Diese Seite ist aus Gründen der Barrierefreiheit optimiert für aktuelle Browser. Sollten Sie einen älteren Browser verwenden, kann es zu Einschränkungen der Darstellung und Benutzbarkeit der Website kommen!
Lehrstuhl  |  Institut  |  Fakultät  |  LMU
print
Centrality vs. Ranking Quality
Data setDimensionality
Euclidean, Manhattan and Arc-Cosine distance
All-Relevant 10d 20d 40d 80d 160d 320d 640d
10-Relevant 10d 20d 40d 80d 160d 320d 640d
Cyc-Relevant 10d 20d 40d 80d 160d 320d 640d
Half-Relevant 10d 20d 40d 80d 160d 320d 640d
All-Dependent 10d 20d 40d 80d 160d 320d 640d
10-Dependent 10d 20d 40d 80d 160d 320d 640d
SNN with s=200 based on the given distance
All-Relevant 10d 20d 40d 80d 160d 320d 640d
10-Relevant 10d 20d 40d 80d 160d 320d 640d
Cyc-Relevant 10d 20d 40d 80d 160d 320d 640d
Half-Relevant 10d 20d 40d 80d 160d 320d 640d
All-Dependent 10d 20d 40d 80d 160d 320d 640d
10-Dependent 10d 20d 40d 80d 160d 320d 640d
Comparing dimensionality

The following plots have for one data set and one distance function three dimensionalities at the same time.

All-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
10-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
Cyc-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
Half-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
All-Dependent Manhattan Euclidean L0.6 L0.8 Arccosine
10-Dependent Manhattan Euclidean L0.6 L0.8 Arccosine
SNN and dimensionality

The following plots have for one data set and one base distance function at 160 dimensions for different SNN s values at the same time.

All-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
10-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
Cyc-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
Half-Relevant Manhattan Euclidean L0.6 L0.8 Arccosine
All-Dependent Manhattan Euclidean L0.6 L0.8 Arccosine
10-Dependent Manhattan Euclidean L0.6 L0.8 Arccosine
Notes:

Centrality is based on the distribution density (at data generation) and part of the ground truth. Central points are typical to the cluster (high density). Points are ordered by their density, no absolute values are used.

Many plots - especially at high dimensionality - are not very interesting.

The Cyc-relevant plots are much less stable because of the smaller data set size compared to the others (1:10).

blank
Datenschutz   Impressum