
Density-Connected Subspace Clustering for High-Dimensional Data ∗

Karin Kailing Hans-Peter Kriegel Peer Kröger

Institute for Computer Science
University of Munich, Germany

{kailing,kriegel,kroegerp}@dbs.informatik.uni-muenchen.de

Abstract

Several application domains such as molecular biology and

geography produce a tremendous amount of data which can

no longer be managed without the help of efficient and ef-

fective data mining methods. One of the primary data min-

ing tasks is clustering. However, traditional clustering algo-

rithms often fail to detect meaningful clusters because most

real-world data sets are characterized by a high dimensional,

inherently sparse data space. Nevertheless, the data sets

often contain interesting clusters which are hidden in vari-

ous subspaces of the original feature space. Therefore, the

concept of subspace clustering has recently been addressed,

which aims at automatically identifying subspaces of the fea-

ture space in which clusters exist. In this paper, we introduce

SUBCLU (density-connected Subspace Clustering), an effec-

tive and efficient approach to the subspace clustering prob-

lem. Using the concept of density-connectivity underlying

the algorithm DBSCAN [EKSX96], SUBCLU is based on a

formal clustering notion. In contrast to existing grid-based

approaches, SUBCLU is able to detect arbitrarily shaped

and positioned clusters in subspaces. The monotonicity of

density-connectivity is used to efficiently prune subspaces in

the process of generating all clusters in a bottom up way.

While not examining any unnecessary subspaces, SUBCLU

delivers for each subspace the same clusters DBSCAN would

have found, when applied to this subspace separately.

Keywords

Data mining, clustering, high dimensional data, sub-
space clustering

1 Introduction

Modern methods in several application domains such as
molecular biology, astronomy, geography, etc. produce
a tremendous amount of data. Since all this data can

∗Supported by the German Ministry for Education, Science,

Research and Technology (BMBF) under grant no. 031U112F
within the BFAM (Bioinformatics for the Functional Analysis

of Mammalian Genomes) project which is part of the German

Genome Analysis Network (NGFN).

no longer be managed without the help of automated
analysis tools, there is an ever increasing need for
efficient and effective data mining methods to make use
of the information contained implicitly in that data.
One of the primary data mining tasks is clustering which
is intended to help a user discovering and understanding
the natural structure or grouping in a data set. In
particular, clustering is the task of partitioning objects
of a data set into distinct groups (clusters) such that
two objects from one cluster are similar to each other,
whereas two objects from distinct clusters are not.

A lot of work has been done in the area of clustering.
Nevertheless, clustering real-world data sets is often
hampered by the so called curse of dimensionality
since many real-world data sets consist of a very high
dimensional feature space. In general, most of the
common algorithms fail to generate meaningful results
because of the inherent sparsity of the objects. In such
high dimensional feature spaces, data does not cluster
anymore. But usually, there are clusters embedded in
lower dimensional subspaces. In addition, objects can
often be clustered differently in varying subspaces.

Gene expression data is a prominent example: Mi-
croarray chip technologies enable a user to measure the
expression level of thousands of genes simultaneously.
Roughly speaking, the expression level of a gene is a
measurement for the frequency the gene is expressed
(i.e. transcribed into its mRNA product). The expres-
sion level of a gene allows conclusions about the current
amount of the protein in a cell the gene codes for. Usu-
ally, gene expression data appears as a matrix where the
rows represent genes, and the columns represent sam-
ples (e.g. different experiments, time slots, test persons,
etc.). The value of the i-th feature of a particular gene
is the expression level of this gene in the i-th sample.

It is interesting from a biological point of view
to cluster both the rows (genes) and the columns
(samples) of the matrix, depending on the research
scope. Clustering the genes is the method of choice if
one searches for co-expressed genes, i.e. genes, whose
expression levels are similar. Co-expression usually

dbs dbs
In Proc. 4th SIAM Int. Conf. on Data Mining, pp. 246-257, Lake Buena Vista, FL, 2004

indicates that the genes are functionally related. If one
searches for homogeneous groups in the set of samples,
the problem is to cluster the samples. For example
in cancer diagnostics, the samples may represent test
persons. The ultimate goal of the clustering is then to
distinguish between healthy and ill patients.

When clustering the genes to detect co-expressed
genes, one has to cope with the problem, that usually
the co-expression of the genes can only be detected in
subsets of the samples. In other words, different sub-
sets of the attributes (samples) are responsible for dif-
ferent co-expressions of the genes. When clustering the
samples to identify e.g. homogeneous groups of patients
this situation is even worse. As various phenotypes (e.g.
hair color, gender, cancer, etc.) are hidden in varying
subsets of the genes, the samples could usually be clus-
tered differently according to these phenotypes, i.e. in
varying subspaces.

A common approach to cope with the curse of di-
mensionality for data mining tasks such as clustering
are methods to reduce the dimensionality of the data
space. In general, dimensionality reduction methods
map the whole feature space onto a lower-dimensional
subspace of relevant attributes in which clusters can
be found. The feature selection is usually based on
attribute transformations by creating functions of at-
tributes. Examples of such functions are principal com-
ponent analysis (PCA) – also called Karhunen-Loève
transformation (KLT) – used in multivariate statistics,
e.g. [Jol86], methods based on singular value decomposi-
tion (SVD) used in information retrieval, e.g. [BDL95],
and statistics, e.g. [Fuk90], and other transformations,
for example based on wavelets [KCP01] or low frequency
Fourier harmonics in conjunction with Parseval´s theo-
rem [AFS93].

However, dimensionality reduction methods have
major drawbacks: First, the transformed attributes
often have no intuitive meaning any more and thus
the resulting clusters are hard to interpret. Second,
in some cases, dimensionality reduction does not yield
the desired results (e.g. [AGGR98] present an example
where PCA/KLT does not reduce the dimensionality).
Third, using dimensionality reduction techniques, the
data is clustered only in a particular subspace. The
information of objects clustered differently in varying
subspaces is lost.

A second approach for coping with clustering high-
dimensional data is projected clustering, which aims
at computing k pairs (Ci, Si)(0≤i≤k) where Ci is a set
of objects representing the i-th cluster, Si is a set of
attributes spanning the subspace in which Ci exists
(i.e. optimizes a given clustering criterion), and k is a
user defined integer. Representative algorithms include

1
2

3
4

6

5

1

3

6

4

2
5

B

A C

D

Figure 1: Drawback of the projected clustering ap-
proach.

the k-means related PROCLUS [AP99] and ORCLUS
[AY00]. While the projected clustering approach is more
flexible than dimensionality reduction, it also suffers
from the fact that the information of objects which are
clustered differently in varying subspaces is lost. Figure
1 illustrates this problem using a feature space of four
attributes A,B,C, and D. In the subspace AB the objects
1 and 2 cluster together with objects 3 and 4, whereas
in the subspace CD they cluster with objects 5 and 6.
Either the information of the cluster in subspace AB or
in subspace CD will be lost.

In recent years, the task of subspace clustering
was introduced to overcome these problems. Subspace
clustering is the task of automatically detecting clusters
in subspaces of the original feature space. In this
paper, we introduce a density-connected approach to
subspace clustering overcoming the problems of existing
approaches mentioned beneath. SUBCLU (density-
connected Subspace Clustering) is an effective answer
to the problem of subspace clustering.

The remainder of the paper is organized as follows.
In Section 2, we review current subspace clustering
algorithms and point out our contributions to subspace
clustering. The density-connected clustering notion and
its application to subspace clustering is presented in
Section 3. Section 4 describes our algorithm SUBCLU
in full details. A broad experimental evaluation of
SUBCLU based on artificial as well as on real-world
data sets is presented in Section 5. Section 6 draws
conclusions and points out future work.

2 Related Work and Contributions

2.1 Discussion of Recent Approaches for Sub-
space Clustering
Recent work has been done to tackle the problem of sub-
space clustering. In the following, current approaches
are reviewed with no claim on completeness.

One of the first approaches to subspace clustering is
CLIQUE (CLustering In QUEst) [AGGR98]. CLIQUE
is a grid-based algorithm using an apriori -like method

to recursively navigate through the set of possible
subspaces in a bottom-up way. The data space is
first partitioned by an axis-parallel grid into equi-sized
blocks of width ξ called units. Only units whose
densities exceed a threshold τ are retained. Both ξ and
τ are the input parameters of CLIQUE. The bottom-
up approach of finding such dense units starts with 1-
dimensional dense units. The recursive step from (k−1)-
dimensional dense units to k-dimensional dense units
takes (k − 1) dimensional dense units as candidates
and generates the k-dimensional units by self-joining
all candidates having the first (k − 2)-dimensions in
common. All generated candidates which are not
dense are eliminated. For efficiency reasons, a pruning
criterion called coverage is introduced to eliminate
dense units lying in less “interesting” subspaces as
soon as possible. For deciding whether a subspaces is
interesting or not, the Minimum Description Length
principle is used. Naturally this pruning bears the
risk of missing some information. After generating
all “interesting” dense units, clusters are found as a
maximal set of connected dense units. For each k-
dimensional subspace, CLIQUE takes all dense units of
this subspace and computes disjoint sets of connected
k-dimensional units. These sets are in a second step
used to generate minimal cluster descriptions. This
is done by covering each set of connected dense units
with maximal regions and then determining the minimal
cover.

A slight modification of CLIQUE is the algorithm
ENCLUS (ENtropy-based CLUStering) [CFZ99]. The
major difference is the criterion used for subspace
selection. The criterion of ENCLUS is based on entropy
computation of a discrete random variable. The entropy
of any subspace S is high when the points are uniformly
distributed in S whereas it is lower the more closely
the points in S are packed. Subspaces with an entropy
below an input threshold ω are considered as good for
clustering. A monotonicity criterion is presented to be
used for a similar bottom-up algorithm as in CLIQUE
[CFZ99].

A more significant modification of CLIQUE is pre-
sented in [GNC99, NGC01] introducing the algorithm
called MAFIA (Merging of Adaptive Finite IntervAls).
MAFIA uses adaptive, variable-sized grids in each di-
mension. A dedicated technique based on histograms
which aims at merging grid cells is used to reduce the
number of bins compared to CLIQUE. An input param-
eter α is used as a so called cluster dominance factor to
select bins which are α-times more densely populated
(relative to their volume) than average. The algorithm
starts to produce such one-dimensional dense units as
candidates and proceeds recursively to higher dimen-

C

(a)

w

w

w

w

(b)

Figure 2: Drawbacks of existing subspace clustering
algorithms (see text for explanation).

sions. In contrast to CLIQUE, MAFIA uses any two
k-dimensional dense units to construct a new (k + 1)-
dimensional candidate as soon as they share an arbi-
trary (k− 1)-face (not only first dimensions). As a con-
sequence, the number of generated candidates is much
larger compared to CLIQUE. Neighboring dense units
are merged to form clusters. Redundant clusters, i.e.
clusters that are true subsets of higher dimensional clus-
ters, are removed.

A big drawback of all these methods is caused by the
use of grids. In general, grid-based approaches heavily
depend on the positioning of the grids. Figure 2(a)
illustrates this problem for CLIQUE: Each grid by itself
is not dense, if τ > 4, and thus, the cluster C is not
found. On the other hand if τ = 4, the cell with four
objects in the lower right corner just above the x-axis
is reported as a cluster. Clusters may also be missed if
they are inadequately oriented or shaped.

Another recent approach called DOC [PJAM02]
proposes a mathematical formulation for the notion of
an optimal subspace cluster, regarding the density of
points in subspaces. DOC is not grid-based but as the
density of subspaces is measured using hypercubes of
fixed width w, it has similar problems drafted in Figure
2(b). If a cluster is bigger than the hypercube, some
objects may be missed. Furthermore, the distribution
inside the hypercube is not considered, and thus it need
not necessarily contain only objects of one cluster.

2.2 Contributions
In this paper, we propose a new approach which elim-
inates the problems mentioned above and enables the
user to gain all the clustering information contained
in high-dimensional data. Instead of using grids, we

adopt the notion of density-connectivity presented in
[EKSX96] to the subspace clustering problem. This has
the following advantages:

• Our algorithm SUBCLU is able to detect arbitrar-
ily shaped and positioned clusters in subspaces.

• In contrast to CLIQUE and its successors, the
underlying cluster notion is well defined.

• Since SUBCLU does not use any pruning heuristics
like CLIQUE, it provides for each subspace the
same clusters as if DBSCAN is applied to this
subspace.

3 Density-Connected Subspace Clustering

3.1 Preliminary Definitions
Let DB be a data set of n objects. We assume,
that DB is a database of d-dimensional feature vectors
(DB ⊆ IRd). All feature vectors have normalized
values, i.e. all values fall into [0, attrRange] for a fixed
attrRange ∈ IR+. Let A = {a1, . . . , ad} be the set of
all attributes ai of DB. Any subset S ⊆ A, is called
a subspace. The cardinality of S (|S|) is called the
dimensionality of S. The projection of an object o into
a subspace S ⊆ A is denoted by πS(o). The distance
function is denoted by dist. We assume that dist is one
of the Lp-norms.

3.2 Clusters as Density-Connected Sets
The density-based notion is a common approach for
clustering used by various algorithms such as DB-
SCAN [EKSX96], DENCLUE [HK98], and OPTICS
[ABKS99]. All these methods search for regions of high
density in a feature space that are separated by regions
of lower density. Our approach SUBCLU is particularly
based on the formal definitions of density-connected
clusters underlying the algorithm DBSCAN. The orig-
inal formal definition of the clustering notion for the
entire feature space is presented and discussed in full
details in [EKSX96]. In the following, we adopt these
definitions for the problem of subspace clustering. Let
us note, that the density-connected clustering notion
is well defined, and capable of finding clusters of arbi-
trary shapes. Using this clustering notion, SUBCLU is
much more effective and soundly founded than recent
approaches.

Definition 1. (ε-neighborhood)

Let ε ∈ IR, S ⊆ A and o ∈ DB. The ε-neighborhood of
o in S, denoted by N S

ε (o), is defined by

N S
ε (o) = {x ∈ DB | dist(πS(o), πS(x)) ≤ ε}.

Based on two input parameters (ε and m), dense
regions can be defined by means of core objects:

Definition 2. (core object)

Let ε ∈ IR, m ∈ IN , and S ⊆ A. An object o ∈ DB is
called core object in S, denoted by Core

S
ε,m(o), if its ε-

neighborhood in S contains at least m objects, formally:

Core
S
ε,m(o)⇔ |N S

ε (o) | ≥ m.

Usually clusters contain several core objects located
inside a cluster and border objects located at the border
of the cluster. In addition, objects within a clusters
should be “connected”. These observations led to the
following concepts.

Definition 3. (direct density-reachability)

Let ε ∈ IR, m ∈ IN , and S ⊆ A. An object p ∈ DB is
directly density-reachable from q ∈ DB in S if q is a
core object in S and p is an element of N S

ε (q), formally:

DirReach
S
ε,m(q, p)⇔ Core

S
ε,m(q) ∧ p ∈ N S

ε (q).

Definition 4. (density-reachability)

Let ε ∈ IR, m ∈ IN , and S ⊆ A. An object p ∈ DB is
density-reachable from q ∈ DB in S if there is a chain
of objects p1, . . . , pn, p1 = q, pn = p such that pi+1 is
directly density-reachable from pi, formally:

Reach
S
ε,m(q, p)⇔

∃p1, . . . , pn ∈ DB : p1 = q ∧ pn = p ∧
∀i ∈ {1 . . . n− 1} : DirReach

S
ε,m(pi, pi+1).

Definition 5. (density-connectivity)

Let ε ∈ IR, m ∈ IN , and S ⊆ A. An object p ∈ DB is
density-connected to an object q ∈ DB in S if there is
an object o such that both p and q are density-reachable
from o, formally:

Connect
S
ε,m(q, p)⇔

∃o ∈ DB : Reach
S
ε,m(o, q) ∧ Reach

S
ε,m(o, p).

Definition 6. (density-connected set)

Let ε ∈ IR, m ∈ IN , and S ⊆ A. A non-empty subset
C ⊆ DB is called a density-connected set in S if all
objects in C are density-connected in S, formally:

ConSet
S
ε,m(C)⇔ ∀o, q ∈ C : Connect

S
ε,m(o, q).

Finally, a density-connected cluster is defined as a
set of density-connected objects which is maximal w.r.t.
density-reachability [EKSX96]. This definition can
easily be adopted to clusters in a particular subspace,
analogously.

3.3 Monotonicity of Density-Connected Sets
A straightforward approach would be to run DBSCAN
in all possible subspaces to detect all density-connected
clusters. The problem is, that the number of subspaces
is 2d. A more effective strategy would be to use
the clustering information of previous subspaces in the
process of generating all clusters and drop all subspaces
that cannot contain any density-connected clusters.

Unfortunately, density-connected clusters are not
monotonic, i.e. if C ⊆ DB is a density-connected cluster
in subspace S ⊆ A, it need not be a density-connected
cluster in any T ⊆ S. The reason for this is that in T the
density-connected cluster C need not be maximal w.r.t.
density-reachability any more. There may be additional
objects which are not in C but are density-reachable in
T from an object in C.

However, density-connected sets are monotonic. In
fact, if C ⊆ DB is a density-connected set in subspace
S ⊆ A then, C is also a density-connected set in any
subspace T ⊆ S.

Lemma 3.1. (monotonicity)

Let ε ∈ IR, m ∈ IN , o, q ∈ DB, C ⊆ DB, where C 6= ∅
and S ⊆ A. Then the following monotonicity properties
hold:

∀T ⊆ S :
(1) Core

S
ε,m(o)⇒ Core

T
ε,m(o)

(2) DirReach
S
ε,m(o, q)⇒ DirReach

T
ε,m(o, q)

(3) Reach
S
ε,m(o, q)⇒ Reach

T
ε,m(o, q)

(4) Connect
S
ε,m(o, q)⇒ Connect

T
ε,m(o, q)

(5) ConSet
S
ε,m(o, q)⇒ ConSet

T
ε,m(o, q)

Proof. See Appendix A
The monotonicity of density-connectivity is illus-

trated in Figure 3. In Figure 3(a), p and q are density-
connected via o in the subspace spanned by attributes
A and B. Thus, p and q are also density-connected
via o in each subspace A and B of AB. The inverse
conclusion is depicted in Figure 3(b): p and q are not
density-connected in subspace B. Thus they are also
not density-connected in the superspace AB although
they are density-connected in subspace A via o.

The inversion of Lemma 3.1(5) is the key idea for
an efficient bottom-up algorithm to detect the density-
connected sets in all subspaces of high dimensional data.
Due to this inversion, we do not have to examine any
subspace S if at least one Ti ⊂ S contains no cluster (i.e.
a density connected set). On the other hand, we have
to test each subspace S if all Ti ⊂ S contain clusters
whether those clusters are conserved.

B

A

p

o

q

(a) p and q are density-connected via o

p

o

A

B

q

(b) p and q are not density-connected

Figure 3: Monotonicity of density-connectivity (the
circles indicate the ε-neighborhoods, m = 4).

4 The Algorithm SUBCLU

SUBCLU is based on a bottom-up, greedy algorithm to
detect the density-connected clusters in all subspaces of
high dimensional data. The algorithm is presented in
Figure 4. The following data structures are used (c.f.
Figure 4):

• CS denotes the set of all density-connected clus-
ters of DB in subspace S (w.r.t. ε and
m) and can be computed by the procedure
DBSCAN(DB,S, ε,m) (the input parameters ε
and m are fixed), i.e.
CS := DBSCAN(DB,S, ε,m).

• Sk denotes the set of all k-dimensional subspaces
containing at least one cluster, i.e.
Sk := {S | |S| = k and CS 6= ∅}.

• Ck denotes the set of sets of all clusters in k-
dimensional subspaces, i.e.
Ck := {CS | |S| = k}.

SUBCLU(SetOfObjects DB, Real ε, Integer m)

/* STEP 1 Generate all 1-D clusters */
S1 := ∅ // set of 1-D subspaces containing clusters
C1 := ∅ // set of all sets of clusters in 1-D subspaces
FOR each ai ∈ A DO
C{ai} := DBSCAN(DB, {ai}, ε,m) // set of all clusters in subspace ai;

IF C{ai} 6= ∅ THEN // at least one cluster in subspace {ai} found
S1 := S1 ∪ {ai};
C1 := C1 ∪ C{ai};

END IF
END FOR

/* STEP 2 Generate (k + 1)-D clusters from k-D clusters */
k := 1;
WHILE Ck 6= ∅

/* STEP 2.1 Generate (k + 1)-dimensional candidate subspaces */
CandSk+1 := GenerateCandidateSubspaces(Sk);

/* STEP 2.2 Test candidates and generate (k + 1)-dimensional clusters */
FOR EACH cand ∈ CandSk+1 DO

// Search k-dim subspace of cand with minimal number of objects in the clusters
bestSubspace := min

s∈Sk∧s⊆cand

∑
Ci∈Cs

|Ci|

Ccand := ∅;
FOR EACH cluster cl ∈ CbestSubspace DO
Ccand = Ccand ∪DBSCAN(cl, cand, ε,m);
IF Ccand 6= ∅ THEN
Sk+1 := Sk+1 ∪ cand;
Ck+1 := Ck+1 ∪ Ccand;

END IF
END FOR

END FOR
k := k + 1

END WHILE

Figure 4: The SUBCLU algorithm.

We begin with generating all 1-dimensional clusters
by applying DBSCAN to each 1-dimensional subspace
(STEP 1 in Figure 4).

For each detected cluster we have to check, whether
this cluster is (or parts of it are) still existent in
higher dimensional subspaces. Due to Lemma 3.1 no
other clusters can exist in higher dimensional subspaces.
Thus, for each k-dimensional subspace S ∈ Sk, we
search all other k-dimensional subspaces T ∈ Sk (T 6=
S) having (k − 1) attributes in common and join them
to generate (k + 1)-dimensional candidate subspaces
(STEP 2.1.1 of the procedure GenerateCandidates in
Figure 5). The set of (k + 1)-dimensional candidate
subspaces is denoted by CandSk+1.

Due to Lemma 3.1, for each candidate subspace
S ∈ CandSk+1, Sk must contain each k-dimensional
subspace T ⊂ S (|T | = k), we can prune these candi-
dates having at least one k-dimensional subspace not
included in Sk (STEP 2.1.2 of procedure GenerateCan-
didates in Figure 5). This reduces the number of (k+1)-
dimensional candidate subspaces.

In the last step (STEP 2.2 in Figure 4) we generate
the (k + 1)-dimensional clusters and the corresponding
(k + 1)-dimensional subspaces containing these clusters
using the k-dimensional subclusters and the list of
(k + 1)-dimensional candidate subspaces. For that
purpose, we simply have to do the following: for each
candidate subspace cand ∈ CandSk+1 we take one k-
dimensional subspace T ⊂ cand and simply call the
procedure DBSCAN(cl, cand, ε,m) for each cluster cl
in T (cl ∈ CT) to generate Ccand. To minimize the
cost of the runs of DBSCAN in cand, we choose that
subspace bestSubspace ⊂ cand from Sk in which a
minimum number of objects are in the cluster, i.e.

bestSubspace := min
s∈Sk∧s⊆cand

∑
Ci∈Cs

|Ci|

These heuristics minimize the number of range queries
necessary during the runs of DBSCAN in S. If CS 6= ∅,
we add it to Ck+1 and add S to Sk+1.

Steps 2.1 to 2.3 are recursively executed as long as
the set of k-dimensional subspaces containing clusters
is not empty.

GenerateCandidates(SetOfSubspaces Sk)

/* STEP 2.1.1 Generate (k + 1)-dimensional candidate subspaces */
CandSk+1 := ∅;
FOR each s1 ∈ Sk DO

FOR each s2 ∈ Sk DO
IF s1.attr1 = s2.attr1 ∧ . . . ∧ s1.attrk−1 = s2.attrk−1 ∧ s1.attrk < s2.attrk THEN

insert {s1.attr1, . . . , s1.attrk, s2.attrk} into CandSk+1;
END IF

END FOR
END FOR

/* STEP 2.1.2 Prune irrelevant candidates subspaces */
FOR EACH cand ∈ CandSk+1 DO

FOR EACH s ⊂ cand with |s| = k DO
IF s /∈ Sk THEN delete cand from CandSk+1;
END IF

END FOR
END FOR

Figure 5: Procedure GenerateCandidates.

The most time consuming part of our algorithm
are all the partial range queries (range queries on
arbitrary subspaces of the data space) necessary for
the DBSCAN algorithm. As DBSCAN is applied to
different subspaces, an index structure for the full-
dimensional data space is not applicable. Therefore
we apply the approach of inverted files. Our algorithm
provides an efficient index support for range queries on
each single attribute in logarithmic time. For range
queries on more than one attribute, we apply the range
query to each separate attribute (index structure) and
generate the intersection of all intermediate results to
obtain the final result.

5 Performance Evaluation

We tested SUBCLU using several synthetic data sets
and a real world gene expression data set. All experi-
ments were run on a workstation with a 1.7 GHz pro-
cessor and 2 GB RAM.

5.1 Data Sets
We tested SUBCLU using synthetic as well as real

world gene expression data sets. The synthetic data sets
were generated by a self-implemented data generator.
It permits to control the size and structure of the
generated data sets through parameters such as number
and dimensionality of subspace clusters, dimensionality
of the feature space and density parameters for the
whole data set as well as for each cluster. In a
subspace that contains a cluster, the average density
of data points in that cluster is much larger than the
density of points not belonging to the cluster in this
subspace. In addition, it is ensured, that none of the
synthetically generated data sets can be clustered in the
full dimensional space. The gene expression data set

Figure 6: Scalability of SUBCLU against the size of the
data set.

[SSZ+98] studies the yeast mitotic cell cycle. We used
only the data set of the CDC15 mutant. The expression
level of 6000 genes was measured at 24 different time
slots. Since some genes have missing expression values
and the handling of missing values in gene expression
analysis is a non-trivial task, we eliminated those genes
from our test data set. The resulting data set contains
around 4000 genes expressed at 24 different time slots.

5.2 Efficiency
We evaluated the efficiency of SUBCLU using sev-

eral synthetic data sets. All tests were run with
MinPts = 8 and ε = 2.0.

The scalability of SUBCLU against the size of
the data set, the dimensionality of the data set and
the dimensionality of the hidden subspace clusters are
depicted in Figures 6, 7, and 8, respectively. In all three

Figure 7: Scalability of SUBCLU against the dimen-
sionality of the dataset.

cases, SUBCLU grows with an at least quadratic factor.
The reason for this scalability w.r.t. the size of the data
set is that SUBCLU performs multiple range queries in
arbitrary subspaces. As mentioned above, we can only
support these queries using inverted files, since there
is no index structure that can support partial range
queries in average case logarithmic time. The scalability
to the dimensionality of the data set and of the hidden
subspaces can be explained by the Apriori -like bottom-
up greedy algorithm underlying SUBCLU to navigate
through the space of all possible subspaces.

5.3 Accuracy
To evaluate the effectivity of SUBCLU we compared

it with CLIQUE [AGGR98]. Since CLIQUE is a
product of IBM and its code is not easy to obtain,
we re-implemented CLIQUE according to [AGGR98].
In all accuracy experiments, we run CLIQUE with a
broad range of parameter settings and took only the
best results.

We applied SUBCLU and CLIQUE to several syn-
thetic data sets which we generated as described above.
In each data set, several clusters are hidden in subspaces
of varying dimensionality. The results are depicted in
Table 1. In almost all cases, SUBCLU computed the ar-
tificial clusters whereas CLIQUE had difficulties in de-
tecting all patterns properly. In addition, CLIQUE split
usually connected clusters into several distinct clusters
(not mentioned in the table).

We also used SUBCLU to find co-expressed genes
based on gene expression data.

SUBCLU found many interesting clusters in several
subspaces of this data set. The most interesting clusters
were found in the subspaces spanned by time slots
90, 110, 130, and 190 as well as time slots 190, 270,

Figure 8: Scalability of SUBCLU against the maximum
dimensionality of the hidden subspace clusters.

and 290. The functional relationships of the genes
in the resulting clusters were investigated using the
public yeast genome database at Stanford University
(Saccharomyces Genome Database, SGD: http://www.
yeastgenome.org/). Let us note, that each cluster
contains additional genes with yet unknown function.

The contents of four sample clusters in two different
subspaces are depicted in Table 2. The first cluster
(in subspace spanned by time slots 90, 110, 130, 190)
contains several genes which are known to play a
role during the cell cycle such as DOM34, CKA1,
CPA1, and MIP6. In addition, the products of two
genes in that cluster are part of a common protein
complex. The second cluster contains the gene STE12,
identified by [SSZ+98] as an important transcription
factor for the regulation of the mitotic cell cycle. In
addition, the genes CDC27 and EMP47 which have
possible STE12-sites and are most likely co-expressed
with STE12 are in that cluster. The third cluster
consists of the genes CDC25 (starting point for mitosis),
MYO3 and NUD1 (known for an active role during
mitosis) as well as various other transcription factors
(e.g. CHA4, ELP3) required during the cell cycle. The
fourth cluster contains several mitochondrion related
genes which have similar functions. For example, the
genes MRPL17, MRPL31, MRPL32, and MRPL33 are
four mitochondrial large ribosomal subunits, the genes
UBC1 and UBC4 are subunits of a certain protease,
and the genes SNF7 and VPS4 are direct interaction
partners. This indicates a higher mitochondrial activity
at these time spots, which might be explained by a
higher demand of biological energy during the cell cycle
(the energy metabolism is located in mitochondrion).

Let us note, that the described four clusters are only
a representative glance at the results SUBCLU yields

http://www.yeastgenome.org/
http://www.yeastgenome.org/

Table 1: Comparative evaluation of SUBCLU and CLIQUE: summary of the results on synthetic data sets.
Data set d dim. of subspace cluster N # generated clusters true clusters found by

SUBCLU CLIQUE
DS01 10 4 18999 1 1 1
DS02 10 4 27704 1 1 1
DS03 15 5,5 3802 3 3 1
DS04 15 3,5,7 4325 3 2 1
DS05 15 5,5,5 4057 3 3 1
DS06 15 4,4,6,7,10 2671 6 5 2

when applied on the gene expression data set. The
resulting clusters contained functional related genes and
thus, their co-expression is biological meaningful. Since
most clusters also consists genes which have not yet
any annotated function, the results of SUBCLU might
propose a biologically interesting prediction for these
unknown genes.

We also applied CLIQUE to the gene expression
data set. We again tested a broad range of parameter
settings and compared SUBCLU to the best results of
CLIQUE. Since the parameter ξ of CLIQUE (width of
grid cells) affects the runtime of CLIQUE heavily, we
were forced to run CLIQUE with rather low values for
ξ. As a consequence, CLIQUE was not able to find
any reasonable clusters in the gene expression data set.
Let us note, that a more efficient implementation of
CLIQUE would enable a better parameter setting (i.e.
higher values for ξ) and would thus also detect some of
the clusters computed by SUBCLU. On the other hand,
in real world data sets such as gene expression data, it is
most likely that the clusters are not axis-parallel hyper-
cubes. Thus, SUBCLU is much more suitable than
CLIQUE due to the fact, that the density-connected
clustering notion underlying SUBCLU is able to detect
arbitrarily shaped (subspace) clusters.

6 Conclusions

In this paper, we presented SUBCLU, a density-based
subspace clustering algorithm for detecting clusters in
high dimensional data. Built on an adaption of the
density-connected notion of clusters underlying the al-
gorithm DBSCAN, we developed an efficient greedy-
algorithm to compute all density-connected sets hidden
in subspaces of high dimensional data. A comparison
with CLIQUE empirically showed, that SUBCLU out-
performs state-of-the-art subspace clustering algorithms
in quality. An application of SUBCLU to real-world
gene expression data yields biologically interesting and
meaningful results, and thus demonstrates the very use-
fulness of SUBCLU.

An approach for future work is the development

of an efficient index structure for partial range queries
(range queries in arbitrary subspaces of the original
data space). Since the inverted files used by SUBCLU
are less effective the more dimensions are relevant to
the range query, a better index support could further
improve the efficiency of SUBCLU. Moreover, a parallel
version of SUBCLU is envisioned for further improving
its scalability.

Acknowledgments

We want to acknowledge the work of Alexandra
Boshammer and Elke Schumm supporting the imple-
mentation of SUBCLU and CLIQUE, respectively.

References

[ABKS99] M Ankerst, Markus M Breunig, Hans-Peter
Kriegel, and Jörg Sander. ”OPTICS: Ordering Points
to Identify the Clustering Structure”. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, Philadel-
phia, PA, pages 49–60, 1999.

[AFS93] R Agrawal, C Faloutsos, and A Swami. ”Efficient
Similarity Search in Sequence Databases”. In Proc. 4th
Int. Conf. on Foundations of Data Organization and
Algorithms, Chicago, IL, 1993.

[AGGR98] R Agrawal, J Gehrke, D Gunopulos, and
P Raghavan. ”Automatic Subspace Clustering of High
Dimensional Data for Data Mining Applications”. In
Proc. ACM SIGMOD Int. Conf. on Management of
Data, Seattle, WA, 1998.

[AP99] C C Aggarwal and C Procopiuc. ”Fast Algorithms
for Projected Clustering”. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, Philadelphia, PA,
1999.

[AY00] C.C. Aggarwal and P.S. Yu. ”Finding Generalized
Projected Clusters in High Dimensional Space”. In
Proc. ACM SIGMOD Int. Conf. on Management of
Data, Dallas, TX, 2000.

[BDL95] M Berry, S Dumais, and T Landauer. ”Using
Linear Algebra for Intelligent Information Retrieval”.
SIAM Review, 37(4):573–595, 1995.

[CFZ99] C.-H. Cheng, A.W.-C. Fu, and Y. Zhang.
”Entropy-Based Subspace Clustering for Mining Nu-
merical Data”. In Proc. ACM SIGKDD Int. Conf.

Gene Name Function

Cluster 1 (subspace 90, 110, 130, 190)

RPC40 subunit of RNA pol I and III, builds complex with CDC60

CDC60 tRNA synthesase, builds complex with RPC40

FRS1 tRNA synthesase

DOM34 protein synthesis, mitotic cell cycle

CKA1 mitotic cell cycle control

CPA1 control of translation

MIP6 RNA binding activity, mitotic cell cycle

Cluster 2 (subspace 90, 110, 130, 190)

STE12 transcription factor (regulation of cell cycle)

CDC27 regulation of cell cycle, possible STE12-site

EMP47 Golgi membrane protein, possible STE12-site

XBP1 Transcription factor

Cluster 3 (subspace 90, 110, 130, 190)

CDC25 starting control factor for mitosis

MYO3 control/regulation factor for mitosis

NUD1 control/regulation factor for mitosis

Cluster 4 (subspace 190, 270, 290)

RPT6 protein catabolism; builds complex with RPN10

RPN10 protein catabolism; builds complex with RPT6

UBC1 protein catabolism; subunit of 26S protease

UBC4 protein catabolism; subunit of 26S protease

MRPL17 component of mitochondrial large ribosomal subunit

MRPL31 component of mitochondrial large ribosomal subunit

MRPL32 component of mitochondrial large ribosomal subunit

MRPL33 component of mitochondrial large ribosomal subunit

SNF7 direct interaction with VPS2

VPS4 mitochondrial protein; direct interaction with SNF7

Table 2: Contents of four sample clusters in different subspaces.

on Knowledge Discovery in Databases, San Diego, FL,
1999.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu.
”A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise”. In Proc. 2nd
Int. Conf. on Knowledge Discovery and Data Mining,
Portland, OR, pages 291–316, 1996.

[Fuk90] K Fukunaga. Introduction to Statistical Pattern
Recognition. Academic Press, San Diego, CA, 1990.

[GNC99] S. Goil, H.S. Nagesh, and A. Choudhary.
”MAFIA: Efficiant and Scalable Subspace Clustering
for Very Large Data Sets”. Tech. Report No. CPDC-
TR-9906-010, Center for Parallel and Distributed Com-
puting, Dept. of Electrical and Computer Engineering,
Northwestern University, 1999.

[HK98] A Hinneburg and D A Keim. ”An Efficient Ap-
proach to Clustering in Large Multimedia Databases
with Noise”. In Proc. 4th Int. Conf. on Knowledge
Discovery and Data Mining, New York City, NY, pages
224–228, 1998.

[HK99] A. Hinneburg and D. Keim. ”Optimal Grid-
Clustering: Towards Breaking the Curse of Dimension-
ality in High-Dimensional Clustering”. In Proc. 25th

Int. Conf. on Very Large Databases, Edinburgh, Scot-
land, 1999.

[Jol86] I Joliffe. Principal Component Analysis. Springer-
Verlag, New York, 1986.

[KCP01] E Keogh, K Chakrabarti, and M Pazzani. ”Locally
Adaptive Dimensionality Reduction for Indexing Large
Time Series Databases”. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, Santa Barbara, CA,
2001.

[NGC01] H.S. Nagesh, S. Goil, and A. Choudhary. ”Adap-
tive Grids for Clustering Massive Data Sets”. In 1st
SIAM Int. Conf. on Data Mining, Chicago, IL, 2001.

[PJAM02] Cecilia M Procopiuc, Michael Jones, Pankaj K
Agarwal, and T M Murali. ”A Monte Carlo Algorithm
for Fast Projective Clustering”. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, Madison,
WI, pages 418–427, 2002.

[SSZ+98] P. Spellman, G. Sherlock, M. Zhang, V. Iyer,
K. Anders, M. Eisen, P Brown, D. Botstein, and
B. Futcher. ”Comprehensive Identification of Cell
Cycle-Regulated Genes of the Yeast Saccharomyces
Cerevisiae by Microarray Hybridization.”. Molecular
Biolology of the Cell, 9:3273–3297, 1998.

A Formal Proofs

Proof of Lemma 3.1

(1) Core
S
ε,m(o) ⇔ |N S

ε (o) | ≥ m
⇔ |{x | dist(πS(o), πS(x)) ≤ ε}| ≥ m

⇔ |{x | p
√∑
ai∈S

(πai(o)− πai(x))p ≤ ε}| ≥ m

(T⊆S)⇒ |{x | p
√∑
ai∈T

(πai(o)− πai(x))p ≤ ε}| ≥ m

⇔ |{x | dist(πT (o), πT (x)) ≤ ε}| ≥ m
⇔ |N T

ε (o) | ≥ m
⇔ Core

T
ε,m(o)

(2) DirReach
S
ε,m(o, q) ⇔ Core

S
ε,m(o) ∧ q ∈ N S

ε (o)

⇔ Core
S
ε,m(o) ∧ dist(πS(o), πS(q)) ≤ ε

⇔ Core
S
ε,m(o) ∧ p

√∑
ai∈S

(πai(o)− πai(q))p ≤ ε

(T⊆S) (1)
=⇒ Core

T
ε,m(o) ∧ p

√∑
ai∈T

(πai(o)− πai(q))p ≤ ε

⇔ Core
T
ε,m(o) ∧ dist(πT (o), πT (q)) ≤ ε

⇔ Core
T
ε,m(o) ∧ q ∈ N T

ε (o)

⇔ DirReach
T
ε,m(o, q)

(3) Reach
S
ε,m(o, q) ⇔ ∃p1, . . . ,pn ∈ DB : p1 = o ∧ pn = q ∧ ∀i ∈ {1 . . . n− 1} : DirReach

S
ε,m(pi, pi+1)

(T⊆S) (2)
=⇒ ∃p1, . . . ,pn ∈ DB : p1 = o ∧ pn = q ∧ ∀i ∈ {1 . . . n− 1} : DirReach

T
ε,m(pi, pi+1)

⇔ Reach
T
ε,m(o, q)

(4) Connect
S
ε,m(o, q) ⇔ ∃x ∈ DB : Reach

S
ε,m(x, o) ∧Reach

S
ε,m(x, q)

(T⊆S) (3)
=⇒ ∃x ∈ DB : Reach

T
ε,m(x, o) ∧Reach

T
ε,m(x, q)

⇔ Connect
T
ε,m(o, q)

(5) ConSet
S
ε,m(C) ⇔ ∀o, q ∈ C : Connect

S
ε,m(o, q)

(T⊆S) (4)
=⇒ ∀o, q ∈ C : Connect

T
ε,m(o, q)

⇔ ConSet
T
ε,m(C)

	1 Introduction
	2 Related Work and Contributions
	2.1 Discussion of Recent Approaches for Subspace Clustering
	2.2 Contributions

	3 Density-Connected Subspace Clustering
	3.1 Preliminary Definitions
	3.2 Clusters as Density-Connected Sets
	3.3 Monotonicity of Density-Connected Sets

	4 The Algorithm SUBCLU
	5 Performance Evaluation
	5.1 Data Sets
	5.2 Efficiency
	5.3 Accuracy

	6 Conclusions
	A Formal Proofs

