Diese Seite ist aus Gründen der Barrierefreiheit optimiert für aktuelle Browser. Sollten Sie einen älteren Browser verwenden, kann es zu Einschränkungen der Darstellung und Benutzbarkeit der Website kommen!
Lehrstuhl  |  Institut  |  Fakultät  |  LMU
print
Curse of Dimensionality - Experimental Results

These plots compare Manhattan (L1) and Euclidean (L2) distances for a single data set.

Data set Curse factor Minimum distance and difference to maximum
All-Relevant all-relevant-factor.pdf all-relevant.pdf
10-Relevant 10-relevant-factor.pdf 10-relevant.pdf
Cyc-Relevant cyc-relevant-factor.pdf cyc-relevant.pdf
Half-Relevant half-relevant-factor.pdf half-relevant.pdf
All-Dependent all-dependent-factor.pdf all-dependent.pdf
10-Dependent 10-dependent-factor.pdf 10-dependent.pdf
Plots by distance function:

These plots compare all artificial data sets for a single distance function.

Manhattan Euclidean L0.6 L0.8 Arccosine
Notes:

Curse factor: The common formulation (Beyer et al.) of the curse of dimensionality states that the contrast between the farthest neighbor and the closest neighbor diminish. As it can be seen, all of these data sets are to be considered "cursed" using this formula.

Minimum distance and difference to maximum: By separating the two factors, minimum distance and difference between minimum and maximum distance, one can see that the minimum distance is growing quickly for all of these data sets.

Lp norms with p < 1 ("fractional Lp norms") are no longer metric: they do not satisfy the triangle equality.

Manhattan = L1, Euclidean = L2.

blank
Datenschutz   Impressum