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Abstract
Modern database applications show a growing de-
mand for efficient and dynamic management of in-
tervals, particularly for temporal and spatial data
or for constraint handling. Common approaches
require the augmentation of index structures
which, however, is not supported by existing rela-
tional database systems. By design, the new Rela-
tional Interval Tree1 (RI-tree) employs built-in
indexes on an as-they-are basis and is easy to im-
plement. Whereas the functionality and efficiency
of the RI-tree is supported by any off-the-shelf re-
lational DBMS, it is perfectly encapsulated by the
object-relational data model.
The RI-tree requires O(n/b) disk blocks of size b to
store n intervals, O(logbn) I/O operations for inser-
tion or deletion, and O(h · logbn + r/b) I/Os for an
intersection query producing r results. The height
h of the virtual backbone tree corresponds to the
current expansion and granularity of the data space
but does not depend on n. As demonstrated by our
experimental evaluation on an Oracle8i server,
competing dynamic interval access methods are
outperformed by factors of up to 42 for disk ac-
cesses and 4.9 for query response time.

1 Introduction
There is a growing demand for database applications that
handle temporal and spatial data. Intervals occur as transac-
tion time and valid time ranges in temporal databases
[SOL 94] [Ram 97] [BÖ 98], as line segments on a space-fill-
ing curve in spatial applications [FR 89] [BKK 99], as inac-
curate measurements with tolerances in engineering databas-
es, for hierarchical type systems in object-oriented databases
[KRVV 93] [Ram 97], or for handling interval and finite do-
main constraints in declarative systems [KS 91] [KRVV 93]

[HP 94]. Particularly for industrial or commercial applica-
tions, the integration into RDBMS or ORDBMS is essential.

The Relational Interval Tree1 (RI-tree) is a new method
to efficiently support intersection queries, i.e. reporting all
intervals from the database that overlap a given query inter-
val. Rather than being a typical external memory data struc-
ture, the RI-tree follows a new paradigm in being a relational
storage structure. The basic idea is to manage the data ob-
jects by common relational indexes rather than to access raw
disk blocks directly. While exploiting the availability, ro-
bustness and high performance of built-in index structures in
existing systems, the advantages for the RI-tree are in detail:
  • Built-in indexes are used on an as-they-are basis without

any augmentation of the internal data structure. Thus, no
interface below the SQL level is required, and any arbi-
trary off-the-shelf RDBMS immediately supports the
technique.

  • A proper integration with existing RDBMS is an essen-
tial aspect for most industrial or commercial applica-
tions. By using built-in relational index structures, their
strong robustness, performance and integration into
transaction management (including recovery services
and concurrency control) is for free. Thus, a lot of imple-
mentation efforts and code maintenance is avoided by a
relational storage structure in contrast to typical external
memory solutions.

  • The efficiency of the RI-tree is due to the logarithmic I/O
complexity of the underlying relational system for one-
dimensional range queries on point data. Almost all
RDBMS qualify for this quite weak requirement since
they typically have implemented the popular B+-tree. By
virtualizing the backbone structure of the original main-
memory method and storing the intervals in relational in-
dexes, a high efficiency for the RI-tree is achieved.

  • In addition to its efficient support by any off-the-shelf
RDBMS, the RI-Tree perfectly fits to the object-relational
facilities of modern DBMS including the Oracle8i Server
[Ora 99a], the Informix Universal Server [Inf 98] or the
IBM DB2 Universal Database [IBM 99]. These systems
support integrating the RI-Tree with the declarative SQL
level as well as with the relational query optimizer.
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Internally, the RI-tree manages intervals by two relational
indexes. Storing n intervals occupies O(n/b) disk pages, and
inserting or deleting an interval requires O(logbn) I/O oper-
ations where b denotes the disk block size as in [MTT 00].
For reporting the r intervals that intersect a given query in-
terval, O(h · logbn + r/b) I/Os are required. The height h of
the virtual backbone reflects the current expansion and gran-
ularity of the data space but does not dependend on the num-
ber n of intervals. On top of a good analytical complexity,
also the empirical performance is superior to competitors.

The paper is organized as follows: Section 2 surveys re-
lated work for interval management in databases. In
Section 3, we introduce the structure of the new Relational
Interval Tree, whereas the algorithms for query processing
are presented in Section 4. Section 5 discusses the integra-
tion into an ORDBMS. After an experimental evaluation in
Section 6, the paper is concluded by Section 7.

2 Related Work
A variety of methods has been published concerning inter-
val management in databases, most of them addressing tem-
poral applications. The following sections intentionally sur-
vey interval handling in general. Specialized work e.g. on
append-only structures for transaction time intervals is
omitted due to lack of space.

2.1 Main Memory Structures
In the context of computational geometry, several data
structures that support 1D interval data have been devel-
oped [PS 93] [Sam 90a]. Among them the Segment Tree of
Bentley, the Priority Search Tree of McCreight and the In-
terval Tree of Edelsbrunner are the most popular. More re-
cent developments include the Interval Skip List and the
IBS-Tree of Hanson et al. [HJ 96].

As major limitation, the main memory resident data
structures do not meet the characteristics of secondary stor-
age. In a disk-oriented context, access is block-oriented and
only small portions of a structure may reside in main mem-
ory at a given time. The concept of Segment Indexes [KS 91]
is a way to overcome the problem by combining optimal in-
terval structures with efficient disk-oriented indexing tech-
niques. Our approach follows this paradigm and, moreover,
uses existing index structures the way they are rather than to
extend them what is typically required for custom second-
ary storage structures.

2.2 Secondary Storage Structures
A variety of secondary storage structures for intervals has
been presented in the literature [TCG+ 93] [MTT 00]. Since
they typically are based either on the augmentation of exist-
ing indexes or on the definition of new structures, most of
them share the limited support for an integration into exist-
ing systems. When being committed to a commercial OR-
DBMS, the structures cannot be integrated as the built-in in-
dexes are not extensible by the user.

The Time Index of Elmasri, Wuu and Kim [EWK 90] is
an index structure for valid time intervals. A set of linearly
ordered indexing points is maintained by a B+-tree, and for
each point, a bucket of pointers refers to the associated set
of intervals. Since an interval may be registered with several
indexing points, the space requirement is O(n2) for n stored
intervals [HJ 96]. Due to this redundance, the time com-
plexity is O(n) for insertion and deletion and O(n2) for inter-
val intersection query processing [AT 95].

The Interval B-tree (IB-tree) of Ang and Tan [AT 95] has
been developed to overcome the weaknesses of the time in-
dex. It can be regarded as an implementation of Edelsbrun-
ner’s interval tree [Ede 80] using an augmented B+-tree
rather than a binary tree. The original main memory model
is thus transformed to an efficient secondary storage struc-
ture while preserving the optimal space and time complex-
ity. As a disadvantage that we avoid in our approach, the
complex three-fold structure of the interval tree is retained,
and a dedicated structure of its own is used for each level.
More seriously, the augmentation is not supported by com-
mercial ORDBMS’s.

The Interval B+-tree (IB+-tree) of Bozkaya and Özsoyo-
glu [BÖ 98] is a secondary storage model of the interval tree
of [CLR 90] that differs from Edelsbrunner’s interval tree
by the fact that it uses the lower bounds of the intervals as
primary keys. As a result, queries referring to the upper
bounds of intervals such as meets or after are not supported
well. The I/O complexity for insertions or deletions as well
as for finding a single intersecting interval for a query is
O(logbn). Retrieving all r intersecting intervals, however,
may result in a scan of the internal nodes covered by the que-
ry range. Thus, the worst case time complexity is O(n) rather
than the minimum O(logn + r) which Edelsbrunner’s inter-
val tree guarantees. The concept of time splits is introduced
as a successful heuristics to avoid large fruitless scans.
Again, the augmentation is an obstacle for the integration
into commercial systems.

The TP-Index of Shen, Ooi and Lu [SOL 94] is based on
a transformation of intervals into a triangular 2D space. Du-
plicates are avoided and the index is well suited for append-
ing intervals since the data space may grow dynamically at
the upper bound. The access method is highly specialized to
the suggested mapping, and an integration into existing OR-
DBMSs is not supported. A similar mapping organized by
a grid file is presented in [LT 98].

The External Memory Interval Tree of Arge and Vitter
[AV 96] is an externalization of Edelsbrunner’s interval tree
where the fan-out of the backbone tree is increased from 2
to  for disk blocks of size b. The intervals are stored in
slab lists and multislab lists. The structure requires O(n/b)
pages for n intervals, supports insertions and deletions in
O(logbn) I/Os and requires O(logbn + r/b) I/Os to answer a
stabbing query reporting r results, which is the optimal com-
plexity. Unfortunately, no experiments demonstrate the per-
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formance and, again, the integration into existing systems is
not supported.

Beside originally one-dimensional interval index struc-
tures even multi-dimensional index structures can be em-
ployed for the task of managing 1D intervals. In general,
however, spatial access methods such as Guttman’s R-tree
[Gut 84] and its variants including R+-tree [SRF 87] and
R*-tree [BKSS 90] may not behave well for one-dimen-
sional intervals. Particularly the long durations and high
overlaps of intervals in many temporal applications induce
severe performance problems [EWK 90] [GLOT 96]. Two
particular solutions are sketched in the following.

The Segment R-tree (SR-tree) of Kolovson and Stone-
braker [KS 91] is a combination of the main memory-based
segment tree with the secondary storage-oriented R-tree.
The split algorithm cuts long intervals into spanning portions
and remnant portions thus producing some redundance. The
authors recommend to combine the SR-tree with a Skeleton
Index that performs a pre-partitioning of the data space in or-
der to improve query processing performance. The SR-tree
performs similar to the R-tree, and particularly the skeleton
version yields an improvement. Just as the IB-tree and IB+-
tree are augmentations of the B+-tree, implementing the
SR-tree requires an adaption of the R-tree structure provided
there exists any R-tree in the target DBMS at all. Another ap-
proach that supposes a specialized multi-dimensional index
structure is suggested by Fenk et al. [FMB 00].

2.3 Relational Storage Structures
Very few methods immediately meet our core requirement
to use built-in index structures the way they are rather than
to augment indexes or to introduce new structures whose in-
tegration is typically not supported by existing RDBMS.

The Window-List technique of Ramaswamy [Ram 97] is
a static solution for the interval management problem and
employs built-in B+-trees. The optimal complexity of
O(n/b) space and O(logbn + r/b) I/Os for stabbing queries is
achieved. Unfortunately, updates do not seem to have non-
trivial upper bounds, and adding as well as deleting arbitrary
intervals can deteriorate the query efficiency of this struc-
ture to O(n/b). Despite the practicability of the approach, no
experimental results are demonstrated.

The Tile Index approach provided by the Oracle8i Spatial
Product [RS 99] is a relational implementation of the multi-
dimensional Linear Quadtree [Sam 90b]. Spatial objects
are decomposed and indexed at a user-defined fixed
quadtree level. Each resulting fixed-sized tile contains a set
of variable-sized tiles as a fine-grained representation of the
covered geometry. Intersection queries are performed by an
equijoin on the indexed fixed-sized tiles, followed by a se-
quential scan on the corresponding variable-sized tiles.
When applied to one-dimensional data, the Tile Index tech-
nique maps an interval to a set of fixed-sized segments to be
stored in a built-in B+-tree. Finding a good fixed level for
the expected data distribution is crucial, as with the fixed

level set too high, too much redundancy emerges due to
small fixed-sized tiles, whereas a low fixed level causes too
much overhead for scanning the large variable-sized tiles.
Therefore, an inappropriate setting causes the response time
to degenerate vastly [Ora 97] [Ora 99b]. Unfortunately, the
fixed level can only be set at index creation time, and adapt-
ing it to changing data and query distributions requires bulk-
loading the whole dataset anew. This major drawback is not
shared by our RI-Tree.

The Interval-Spatial Transformation (IST) of Goh et al.
[GLOT 96] is based on encoding intervals by space-filling
curves called D-, V- and H-ordering that map the boundary
points into a linear space. No redundancy is produced, and
space complexity is O(n/b). Whereas the expansion of the
data space at the upper bound is an explicit feature of the
method, the expansion at the lower bound which is support-
ed in our solution remains unclear. Unfortunately, no exper-
imental performance results are reported in the paper. The
I/O complexity of the query algorithm linearly depends on
the resolution of the space whereas our method guarantees
a logarithmic dependency on the resolution. A dynamic re-
finement of the resolution is not supported by the IST. A
closer look at the structure reveals a strong correspondence
to relational composite indexes. Aside from quantization as-
pects, the D-ordering is equivalent to a composite index on
the interval bounds (upper, lower), and the V-ordering cor-
responds to an index on (lower, upper). For intersection
queries, however, these indexes reveal a poor query perfor-
mance if the selectivity relies on the “wrong” bound, i.e. the
secondary attribute in the index. Thus, intersection queries
have a worst case I/O complexity of O(n/b). The H-ordering
simulates an index on (upper – lower, lower), thus particu-
larly supporting queries referring to the interval length. The
MAP21 approach of Nascimento and Dunham [ND 99] be-
haves very similar to the IST while the composite index
(lower, upper) is implemented by a single-column index. A
static partitioning by the interval lengths is introduced, but
intersection query processing still requires O(n/b) I/Os if the
database contains many long intervals.

2.4 Custom Access Methods in ORDBMS
Modern commercial ORDBMS such as the Informix Uni-
versal Server [Inf 98], the Oracle8i Server [Ora 99a] or the
IBM DB2 Universal Database [IBM 99] support the logical
embedding of custom indextypes into the database system.
Though the developer may use an extensibility framework
to seamlessly bind a new access method to the query lan-
guage, optimizer and query processor, there is no applica-
tion program interface to the physical layer of the database
engine, e.g. to the block manager. In the absence of any gen-
eralized search tree framework in the sense of [HNP 95], the
developers have the option to store their custom index struc-
ture in external files. Of course, this technique allows excel-
lent performance results, but as external files do not partic-
ipate in the transaction management of the database server,



the developers have to implement and maintain their own
block manager including “industrial strength” concurrency
control and recovery services.

Alternatively storing the index as a single Large Object
(LOB) in the database also requires extensive implementa-
tion and maintenance efforts, particularly because the built-
in locking mechanism on entire LOBs is far too coarse in a
multi-user environment [BSSJ 99]. A natural way to avoid
these technical problems is to exploit as much functionality
of the database server as possible by mapping the index
structure to a fine granular relational schema organized by
built-in access methods. We follow this approach in the
present paper and propose an efficient index structure for in-
terval data that is designed to operate as logical indextype on
top of the relational query language of the DBMS. The code
can be implemented and maintained with minimum effort.
Nevertheless our technique provides “industrial strength”
stability and transaction semantics, while still showing a
logarithmic worst case I/O complexity for interval intersec-
tion queries and while demonstrating the best experimental-
ly measured performance compared to previous approaches.

3 The Relational Interval Tree

In this section, we introduce the new Relational Interval
Tree, which efficiently implements Edelsbrunner’s interval
tree on top of any relational database system.

3.1 Original Interval Tree Structure

Edelsbrunner’s interval tree [Ede 80] [PS 93] is an optimal
data structure for intervals. Since the registered intervals are
not decomposed as in the segment tree, no redundancy is
produced and the space complexity is O(n). The three-fold
structure is illustrated in Figure 1: The backbone tree or pri-
mary structure is a balanced binary search tree that organiz-
es the values of all bounding points of the intervals. Each of
the inner nodes w is associated with two lists L(w) and U(w)
that form the secondary structure. L(w) and U(w) contain,
respectively, sorted lists of the lower and upper bounds of
the intervals that are associated to w. An interval (l, u) is reg-
istered at the highest node it overlaps, i.e. the first node w
for which l ≤ w ≤ u holds when descending the tree. The ter-
tiary structure is an additional binary tree that supports fast
range scans by linking the nodes w whose lists L(w) and
U(w) are nonempty.

3.2 Structure of the Relational Interval Tree

The basic idea of our technique relies on the following ob-
servations:

  • For many applications, the primary structure does not
need to be materialized at all. First, the nonempty nodes
are linked by the tertiary structure as well. Second, even
dynamic data spaces can be managed without a physical
tree structure as we will show below. Only a few system
parameters occupying O(1) space are required.

  • The secondary and tertiary structure can be combined to
a relational representation that highly fits to the strength
of built-in composite indexes as provided already by an
RDBMS. As desired, the space complexity is O(n/b) for
n intervals. 

The secondary structure is mapped to a relational schema as
follows: Let L(w) =  denote the list of lower
bounds of the nw intervals that are registered at node w. The
same information is represented by the set of tuples

. The union over all nodes w yields a
relation (node, lower). Analogously, the lists U(w) =

 of upper bounds correspond to
 and yield a relation (node, upper).

Together, the relations exactly reflect the information of the
secondary structure.

In an RDBMS, the two relations (node, lower) and (node,
upper) are efficiently organized by built-in composite in-
dexes. These indexes typically own a robust and highly
tuned implementation, e.g. a B+-tree; they already obey the
transaction semantics and are hardly outperformed by user-
defined structures. Key compression techniques avoid re-
dundancy for equal node values w. Since the indexes only
manage the nonempty nodes, they already comprise the ter-
tiary structure.

The resulting relational schema contains the attributes
(node, lower, upper, id) and is supported by two composite
indexes (node, lower) and (node, upper). Thus, a given in-
terval relation is prepared for the RI-tree by adding a single
attribute node and two indexes. Figure 2 presents the re-
spective DDL statements in SQL. Alternatively, the artifi-
cial attribute node may be omitted from the base table and
encapsulated by index-organized tables for the two indexes. 

3.3 Updates in Relational Interval Trees
Whereas the registered intervals are completely managed
by the relational schema, the remaining task of the primary
structure is to organize the data space in order to manage in-
sertions and query processing. The original interval tree is

CREATE TABLE Intervals (node int, lower int, upper int, id int);
CREATE INDEX lowerIndex ON Intervals (node, lower);
CREATE INDEX upperIndex ON Intervals (node, upper);

Figure 2: SQL statements to instantiate an RI-Tree.

Figure 1: Three-fold structure of an interval tree.
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built on a static set of bounding points for the intervals. In a
dynamic context, however, intervals are inserted and delet-
ed whose actual bounding points are not known in advance.
Moreover, temporal applications require an ongoing expan-
sion of the data space. For this reason, a general and adapt-
able technique is required.

Our solution is as simple as effective: Rather than materi-
alizing any set of nodes, the primary structure is managed
purely virtually. Thus, the bounding points of the intervals are
not restricted to given values but the entire range [1, 2h–1] is
supported for some h ≥ 0. Moreover, no reorganization of
any structure is necessary when inserting or deleting inter-
vals.

In the basic version, the root node is set to 2h–1, and the
tree is traversed recursively via bisection, i.e. using simple
integer arithmetics but consuming no I/O operations. As al-
ready mentioned, an interval (l, u) is registered at the top-
most node w for which l ≤ w ≤ u holds, called the fork node
(Figure 3). As an extension of the original interval tree, in-
tervals may begin and end also at inner nodes rather than
only at leaves. Points p are represented by degenerate inter-
vals (p, p). A procedure to determine the fork node is pro-
vided in Figure 4. For computational reasons, the recursion
is controlled by a decreasing step width rather than the depth
in the tree.  

Once the fork node is computed, inserting the interval
into the relational indexes is efficiently performed by the
DBMS itself. Only a single SQL statement needs to be exe-
cuted (Figure 5) which also holds for the deletion of an in-
terval. Todays RDBMS typically perform both operations
by O(logbn) I/Os on a database containing n intervals. 

3.4 Dynamic Expansion of the Data Space
In the basic version, the data space is fixed to a range of

2h–1 values yielding a tree of height h. Whereas the I/O
complexity for updates is O(logbn) and thus independent of
h, the CPU time complexity linearly grows with h.

We suggest a solution that combines various aspects:
First, the tree height is adjusted to the actual data distribu-
tion. Second, the data space may be expanded dynamically
at the upper bound; this requirement is typical for temporal
applications. On top of this, even expansions of the data
space at the lower bound are supported.

The tree height is affected by two parameters: The value of
the root node at which searches in the tree start, and the depth
down to which algorithms have to descend in the tree. In order
to control the minimum tree height, we introduce the system
parameters root, offset, leftRoot, rightRoot and minstep.

Root. Dynamically adapting the parameter root yields
two advantages: The tree height is kept minimal, and the
data space may be expanded at its upper bound as new in-
tervals arrive. A root value of 2h is sufficient to manage in-
tervals with 0< lower and upper < 2h+1, and h =
log2(max{upper})  is adjusted at every insertion without
affecting the existing entries, i.e. in O(1).

Offset. The optimality of the root height clearly holds for
an actual data space starting at 1. The intervals, however,
may be located in a range [x1, xN] with x1 >> 1, i.e. far away
from the origin. The resulting tree height is log2(xN) where-
as a height of log2(xN – x1) would be sufficient for a data
range of length xN – x1. By shifting the intervals such that 1
becomes the lower bound of the data space, the optimal root
height hopt = log2(max{upper} – min{ lower})  is obtained.
The amount of shift is stored in the parameter offset.

LeftRoot and RightRoot. Changing the offset parame-
ter would cause a recalculation of all node values stored in
the tree. To avoid such an unnecessary O(n/b) I/O effort, off-
set is fixed after having inserted the first interval. The inter-
val that leftmost begins in the data space, however, is not
guaranteed to arrive at first to be inserted. Therefore, the
space needs to be expanded at the lower bound as well as at
the upper bound.

In our solution, we use 0 as global root value and manage
a left and a right subtree for negative and positive node val-
ues, respectively. Instead of the single parameter root, two
parameters leftRoot and rightRoot are maintained that man-
age the expansion of the data space at the lower bound and
at the upper bound independently.

Minstep. The parameter minstep traces the lowest level
imin at which insertions of intervals have taken place with
level 0 as the leaf level. Obviously, a query algorithm does
not need to descend deeper than to level imin since the sec-

FUNCTION int forkNode (int lower, int upper) {
int node = root;
for (int step = node/2; step >= 1; step /= 2)

if (upper < node) node –= step;
elsif (node < lower) node += step;
else break;

return node;
}

Figure 4: Computing the fork node of an interval.

Figure 3: Fork node of an interval in the tree.

fork

root

upperlower

INSERT INTO Intervals
VALUES (forkNode(:lower, :upper), :lower, :upper, :id);

Figure 5: Insertion of an interval (lower, upper, id).



ondary structures of all nodes in lower levels are empty. An
estimation of imin is obtained from the interval lengths:

Lemma. An interval (l, u) is not registered below the
level imin = log2(u – l), i.e. the largest cardinal i with
2i ≤ u – l.

Proof. Assume an interval (l, u) registered at a level
j < log2(u – l). Then there are two successive multiples
k·2j and (k+1)·2j for which l ≤ k·2j < (k+1)·2j ≤ u. Since
one of the multiples is also a multiple of 2j+1, the interval
(l, u) had to be registered not lower than level j+1 which
contradicts the assumption.

Figure 6 presents the final insertion procedure including
the update of the persistent tree parameters. Only the artifi-
cial node value is shifted by offset; the lower and upper
bounds of the intervals are stored without modification. The
parameters leftRoot and rightRoot are initially set to 0, and
minstep is initialized by infinity. The minimum value of 0.5
for minstep will not be stored and, thus, the implementation
by an integer works well. 

3.5 Analysis of the Tree Height

The parameters offset, leftRoot, rightRoot and minstep form
an O(1) representation of the primary structure that is dy-
namically adjusted to the cardinality m of the current data
space. Including the global root 0, the resulting tree height

is log2(m) + 1 with m given by the following formula where
the minimum value of 0.5 for minstep may occur:

In terms of data characteristics, the tree height is deter-
mined as follows: The range from leftRoot to rightRoot re-
flects the expansion of the data space from min{lower} to
max{upper} over all currently registered intervals, and min-
step indicates the granularity of the data space, i.e. the small-
est interval length, min{upper – lower}. We increase this
value by 1 to proper handle points which are represented by
degenerate intervals. Nevertheless, minstep could be greater
than min{upper – lower + 1} since even small intervals can
be registered at high nodes, e.g. at the root node. In any case,
the tree height does not depend on the number of intervals.
In terms of the interval bounds, the tree height is O(log2m)
where m obeys the following complexity:

4 Query Processing
Having presented the internal structure of the relational in-
terval tree in the preceding section, we now introduce the al-
gorithms for query processing.

4.1 Original Intersection Search
Let us shortly review the algorithm for intersection query
processing in the original interval tree. For any query interval
(lower, upper), the primary structure is descended as follows:

(1) Descend from the root node down to the node preced-
ing the fork node of the query interval. Each node w on this
path lies either to the left or to the right of the query interval.
Suppose w < lower, then intervals (l, u) registered at w in-
tersect the query interval exactly if lower < u. To report
these rw intervals, the sorted list U(w) of upper bounds is
scanned in O(rw) time. Analogously, L(w) is scanned for in-
tervals fulfilling l < upper in the symmetric case upper < w.

(2) Descend from the fork node down to the node that is
closest to lower. For each node w on this path, two cases are
distinguished: If w < lower, U(w) has to be scanned as be-
fore to report the intersecting intervals registered at w. Oth-
erwise, if lower ≤ w, the query interval is known to intersect
all intervals registered at the node w. In addition, all inter-
vals from the right subtree of w are reported except if w is
the fork node.

(3) Descend from the fork node down to the node closest
to upper. Analogously to step (2), the lists L(w) have to be
scanned, and all registered intervals from the respective
nodes are reported.

Note that the algorithm even works for degenerate inter-
vals, i.e. lower = upper, thus supporting point queries as ef-
ficient as interval queries. Figure 7 provides an illustration
of the algorithm. Only the nodes of the tree which are affect-
ed by the search are depicted. The symbols indicate the

PROCEDURE insertInterval (int lower, int upper, int id) {
// initialize offset and shift interval
if (offset = NULL) offset = lower;
int l = lower – offset, u = upper – offset;

// update leftRoot and rightRoot
if (u < 0 and l <= 2*leftRoot)  leftRoot = –2 ̂log2(–l);
if (0 < l and u >= 2*rightRoot) rightRoot = 2 ̂log2(u);

// descend the tree down to the fork node
int node, step;
if (u < 0) node = leftRoot;
elsif (0 < l) node = rightRoot;
else /* 0 is fork node */ node = 0;

for (step = abs(node/2); step >= 1; step /= 2) {
if (u < node) node –= step;
elsif (node < l) node += step;
else /* fork reached */ break;

} // now node is fork node

if (node != 0 and step < minstep) minstep = step;

INSERT INTO Intervals VALUES (:node, :lower, :upper, :id);
}

Figure 6: Insertion of an interval and update of the tree 
parameters offset, leftRoot, rightRoot and minstep.

m max leftRoot– rightRoot,{ } minstep⁄=

m O
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nodes for which U(w) or L(w) are scanned, and the nodes for
which all entries have to be reported. Note that the latter are
exactly the nodes w that are covered by the query interval,
i.e. lower ≤ w ≤ upper. 

4.2 Translation into a Single SQL Query
The basic idea of our approach is to exploit the efficiency of
built-in relational indexes. Scanning the lists U(w) and L(w)
immediately translates to an index range scan over the at-
tributes (node, upper) and (node, lower), respectively. These
attribute combinations are managed by the upperIndex and
lowerIndex as defined above. Scanning the nodes w between
lower and upper is supported by any of the two indexes.

Rather than immediately scanning the lists U(w) and L(w)
while descending the tree, in our algorithm the respective
nodes are collected in transient lists leftNodes and rightNodes
both obeying the unary relational schema (node). These tran-
sient relations are managed in the transient session state thus
causing no I/O effort. As for interval insertion (Figure 6), the
virtual primary structure is descended by integer arithmetics
without any I/O operation. Finally, a single SQL query suf-
fices to retrieve all intersecting intervals from the database.
A basic version of the query is shown in Figure 8. 

As illustrated in Figure 7, the nodes from leftNodes, from
rightNodes, and the nodes between lower and upper are dis-
tinct from each other. The three OR-connected conditions in
the WHERE clause therefore specify disjoint interval sets,
and the DISTINCT option is omitted from the SELECT
clause since no duplicates have to be eliminated.

4.3 Simplified SQL Query
The first transformation typically performed by relational
optimizers is to split the complex OR-query into a set of
three simpler queries connected by UNION ALL. The sub-

queries concerning leftNodes and rightNodes are efficiently
supported by the respective indexes upperIndex and lower-
Index and cannot be intermixed. The third subquery that
only addresses the attribute node, however, is supported by
any of the two indexes. Hence, in order to reduce the cost
for internal query management, we combine this subquery
with the leftNodes subquery according to the following lem-
ma which analogously holds for the rightNodes subquery.

Lemma. (i) The condition ‘i.node = left.node’ may be
substituted by the equivalent condition ‘i.node BE-
TWEEN left.min AND left.max’ if left.node = left.min =
left.max without loss of efficiency for an index scan.
(ii) The condition ‘i.node BETWEEN :lower – offset
AND :upper – offset’  is not restricted by adding the con-
straint ‘i.upper >= :lower’.
Proof. (i) The equivalence is obvious. An index scan
searches the first hit by testing left.min ≤ i.node and pro-
ceeds while testing the condition i.node ≤ left.max.
(ii) Since by definition, i.node ≤ i.upper – offset holds
for any interval i in the tree, the condition :lower –
offset≤ i.node implies :lower ≤ i.upper.

In detail, the modifications of the query are as follows: The
transient relation leftNodes now obeys the binary relational
schema (min, max) instead of the unary schema (node). When
descending the tree, a node w is inserted into leftNodes as a
pair (w, w) rather than as a single value (w) as before. Finally,
to include the original BETWEEN subquery, the pair
(lower– offset, upper – offset) is inserted into leftNodes. The
lemma guarantees that no intervals are missing after the
transformation. Figure 9 presents the resulting two-fold SQL
query for intersection search still producing no duplicates. 

Figure 10 shows the execution plan for the query as gen-
erated by an Oracle8i server. Most RDBMS provide an easy
way (‘hints’) to guarantee this query plan to be chosen by
the optimizer. For this example the attribute id was included
in the indexes. 

4.4 Analysis of the Algorithm
In Section 3.5, we already observed that the tree height of
h = O(log m) only depends on two parameters that deter-
mine the quotient m, i.e. the extension of the intervals in the
data space and the minimal interval length. It does not de-
pend on the number n of intervals registered in the tree. The
tree height is an upper bound for the number of entries in the
transient relations leftNodes and rightNodes. For each of the

SELECT id FROM Intervals i, leftNodes left, rightNodes right
WHERE (i.node = left.node AND i.upper >= :lower)

OR (i.node = right.node AND i.lower <= :upper)
OR (i.node BETWEEN :lower – offset AND :upper – offset);

Figure 8: Prelim. SQL query to retrieve intersecting intervals.

Figure 7: Query processing in the interval tree.

fork

root

upperlower

scan U(w)
scan L(w)

fork

report all

SELECT id FROM Intervals i, leftNodes left
WHERE i.node BETWEEN left.min AND left.max

AND i.upper >= :lower
UNION ALL
SELECT id FROM Intervals i, rightNodes right

WHERE i.node = right.node AND i.lower <= :upper;

Figure 9: Final SQL statement for intersection queries.



O(log m) entries in the transient relations, an index range
scan on upperIndex or lowerIndex is performed. Such an in-
dex range scan consists of two phases. In a search phase, the
beginning of the range ρ is located, and in a scan phase, the
rρ resulting objects from the range are reported. Typical in-
dex structures such as the B+-tree in relational database sys-
tems require O(logbn) I/O operations for the search phase on
a database containing n objects, and O(rρ /b) I/Os in the scan
phase to report the rρ results for the range ρ.

Theorem (Complexity of Query Processing). 
An intersection query on a Relational Interval Tree of
height h that returns r results from the n intervals in the
tree has an I/O complexity of

O(h · logbn + r/b)

Proof. For each of the O(h) entries in the transient rela-
tions leftNodes and rightNodes, an index search of
O(logbn) I/O complexity is performed. Scanning and re-
porting the total of r results requires O(r/b) operations.

We conjecture that this complexity is optimal for managing
intervals by relational storage structures.

4.5 General Topological Queries

In addition to the intersection query predicate, there are 13
more fine-grained temporal relationships between intervals
[BÖ 98]. Obviously, also queries based on these specialized
predicates are efficiently supported by the Relational Inter-
val Tree. For some of them, there is an additional potential
for optimization since they only refer to the lower bound as
in meets or in before, or they only refer to the upper bound
as in met-by or in after. Competing methods such as the IB+-
tree [BÖ 98] or the IST [GLOT 96] efficiently support only
queries referring to one of the two interval bounds, i.e. lower
for the IB+-tree or the V-ordering and upper for the D-or-
dering. Using these techniques, queries referring to the op-
posite bound are processed with a poor performance since
O(n) comparisons are required in the worst case.

4.6 Handling Temporal Intervals

In the context of temporal databases, the special values now
and infinity occur as upper values of valid time intervals
[BÖ 98]. The straightforward solution to manage these in-
tervals in separate indexes, however, yields the major disad-
vantage that additional SQL (sub-)queries have to be exe-
cuted. This overhead is avoided by managing appropriate

values for the fork nodes thus achieving a very natural inte-
gration into the Relational Interval Tree.

Infinity. In a first attempt, we set the fork node of an in-
finite interval to MAXINT but do not further modify the al-
gorithms. Thus, the tree becomes very high but it is almost
empty close to the root. A slight but very effective extension
avoids the resulting overhead for query processing: An arti-
ficial exclusive value fork∞ is assigned to the attribute node
of an infinite interval. At query processing time, fork∞ is in-
serted into the transient list rightNodes. Thus, the lower
bounds of intervals ending at infinity are tested against the
upper bound of the query interval as desired. Note that if
choosing fork∞ = NULL, the condition ‘i.node = right.node’
in Figure 9 is not evaluated correctly whereas our choice to
set fork∞ = MAXINT avoids any modification of the SQL
statement thus yielding a perfect integration.

Now. Whereas infinity is constant over time, intervals
ending at now continuously change their upper bound. Aim-
ing at a correct positioning of now-relative intervals within
the tree at any time requires permanent modifications of the
node values and, therefore, of the tree. Our solution com-
pletely avoids such an overhead and, again, uses an artificial
exclusive node value, e.g. forknow = MAXINT – 1, which is
assigned to now-ending intervals when being inserted. At
query processing time, forknow is inserted into the transient
table rightNodes exactly if lower ≤ now, i.e. if the query in-
terval begins in the past. As desired, the SQL query then
tests the lower bounds of the now-ending intervals against
the upper bound of the query interval.

5 Object-Relational Wrapping
The Relational Interval Tree may be easily implemented on
top of any relational DBMS featuring a procedural query
language like the Oracle8i Server with PL/SQL or the Infor-
mix Universal Server with SPL. A persistent data dictionary
provides a convenient way to store index specific system pa-
rameters such as root or minstep, whereas the leftNodes and
rightNodes query tables can be efficiently managed in the
transient user session state. As mentioned in Section 3.3, the
insertion and deletion of a new interval requires only a sin-
gle SQL statement. The computation and storage of the fork
node and the update of the index parameters can be per-
formed automatically by database triggers. Whereas the
complete index maintenance therefore may be managed by
a trigger mechanism, query processing has to be started
manually by invoking the appropriate stored procedure.

Modern object-relational DBMS provide a solution to
preserve the declarative paradigm of SQL even at query
time, because all maintenance and access procedures of a
custom index structure are completely hidden from the user.
An extensible indexing framework allows the developer to
package the implementation of the access method and the
corresponding index data into a user-defined indextype
[Inf 98] [Ora 99a] [IBM 99]. As the object-relational data-

SELECT STATEMENT
UNION-ALL

NESTED LOOPS
COLLECTION ITERATOR
INDEX RANGE SCAN UPPER_INDEX

NESTED LOOPS
COLLECTION ITERATOR
INDEX RANGE SCAN LOWER_INDEX

Figure 10: Execution plan for an intersection query in Oracle.



base server automatically triggers the maintenance and scan
of custom indexes, end users can use the Relational Interval
Tree just like a built-in index. With a cost model registered
at the optimizer, the server is able to generate efficient exe-
cution plans for queries on interval data types.

6 Experimental Evaluation

6.1 Experimental Setup
To evaluate the performance of our approach, we have inte-
grated the Relational Interval Tree into the Oracle Server Re-
lease 8.1.5 using PL/SQL and packaged stored procedures.
All experiments have been executed on a Pentium Pro/180
server having 128 MB main memory and an U-SCSI hard
drive. The database block cache was set to the default value
of 200 database blocks with a block size of 2 KB. We have
evaluated the performance of interval intersection queries on
various interval databases with different data distributions
and cardinalities (cf. Table 1). The bounding points of all in-
tervals lie in the domain of [0, 220-1]. For the distributions D3
and D4, we assume transaction time or valid time intervals
where the arrival of temporal tuples follows a Poisson pro-
cess. Thus the inter-arrival time is distributed exponentially. 

As mentioned in Section 2.3, among the wide range of
existing interval access methods only the static Window-
List approach [Ram 97], the Tile Index [RS 99] and the In-
terval-Spatial Transformation technique [GLOT 96] are de-
signed to use existing B+-trees on an as-they-are basis, i.e.
without any internal modifications or augmentations.
Therefore, we restrict our performance comparison to these
techniques.

Window-List. In our experiments, queries on Window-
Lists produced twice as many I/O operations than on the dy-
namic RI-tree. As the Window-List technique is a static
storage structure, we do not further investigate it in the fol-
lowing evaluation of dynamic structures.

Tile Index (T-index). In our experiments, we have used
the recommended hybrid indexing method of fixed- and vari-
able-sized tiling as it is documented in [Ora 97] and
[Ora 99b]. To ensure comparability to the other techniques,
we have reimplemented the hybrid indexing package for one-
dimensional data spaces. Our version is less complex and
shows a significant performance gain over the original two-

dimensional implementation. When we use the Tile Index for
the interval domain of [0, 220-1], the fixed level parameter
may be set to a value between 0 and 20. For our experiments,
we took a representative sample of 1,000 intervals from each
individual data distribution and determined the optimal set-
ting for the fixed level. In most cases, the optimum for the
query performance was found at the level 7, 8 or 9.

Interval-Spatial Transformation (IST). For the fol-
lowing experiments we have implemented the Interval-Spa-
tial Transformation with D-order as proposed by
[GLOT 96]. For integer interval bounds [lower, upper], the
D-order index is equivalent to a composite index on the at-
tributes (upper, lower) and therefore has identical perfor-
mance characteristics. Range queries on D-ordered inter-
vals can be expressed in a simple SQL statement by just
testing the upper and lower bounds for intersection with the
query range, as presented in Figure 11.

Relational Interval Tree (RI-tree). We have imple-
mented the Relational Interval Tree as it is described in the
previous sections. As each data distribution of Table 1 con-
tains intervals with length 0 (i.e. points), the granularity of
the respective data space is maximal. Therefore, the minstep
system parameter always reaches its minimum value of 1
upon index creation and the virtual backbone tree is expand-
ed to a height of 20, unless noted otherwise.

6.2 Storage Occupation
We performed several experiments to compare the RI-tree
with the IST and the T-index. An illustration of the storage
occupation of the three techniques is given in Figure 12 for
a D4(*,2k) distribution. As the IST technique produces no
redundancy, the number of index entries is equal to the num-

Name
Starting point
distribution

Duration
distribution

D1(n,d) uniform
in [0, 220-1]

uniform in [0, 2d]

D2(n,d) exponential in [0, ∞], mean = d

D3(n,d) poisson process
in [0, 220-1]

uniform in [0, 2d]

D4(n,d) exponential in [0, ∞], mean = d

Table 1: Sample interval databases with cardinality n.

SELECT id FROM Intervals i
WHERE (i.upper >= :lower AND i.lower <= :upper);

Figure 11: A range query for the Interval-Spatial 
Transformation (IST) on a D-ordered index.
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ber of indexed intervals. The RI-tree requires two index en-
tries for each stored interval (for the lowerIndex and the up-
perIndex, cf. Figure 2). In our example, the T-index needs a
redundancy factor of 10.1 to index the decomposed inter-
vals accurately. As we have experienced in our evaluation,
this causes major performance and storage problems for
very large interval databases.

6.3 Query Processing
All query experiments given in this subsection have been
performed with query intervals following a distribution
which is compatible to the respective interval database. Our
first experiment compares the number of physical disk block
accesses and the response time of the three access methods
depending on the selectivity of the range queries. Figure 13
depicts polynomially interpolated results of 100 range que-
ries on a D1(100k,2k) distribution. At a query selectivity of
0.5%, the RI-tree clearly outperforms the other techniques
by a factor of 10.8 (T-index) and 46.3 (IST) for the disk ac-
cesses. At a 3.0% selectivity, the speedup factor is 22.8 (T-
index) and 13.6 (IST). Thus the Relational Interval Tree
shows a superior performance for both high and low query
selectivities. The fast response times of T-index and IST (e.g.
500 I/Os in two seconds) are caused by the good clustering

properties of the bulk loaded indexes and will deteriorate in
a dynamic environment. For D2(100k,2k), D3(100k,2k), and
D4(100k,2k) datasets we measured similar results.

Figure 14 compares the scaleup of the three techniques
for D4(*,2k) datasets growing from 1,000 to 1,000,000
stored intervals. For each database size, the average number
of disk accesses and the average response time of 20 range
queries is presented. Both the T-index and the IST demon-
strate their linear scaleup whereas the RI-tree scales sublin-
early and shows a significant performance gain over the oth-
er access methods. The speedup factor from the T-index to
the RI-tree increases from 2 to 42 (disk access) and from 2.0
to 4.9 (response time). We observed a similar improvement
for the same experiments on D1(*,2k), D2(*,2k), and
D3(*,2k) data distributions.

The next set of experiments investigates the influence of
the dataspace granularity on the query performance of the
RI-tree. For this experiment, we restricted the domain for the
interval lengths of a D3 distribution from [0, 4k] to
[500, 3.5k], [1k, 3k], and [1.5k, 2.5k], respectively. With in-
creasing minimum interval length, fewer levels of the virtual
backbone have to be traversed due to larger minstep values.
As shown in Figure 15, the response time is almost indepen-

Figure 13: Disk accesses and response time for range queries 
on a D1 data distribution (depending on query selectivity).
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on a D4 data distribution (depending on the database size).

0

2

4

6

8

10

12

1,000 10,000 100,000 1,000,000

db size [number of intervals]

re
sp

o
n

se
 t

im
e 

[s
ec

.]

T-index

IST

RI-tree



dent of the minimum length of the stored intervals. So the
resulting height h of the virtual backbone has only little em-
pirical significance. The response times for the different se-
lectivities illustrate also the desired property that the perfor-
mance of queries is largely bound to the number of results. 

The next series of experiments compares the influence of
the mean of interval duration on the query performance of
the different techniques. Figure 16 depicts the average re-
sults for a sample of 20 range queries on various D4(100k,*)
datasets with increasing average length of intervals. The T-
index and the RI-tree require about the same response time
for range queries, if the average length of the indexed inter-
vals is very low. As short intervals do not suffer from the
spatial decomposition, the redundancy caused by the T-in-
dex tiling approach decreases from 10.1 to 1 when the mean
value of interval duration is reduced from 2,000 to 0. Even
for a pure point database, the RI-tree performs slightly better
than the T-index. The benefit of the RI-tree becomes obvious
for a higher mean of duration. Both the RI-tree and the IST
perform better as longer intervals are stored in the database. 

As expected, the location of the query range with respect
to the data domain exerts a strong influence on the perfor-
mance of the IST. In Figure 17 we illustrate this effect by
‘sweeping’ a query point starting at the upper bound of the
data space where the bound index on (upper, lower) benefits
the most from the high selectivity in the first indexed col-
umn. The comparison between the RI-tree and T-index re-
veals another interesting aspect of this experiment: Al-
though for point queries the T-index performs at its best as it
retrieves no duplicates caused by redundancy, the RI-tree is
still slightly better on the average. We obtained these results
as well for the other interval data distributions D1, D3 and D4.

7 Conclusions
In this paper, we presented the Relational Interval Tree
which is a new access method for interval data. It can be cre-
ated for any relational or object-relational table containing
intervals. As we have shown, the main design goals for our
new approach have been fulfilled:
  • Integration. The RI-tree is not a stand-alone concept. It

can easily be implemented on top of any relational
DBMS. As much functionality as possible of built-in  in-
dexes is exploited and no changes or additions to the in-
ternal layer of the database server are made. Therefore
the effort of code development and code maintenance is
minimal. For modern database servers featuring an ob-
ject-relational application program interface, a natural
and seamless integration can be achieved while preserv-
ing the declarative paradigm of SQL.

  • Performance. Our analytical and experimental evalua-
tion of the RI-tree shows superior performance charac-
teristics compared to previous approaches. This is
achieved by introducing the virtual primary structure.
Although the structure is space-oriented, the storage of
intervals is object-driven and, thus, no storage space is
wasted for empty regions in the data space.

Figure 15: Response time for range queries with different 
selectivities on an RI-tree for restricted D3 databases.
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Figure 16: Response time on a D4 data distribution with 
varying mean of interval length. Even for small intervals, the 
RI-tree outperforms the T-index approach.

Figure 17: Response time for a “sweeping” point query on a 
D2 data distribution. The IST degenerates with higher distance 
to the upper bound of the data space.
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  • Extensions. Our basic concept supports a wide range of
efficient application specific extensions. We have illus-
trated this by the dynamic expansion of the data space, by
handling the special temporal variables now and infinity,
and by discussing fine-grained topological query types.

The flexibility and extensibility of the RI-tree concept
opens up a number of interesting research problems and ap-
plications. A promising extension is the application of the
Skeleton Index technique to the RI-tree, because a partial
materialization of the primary structure can be adapted to
the expected data distribution and, for example, the man-
agement of string intervals is supported.
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