";

OCl Stnt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl Bi ndByPos(st nt hp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCI _DEFAULT);

OCl Bi ndByPos(stnt hp, &bi ndhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);

OCl Bi ndByPos(stnt hp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,

Binding and Defining in OCI 5-13

Advanced Bind Operations in OCI

SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);
}

Example2: Binding LOBs

void insert()
{
[* The following is allowed */
ubl buffer[8000];
text *insert_sqgl = (text *) "INSERT INTO lob_long_tab (CL, L) \
VALUES (:1, :2)";
OCl Stnt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);
}

Example3: Binding LOBs

voi d update()
{
[* The following is allowed, no natter how many rows it updates */
ubl buffer[8000];
text *update_sql = (text *)"UPDATE |ob_long_tab SET \
Cl=:1 C2=2, L=3";
OCl Stnt Prepare(stnthp, errhp, update_sql, strlen((char*)update_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);
}

Example4: Binding LOBs
voi d update()

5-14 Oracle Call Interface Programmer's Guide

Advanced Bind Operations in OCI

}

[* The following is allowed, no matter how many rows it updates */
ubl buffer[8000];
text *update_sql = (text *)"UPDATE lob_|ong_tab SET \
Cl=:1 C=2, L=3";
OCl Stnt Prepare(stnthp, errhp, update_sql, strlen((char*)update_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (dvoid *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[2], errhp, 3, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCI _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCI _DEFAULT);

Example5: Binding LOBs

void insert()

{

}

/* Piecew se, callback and array insert/update operations simlar to
* the allowed regul ar insert/update operations are also allowed */

Example6: Binding LOBs

void insert()

{

}

/* The following is NOT allowed because we try to insert >4000 bytes
* into both LOB and LONG col utms */
ubl buffer[8000];
text *insert_sql = (text *)"INSERT INTO lob long tab (C1, L) \
VALUES (:1, :2)";
OCl Stnt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
OCl Bi ndByPos(stnt hp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OC _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCI _DEFAULT);

Example7: Binding LOBs

Binding and Defining in OCI 5-15

Advanced Bind Operations in OCI

void insert()
{
/* The following is NOT all owed because we try to insert data into
* LOB attributes */
ubl buffer[8000];
text *insert_sql = (text *)"INSERT INTO lob_|long_tab (CT3) \
VALUES (lob_typ(:1))";
OCl Stnt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(stnthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCI _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OCl Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);
}

Example8: Binding LOBs

void insert()

/* The following is NOT allowed because we try to do insert as
* select character data into LOB colum */
ubl buffer[8000];
text *insert_sql = (text *)"INSERT INTO |lob_|long_tab (Cl) SELECT \
21 from FOO';
OCl Stnt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);
OCl Bi ndByPos(st nt hp, &bi ndhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG 0, 0, 0, 0, 0, (ub4) OCl _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *) NULL,
(OCl Snapshot *) NULL, OCl _DEFAULT);

Binding in OCI_DATA AT _EXEC Mode

If the rode parameter in a call to OCl Bi ndByName() or OCl Bi ndByPos() issetto
OCI_DATA_AT_EXEC, an additional call to OCl Bi ndDynami c() is necessary if
the application will use the callback method for providing data at runtime. The call
to OCl Bi ndDynami c() sets up the callback routines, if necessary, for indicating
the data or piece provided. If the OCI_DATA_AT_EXEC mode is chosen, but the
standard OCI piecewise polling method will be used instead of callbacks, the call to
OCl Bi ndDynami c() is not necessary.

When binding RETURN clause variables, an application must use
OCI_DATA_AT_EXEC mode, and it must provide callbacks.

5-16 Oracle Call Interface Programmer's Guide

Overview of Defining in OCI

See Also: "Runtime Data Allocation and Piecewise Operations in
OCI" on page 5-40 for more information about piecewise operations

Binding Ref Cursor Variables
REF Cursors are bound to a statement handle with a bind datatype of SQLT _RSET.

See Also: "PL/SQL REF CURSORs and Nested Tables in OCI" on
page 5-39

Overview of Defining in OCI

Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list for retrieving data. The define step creates
an association that determines where returned results are stored, and in what
format.

For example, if your program processes the following statement you would
normally need to define two output variables, one to receive the value returned
from the nane column, and one to receive the value returned from the ssn column:

SELECT name, ssn FROM enpl oyees
WHERE enpno = :enpnum

If you were only interested in retrieving values from the name column, you would
not need to define an output variable for ssn. If the SELECT statement being
processed returns more than a single row for a query, the output variables you
define can be arrays instead of scalar values.

Depending on the application, the define step can take place before or after an
execute. If you know the datatypes of select-list items at compile time, the define
can take place before the statement is executed. If your application is processing
dynamic SQL statements entered by you at runtime or statements that do not have
a clearly defined select-list, the application must execute the statement to retrieve
describe information. After the describe information is retrieved, the type
information for each select-list item is available for use in defining output variables.

The OCI processes the define call locally on the client side. In addition to indicating
the location of buffers where results should be stored, the define step determines
what data conversions must take place when data is returned to the application.

Binding and Defining in OCI 5-17

Overview of Defining in OCI

Note: Output buffers must be 2-byte aligned.

The dt y parameter of the OCl Def i neByPos() call specifies the datatype of the
output variable. The OCI is capable of a wide range of data conversions when data
is fetched into the output variable. For example, internal data in Oracle DATE
format can be automatically converted to a St r i ng datatype on output.

See Also:

« Chapter 3, "Datatypes" For more information about datatypes
and conversions

« "Describing Select-list Items" on page 4-11 for more information

Steps Used in OCI Defining

A basic define is done with a position call, OCl Def i neByPos() . This step creates
an association between a select-list item and an output variable. Additional define
calls may be necessary for certain datatypes or fetch modes. Once the define step is
complete, the OCI library determines where to put retrieved data. You can make
your define calls again to redefine the output variables without having to
re-prepare or reexecute the SQL statement.

The following example shows a scalar output variable being defined following an
execute and a describe.

SELECT departnent _name FROM departments WHERE department _id = :dept _i nput

/* The input placehol der was bound earlier, and the data cones fromthe
user input bel ow */

printf("Enter enployee dept: ");
scanf ("%d", &deptno);

/* Execute the statement. |f OCl StntExecute() returns OCl_NO DATA, meaning that
no data matches the query, then the department nunber is invalid. */

if ((status = OCl StntExecute(svchp, stnthp, errhp, 0, 0, (OCl Snapshot *) O,
(OCl Snapshot *) 0,
OCl _DEFAULT))
&& (status !'= OCl _NO _DATA))
{

checkerr(errhp, status);

5-18 Oracle Call Interface Programmer's Guide

Overview of Defining in OCI

return OCl _ERROR;

}

if (status == OCl _NO DATA) {
printf("The dept you entered doesn't exist.\n");
return 0;

}

/* The next two statements describe the select-list item dnane, and
returnits length */
checkerr(errhp, OCl ParanGet((dvoid *)stnthp, (ub4) OCl _HTYPE STMI, errhp,
(dvoid **)&parndp, (ub4) 1));
checkerr(errhp, OClAttrGCet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM
(dvoi d*) &deptlen, (ub4 *) &sizelen, (ub4) OCl _ATTR_DATA Sl ZE,
(CClError *) errhp));

/* Use the retrieved I ength of dnane to allocate an output buffer, and
then define the output variable. If the define call returns an error,
exit the application */
dept = (text *) malloc((int) deptlen + 1);
if (status = OCl DefineByPos(stnthp, &defnp, errhp,
1, (dvoid *) dept, (sh4) deptlen+l,
SQLT_STR, (dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, OCI_DEFAULT))

{

checkerr(errhp, status);
return OCl _ERROR;

}

See Also: "Describing Select-list Items" on page 4-11 for an
explanation of the describe step

Advanced OCI Defines

In some cases the define step requires more than just a call to OCl Def i neByPos() .
There are additional calls that define the attributes of an array fetch,

OCl Defi neArrayCOf Struct (), or anamed datatype fetch,

OCl Def i nebj ect () . For example, to fetch multiple rows with a column of
named datatypes, all three calls must be invoked for the column; but to fetch
multiple rows of scalar columns, OCl Def i neArrayOf St ruct () and

OCl Def i neByPos() are sufficient.

Oracle also provides pre-defined C datatypes that map object type attributes.

Binding and Defining in OCI 5-19

Advanced Define Operations in OCI

See Also:
« Chapter 11, "Object-Relational Datatypes in OCI"
« "Advanced Define Operations in OCI" on page 5-20

Advanced Define Operations in OCI

This section covers advanced defined operations, including multi-step defines, and
defines of named datatypes and REFs.

In some cases the define step requires additional calls that define the attributes of an
array fetch, OCl Def i neArrayOf St ruct (), or a named datatype fetch,

OCl Def i nebj ect () . For example, to fetch multiple rows with a column of
named datatypes, all the three calls must be invoked for the column. To fetch
multiple rows of scalar columns only OCI Def i neArrayOf Struct () and

OCl Def i neByPos() are sufficient.

Defining LOB Output Variables

There are two ways of defining LOBs:

« Define as a LOB locator, rather than the actual LOB values. In this case the LOB
value is written or read by passing a LOB locator to the OCI LOB functions.

« Define as a LOB value directly, without using the LOB locator.

Defining LOB Locators

Either a single locator or an array of locators can be defined in a single define call. In
each case, the application must pass the address of a LOB locator and not the
locator itself. For example, if an application has prepared a SQL statement like:

SELECT | obl FROM sone_t abl e;

where | obl is the LOB column and one_|I ob is a define variable corresponding to
a LOB column with the following declaration:

OCl LobLocator * one_| ob;

The following sequence of steps bind the placeholder, and execute the statement:

[* initialize single |ocator */
one_| ob = OCl DescriptorAlloc(...COC _DTYPE LCB...);

/* pass the address of the locator */

5-20 Oracle Call Interface Programmer's Guide

Advanced Define Operations in OCI

OCl DefineByPos(... 1, ...,(dvoid *) &one_lob,... SQLT_CLOB, ...);
QOCl St nt Execute(...,1,...) /* 1is the iters paraneter */

You can also do an array select using the same SQL SELECT statement. In this case,
the application would include the following steps:

OCl LobLocator * lob_array[10];

for (i=0; i<10, i++)
lob_array[i] = OCl DescriptorAloc(...0C _DIYPE LCB...);
[* initialize array of locators */

OCl Defi neByPos(...,1, (dvoid *) lob_array,... SQLT_CLOB, ...);
OCl DefineArrayOf Struct (...);
OCl St nt Execute(...,10,...); /* 10 is the iters paranmeter */

Note that you must allocate descriptors with the OCl Descri pt or Al | oc() routine
before they can be used. In the case of an array of locators, you must initialize each
array element using OCl Descri ptor Al | oc().Use OCI_DTYPE_LOB asthet ype
parameter when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE
when allocating BFI LEs.

Defining LOB Data

Oracle allows nonzero defines for SELECTs of any size LOB. So you can select up to
the maximum allowed size of data from a LOB column using OCI Def i neByPos() ,
and PL/SQL defines. Because there can be multiple LOBs in a row, you can select
the maximum size of data from each one of those LOBs in the same SELECT
statement.

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE lob_tab (C1 CLOB, C2 CLOB);

Examplel: Defining LOBs Before Execution
voi d sel ect _define_before_execute() /* A function in an OCl program*/

{

[* The following is allowed */

ubl buffer1[8000];

ubl buffer2[8000];

text *select_sql = (text *)"SELECT cl, c2 FROMIob_tab";

OCl Stnt Prepare(stnthp, errhp, select_sql, (ub4)strlen((char*)select_sql),

Binding and Defining in OCI 5-21

Advanced Define Operations in OCI

(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Def i neByPos(stnthp, &defhp[0], errhp, 1, (dvoid *)bufferl, 8000,
SQLT_LNG (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCI _DEFAULT);
OCl DefineByPos(stnthp, &defhp[1], errhp, 2, (dvoid *)buffer2, 8000,
SQLT_LNG (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OC _DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *)O,
(OCl Snapshot *)0, OCI_DEFAULT);

Example2: Defining LOBs after Execution
voi d sel ect _execute_before_define()

[* The following is allowed */

ubl buffer1[8000];

ubl buffer2[8000];

text *select_sql = (text *)"SELECT cl, c2 FROM|ob_tab";

OCl Stnt Prepare(stnthp, errhp, select_sql, (ub4)strlen((char*)select_sql),

ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

svchp, stnthp, errhp, 0, 0, (OC Snapshot *)0,

CCl Snapshot *)0, OCl _DEFAULT);

OCl Def i neByPos(stnthp, &defhp[0], errhp, 1, (dvoid *)bufferl, 8000,
SQLT_LNG, (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCl _DEFAULT);

OCl DefineByPos(stnthp, &defhp[1], errhp, 2, (dvoid *)buffer2, 8000,
SQLT_LNG (void *)0, (ub2 *)0, (ub2 *)0, (ub4) OCl _DEFAULT);

OCl Stnt Fetch(stnthp, errhp, 1, OCl _FETCH NEXT, OCl _DEFAULT);

QOCl St t Execut e

—_— e~~~

Defining PL/SQL Output Variables
Do not use the define calls to define output variables for select-list items in a SQL
SELECT statement inside a PL/SQL block. Use OCI bind calls instead.

See Also: "Information for Named Datatype and REF Defines,
and PL/SQL OUT Binds" on page 11-36 for more information about
defining PL/SQL output variables.

Defining for a Piecewise Fetch

A piecewise fetch requires an initial call to OCl Def i neByPos() . An additional call
to OCl Def i neDynami c() is necessary if the application will use callbacks rather
than the standard polling mechanism.

5-22 Oracle Call Interface Programmer's Guide

Binding and Defining Arrays of Structures in OCI

Binding and Defining Arrays of Structures in OCI

Defining arrays of structures requires an initial call to OCl Def i neByPos(). An
additional call to OCl Def i neArrayCf Struct () is necessary to set up each
additional parameter, including the ski p parameter necessary for arrays of
structures operations.

Using arrays of structures can simplify the processing of multi-row, multi-column
operations. You can create a structure of related scalar data items, and then fetch
values from the database into an array of these structures, or insert values into the
database from an array of these structures.

For example, an application may need to fetch multiple rows of data from columns
NAME, AGE, and SALARY. The application can include the definition of a structure
containing separate fields to hold the NAME, AGE and SALARY data from one row in
the database table. The application would then fetch data into an array of these
structures.

In order to perform a multi-row, multi-column operation using an array of
structures, associate each column involved in the operation with a field in a
structure. This association, which is part of OCl Def i neArrayOf St ruct () and
OCI Bi ndArrayOf St ruct () calls, specifies where data is stored.

Skip Parameters

When you split column data across an array of structures, it is no longer stored
contiguously in the database. The single array of structures stores data as though it
were composed of several arrays of scalars. For this reason, you must specify a skip
parameter for each field you are binding or defining. This skip parameter is the
number of bytes that need to be skipped in the array of structures before the same
field is encountered again. In general, this will be equivalent to the byte size of one
structure.

Figure 5-2 shows how a skip parameter is determined. In this case the skip
parameter is the sum of the sizes of the fieldsfi el d1, fi el d2, andfi el d3,
which is 8 bytes. This equals the size of one structure.

Binding and Defining in OCI 5-23

Binding and Defining Arrays of Structures in OCI

Figure 5-2 Determining Skip Parameters

Array of Structures

field 1 field 2 field 3 | field 1 field 2 field 3 | field 1 field 2 field 3
2 bytes ‘ 4 bytes ‘ 2 bytes | 2 bytes ‘ 4 bytes ‘ 2 bytes | 2 bytes ‘ 4 bytes ‘ 2 bytes
| ‘ > | ‘ >
skip 8 bytes skip 8 bytes

On some operating systems it may be necessary to set the skip parameter to
si zeof (one_array_el ement) rather than si zeof (st r uct), because some
compilers insert extra bytes into a structure.

Consider an array of C structures consisting of two fields, a ub4 and a ub1:

struct demo {
ub4 fieldi,;
ubl field2;
1
struct denmp deno_array[MAXSI ZE] ;

Some compilers insert three bytes of padding after the ub1 so that the ub4 which
begins the next structure in the array is properly aligned. In this case, the following
statement may return an incorrect value:

ski p_paraneter = sizeof(struct denp);

On some operating systems this will produce a proper skip parameter of eight. On
other systems, ski p_par anet er will be set to five bytes by this statement. In this
case, use the following statement to get the correct value for the skip parameter:

ski p_parameter = sizeof(dem_array[0]);

Skip Parameters for Standard Arrays

Arrays of structures are an extension of binding and defining arrays of single
variables. When specifying a single-variable array operation, the related skip will be
equal to the size of the datatype of the array under consideration. For example, for
an array declared as:

text enp_nanmes[4][20];

the skip parameter for the bind or define operation will be 20. Each data element in
the array is then recognized as a separate unit, rather than being part of a structure.

5-24 Oracle Call Interface Programmer's Guide

DML with RETURNING Clause in OCI

OCI Calls Used with Arrays of Structures

Two OCI calls must be used when performing operations involving arrays of
structures:

« OC Bi ndArrayO Struct () for binding fields in arrays of structures for input
variables

« OCl DefineArrayO Struct () for defining arrays of structures for output
variables.

Note: When binding or defining for arrays of structures, multiple
calls are required. A call to OCl Bi ndByName() or

OCl Bi ndByPos() must precede a call to

QOCl Bi ndArrayO St ruct (), and a call to OCl Def i neByPos()
must precede a call to OCl Def i neArrayOf Struct ().

Arrays of Structures and Indicator Variables

The implementation of arrays of structures also supports the use of indicator
variables and return codes. You can declare parallel arrays of column-level
indicator variables and return codes that correspond to the arrays of information
being fetched, inserted, or updated. These arrays can have their own skip
parameters, which are specified during OCl Bi ndArrayOf St ruct () or

OClI Defi neArrayOf Struct () calls.

You can set up arrays of structures of program values and indicator variables in
many ways. Consider an application that fetches data from three database columns
into an array of structures containing three fields. You can set up a corresponding
array of indicator variable structures of three fields, each of which is a column-level
indicator variable for one of the columns being fetched from the database. A
one-to-one relationship between the fields in an indicator struct and the number of
select-list items is not necessary.

See Also: "Indicator Variables" on page 2-30 for more information
about indicator variables.

DML with RETURNING Clause in OCI

OCI supports the use of the RETURNI NGclause with SQL | NSERT, UPDATE, and
DELETE statements. This section outlines the rules for correctly implementing DML
statements with the RETURNI NGclause.

Binding and Defining in OCI 5-25

DML with RETURNING Clause in OCI

See Also:

« For acomplete examples, see the demonstration programs
included with your Oracle installation. For additional
information, refer to Appendix B, "OCI Demonstration
Programs"

« Oracle Database SQL Reference. or more information about the
use of the RETURNI NGclause with | NSERT, UPDATE, or
DELETE statements

Using DML with RETURNING Clause

Using the RETURNI NGclause with a DML statement enables you to combine two
SQL statements into one, possibly saving you a server round trip. This is
accomplished by adding an extra clause to the traditional UPDATE, | NSERT, and
DELETE statements. The extra clause effectively adds a query to the DML statement.

In OCI, values are returned to the application as QUT bind variables. In the
following examples, the bind variables are indicated by a preceding colon, ":". These
examples assume the existence of t abl el, a table that contains columns col 1,

col 2,and col 3.

The following statement inserts new values into the database and then retrieves the
column values of the affected row from the database, for manipulating inserted
rows.

I NSERT INTO tablel VALUES (:1, :2, :3)
RETURNI NG col 1, col 2, col 3
INTO :outl, :out2, :out3

The next example updates the values of all columns where the value of col 1 falls
within a given range, and then returns the affected rows which were modified.

UPDATE tablel SET coll =coll + :1, col2 =:2, col3 =:3
WHERE col 1 >= :low AND col 1 <= :high
RETURNI NG col 1, col 2, col 3
INTO :outl, :out2, :out3

The DELETE statement deletes the rows where col 1 value falls within a given
range, and then returns the data from those rows.

DELETE FROM tabl el WHERE col 1 >= :low AND col 2 <= : high
RETURNI NG col 1, col 2, col 3
INTO :outl, :out2, :out3

5-26 Oracle Call Interface Programmer's Guide

DML with RETURNING Clause in OCI

Binding RETURNING...INTO variables

Because both the UPDATE and DELETE statements can affect multiple rows in the
table, and a DML statement can be executed multiple times in a single

OCl Execut e() call, how much data will be returned may not be known at
runtime. As a result, the variables corresponding to the RETURNI NG..I NTO
placeholders must be bound in OCI_DATA_AT_EXEC mode. An application must
define its own dynamic data handling callbacks rather than using a polling
mechanism.

The returning clause can be particularly useful when working with LOBs.
Normally, an application must insert an empty LOB locator into the database, and
then SELECT it back out again to operate on it. Using the RETURNI NGclause, the
application can combine these two steps into a single statement:

I NSERT | NTO sone_t abl e VALUES (:in_l ocator)
RETURNI NG | ob_col um
I NTO : out _I ocat or

An OCI application implements the placeholders in the RETURNI NGclause as pure
QUT bind variables. However, all binds in the RETURNI NGclause are initially | N
and must be properly initialized. To provide a valid value, you can provide a NULL
indicator and set that indicator to -1.

An application must adhere to the following rules when working with bind
variables in a RETURNI NGclause:

1. Bind RETURNI NGclause placeholders in OCI_DATA_AT_EXEC mode using
OClI Bi ndByNane() or OCl Bi ndByPos(), followed by a call to
OCI Bi ndDynami c() for each placeholder.

2. When binding RETURNI NG clause placeholders, supply a valid OUT bind
function as the ocbf p parameter of the OCl Bi ndDynani c() call. This function
must provide storage to hold the returned data.

3. Thei cbf p parameter of OCl Bi ndDynami c() call should provide a default
function which returns NULL values when called.

4. The pi ecep parameter of OCl Bi ndDynani c() must be set to
OCI_ONE_PIECE.

No duplicate binds are allowed in a DML statement with a RETURNI NG clause, and
no duplication between bind variables in the DML section and the RETURNI NG
section of the statement is allowed.

Binding and Defining in OCI 5-27

DML with RETURNING Clause in OCI

Note: The OCI only supports the callback mechanism for
RETURNI NGclause binds. The polling mechanism is not supported.

OCI Error Handling

The QUT bind function provided to OCl Bi ndDynarmi c() must be prepared to
receive partial results of a statement in the event of an error. If the application has
issued a DML statement that is executed 10 times, and an error occurs during the
fifth iteration, the server returns the data from iterations 1 through 4. The callback
function is still called to receive data for the first four iterations.

DML with RETURNING REF...INTO Clause in OCI

The RETURNI NGclause can also be used to return a REF to an object which is being
inserted into or updated in the database:

UPDATE extaddr e SET e.zip = '12345', e.state =' AZ
VHERE e.state = 'CA" AND e.zip = '95117'
RETURNI NG REF(e), zip
INTO : addref, :zip

The preceding statement updates several attributes of an object in an object table
and returns a REF to the object (and a scalar ZIP code) in the RETURNI NGclause.

Binding the Output Variable
Binding the REF output variable in an OCI application requires three steps:

1. Theinitial bind information is set using OCl Bi ndBy Naneg()

2. Additional bind information for the REF (including the TDO) is set with
QOCl Bi ndObj ect ()

3. Acall to OCl Bi ndDynanmi c()

The following pseudocode shows a function which performs the binds necessary
for the preceding example.

sword bind_out put (stnthp, bndhp, errhp)
OCl Stnt *stnt hp;
OCI Bi nd *bndhp[];
OCl Error *errhp;
{
ubd i;
/* get TDO for Bindoject call */

5-28 Oracle Call Interface Programmer's Guide

DML with RETURNING Clause in OCI

if (OCl TypeByName(envhp, errhp, svchp, (CONST text *) O,
(ub4) 0, (CONST text *) "ADDRESS OBJECT",
(ub4) strlen((CONST char *) "ADDRESS OBJECT"),
(CONST text *) 0, (ub4) 0,
OCl _DURATI ON_SESSI ON, OCl _TYPEGET_HEADER, &addrt do))
{

}

return OCl _ERROR;

/* initial bind call for both variables */
i f (OCIBi ndByName(stnthp, &bndhp[2], errhp,
(text *) ":addref", (sb4) strlen((char *) ":addref"),
(dvoid *) 0, (sb4) sizeof (OCIRef *), SQT_REF,
(dvoid *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DATA AT_EXEC)
|| OClBi ndByName(stnthp, &ndhp[3], errhp,
(text *) ":zip", (sb4) strlen((char *) ":zip"),
(dvoid *) 0, (sb4) MAXZIPLEN, SQ.T_CHR,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCl _DATA AT EXEQ))
{

}

return OCl _ERROR;

/* object bind for REF variable */
if (OClBi ndQbj ect(bndhp[2], errhp, (OC Type *) addrtdo,
(dvoid **) &addrref[0], (ub4 *) 0, (dvoid **) 0, (ub4 *) 0))
{

}

return OCl _ERROR;

for (i =0; i < MAXCOLS; i++)
pos[i] =1i;

/* dynamic binds for both RETURNI NG variables */

i f (OCIBi ndDynani c(bndhp[2], errhp, (dvoid *) &pos[0], cbhf_no_data,
(dvoid *) &pos[0], cbf_get_data)

|| OCIBi ndDynam c(bndhp[3], errhp, (dvoid *) &pos[1l], cbf_no_data,
(dvoid *) &pos[1], chf _get_data))

{

}

return OCl _SUCCESS;

return OCl _ERROR;

Binding and Defining in OCI 5-29

Character Conversion in OCI Binding and Defining

Additional Notes About OCI Callbacks

When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of
the bind handle tells the application the number of rows being returned in that
particular iteration. During the first callback of an iteration you can allocate space
for all rows that are returned for that bind variable. During subsequent callbacks of
the same iteration, you merely increment the buffer pointer to the correct memory
within the allocated space.

Array Interface for DML RETURNING Statements in OCI

OCI provides additional functionality for single-row DML and array DML
operations in which each iteration returns more than one row. To take advantage of
this feature, you must specify an OUT buffer in the bind call that is at least as big as
the iteration count specified by the OCI St nt Execut e() call. This is in addition to
the bind buffers provided through callbacks.

If any of the iteration returns more than one row, then the application receives an
OCI_SUCCESS_WITH_INFO return code. In this case, the DML operation is
successful. At this point the application may choose to roll back the transaction or
ignore the warning.

Character Conversion in OCI Binding and Defining

This section discusses issues involving character conversions between the client and
the server.

Choosing Character Set

If a database column containing character data is defined to be an NCHAR or
NVARCHAR2 column, then a bind or define involving that column must take into
account special considerations for dealing with character set specifications.

These considerations are necessary in case the width of the client character set is
different from the server character set, and also for proper character conversion.
During conversion of data between different character sets, the size of the data may
increase or decrease by a factor of four. Insure that buffers provided to hold the
data are of sufficient size.

In some cases, it may also be easier for an application to deal with NCHAR or
NVARCHAR?2 data in terms of humbers of characters, rather than numbers of bytes,
which is the usual case.

5-30 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

Character Set Form and ID

Each OCI bind and define handle has OCI_ATTR_CHARSET_FORM and
OCI_ATTR_CHARSET_ID attributes associated. An application can set these
attributes with the OCl At t r Set () call in order to specify the character form and
character set ID of the bind/define buffer.

The csf or mattribute (OCI_ATTR_CHARSET_FORM) indicates the character set of
the client buffer, for binds, and the character set in which to store fetched data for
defines. It has two possible values:

« SQLCS_IMPLICIT - default value, indicates database character set ID for the
bind or define buffer and the character buffer data are converted to the server
database character set

« SQLCS_NCHAR - indicates that the national character set ID for the bind or
define buffer and the client buffer data are converted to the server national
character set.

If the character set ID attribute, OCI_ATTR_CHARSET_ID, is not specified, either
the default value of the database or the national character set ID of the client is
used, depending on the value of csf or m They are the values specified in the
NLS_LANG and NLS_NCHAR environment variables, respectively

Note:

« The data is converted and inserted into the database according
to the server's database character set ID or national character
set ID, regardless of the client-side character set id.

« OCI_ATTR_CHARSET_ID must never be set to 0.

= The define handle attributes OCI_ATTR_CHARSET_FORM
and OCI_ATTR_CHARSET_ID do not affect the LOB types.
LOB locators fetched from the server retain their original
csf or s. There is no CLOB/NCLOB conversion as part of
define conversion based on these attributes.

See Also: Oracle Database Reference for more information about
NCHAR data

Binding and Defining in OCI 5-31

Character Conversion in OCI Binding and Defining

Implicit Conversion Between CHAR and NCHAR

As the result of implicit conversion between database character sets and national
character sets, OCI can support cross binding and cross defining between CHAR and
NCHAR. Even though the OCI_ATTR_CHARSET_FORM attribute is set to
SQLCS_NCHAR, OCI enables conversion of data to the database character set if the
data is inserted into a CHAR column.

Setting Client Character Sets in OCI

You can set the character sets through the OCl EnvNl sCr eat e() function
parameters char set and nchar set . Both of these parameters can be set as
OCI_UTF16ID. The char set parameter controls coding of the metadata and CHAR
data. nchar set controls coding of NCHAR data. The function

OClI NI senvi r onnment Var i abl eGet () returns the character set from NLS_LANG
and the national character set from NLS_NCHAR.

Here is an example of the use of these functions:

OCl Env *envhp;

ub2 ncsid = 2; /* we8dec */

ub2 hdl csid, hdlncsid;

OraText thenane[20];

utext *selstmt = L"SELECT ename FROM enp"; /* UTF16 statement */
OCl Stnt *stnthp;

OCl Defi ne *def hp;

OCl Error *errhp;

OCl EnvN sCreate(OCl Env **envhp, ..., OCl _UTF16ID, ncsid);
OCl Stnt Prepare(stnthp, ..., selstm, ...); /* prepare UTF16 statenent */
COCl Def i neByPos(stnthp, defnp, ..., 1, thenane, sizeof(thenane), SQLT CHR ...);

OCI NIl sEnvi ronnent Vari abl eGet (&hdl ¢sid, (size_t)0, OCl _NLS CHARSET ID, (ub2)O0,
(size_t*)NULL);
OCl AttrSet(defnp, ..., &hdlcsid, 0, OCl _ATTR CHARSET_ID, errhp);
/* change charset ID to NLS_LANG setting*/

See Also:
« OCl EnvN sCreat e() on page 15-14
« "OCI N sEnvironnment Vari abl eGet ()" on page 21-7

5-32 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

Using OCI_ATTR_MAXDATA_SIZE Attribute

Update or insert operations are done through variable binding. When binding
variables, specify OCI_ATTR_MAXCHAR_SIZE and OCI_ATTR_MAXDATA_SIZE
in the bind handle to indicate character and byte constraints used when inserting
data on the server.

These attributes are defined as:

« OCI_ATTR_MAXCHAR_SIZE sets the maximum number of characters allowed
in the buffer on the server side.

« OCI_ATTR_MAXDATA SIZE sets the maximum number of bytes allowed in
the buffer on the server side.

Every bind handle has a OCI_ATTR_MAXDATA_SIZE attribute that specifies the
number of bytes allocated on the server to accommodate client-side bind data after
character set conversions.

An application will typically set OCI_ATTR_MAXDATA_SIZE to the maximum size
of the column or the size of the PL/SQL variable, depending on how it is used.
Oracle issues an error if OCI_ATTR_MAXDATA_SIZE is not large enough to
accommodate the data after conversion, and the operation will fail.

The following scenarios demonstrate some examples of the use of the
OCI_ATTR_MAXDATA_SIZE attribute:

« Scenario 1: CHAR (source data) -> non-CHAR (destination column)

There are implicit bind conversions of the data. The recommended value of
OCI_ATTR_MAXDATA_SIZE is the size of the source buffer multiplied by the
worst-case expansion factor between the client and server character sets.

« Scenario 2: CHAR (source data) -> CHAR (destination column) or non-CHAR
(source data) -> CHAR (destination column)

The recommended value of OCI_ATTR_MAXDATA _SIZE is the size of the
column.

« Scenario 3: CHAR (source data) -> PL/SQL variable

In this case, the recommended value of OCI_ATTR_MAXDATA_SIZE is the size
of the PL/SQL variable.

Using OCI_ATTR_MAXCHAR_SIZE Attribute

OCI_ATTR_MAXCHAR_SIZE enables processing to work with data in terms of
number of characters, rather than number of bytes.

Binding and Defining in OCI 5-33

Character Conversion in OCI Binding and Defining

For binds, the OCI_ATTR_MAXCHAR_SIZE attribute sets the number of characters
reserved on the server to store the bind data.

For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and
OCI_ATTR_MAXCHAR_SIZE is set to 0, then the maximum possible size of the
data on the server after conversion is 100 bytes. However, if
OCI_ATTR_MAXDATA_SIZE is set to 300, and OCI_ATTR_MAXCHAR_SIZE is set
to a nonzero value, such as 100, then if the character set has 2 bytes/character, the
maximum possible allocated size is 200 bytes.

For defines, the OCI_ATTR_MAXCHAR_SIZE attribute specifies the maximum
number of characters that the client application allows in the return buffer. Its
derived byte length overrides the max| engt h parameter specified in the

OCl Def i neByPos() call.

Note: Regardless of the value of the attribute
OCI_ATTR_MAXCHAR_SIZE, the buffer lengths specified in a
bind or define call are always in terms of bytes. The actual length
values sent and received by you are also in bytes.

Buffer Expansion During OCI Binding

Do not set OCI_ATTR_MAXDATA _SIZE for OUT binds or for PL/SQL binds. Only
set OCI_ATTR_MAXDATA SIZE for INSERT or UPDATE statements.

If neither of these two attributes is set, OCI expands the buffer using its best
estimates.

IN Binds

If the underlying column was created using character length semantics, then it is
preferable to specify the constraint using OClI_ATTR_MAXCHAR_SIZE. As long as
the actual buffer contains less characters than specified in
OCI_ATTR_MAXCHAR_SIZE, no constraints are violated at OCI level.

If the underlying column was created using byte length semantics, then use
OCI_ATTR_MAXDATA SIZE in the bind handle to specify the byte constraint on
the server. If you also specify an OCI_ATTR_MAXCHAR_SIZE value, then this
constraint is imposed when allocating the receiving buffer on the server side.

5-34 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

Dynamic SQL

For dynamic SQL, you can use the explicit describe to get OCI_ATTR_DATA_SIZE
and OCI_ATTR_CHAR_SIZE in parameter handles, as a guide for setting
OCI_ATTR_MAXDATA SIZE and OCI_ATTR_MAXCHAR_SIZE attributes in bind
handles. It is a good practice to specify OCI_ATTR_MAXDATA SIZE and
OCI_ATTR_MAXCHAR_SIZE to be no more than the actual column width in bytes,
or characters.

Buffer Expansion During Inserts
You should avoid unexpected behavior caused by buffer expansion during inserts.

Consider what happens when the database column has character length semantics,
and the user tries to insert data using OCl Bi ndByPos() or OCl Bi ndByNare()
while setting only the OCI_ATTR_MAXCHAR_SIZE to 3000 bytes. The database
character set is UTF8 and the client character set is ASCII. Then, in this case
although 3000 characters will fit in a buffer of size 3000 bytes for the client, on the
server side it might expand to more than 4000 bytes. Unless the underlying column
isa LONG or a LOB type, the server will return an error. You can get around this
problem by specifying the OCI_ATTR_MAXDATA_SIZE to be 4000, to guarantee
that the data will never exceed 4000 bytes.

Constraint Checking During Defining

To select data from columns into client buffers, OCI uses defined variables. You can
set an OCI_ATTR_MAXCHAR_SIZE value on the define buffer to impose an
additional character length constraint. There is no OCI_ATTR_MAXDATA_SIZE
attribute for define handles since the buffer size in bytes serves as the limit on byte
length. The define buffer size provided in the OCl Def i neByPos() call can be used
as the byte constraint.

Dynamic SQL Selects

When sizing buffers for dynamic SQL, always use the OCI_ATTR_DATA_SIZE
value in the implicit describe to avoid data loss through truncation. If the database
column is created using character length semantics known through
OCI_ATTR_CHAR_USED attribute, then you can use the
OCI_ATTR_MAXCHAR_SIZE value to set an additional constraint on the define
buffer. A maximum number of OCI_ATTR_MAXCHAR_SIZE characters is put in
the buffer.

Binding and Defining in OCI 5-35

Character Conversion in OCI Binding and Defining

Return Lengths

The following length values are always in bytes regardless of the character length
semantics of the database:

« Thevalue returned in the al en, or the actual length field in binds and defines.

« The value that appears in the length, prefixed in special datatypes like
VARCHAR and LONG VARCHAR.

=« The value of the indicator variable in case of truncation.

The only exception to this rule is for string buffers in OCI_UTF16ID character set id;
then the lengths are in UTF-16 units.

Note: The buffer sizes in the bind and define calls and the piece
sizes in the OCl Cet Pi ecel nf o() and OCl Set Pi ecel nf o() and
the callbacks are always in bytes.

General Compatibility Issues for Character Length Semantics in OCl

« For arelease 9.0 or later client talking to an 8.1 or earlier server,
OCI_ATTR_MAXCHAR_SIZE is not understood by the server, so this value will
be ignored. If you specify only this value, OCI will derive the corresponding
OCI_ATTR_MAXDATA_SIZE value based on the maximum bytes for each
character for the client-side character set.

« [Foran 8.1 or earlier client talking to a 9.0 or later server, the client will never be
able to specify an OCI_ATTR_MAXCHAR_SIZE value, so the server will
consider the client always expecting byte length semantics. This is similar to the
situation when the client specifies only OCI_ATTR_MAXDATA_SIZE.

So in both cases, the server and client can exchange information in an appropriate
manner.

Code Example for Inserting and Selecting Using OClI_ATTR_MAXCHAR_SIZE

When a column is created by specifying a number N of characters, the actual
allocation in the data base will consider the worst scenario in the following table.
The real bytes allocated will be a multiple of N, say Mtimes N. Currently, Mis three
as the maximum bytes for each character in UTF-8.

For example, in the following table EMP, ENAME column is defined as 30 characters
and ADDRESS is defined as 80 characters. Then the corresponding byte lengths in
database are M*30 or 3*30=90, and M*80 or 3*80=240 respectively.

5-36 Oracle Call Interface Programmer's Guide

Character Conversion in OCI Binding and Defining

utext ename[31], address[81];

/* E <= 30+ 1, D <= 80+ 1, considering null-termnation */

sh4 enane_nax_chars = EC=20, address_nmax_chars = ED=60;

/* EC<= (E - 1), ED<= (D - 1) */

sh4 ename_nax_bytes = EB=80, address_max_bytes = DB=200;

/* EB <= M* EC, DB <= M* DC */

text *insstm = (text *)"INSERT | NTO EMP(ENAME, ADDRESS) VALUES (: ENAME, \
: ADDRESS) ";

text *selstm = (text *)"SELECT ENAME, ADDRESS FROM EMP";

/* Inserting Colum Data */

OCl St nt Prepare(stnthpl, errhp, insstnt, (ub4)strlen((char *)insstnt),
(ub4) OCl _NTV_SYNTAX, (ub4)CCl _DEFAULT);

OCl Bi ndByNane(stnthpl, &bndlp, errhp, (text *)":ENAMVE",
(sh4)strlen((char *)":ENAME"),
(dvoid *)ename, sizeof (ename), SQT_STR (dvoid *)& nsname_ind,
(ub2 *)alenp, (ub2 *)rcodep, (ub4)maxarr_len, (ub4 *)curelep, OC _DEFAULT);

[* either */

OCl AttrSet((dvoid *)bndlp, (ub4)CCl_HTYPE BIND, (dvoid *)&ename_max_bytes,
(ub4)0, (ub4)OC _ATTR MAXDATA SI ZE, errhp);

[* or */

OCl AttrSet((dvoid *)bndlp, (ub4)COCl _HTYPE BIND, (dvoid *)&ename_max_chars,
(ub4)0, (ub4)OCl _ATTR_MAXCHAR SI ZE, errhp);

/* Retrieving Colum Data */

OCl St nt Prepare(stnthp2, errhp, selstnt, strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4)OCl DEFAULT);

OCl Def i neByPos(st nthp2, &dfnlp, errhp, (ub4)l, (dvoid *)enane,
(sb4)si zeof (enane),
SQLT_STR, (dvoid *)&sel name_ind, (ub2 *)alenp, (ub2 *)rcodep,
(ub4) OCl _DEFAULT);

[* if not called, byte semantics is by default */

OCl AttrSet((dvoid *)df nlp, (ub4)OCl _HTYPE DEFINE, (dvoid *)&ename_max_chars,
(ub4)o0,
(ub4d) OCl _ATTR_MAXCHAR S| ZE, errhp);

Code Example for UTF-16 Binding and Defining

The character set ID in bind and define of the CHAR or VARCHAR?2, or in NCHAR
or NVARCHAR variant handles can be set to assume that all data will be passed in
UTF-16 (Unicode) encoding. To specify UTF-16, set OClI_ATTR_CHARSET _ID =
OCI_UTF16ID.

Binding and Defining in OCI 5-37

Character Conversion in OCI Binding and Defining

See Also:
. "OCI_ATTR_CHARSET_ID" on page A-36
. "OCI_ATTR_CHARSET_ID" on page A-40

OCI provides a typedef called ut ext to facilitate binding and defining of UTF-16
data. The internal representation of ut ext is a 16-bit unsigned integer, ub2.
Operating systems where the encoding scheme of the wchar _t datatype conforms
to UTF-16 can easily convert ut ext tothewchar _t datatype using cast operators.

Even for UTF-16 data, the buffer size in bind and define calls is assumed to be in
bytes. Users should use the ut ext datatype as the buffer for input and output data.

The following pseudocode illustrates a bind and define for UTF-16 data:

Clstnt *stnthpl, *stnthp2;
OCl Define *dfnlp, *dfn2p;
OCl Bi nd *bndlp, *bnd2p;
text *insstnt=
(text *) "INSERT | NTO EMP(ENAME, ADDRESS) VALUES (:ename, :address)”; \
text *selnane =
(text *) "SELECT ENAME, ADDRESS FROM EMP";
utext ename[21]; [* Nane - UTF-16 */
utext address[51]; /* Address - UTF-16 */
ub2 csid = OCl _UTF16l1 D,
sb4 enanme_col |en = 20;
sh4 address_col | en = 50;

/* Inserting UTF-16 data */

OCl Stnt Prepare (stnthpl, errhp, insstnt, (ub4)strlien ((char *)insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4)QCl _DEFAULT);

OCl Bi ndByName (stnthpl, &bndlp, errhp, (text*)":ENAVE",

(sb4)strlen((char *)": ENAME"),

(dvoid *) enane, sizeof(ename), SQT_STR

(dvoid *)& nsname_i nd, (ub2 *) 0, (ub2 *) 0, (ub4) 0,

(ub4 *)0, OCl _DEFAULT);

((dvoid *) bndlp, (ub4) OCI _HTYPE BIND, (dvoid *) &csid,

(ub4) 0, (ub4)OCl _ATTR CHARSET_ID, errhp);

COCl AttrSet((dvoid *) bndlp, (ub4) OCI_HTYPE BIND, (dvoid *) &ename_col _|en,

(ub4) 0, (ub4)OC _ATTR MAXDATA S| ZE, errhp);

OCl At tr Set

/* Retrieving UTF-16 data */
OCl Stnt Prepare (stnthp2, errhp, selnane, strlen((char *) sel nane),
(ub4) OCl _NTV_SYNTAX, (ub4)OCl _DEFAULT);

5-38 Oracle Call Interface Programmer's Guide

PL/SQL REF CURSORs and Nested Tables in OCI

OCl Def i neByPos (stnthp2, &dfnlp, errhp, (ub4)l, (dvoid *)enane,
(sh4)sizeof (ename), SQLT_STR,
(dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)QOC _DEFAULT);
OCl AttrSet ((dvoid *) dfnlp, (ub4) OCI_HTYPE DEFINE, (dvoid *) &csid,
(ub4) 0, (ub4)QOCl _ATTR CHARSET ID, errhp);

PL/SQL REF CURSORs and Nested Tables in OCI

The OCI provides the ability to bind and define PL/SQL REF CURSORs and nested
tables. An application can use a statement handle to bind and define these types of
variables. As an example, consider this PL/SQL block:

static const text *plsql _block = (text *)
"begin \
OPEN : cursorl FOR SELECT enpl oyee_id, last_nane, job_id, manager_id, \
salary, department_id \
FROM enpl oyees WHERE j ob_i d=:j ob ORDER BY enpl oyee_id; \
OPEN : cursor2 FOR SELECT * FROM departnents ORDER BY department _id;
end;";

An application allocates a statement handle for binding, by calling
OCl Handl eAl | oc(), and then binds the : cur sor 1 placeholder to the statement
handle, as in the following code, where : cur sor 1 is bound to st n2p.

status = OCl StntPrepare (stmlp, errhp, (text *) plsqgl _block,
strlen((char *)plsql _block), OC_NTV_SYNTAX, OCl _DEFAULT);

status = OCl Bi ndByNane (stmilp, (OCI Bind **) &bndlp, errhp,
(text *)":cursorl", (sb4)strlen((char *)":cursorl"),
(dvoid *)&stn2p, (sb4) 0, SQT_RSET, (dvoid *)O,
(ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)0, (ub4)OCl _DEFAULT);

In this code, st mlLp is the statement handle for the PL/SQL block, while st n2p is
the statement handle which is bound as a REF CURSOR for later data retrieval. A
value of SQLT_RSET is passed for the dt y parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
"SELECT | ast _nanme, CURSOR(SELECT department_nane, |ocation_id \
FROM departnents) FROM enpl oyees WHERE | ast _nanme = 'FORD ";

The second position is a nested table, which an OCI application can define as a
statement handle as follows:

Binding and Defining in OCI 5-39

Runtime Data Allocation and Piecewise Operations in OCI

status = OCl StntPrepare (stmlp, errhp, (text *) nst_tab,
strlen((char *)nst_tab), OCI _NTV_SYNTAX, OCl _DEFAULT);

status = OCl DefineByPos (stmlp, (OC Define **) &dfn2p, errhp, (ub4)2,
(dvoid *)&stn2p, (sh4)0, SQT_RSET, (dvoid *)0, (ub2 *)O,
(ub2 *)0, (ub4)CCl _DEFAULT);

After execution, when you fetch a row into st n2p it becomes a valid statement
handle.

Note: If you have retrieved multiple REF CURSORs, you must take
care when fetching them into st n2p. If you fetch the first one, you
can then perform fetches on it to retrieve its data. However, once
you fetch the second REF CURSOR into st n2p, you no longer have
access to the data from the first REF CURSOR

OCI does not support PL/SQL REF CURSCRs that were executed in
scrollable mode.

Runtime Data Allocation and Piecewise Operations in OCl

You can use the OCI to perform piecewise inserts, updates, and fetches of data. You
can also use the OCI to provide data dynamically in case of array inserts or updates,
instead of providing a static array of bind values. You can insert or retrieve a very
large column as a series of chunks of smaller size, minimizing client-side memory
requirements.

The size of individual pieces is determined at runtime by the application and can be
uniform or not.

The piecewise functionality of OCI is particularly useful when performing
operations on extremely large blocks of string or binary data, operations involving
database columns that store CLOB, BLOB, LONG RAWor LONG RAWdata.

The piecewise fetch is complete when the final OCl St nt Fet ch() call returns a
value of OCI_SUCCESS.

In both the piecewise fetch and insert, it is important to understand the sequence of
calls necessary for the operation to complete successfully. For a piecewise insert,
you must call OCI St nt Execut e() one time more than the number of pieces to be
inserted (if callbacks are not used). This is because the first time

OCl St nt Execut e() is called, it merely returns a value indicating that the first

5-40 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

piece to be inserted is required. As a result, if you are inserting n pieces, you must
call OCl St nt Execut e() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call OCl St nt Fet ch()
once more than the number of pieces to be fetched.

Users who are binding to PL/SQL index-by tables can retrieve a pointer to the
current index of the table during the OCl St nt Get Pi ecel nfo() calls.

Valid Datatypes for Piecewise Operations

Only some datatypes can be manipulated in pieces. OCI applications can perform
piecewise fetches, inserts, or updates of all the following datatypes:

= VARCHAR2
= STRING

= LONG

= LONGRAW
= RAW

« CLOB

« BLOB

Another way of using this feature for all datatypes is to provide data dynamically
for array inserts or updates. The callbacks should always specify OCI_ONE_PIECE
for the pi ecep parameter of the callback for datatypes that do not support
piecewise operations.

Types of Piecewise Operations
You can perform piecewise operations in two ways:

« Use calls provided in the OCI library to execute piecewise operations under a
polling paradigm.

« Employ user-defined callback functions to provide the necessary information
and data blocks.

When you set the node parameter of an OCl Bi ndByPos() or OCl Bi ndByNang()
call to OCI_DATA_AT_EXEC, it indicates that an OCI application will be providing
data for an | NSERT or UPDATE dynamically at runtime.

Binding and Defining in OCI 5-41

Runtime Data Allocation and Piecewise Operations in OCI

Similarly, when you set the node parameter of an OCl Def i neByPos() call to
OCI_DYNAMIC_FETCH, it indicates that an application will dynamically provide
allocation space for receiving data at the time of the fetch.

In each case, you can provide the run-time information for the | NSERT, UPDATE, or
FETCH in one of two ways: through callback functions, or by using piecewise
operations. If callbacks are desired, an additional bind or define call is necessary to
register the callbacks.

The following sections give specific information about run-time data allocation and
piecewise operations for inserts, updates, and fetches.

Note: Piecewise operations are also valid for SQL and PL/SQL
blocks.

Providing INSERT or UPDATE Data at Runtime

When you specify the OCI_DATA_AT_EXEC mode in a call to OCl Bi ndByPos()
or OCl Bi ndByNane() , the val ue_sz parameter defines the total size of the data
that can be provided at runtime. The application must be ready to provide to the
OCIl library the run-time | N data buffers on demand as many times as is necessary
to complete the operation. When the allocated buffers are no longer required, they
must be freed by the client.

Runtime data is provided in one of the two ways:

= You can define a callback using the OCI Bi ndDynani c¢() function, which when
called at runtime returns either a piece or the whole data.

« If no callbacks are defined, the call to OCl St nt Execut e() to process the SQL
statement returns the OCI_NEED_DATA error code. The client application then
provides the | N OUT data buffer or piece using the
OCl St nt Set Pi ecel nf o() call that specifies which bind and piece are being
used.

Performing a Piecewise Insert or Update

Once the OCI environment has been initialized, and a database connection and
session have been established, a piecewise insert begins with calls to prepare a SQL
or PL/SQL statement and to bind input values. Piecewise operations using
standard OCI calls rather than user-defined callbacks do not require a call to

OCl Bi ndDynami c() .

5-42 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

Note: Additional bind variables that are not part of piecewise
operations may require additional bind calls, depending on their
datatypes.

Following the statement preparation and bind, the application performs a series of
calls to OClI St mt Execut e(), OCl St nt Get Pi ecel nf o() and

OCl St t Set Pi ecel nf o() to complete the piecewise operation. Each call to

OCl St nt Execut e() returns a value that determines what action should be
performed next. In general, the application retrieves a value indicating that the next
piece needs to be inserted, populates a buffer with that piece, and then executes an
insert. When the last piece has been inserted, the operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at
runtime. In addition, each inserted piece does not need to be of the same size. The
size of each piece to be inserted is established by each OCI St nt Set Pi ecel nf o()
call.

Note: If the same piece size is used for all inserts, and the size of
the data being inserted is not evenly divisible by the piece size, the
final inserted piece will be smaller. You must account for this by
indicating the smaller size in the final OCl St nt Set Pi ecel nf o()
call.

The procedure is illustrated in Figure 5-3.

Binding and Defining in OCI 5-43

Runtime Data Allocation and Piecewise Operations in OCI

Figure 5-3 Performing Piecewise Insert

Prepare Statement
OCIStmtPrepare()

v
Bind
OCIBindByName()/
OCIBindByPos()

Set Piece Info R
OCIStmtSetPiecelnfo() v

Get Piece Info OCI_NEED_DATA | Execute Other Error
OCIStmtGetPiecelnfo() | ~ | OCIstmtExecute() >

l OCI_SUCCESS

‘ Done

Initialize the OCI environment, allocate the necessary handles, connect to a
server, authorize a user, and prepare a statement request.

Bind a placeholder using OCl Bi ndByName() or OCl Bi ndByPos() . You do
not need to specify the actual size of the pieces you will use, but you must
provide the total size of the data that can be provided at runtime.

Call OCl St nt Execut e() for the first time. No data is being inserted here, and
the OCI_NEED_DATA error code is returned to the application. If any other
value is returned, it indicates that an error occurred.

Call OCI St nt Get Pi ecel nf o() to retrieve information about the piece that
needs to be inserted. The parameters of OCl St nt Get Pi ecel nf o() include a
pointer to a value indicating if the required piece is the first piece,
OCI_FIRST_PIECE, or a subsequent piece, OCI_NEXT_PIECE.

The application populates a buffer with the piece of data to be inserted and calls
QOCl St nt Set Pi ecel nf o() with these parameters:

« apointer to the piece

= apointer to the length of the piece

« aVvalue indicating whether this is the

a. first piece, OCI_FIRST_PIECE

b. an intermediate piece, OCI_NEXT_PIECE
c. the last piece, OCI_LAST_PIECE

5-44 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

6. Call OCl St nt Execut e() again. If OCI_LAST_PIECE was indicated in step 5
and OCl St nt Execut e() returns OCI_SUCCESS, all pieces were inserted
successfully. If OCl St nt Execut e() returns OCI_NEED_DATA, go back to
Step 3 for the next insert. If OCl St mt Execut e() returns any other value, an
error occurred.

The piecewise operation is complete when the final piece has been successfully
inserted. This is indicated by the OCI_SUCCESS return value from the final
OCl St nt Execut e() call.

Piecewise updates are performed in a similar manner. In a piecewise update
operation the insert buffer is populated with data that is being updated and
OCl St nt Execut e() is called to execute the update.

Piecewise Operations with PL/SQL

An OCI application can perform piecewise operations with PL/SQL for | N, QUT,
and | N QUT bind variables in a method similar to that outlined previously. Keep in
mind that all placeholders in PL/SQL statements are bound, rather than defined.
The call to OCI Bi ndDynam c() specifies the appropriate callbacks for QUT or

I N QUT parameters.

Providing FETCH Information at Runtime

When a call is made to OCl Def i neByPos() with the node parameter set to
OCI_DYNAMIC_FETCH, an application can specify information about the data
buffer at the time of fetch. You may also need to call OCl Def i neDynani c() to set
callback function that will be invoked to get information about your data buffer.

Run-time data is provided in one of the two ways:

= You can define a callback using the OCl Def i neDynami c(). Theval ue_sz
parameter defines the maximum size of the data that will be provided at
runtime. When the client library needs a buffer to return the fetched data, the
callback will be invoked to provide a run-time buffer into which a either piece
or the whole data will be returned.

« If nocallbacks are defined, the OCI_NEED_DATA error code is returned and
the QUT data buffer or piece can then be provided by the client application
using OCI St nt Set Pi ecel nfo() . The OCl St nt Get Pi ecel nf o() call
provides Information about which define and which piece are involved.

Binding and Defining in OCI 5-45

Runtime Data Allocation and Piecewise Operations in OCI

Performing a Piecewise Fetch

The fetch buffer can be of arbitrary size. In addition, each fetched piece does not
need to be of the same size. The only requirement is that the size of the final fetch
must be exactly the size of the last remaining piece. The size of each piece to be
fetched is established by each OCI St nt Set Pi ecel nf o() call. This process is

illustrated in Figure 5-4.

Figure 5-4 Performing Piecewise Fetch

Execute Statement
OCIStmtExecute()

v

Define
OClIDefineByPos()

Set Piece Info
OCIStmtSetPiecelnfo()

f

OCI_NEED_DATA |

]

Fetch

Other
Error

Get Piece Info
OCIStmtGetPiecelnfo() | ~

| OCIstmtFetch() »

l OCI_SUCCESS

‘ Done

1. Initialize the OCI environment, allocate necessary handles, connect to a
database, authorize a user, prepare a statement, and execute the statement.

2. Define an output variable using OCI Def i neByPos() , with node set to
OCI_DYNAMIC_FETCH. At this point you do not need to specify the actual
size of the pieces you will use, but you must provide the total size of the data

that will be fetched at runtime.

3. Call OCl st nt Fet ch() for the first time. No data is retrieved, and the
OCI_NEED_DATA error code is returned to the application. If any other value

is returned, an error occurred.

4. Call OCl st nt Get Pi ecel nf o() to obtain information about the piece to be
fetched. The pi ecep parameter indicates whether it is the first piece,
OCI_FIRST_PIECE, a subsequent piece, OCI_NEXT_PIECE, or the last piece,

OCI_LAST_PIECE.

5. Call OCl St nt Set Pi ecel nf o() to specify the fetch buffer.

5-46 Oracle Call Interface Programmer's Guide

Runtime Data Allocation and Piecewise Operations in OCI

Call OClI st nt Fet ch() again to retrieve the actual piece. If OCl St nt Fet ch()
returns OCI_SUCCESS, all the pieces have been fetched successfully. If

OCl St nt Fet ch() returns OCI_NEED_DATA, return to Step 4 to process the next
piece. If any other value is returned, an error occurred.

Piecewise Binds and Defines for LOBs
There are two ways of doing piecewise binds and defines for LOBs:

1.

Using the data interface

You can bind or define character data for CLOB columns using SQLT_CHR
(VARCHAR2) or SQLT_LNG (LONG) as the input datatype for the following
functions. You can also bind or define raw data for BLOB columns using
SQLT_LBI (LONGRAW, and SQLT_BI N (RAW as the input datatype for these
functions:

« OCIDefineByPos()
« OCIBindByName()
« OCIBindByPos(}

See Also:

« "Binding LOB Data" on page 5-11 for usage and examples for
both | NSERT and UPDATE st at enent s

« "Defining LOB Data" on page 5-21 for usage and examples of
SEL ECT statements
All the piecewise operations described below are supported for CLOB and BLOB
columns in this case.
Using the LOB locator

You can bind or define a LOB locator for CLOB and BLOB columns using
SQLT_CLOB (CLOB) or SQLT_BLOB (BLOB) as the input datatype for the
following functions.

« OCIDefineByPos()
« OCIBindByName()
« OCIBindByPos(}

Binding and Defining in OCI 5-47

Runtime Data Allocation and Piecewise Operations in OCI

You must then call OCILob* functions to read and manipulate the data.
OCl LobRead2() and OCl LobW it e2() support piecewise and callback
modes.

See Also:
« "OCILobRead2()" on page 16-87
« "OCILobWrite2()" on page 16-101

« "LOB Read and Write Callbacks" on page 7-14 for information
about streaming using callbacks with OCl LobW it e2() and
OCl LobRead?2() .

5-48 Oracle Call Interface Programmer's Guide

6

Describing Schema Metadata

This chapter discusses the use of the OCl Descr i beAny() function to obtain
information about schema elements.

This chapter contains these topics:

« Using OCIDescribeAny()

« Parameter Attributes

« Character Length Semantics Support in Describing

« Examples Using OCIDescribeAny()

Describing Schema Metadata 6-1

Using OCIDescribeAny()

Using OCIDescribeAny()

The OCl Descri beAny() function enables you to perform an explicit describe of
the following schema objects and their subschema obijects:

« tables and views
= synonyms

« procedures

« functions

« packages

= sequences

= collections

« types

« schemas

« databases

Information about other schema elements (procedure/function arguments,
columns, type attributes, and type methods) is available through a describe of one
of the above schema objects or an explicit describe of the subschema object.

When an application describes a table, it can then retrieve information about that
table's columns. Additionally, OCl Descri beAny() can directly describe
subschema objects such as columns of a table, packages of a function, or fields of a
type if given the name of the subschema object.

The OCI Descri beAny() call requires a describe handle as one of its arguments.
The describe handle must be previously allocated with a call to
OCl Handl eAl | oc() .

The information returned by OCl Descr i beAny() is organized hierarchically like a
tree, as shown in Figure 6-1:

6-2 Oracle Call Interface Programmer's Guide

Using OCIDescribeAny()

Figure 6-1 OCIDescribeAny() Table Description

describe
handle

'

table
description

'

columns

column 1 column 2

data type name

The describe handle returned by OCI Descri beAny() has an attribute,
OCI_ATTR_PARAM, that points to such a description tree. Each node of the tree
has attributes associated with that node, and attributes that are like recursive
describe handles and point to subtrees containing further information. If all the
attributes are homogenous, as in the case of elements of a column list, they are
called parameters. The attributes associated with any node are returned by

OCl At t r Get (), and the parameters are returned by OCl Par antGet () .

Acallto OCl At t r Get () on the describe handle for the table returns a handle to the
column-list information. An application can then use OCl Par amCet () to retrieve
the handle to the column description of a particular column in the column-list. The
handle to the column descriptor can be passed to OCl At t r Get () to get further
information about the column, such as the name and datatype.

After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed. To retrieve
information about select-list items from the statement handle, the application must
call OCl Par antzet () once for each position in the select-list to allocate a parameter
descriptor for that position.

Note: No subsequent OCl Attr Get () or OCl Par antGet () call
requires extra round trips, as all the description is cached on the
client side by OCI Descri beAny().

Describing Schema Metadata 6-3

Using OCIDescribeAny()

Limitations on OCIDescribeAny()

The OCI Descri beAny() call limits information returned to the basic information
and stops expanding a node if it amounts to another describe. For example, if a
table column is of an object type, then the OCI does not return a subtree describing
the type since this information can be obtained by another describe.

The table name is not returned by OCl Descri beAny() or the implicit use of
OCl St nt Execut e() . Sometimes a column is not associated with a table. In most
cases, the table is already known.

See Also:
« "Describing Select-list Items" on page 4-11
« OCl Descri beAny() on page 15-102

Notes on Types and Attributes

When performing describe operations, you should be aware of the following:

Datatype Codes

OCI_ATTR_TYPECODE returns typecodes which represent the types supplied by
the user when a new type is created using the CREATE TYPE statement. These
typecodes are of the enumerated type OCl TypeCode, and are represented by
OCI_TYPECODE constants. Internal PL/SQL types (boolean, indexed table) are not
supported.

OCI_ATTR_DATA_TYPE returns typecodes which represent the datatypes stored in
database columns. These are similar to the describe values returned by previous
versions of Oracle. These values are represented by SQLT constants (ub2 values).
BOOLEAN types return SQLT_BOL.

See Also: "Typecodes"on page 3-33 for more information about
typecodes, such as the OCI_TYPCODE values returned in the
OCI_ATTR_TYPECODE attribute and the SQLT typecodes returned
in the OCI_ATTR_DATA_TYPE attribute

Describing Types

In order to describe type objects, it is necessary to initialize the OCI process in object
mode:

/* Initialize the OCl Process */

6-4 Oracle Call Interface Programmer's Guide

Parameter Attributes

if (OClEnvCreate((OCIEnv **) &envhp, (ub4) OCI _OBJECT, (dvoid *) O,
dvoid * (*)(dvoid *,size_t)) O,
dvoid * (*)(dvoid *, dvoid *, size_t)) O,

void (*)(dvoid *, dvoid *)) 0, (size_t) 0, (dvoid **) 0))

— o~ o~ —~

{
printf("FAILED: OCl EnvCreate()\n");

return OCl _ERROR
}

See Also: OClInitialize() onpage 15-18

Note on Implicit and Explicit Describes

The column attribute OCI_ATTR_PRECISION can be returned using an implicit
describe with OCl St nt Execut e() and an explicit describe with

OCl Descri beAny() . When using an implicit describe, the precision should be set
to sb2. When using an explicit describe, the precision should be set to ub1 for a
placeholder. This is necessary to match the datatype of precision in the dictionary.

Note on OCI_ATTR_LIST_ARGUMENTS

The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents
second-level arguments for the method.

For example, given the following record ny_t ype and the procedure my_pr oc
which takes an argument of type ny_t ype:

my_type record(a nunber, b char)
my_proc (my_input ny_type)

the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a and b
of the ny_t ype record.

Parameter Attributes

A parameter is returned by OCl Par antzet () . Parameters can describe different
types of objects or information, and have attributes depending on the type of
description they contain, or type-specific attributes. This section describes the
attributes and handles that belong to different parameters.

Table 6-1 lists the attributes of all parameters:

Describing Schema Metadata 6-5

Parameter Attributes

Table 6-1 Attributes of All Parameters

Attribute

Description

Attribute Datatype

OCI_ATTR_NUM_PARAMS
OCI_ATTR_OBJ_ID
OCI_ATTR_OBJ_NAME
OCI_ATTR_OBJ SCHEMA
OCI_ATTR_PTYPE

OCI_ATTR_TIMESTAMP

The number of parameters

Object or schema ID

Database name or object name in a schema
Schema name where the object is located

Type of information described by the
parameter. Possible values are:

OCI_PTYPE_TABLE - table
OCI_PTYPE_VIEW - view
OCI_PTYPE_PROC - procedure
OCI_PTYPE_FUNC - function
OCI_PTYPE_PKG - package
OCI_PTYPE_TYPE - type

OCI_PTYPE_TYPE_ATTR - attribute of a type

OCI_PTYPE_TYPE_COLL - collection type
information

OCI_PTYPE_TYPE_METHOD - method of a
type

OCI_PTYPE_SYN - synonym
OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view
OCI_PTYPE_ARG - argument of a function or

procedure

OCI_PTYPE_TYPE_ARG - argument of a type

method

OCI_PTYPE_TYPE_RESULT - results of a
method

OCI_PTYPE_LIST - column list for tables and

views, argument list for functions and
procedures, or subprogram list for packages.

OCI_PTYPE_SCHEMA - schema
OCI_PTYPE_DATABASE- database

The timestamp of the object on which the
description is based in Oracle date format

ub2
ub4
OraText *
OraText *
ubl

ubl *

6-6 Oracle Call Interface Programmer's Guide

Parameter Attributes

The following sections list the attributes and handles specific to different types of

parameters.

Table Or View Parameters

Parameters for a table or view (type OCI_PTYPE_TABLE or OCI_PTYPE_VIEW)

have the following type-specific attributes:

Table 6-2 Attributes of Tables or Views

Attribute

Description

Attribute Datatype

OCI_ATTR_OBIID
OCI_ATTR_NUM_COLS
OCI_ATTR_LIST COLUMNS
OCI_ATTR_REF_TDO

OCI_ATTR_IS_TEMPORARY
OCI_ATTR_IS_TYPED
OCI_ATTR_DURATION

Object id

Number of columns

Column list (type OCI_PTYPE_LIST)
REF to the TDO of the base type in case of

extent tables

Indicates the table is temporary

Indicates the table is typed

Duration of a temporary table. Values can be:
OCI_DURATION_SESSION - session
OCI_DURATION_TRANS - transaction
OCI_DURATION_NULL -table not temporary

ub4
ub2
dvoid *

OCl Ref *

ubl
ubl
QOCl Dur ation

The following are additional attributes which belong to tables:

Table 6-3 Attributes Specific to Tables

Attribute

Description

Attribute Datatype

OCI_ATTR_DBA
OCI_ATTR_TABLESPACE
OCI_ATTR_CLUSTERED
OCI_ATTR_PARTITIONED
OCI_ATTR_INDEX_ONLY

Data block address of the segment header
Tablespace the table resides in

Indicates the table is clustered

Indicates the table is partitioned

Indicates the table is index-only

ub4
wor d
ubl
ubl
ubl

Describing Schema Metadata 6-7

Parameter Attributes

Procedure, Function, Subprogram Attributes

When a parameter is for a procedure or function (type OCI_PTYPE_PROC or
OCI_PTYPE_FUNC), it has the following type specific attributes:

Table 6—-4 Attribute of Procedures or Functions

Attribute Description Attribute Datatype
OCI_ATTR_LIST_ARGUMENTS Argument list. See "List Attributes” on dvoid *

page 6-19.
OCI_ATTR_IS_INVOKER_RIGHTS Indicates the procedure or function has ubl

invoker-rights

The following attributes are defined only for package subprograms:

Table 6-5 Attributes Specific to Package Subprograms

Attribute Description Attribute Datatype
OCI_ATTR_NAME Name of the procedure or function OraText *
OCI_ATTR_OVERLOAD_ID Overloading ID number (relevant in case the ub2

procedure or function is part of a package and
is overloaded). Values returned may be
different from direct query of a PL/SQL
function or procedure.

Package Attributes

When a parameter is for a package (type OCI_PTYPE_PKG), it has the following
type specific attributes:

Table 6-6 Attributes of Packages

Attribute Description Attribute Datatype
OCI_ATTR_LIST_SUBPROGRAMS Subprogram list. See "List Attributes" on dvoid *
page 6-19.
OCI_ATTR_IS_INVOKER_RIGHTS Is the package invoker-rights? ubl
Type Attributes

When a parameter is for a type (type OCI_PTYPE_TYPE), it has the attributes listed
in Table 6-7. These attributes are only valid if the application initialized the OCI
process in OCI_OBJECT modeinacalltoOCl I nitialize().

6-8 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 67 Attributes of Types

Attribute

Description

Attribute Datatype

OCI_ATTR_REF_TDO

OCI_ATTR_TYPECODE

OCI_ATTR_COLLECTION_TYPECODE

OCI_ATTR_IS_INCOMPLETE_TYPE
OCI_ATTR_IS_SYSTEM_TYPE
OCI_ATTR_IS_PREDEFINED _TYPE
OCI_ATTR_IS_TRANSIENT TYPE

OCI_ATTR_IS_SYSTEM_
GENERATED_TYPE

OCI_ATTR_HAS_NESTED_TABLE
OCI_ATTR_HAS_LOB
OCI_ATTR_HAS_FILE
OCI_ATTR_COLLECTION_ELEMENT

OCI_ATTR_NUM_TYPE_ATTRS
OCI_ATTR_LIST_TYPE_ATTRS

OCI_ATTR_NUM_TYPE_METHODS
OCI_ATTR_LIST TYPE_METHODS

Returns the in-memory REF of the type
descriptor object for the type, if the column
type is an object type. If space has not been
reserved for the OCIRef, then it is allocated
implicitly in the cache. The caller can then
pin the TDO with OCl Cbj ect Pi n() .

Typecode. See "Datatype Codes" on

page 6-4. Currently can be only
OCI_TYPECODE_OBIJECT or
OCI_TYPECODE_NAMEDCOLLECTION.

Typecode of collection if type is collection;
invalid otherwise. See "Datatype Codes" on
page 6-4. Currently can be only
OCI_TYPECODE_VARRAY or
OCI_TYPECODE_TABLE. Error is returned
if this attribute is queried for non-collection

type.

Indicates this is an incomplete type
Indicates this is a system type
Indicates this is a predefined type
Indicates this is a transient type

Indicates this is a system-generated type

This type contain a nested table attribute
This type contain a LOB attribute
This type contain a FILE attribute

Handle to collection element. See
"Collection Attributes" on page 6-12.

Number of type attributes

List of type attributes. See "List Attributes”
on page 6-19.

Number of type methods

List of type methods. See "List Attributes"
on page 6-19.

OCl Ref *

OCl TypeCode

QOCl TypeCode

ubl
ubl
ubl
ubl
ubl

ubl
ubl
ubl

dvoid *

ub2

dvoid *

ub2

dvoid *

Describing Schema Metadata 6-9

Parameter Attributes

Table 6—7 Attributes of Types (Cont.)

Attribute

Description

Attribute Datatype

OCI_ATTR_MAP_METHOD

OCI_ATTR_ORDER_METHOD

OCI_ATTR_IS_INVOKER_RIGHTS
OCI_ATTR_NAME

OCI_ATTR_SCHEMA NAME

OCI_ATTR_IS_FINAL_TYPE
OCI_ATTR_IS_INSTANTIABLE_TYPE
OCI_ATTR_IS_SUBTYPE

Map method of type. See "Type Method
Attributes" on page 6-11.

Order method of type. See "Type Method
Attributes" on page 6-11.

Indicates the type has invoker-rights

A pointer to a string which is the type
attribute name

A string with the schema name where the
type has been created

Indicates this is a final type
Indicates this is an instantiable type

Indicates this is a subtype

OCI_ATTR_SUPERTYPE_SCHEMA_NAME Name of the schema that contains the

OCI_ATTR_SUPERTYPE_NAME

supertype
Name of the supertype

dvoid *

dvoid *

ubl
OraText *

OraText *

ubl
ubl
ubl
OraText *

OraText *

Type Attribute Attributes

When a parameter is for an attribute of a type (type OCI_PTYPE_TYPE_ATTR), it

has the attributes li

sted in Table 6-8.

Table 6-8 Attributes of Type Attributes

Attribute

Description

Attribute Datatype

OCI_ATTR_DATA_SIZE

OCI_ATTR_TYPECODE
OCI_ATTR_DATA TYPE

OCI_ATTR_NAME

The maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUVBERSs.

Typecode. See "Datatype Codes" on page 6-4.

The datatype of the type attribute. See "Datatype
Codes" on page 6-4.

A pointer to a string which is the type attribute
name

6-10 Oracle Call Interface Programmer's Guide

ub4

OCl TypeCode
ub2

OraText *

Parameter Attributes

Table 6-8 Attributes of Type Attributes (Cont.)

Attribute

Description

Attribute Datatype

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA _NAME

OCI_ATTR_REF_TDO

OCI_ATTR_CHARSET _ID

OCI_ATTR_CHARSET_FORM

OCI_ATTR_FSPRECISION

OCI_ATTR_LFPRECISION

The precision of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLQAT, else it is a NUMBER(pr eci si on,

scal e) . For the case when precision is 0,
NUMBER(pr eci si on, scal e) can be
represented simply as NUVBER.

The scale of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLQAT, else it is a NUMBER(pr eci si on,

scal e) . For the case when precision is 0,
NUVBER(pr eci si on, scal e) can be
represented simply as NUVBER.

A string which is the type name. The returned
value will contain the type name if the datatype
is SQLT_NTY or SQLT_REF. If the datatype is
SQLT_NTY, the name of the named datatype's
type is returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to by
the REF is returned

A string with the schema name under which the
type has been created

Returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCl Ref , then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCI Qbj ect Pi n() .

The character set id, if the type attribute is of a
string/character type

The character set form, if the type attribute is of a
string/character type

The fractional seconds precision of a datetime or
interval.

The leading field precision of an interval.

ubl for explicit
descri be
sh2 for inplicit
descri be

shl

OraText *

OraText *

OCl Ref *

ub2

ubl

ubl

ubl

Type Method Attributes

When a parameter is for a method of a type (type OCI_PTYPE_TYPE_METHOD), it
has the attributes listed in Table 6-9.

Describing Schema Metadata 6-11

Parameter Attributes

Table 6-9 Attributes of Type Methods

Attribute

Description

Attribute Datatype

OCI_ATTR_NAME
OCI_ATTR_ENCAPSULATION

OCI_ATTR_LIST_ARGUMENTS

OCI_ATTR_IS_CONSTRUCTOR
OCI_ATTR_IS_DESTRUCTOR
OCI_ATTR_IS_OPERATOR
OCI_ATTR_IS_SELFISH
OCI_ATTR_IS_MAP
OCI_ATTR_IS_ORDER
OCI_ATTR_IS_RNDS

OCI_ATTR_IS_RNPS

OCI_ATTR_IS_ WNDS

OCI_ATTR_IS_WNPS

OCI_ATTR_IS_FINAL_METHOD
OCI_ATTR_IS_INSTANTIABLE_METHOD
OCI_ATTR_IS_OVERRIDING_METHOD

Name of method (procedure or function)

Encapsulation level of the method (either
OCI_TYPEENCAP_PRIVATE or
OCI_TYPEENCAP_PUBLIC)

Argument list. See "Note on
OCI_ATTR_LIST_ARGUMENTS" on
page 6-5, and "List Attributes" on
page 6-19.

Indicates method is a constructor
Indicates method is a destructor
Indicates method is an operator
Indicates method is selfish

Indicates method is a map method
Indicates method is an order method

Indicates "Read No Data State" is set for
method

Indicates "Read No Process State" is set for
method

Indicates "Write No Data State" is set for
method

Indicates "Write No Process State" is set for
method

Indicates this is a final method
Indicates this is an instantiable method

Indicates this is an overriding method

OraText *
QOCl TypeEncap

dvoid *

ubl
ubl
ubl
ubl
ubl
ubl
ubl

ubl

ubl

ubl

ubl
ubl
ubl

Collection Attributes

When a parameter is for a collection type (type OCI_PTYPE_COLL), it has the
attributes listed in Table 6-10.

6-12 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-10 Attributes of Collection Types

Attribute

Description

Attribute Datatype

OCI_ATTR_DATA_SIZE

OCI_ATTR_TYPECODE
OCI_ATTR_DATA TYPE

OCI_ATTR_NUM_ELEMENTS

OCI_ATTR_NAME

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA_NAME

The maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUVBERSs.

Typecode. See "Datatype Codes" on page 6-4.

The datatype of the type attribute. See "Datatype
Codes" on page 6-4.

The number of elements in an array. It is only
valid for collections that are arrays

A pointer to a string which is the type attribute
name

The precision of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLOAT, else it is a NUMBER(pr eci si on,

scal e) . For the case when precision is 0,
NUMVBER(pr eci si on, scal e) canbe
represented simply as NUVBER.

The scale of numeric type attributes. If the
precision is nonzero and scale is -127, then it is a
FLQAT, else it is a NUMBER(pr eci si on,

scal e) . For the case when precision is 0,
NUVBER(pr eci si on, scal e) canbe
represented simply as NUVBER.

A string which is the type name. The returned
value will contain the type name if the datatype
is SQLT_NTY or SQLT_REF. If the datatype is
SQLT_NTY, the name of the named datatype's
type is returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to by
the REF is returned

A string with the schema name under which the
type has been created

ub4

QOCl TypeCode

ub2

ub4

OraText *

ubl for explicit
descri be
sh2 for inplicit
descri be

shl

OraText *

OraText *

Describing Schema Metadata 6-13

Parameter Attributes

Table 6-10 Attributes of Collection Types (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_REF _TDO Returns the in-memory REF of the TDO for the OCl Ref *
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCl Obj ect Pi n() .

OCI_ATTR_CHARSET_ID The character set id, if the type attribute is of a ub2
string/character type
OCI_ATTR_CHARSET_FORM The character set form, if the type attribute isofa ubl

string/character type

Synonym Attributes

When a parameter is for a synonym (type OCI_PTYPE_SYN), it has the attributes
listed in Table 6-11.

Table 6-11 Attributes of Synonyms

Attribute Description Attribute Datatype
OCI_ATTR_OBIJID Object id ub4
OCI_ATTR_SCHEMA_ NAME A string containing the schema name of the OraText *

synonym translation

OCI_ATTR_NAME A NULL-terminated string containing the object OraText *
name of the synonym translation

OCI_ATTR_LINK A NULL-terminated string containing the database = OraText *
link name of the synonym translation

Sequence Attributes

When a parameter is for a sequence (type OCI_PTYPE_SEQ), it has the attributes
listed in Table 6-12.

Table 6-12 Attributes of Sequences

Attribute Description Attribute Datatype
OCI_ATTR_OBIID Object id ub4
OCI_ATTR_MIN Minimum value (in Oracle NUMBER format) ubl*
OCI_ATTR_MAX Maximum value (in Oracle NUMBER format) ubl*

6-14 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-12 Attributes of Sequences (Cont.)

Attribute

Description

Attribute Datatype

OCI_ATTR_INCR
OCI_ATTR_CACHE

OCI_ATTR_ORDER
OCI_ATTR_HW_MARK

Increment (in Oracle NUVMBER format)

Number of sequence numbers cached; zero if
the sequence is not a cached sequence (in
Oracle NUMBER format)

Whether the sequence is ordered

High-water mark (in NUMBER format)

ubl *
ubl *

ubl
ubl *

Column Attributes

For BINARY_FLOAT and BINARY_DOUBLE:

If OCl Descri beAny() is used to retrieve the column datatype
(OCI_ATTR_DATA_TYPE) for BINARY_FLOAT or
BINARY_DOUBLE columns in a table, it returns the internal
datatype code.

The SQLT codes corresponding to the internal datatype codes for
BINARY_FLOAT and BINARY_DOUBLE are SQLT_IBFLOAT and
SQLT_IBDOUBLE.

When a parameter is for a column of a table or view (type OCI_PTYPE_COL), it has
the attributes listed in Table 6-13.

Table 6-13 Attributes of Columns of Tables or Views

Attribute

Description

Attribute Datatype

OCI_ATTR_CHAR_USED

OCI_ATTR_CHAR_SIZE

Returns the type of length semantics of the
column. 0 means byte-length semantics and 1
means character-length semantics. See
"Character Length Semantics Support in
Describing" on page 6-23.

Returns the column character length which is
the number of characters allowed in the
column. It is the counterpart of
OCI_ATTR_DATA_SIZE which gets the byte
length. See "Character Length Semantics
Support in Describing" on page 6-23.

ub4

ub2

Describing Schema Metadata 6-15

Parameter Attributes

Table 6-13 Attributes of Columns of Tables or Views (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_DATA SIZE The maximum size of the column. This length ub4
is returned in bytes and not characters for
strings and raws. It returns 22 for NUVBERS.

OCI_ATTR_DATA_TYPE The datatype of the column. See "Datatype ub2
Codes" on page 6-4.
OCI_ATTR_NAME A pointer to a string which is the column name OraText *
OCI_ATTR_PRECISION The precision of numeric columns. If the ubl for explicit
precision is nonzero and scale is -127, then itis descri be
a FLOAT, else it is a NUMBER(pr eci si on, sb2 for inplicit
scal e) . For the case when precision is 0, descri be

NUMBER(pr eci si on, scal e) can be
represented simply as NUVBER.

OCI_ATTR_SCALE The scale of numeric columns. If the precision sbl
is nonzero and scale is -127, then it is a FLOAT,
else it is a NUMBER(precision, scale). For the
case when precision is 0,
NUMBER(pr eci si on, scal e) can be
represented simply as NUVBER.

OCI_ATTR_IS_NULL Returns 0 if null values are not permitted for ubl
the column
OCI_ATTR_TYPE_NAME Returns a string which is the type name. The OraText *

returned value will contain the type name if
the datatype is SQLT_NTY or SQLT_REF. If the
datatype is SQLT_NTY, the name of the named
datatype's type is returned. If the datatype is
SQLT_REF, the type name of the named
datatype pointed to by the REF is returned

OCI_ATTR_SCHEMA_ NAME Returns a string with the schema name under OraText *
which the type has been created

OCI_ATTR_REF_TDO The REF of the TDO for the type, if the column OCl Ref *
type is an object type

OCI_ATTR_CHARSET _ID The character set id, if the column is of a ub2
string/character type

OCI_ATTR_CHARSET_FORM The character set form, if the column is of a ubl

string/character type

6-16 Oracle Call Interface Programmer's Guide

Parameter Attributes

Argument and Result Attributes

When a parameter is for an argument of a procedure or function (type
OCI_PTYPE_ARG), for a type method argument (type OCI_PTYPE_TYPE_ARG) or
for method results (type OCI_PTYPE_TYPE_RESULT), it has the attributes listed in

Table 6-14.

Table 6-14 Attributes of Arguments and Results

Attribute

Description

Attribute Datatype

OCI_ATTR_NAME

OCI_ATTR_POSITION

OCI_ATTR_TYPECODE
OCI_ATTR_DATA _TYPE

OCI_ATTR_DATA SIZE

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_LEVEL

OCI_ATTR_HAS_DEFAULT
OCI_ATTR_LIST_ARGUMENTS

Returns a pointer to a string which is the
argument name

The position of the argument in the argument
list. Always returns zero.

Typecode. See "Datatype Codes" on page 6-4.

The datatype of the argument. See "Datatype
Codes" on page 6-4.

The size of the datatype of the argument. This
length is returned in bytes and not characters
for strings and raws. It returns 22 for
NUMBERSs.

The precision of numeric arguments. If the
precision is nonzero and scale is -127, then it
isa FLOAT, else it is a NUMBER(pr eci si on,
scal e) . For the case when precision is 0,
NUVBER(pr eci si on, scal e) canbe
represented simply as NUVBER.

The scale of numeric arguments. If the
precision is nonzero and scale is -127, then it
isa FLOAT, else it is a NUVBER(pr eci si on,
scal e) . For the case when precision is 0,
NUMBER(pr eci si on, scal e) can be
represented simply as NUVBER.

The datatype levels. This attribute always
returns zero.

Indicates whether an argument has a default

The list of arguments at the next level (when
the argument is of a record or table type).

OraText *

ub2

OCl TypeCode
ub2

ub4

b1 for explicit describe

sbh2 for implicit
describe

sbhl

ub2

ubl

dvoid *

Describing Schema Metadata 6-17

Parameter Attributes

Table 6-14 Attributes of Arguments and Results (Cont.)

Attribute

Description

Attribute Datatype

OCI_ATTR_IOMODE

OCI_ATTR_RADIX
OCI_ATTR_IS_NULL

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA _NAME

OCI_ATTR_SUB_NAME

OCI_ATTR_LINK

OCI_ATTR_REF_TDO

OCI_ATTR_CHARSET _ID

OCI_ATTR_CHARSET_FORM

Indicates the argument mode:

0is IN (OCI_TYPEPARAM_IN),

1is OUT (OCI_TYPEPARAM_OUT),

2is IN/OUT (OCI_TYPEPARAM_INOUT)

Returns a radix (if number type)

Returns 0 if null values are not permitted for
the column

Returns a string which is the type name, or
the package name in the case of package local
types. The returned value will contain the
type name if the datatype is SQLT_NTY or
SQLT_REF. If the datatype is SQLT_NTY, the
name of the named datatype's type is
returned. If the datatype is SQLT_REF, the
type name of the named datatype pointed to
by the REF is returned.

For SQLT_NTY or SQLT_REF, returns a string
with the schema name under which the type
was created, or under which the package was
created in the case of package local types

For SQLT_NTY or SQLT_REF, returns a string
with the type name, in the case of package
local types

For SQLT_NTY or SQLT_REF, returns a string
with the database link name of the database
on which the type exists. This can happen
only in the case of package local types, when
the package is remote.

Returns the REF of the TDO for the type, if
the argument type is an object

Returns the character set ID if the argument is
of a string/character type

Returns the character set form if the
argument is of a string/character type

OCl TypePar amvbde

ubl
ubl

OraText *

OraText *

OraText *

OraText *

OCl Ref *

ub2

ubl

6-18 Oracle Call Interface Programmer's Guide

Parameter Attributes

List Attributes

When a parameter is for a list of columns, arguments, or subprograms (type
OCI_PTYPE_LIST), it has the following type specific attributes and handles

(parameters):

The list has an OCI_ATTR_LIST_TYPE attribute which designates the list type. The
possible values and their lower bounds when traversing the list are:

Table 6-15 List A?tributes

List Attribute Description Lower Bound
OCI_LTYPE_COLUMN Column list 1
OCI_LTYPE_ARG_PROC Procedure argument list 1
OCI_LTYPE_ARG_FUNC Function argument list 0
OCI_LTYPE_SUBPRG Subprogram list 0
OCI_LTYPE_TYPE_ATTR Type attribute list 1
OCI_LTYPE_TYPE_METHOD Type method list 1
OCI_LTYPE_TYPE_ARG_PROC Type method without result argument list 0
OCI_LTYPE_TYPE_ARG_FUNC Type method without result argument list 1
OCI_LTYPE_SCH_OBJ Obiject list within a schema 0
OCI_LTYPE_DB_SCH Schema list within a database 0

« Thelist has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of
elements in the list.

« Each list has Lower Bound .. OCI_ATTR_NUM_PARAMS parameters.
Lower Bound is the value in the Lower Bound column of Table 6-15, "List
Attributes”. In the case of a function argument list, position 0 has a parameter
for the return value (type OCI_PTYPE_ARG).

Schema Attributes

When a parameter is for a schema type (type OCI_PTYPE_SCHEMA), it has the
attributes listed in Table 6-16:

Describing Schema Metadata 6-19

Parameter Attributes

Table 6-16 Attributes Specific to Schemas

Attribute Description Attribute Datatype
OCI_ATTR_LIST_OBIJECTS List of objects in the schema OraText *
Database Attributes

When a parameter is for a database type (type OCI_PTYPE_DATABASE), it has the
attributes listed in Table 6-17:

Table 6-17 Attributes Specific to Databases

Attribute Description Attribute Datatype
OCI_ATTR_VERSION Database version OraText *
OCI_ATTR_CHARSET_ID Database character set Id from the server ub2
handle
OCI_ATTR_NCHARSET_ID Database character set Id from the server ub2
handle
OCI_ATTR_LIST_SCHEMAS List of schemas (type ubl
OCI_PTYPE_SCHEMA) in the database
OCI_ATTR_MAX_PROC_LEN Maximum length of a procedure name ub4
OCI_ATTR_MAX_COLUMN_LEN Maximum length of a column name ub4

OCI_ATTR_CURSOR_COMMIT_BEHAVIOR How a COMMIT operation affects cursors ubl
and prepared statements in the database.
Values are:

OCI_CURSOR_OPEN - preserve cursor
state as before the commit operation

OCI_CURSOR_CLOSED - cursors are
closed on COMMIT, but the application
can still reexecute the statement without
re-preparing it

OCI_ATTR_MAX_CATALOG_NAMELEN Maximum length of a catalog (database) ubl

name
OCI_ATTR_CATALOG_LOCATION Position of the catalog in a qualified table. ubl
Values are OCI_CL_START and
OCI_CL_END
OCI_ATTR_SAVEPOINT_SUPPORT Does database support savepoints? Values ubl

are OCI_SP_SUPPORTED and
OCI_SP_UNSUPPORTED

6-20 Oracle Call Interface Programmer's Guide

Parameter Attributes

Table 6-17 Attributes Specific to Databases (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_NOWAIT_SUPPORT Does database support the nowait clause? ubl
Values are OCI_NW_SUPPORTED and
OCI_NW_UNSUPPORTED

OCI_ATTR_AUTOCOMMIT_DDL Is autocommit mode required for DDL ubl
statements? Values are OCI_AC_DDL and
OCI_NO_AC_DDL

OCI_ATTR_LOCKING_MODE Locking mode for the database. Values are ubl
OCI_LOCK_IMMEDIATE and
OCI_LOCK_DELAYED

Rule Attributes

When a parameter is for a rule (type OCI_PTYPE_RULE), it has the attributes listed
in Table 6-18:

Table 6-18 Attributes Specific to Rules

Attribute Description Attribute Datatype
OCI_ATTR_CONDITION Rule condition OraText *

OCI_ATTR_EVAL_CONTEXT_OWNER Owner name of evaluation context associated OraText *
with the rule, if any

OCI_ATTR_EVAL_CONTEXT_NAME Object name of evaluation context associated OraText *
with the rule, if any

OCI_ATTR_COMMENT Comment associated with the rule, if any OraText *

OCI_ATTR_LIST_ACTION_CONTEXT List of name value pairs in the action context dvoid *
(type OCI_PTYPE_LIST)

Rule Set Attributes

When a parameter is for a rule set (type OCI_PTYPE_RULE_SET), it has the
attributes listed in Table 6-19:

Describing Schema Metadata 6-21

Parameter Attributes

Table 6-19 Attributes Specific to Rule Sets

Attribute Description Attribute Datatype

OCI_ATTR_EVAL_CONTEXT_OWNER Owner name of evaluation context associated OraText *
with the rule set, if any

OCI_ATTR_EVAL_CONTEXT_NAME Object name of evaluation context associated OraText *
with the rule set, if any

OCI_ATTR_COMMENT Comment associated with the rule set, if any OraText *

OCI_ATTR_LIST_RULES List of rules in the rule set (type dvoid *
OCI_PTYPE_LIST)

Evaluation Context Attributes

When a parameter is for an evaluation context (type
OCI_PTYPE_EVALUATION_CONTEXT), it has the attributes listed in Table 6-20:

Table 6-20 Attributes Specific to Evaluation Contexts

Attribute Description Attribute Datatype

OCI_ATTR_EVALUATION_FUNCTION Evaluation function associated with the OraText *
evaluation context, if any

OCI_ATTR_COMMENT Comment associated with the evaluation OraText *

context, if any

OCI_ATTR_LIST_TABLE_ALIASES List of table aliases in the evaluation context dvoid *
(type OCI_PTYPE_LIST)

OCI_ATTR_LIST_VARIABLE_TYPES List of variable types in the evaluation context dvoid *
(type OCI_PTYPE_LIST)

Table Alias Attributes

When a parameter is for a table alias (type OCI_PTYPE_TABLE_ALIAS), it has the
attributes listed in Table 6-21:

Table 6-21 Attributes Specific to Table Aliases

Attribute Description Attribute Datatype
OCI_ATTR_NAME Table alias name OraText *
OCI_ATTR_TABLE_NAME Table name associated with the alias OraText *

6-22 Oracle Call Interface Programmer's Guide

Character Length Semantics Support in Describing

Variable Type Attributes

When a parameter is for a variable (type OCI_PTYPE_VARIABLE_TYPE), it has the
attributes listed in Table 6-22:

Table 6-22 Attributes Specific to Variable Types

Attribute
Attribute Description Datatype
OCI_ATTR_NAME Variable name OraText *
OCI_ATTR_TYPE Variable type OraText *

OCI_ATTR_VAR_VALUE_FUNCTION Variable value function associated with the OraText *
variable, if any

OCI_ATTR_VAR_METHOD_FUNCTION Variable method function associated with the O aText *
variable, if any

Name Value Attributes

When a parameter is for a name value pair (type OClI_PTYPE_NAME_VALUE), it
has the attributes listed in Table 6-23:

Table 6-23 Attributes Specific to Name Value Pair

Attribute Description Attribute Datatype
OCI_ATTR_NAME Name OraText *
OCI_ATTR_VALUE Value CCl AnyDat a*

Character Length Semantics Support in Describing

Since release Oracle9i, query and column information are supported with character
length semantics.

The following attributes of describe handles support character length semantics:

« OCI_ATTR_CHAR_SIZE gets the column character length, which is the number
of characters allowed in the column. It is the counterpart of
OCI_ATTR_DATA_SIZE that gets the byte length.

« Calling OCl At t r Get () with attribute OClI_ATTR_CHAR_SIZE or
OCI_ATTR_DATA_SIZE does not return data on stored procedure parameters,
because stored procedure parameters are not bounded.

Describing Schema Metadata 6-23

Character Length Semantics Support in Describing

« OCI_ATTR_CHAR_USED gets the type of length semantics of the column. 0
means byte-length semantics and 1 means character length semantics.

An application can describe a select-list query either implicitly or explicitly through
OCl St nt Execut e() . Other schema elements must be described explicitly through
COCl Descri beAny().

Implicit Describing
If the database column was created using character length semantics, then the
implicit describe information will contain the character length, the byte length, and
a flag indicating how the database column was created. OCI_ATTR_CHAR_SIZE is
the character length of the column or expression. The OCI_ATTR_CHAR_USED
flag is 1 in this case, indicating that the column or expression was created with
character length semantics.

The OCI_ATTR_DATA SIZE value will be always large enough to hold all the data,
as many as OCI_ATTR_CHAR_SIZE number of characters. The
OCI_ATTR_DATA_SIZE will be usually set to (OCI_ATTR_CHAR_SIZE)*(the
client's max bytes) for each character value.

If the database column was created with byte length semantics, then the implicit
describe will behave exactly as it does before release 9.0. That is, the
OCI_ATTR_DATA_SIZE value returned will be (column's byte length)*(the
maximum conversion ratio between the client and server's character set), that is,
column byte length divided by the server's max bytes for each character multiplied
by the client's max bytes for each character. The OCI_ATTR_CHAR_USED value is
0 and the OCI_ATTR_CHAR_SIZE value will be set to the same value as
OCI_ATTR_DATA _SIZE.

Explicit Describing
Explicit describes of tables will have the following attributes:

« OCI_ATTR_DATA SIZE that gets the column's size in bytes, as it appears in the
server

« thelength in characters in OClI_ATTR_CHAR_SIZE
« aflag OCI_ATTR_CHAR_USED that indicates how the column was created

When inserting, if the OCI_ATTR_CHAR_USED flag is set, you can set the
OCI_ATTR_MAXCHAR_SIZE in the bind handle to the value returned by
OCI_ATTR_CHAR_SIZE in the parameter handle. This will prevent you from
violating the size constraint for the column.

6-24 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

See Also: "IN Binds" on page 5-34

Client and Server Compatibility Issues for Describing

When an Oracle9i or later client talks to an Oracle8i or earlier server, it will behave
as if the database is only using byte length semantics;

When an Oracle8i or earlier client talks to a Oracle9i or later server, the attributes
OCI_ATTR_CHAR_SIZE and OCI_ATTR_CHAR_USED are not available on the
client side.

In both cases, the character length semantics cannot be described when either the
server or client has an Oracle8i or earlier software release.

Examples Using OCIDescribeAny()

The following examples demonstrate the use of OCI Descr i beAny() for describing
different types of schema objects. For a more detailed code sample, see the
demonstration program cdenodsa. c included with your Oracle installation.

See Also: For additional information on the demonstration
programs, see Appendix B, "OCI Demonstration Programs"

Retrieving Column Datatypes for a Table
This example illustrates the use of an explicit describe that retrieves the column

datatypes for a table.

int i=0;

text objptr[] = "EMPLOYEES'; /* the name of a table to be described */
ub2 nuncol s, col _width;

ubl char_semantics;

ub2 coltyp;

ub4 objp_len = (ub4) strlen((char *)objptr);

OCl Param *parnh = (OCl Param *) 0; /* paraneter handle */

OCl Param *col | sthd = (OCl Param *) O; /* handle to list of colums */
OCl Param *col hd = (OCl Param *) 0; /* colum handl e */

OCl Describe *dschp = (OCl Describe *)0; /* describe handle */

OCl Handl eAl | oc((dvoid *)envhp, (dvoid **)&dschp,
(ub4) OCl _HTYPE_DESCRI BE, (size_t)0, (dvoid **)0);

/* get the describe handle for the table */

Describing Schema Metadata 6-25

Examples Using OCIDescribeAny()

if (OClDescribeAny(svch, errh, (dvoid *)objptr, objp_len, OC _OTYPE_NAME, O,
OCl _PTYPE_TABLE, dschp))
return OC _ERROR;

/* get the parameter handle */
if (OClAttrGet((dvoid *)dschp, OCI _HTYPE DESCRIBE, (dvoid *)&parnh, (ub4 *)O0,
COCl _ATTR_PARAM errh))
return OCl _ERROR;

/* The type information of the object, in this case, OCl _PTYPE TABLE,
is obtained fromthe parameter descriptor returned by the OCl AttrGet(). */
/* get the number of colums in the table */
nunctol s = 0;
if (OCIAttrGet((dvoid *)parmh, OCl _DTYPE PARAM (dvoid *)&nuntols, (ub4 *)O0,
OCl _ATTR_NUM COLS, errh))
return OCl _ERROR;

/* get the handle to the colum list of the table */
if (OCIAttrGet((dvoid *)parmh, OCl _DTYPE PARAM (dvoid *)&collsthd, (ub4 *)O,
OCl _ATTR_LI ST_COLUWNS, errh)==0Cl _NO_DATA)
return OC _ERROR;

/* go through the colum list and retrieve the data-type of each col um,
and then recursively describe colum types. */

for (i =1; i <= nuncols; i++)
{
/* get parameter for colum i */
if (OC ParanGet((dvoid *)collsthd, OCl_DTYPE PARAM errh, (dvoid **)é&col hd,
(ub4)i))
return OCl _ERROR;

/* for exanple, get datatype for ith colum */

coltyp = 0;

if (OCIAttrGet((dvoid *)colhd, OCl_DTYPE_PARAM (dvoid *)&coltyp, (ub4 *)O0,
OCl _ATTR_DATA TYPE, errh))
return OCl _ERROR;

/* Retrieve the Iength semantics for the colum */

char_semantics = 0;

OCl AttrGet((dvoid*) col hd, (ub4) OC _DTYPE_PARAM
(dvoi d*) &char_semantics, (ub4 *) 0, (ub4) OClI _ATTR CHAR USED,
(OClError *) errh);

col_width = 0;

6-26 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

if (char_semantics)
/* Retrieve the colum width in characters */
OCI AttrGet((dvoid*) col hd, (ub4) OC _DTYPE PARAM
(dvoi d*) &col _width, (ub4 *) 0, (ub4) OCI _ATTR CHAR Sl ZE,
(CCl Error *) errh);
el se
/* Retrieve the colum width in bytes */
OCl AttrGet((dvoid*) colhd, (ub4) OCl _DTYPE PARAM
(dvoi d*) &col _width, (ub4 *) 0, (ub4) OCI _ATTR DATA Sl ZE,
(OCClError *) errh);
}

if (dschp)
CCl Handl eFree((dvoid *) dschp, OCl _HTYPE_DESCRI BE);

Describing the Stored Procedure

The difference between a procedure and a function is that the latter has a return
type at position 0 in the argument list, while the former has no argument associated
with position 0 in the argument list. The steps required to describe type methods
(also divided into functions and procedures) are identical to that of regular PL/SQL
functions and procedures. Note that procedures and functions can take default
types of objects as arguments. Consider the following procedure:

P1 (argl enp.sal %ype, arg2 enp% ow ype)

Assume that each row in emp table has two columns: nane(VARCHAR2(20)) , and
sal (NUMBER) . In the argument list for P1, there are two arguments, ar g1 and

ar g2, at positions 1 and 2 respectively at level 0, and arguments name and sal at
positions 1and 2 respectively at level 1. Description of P1 returns the number of
arguments as two while returning the higher level (> 0) arguments as attributes of
the 0 zero level arguments.

int i =0, j =0;

text objptr[] = "add_job_history"; /* the name of a procedure to be described */
ub4 objp_len = (ub4)strlen((char *)objptr);

ub2 nunargs = 0, numargsl, pos, |evel;

text *name, *nanel,

ub4 nanel en, nanel enl;

OCl Param *parnh = (OCl Param *) 0; /* paraneter handle */
COCl Param *argl st = (OCl Param *) O0; /* list of args */
OCl Param *arg = (OCl Param *) 0; /* argunent handle */

Describing Schema Metadata 6-27

Examples Using OCIDescribeAny()

OCl Param *argl st1 = (OCl Param *) 0; [* list of args */
OCl Param *argl = (OCl Param *) O; /* argument handle */
COCl Descri be *dschp = (OCl Describe *)O0; /* describe handle */

OCl Handl eAl | oc((dvoid *)envhp, (dvoid **)&dschp,
(ub4) Ol _HTYPE_DESCRI BE, (size t)0, (dvoid **)0):

/* get the describe handle for the procedure */
if (OClDescribeAny(svch, errh, (dvoid *)objptr, objp_len, OCl_OTYPE_NAME, O,
OCl _PTYPE_PROC, dschp))
return OCl _ERROR;

/* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCl _HTYPE DESCRIBE, (dvoid *)é&parnmh, (ub4 *)O,
OCl _ATTR_PARAM errh))
return OCl _ERROR;

/* CGet the nunber of argunents and the arg list */
if (OCIAttrGet((dvoid *)parmh, OCl _DTYPE_PARAM (dvoid *)&arglst,
(ub4 *)0, OCI_ATTR LI ST_ARGUMENTS, errh))
return OCl _ERROR,

if (OCIAttrGet((dvoid *)arglst, OCl _DTYPE_PARAM (dvoid *)&numargs, (ub4 *)O0,
OCl _ATTR_NUM PARAMS, errh))
return OCl _ERROR;

/* For a procedure, we begin withi =1; for a

function, we begin withi =0. */

for (i =1, i <= numargs; i++) {
OCl Paramet ((dvoid *)arglst, OCl _DTYPE_PARAM errh, (dvoid **)&rg, (ub4)i);
namel en = 0;

OCl AttrGet((dvoid *)arg, OCl_DTYPE PARAM (dvoid *)&name, (ub4 *)é&nanel en,
OCl _ATTR_NAME, errh);

[* to print the attributes of the argument of type record
(arguments at the next level), traverse the argunent list */

OCl AttrGet((dvoid *)arg, OCl _DTYPE PARAM (dvoid *)&arglstl, (ub4 *)O,
OCl _ATTR LI ST_ARGUMENTS, errh);

I* check if the current argument is a record. For argl in the procedure
arglstl is NULL. */

if (arglstl) {

6-28 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

numargsl = 0;
OCl AttrGet((dvoid *)arglstl, OCl_DTYPE PARAM (dvoid *)&nunargsl, (ub4 *)0,
OCl _ATTR_NUM PARAMS, errh);

I* Note that for both functions and procedures,the next higher |evel
arguments start fromindex 1. For arg2 in the procedure, the nunber of
arguments at the level 1 would be 2 */

for (j =1; j <= numargsl; j++) {
OCl Paranet ((dvoid *)arglstl, OCl_DTYPE_PARAM errh, (dvoid **)&argl,
(ub4)j)

(

nanel enl = 0;

OCl AttrGet((dvoid *)argl, OCl _DTYPE PARAM (dvoid *)&nanel, (ub4
*) &nanel enl,

OCl _ATTR_NAME, errh);
}
}

}

if (dschp)
CCl Handl eFree((dvoid *) dschp, OCl _HTYPE DESCRI BE);

Retrieving Attributes of an Object Type

This example illustrates the use of an explicit describe on a named object type. We
illustrate how you can describe an object by its name or by its object reference
(OClI Ref). The following code fragment attempts to retrieve the datatype value of
each of the object type's attributes.

int i =0;

text type_nane[] = "inventory_typ";

ub4 type_name_len = (ub4)strlen((char *)type_name);
OCl Ref *type_ref = (OCIRef *) 0;

ub2 nunattrs = 0, describe_by name = 1,

ub2 datatype = 0;

OCl TypeCode typecode = 0;

OCl Descri be *dschp = (COCl Describe *) O; /* describe handle */

COCl Param *parnmh = (OCl Param *) 0; /* paraneter handle */

OCl Param *attrlsthd = (OCl Param *) 0; /* handle to list of attrs */
OCl Param *attrhd = (OCl Param *) O0; [* attribute handle */

/* allocate describe handle */
if (OClHandl eAll oc((dvoid *)envh, (dvoid **)&dschp,

Describing Schema Metadata 6-29

Examples Using OCIDescribeAny()

(ub4) CCl _HTYPE_DESCRI BE, (size_t)0, (dvoid **)0))
return OCl _ERROR;

/* get the describe handle for the type */
if (describe_by nane) {
if (OCIDescribeAny(svch, errh, (dvoid *)type_name, type_name_| en,
OCl _OTYPE_NAME, 0, OCl _PTYPE_TYPE, dschp))
return OCl _ERROR;
}
el se {
/* get ref to type using OCl AttrGet */

/* get the describe handle for the type */

if (OClDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCl _OTYPE REF,
0, OCI_PTYPE_TYPE, dschp))
return OCl _ERROR;

}

[* get the parameter handle */
if (OCIAttrGet((dvoid *)dschp, OCl _HTYPE DESCRIBE, (dvoid *)&parnmh, (ub4 *)O,
OCl _ATTR_PARAM errh))
return OCl _ERROR;

/* The type information of the object, in this case, OCl_PTYPE_TYPE, is
obtai ned fromthe paraneter descriptor returned by the OClAttrGet */

/* get the nunber of attributes in the type */

if (OCIAttrGet((dvoid *)parmh, OCl _DTYPE PARAM (dvoid *)&numattrs, (ub4 *)O,
OCl _ATTR_NUM TYPE_ATTRS, errh))
return OCl _ERROR

/* get the handle to the attribute list of the type */
if (OCIAttrGet((dvoid *)parnmh, OCl_DTYPE_PARAM (dvoid *)&ttrlsthd, (ub4 *)O0,
OCl _ATTR_LI ST_TYPE_ATTRS, errh))
return OCl _ERROR;

/* go through the attribute list and retrieve the data-type of each attribute,
and then recursively describe attribute types. */

for (i = 1; i <= numattrs; i++)

{

/* get parameter for attribute i */

if (OClParanGet((dvoid *)attrlsthd, OCl _DTYPE PARAM errh, (dvoid **)&attrhd,

i)
return OC _ERROR;

6-30 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny()

[* for exanple, get datatype and typecode for attribute; note that
OCl _ATTR _DATA TYPE returns the SQLT code, while OCl _ATTR TYPECCDE returns the
Oracle Type Systemtypecode. */
dat atype = 0;
if (OClAttrGet((dvoid *)attrhd, OCl _DTYPE_PARAM (dvoid *)&datatype, (ub4 *)O0,
OCl _ATTR_DATA TYPE, errh))
return OCl _ERROR;

typecode = 0;
if (OCIAttrGet((dvoid *)attrhd, OCl _DTYPE_PARAM (dvoid *)&t ypecode, (ub4 *)O0,
OCl _ATTR_TYPECCDE, errh))
return OCl _ERROR;

[* if attribute is an object type, recursively describe it */
if (typecode == OCl _TYPECODE_OBJECT)
{

OCl Ref *attr_type_ref;

CCl Descri be *nested_dschp;

/* allocate describe handle */

if (OClHandl eAll oc((dvoid *)envh, (dvoi d**)&nest ed_dschp,
(ub4) OClI _HTYPE_DESCRI BE, (si ze_t)0, (dvoid **)0))
return OCl _ERROR

if (OClAttrGet((dvoid *)attrhd, OCl _DTYPE_PARAM
(dvoid *)&ttr_type_ref, (ub4 *)0, OCl _ATTR REF TDO errh))
return OCl _ERROR;

OCl Descri beAny(svch, errh, (dvoid*)attr_type_ref, O,
OCl _OTYPE_REF, 0, OClI _PTYPE TYPE, nested_dschp);
/* go on describing the attribute type... */

}
}

if (dschp)
CCl Handl eFree((dvoid *) dschp, OCl _HTYPE DESCRI BE);

Retrieving the Collection Element's Datatype of a Named Collection Type
This example illustrates the use of an explicit describe on a named collection type:

text type_nane[] = "phone_list_typ";
ub4 type_nane_len = (ub4) strlen((char *)type_nane);

Describing Schema Metadata 6-31

Examples Using OCIDescribeAny()

OCl Ref *type_ref = (OCIRef *) 0;

ub2 describe_by _name = 1;

ub4 num el enents = 0;

OCl TypeCode typecode = 0, collection_typecode = 0, el enment _typecode = 0;
dvoi d *col | ection_el ement_parmh = (dvoid *) O;

OCl Describe *dschp = (OCl Describe *) O; /* describe handle */

OCl Param *parnh = (OCl Param *) 0; /* paraneter handle */

/* allocate describe handle */
if (OClHandl eAll oc((dvoid *)envh, (dvoid **)&dschp,
(ub4) OCl _HTYPE_DESCRI BE, (size_t)0, (dvoid **)0))
return OCl _ERROR;

/* get the describe handle for the type */
if (describe_by nane) {
if (OClDescribeAny(svch, errh, (dvoid *)type_name, type_nane_len,
OCl _COTYPE_NAME, 0, OCl_PTYPE_TYPE, dschp))
return OCl _ERROR
}
el se {
/* get ref to type using OCl AttrGet */

/* get the describe handle for the type */

if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OC _OTYPE_REF,
0, OCl _PTYPE_TYPE, dschp))
return OCl _ERROR;

}

[* get the parameter handle */
if (OClAttrGet((dvoid *)dschp, OCI_HTYPE DESCRIBE, (dvoid *)&parnh, (ub4 *)O0,
OCl _ATTR_PARAM errh))
return OCl _ERROR;

/* get the Oracle Type Systemtype code of the type to determne that thisis a
collection type */
typecode = 0;
if (OCIAttrGet((dvoid *)parmh, OCl _DTYPE PARAM (dvoi d *) &t ypecode, (ub4 *)O0,
OCl _ATTR _TYPECODE, errh))
return OCl _ERROR;

[* if typecode is OCl _TYPECODE_NAMEDCOLLECTI ON,
proceed to describe collection el ement */
if (typecode == OCI _TYPECODE_NAMEDCOLLECTI ON)

/* get the collection's type: ie, OC_TYPECODE VARRAY or OCI TYPECODE TABLE */

6-32 Oracle Call Interface Programmer's Guide

Examples Using OCIDescribeAny(