SigniTrend: Scalable Detection of Emerging Topics in Textual Streams by Hashed Significance Thresholds

Erich Schubert, Michael Weiler, Hans-Peter Kriegel

Institute of Informatics Database Systems Group Ludwig-Maximilians-Universität München

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Problem description

- Statistical significance score Popular topics ≠ trending topics (e.g. Obama)
- 2. Track interacting terms
 - Facebook bought WhatsApp
 - Edward <u>Snowden</u> traveled to <u>Moscow</u>
- 3. Scalability Efficient calculation for all terms and pairs

SigniTrend on textual streams tracking both: single terms and pairs

A. Preprocessing (stopwords, stemming, duplicates)

- **B.** Trend detection cycle
 - Temporal slicing for statistical aggregation
 - Score all terms and pairs based on expectations from past slices
- **C.** Refinement with clustering

Trend detection cycle

Update statistics for time slice t and term or pair e

 How many standard deviations is the current frequency x higher than its mean

$$z(x_{t,e}) := \frac{x_{t,e} - \mu_{t-1,e}}{\sigma_{t-1,e}}$$

Update statistics for time slice t and term or pair e

 How many standard deviations is the current frequency x higher than its mean

$$z(x_{t,e}) := \frac{x_{t,e} - EWMA_{t-1,e}}{\sqrt{EWMVar_{t-1,e}}}$$

 Exponential weighted moving average/variance for continuous estimation on a stream [Finch09]

 $\Delta_{t,e} \leftarrow x_{t,e} - EWMA_{t-1,e} \\ EWMA_{t,e} \leftarrow EWMA_{t-1,e} + \alpha \cdot \Delta_{t,e} \\ EWMVar_{t,e} \leftarrow (1 - \alpha) \cdot \left(EWMVar_{t-1,e} + \alpha \cdot \Delta_{t,e}^2\right)$

[Finch09] T. Finch. Incremental calculation of weighted mean and variance. Technical report, University of Cambridge, 2009

Significance and frequency for term "Facebook"

How to track statistics of all pairs efficiently?

Problem: Too many terms and pairs to track everything

2013 News Dataset

	STEMMED TERMS	OBSERVED PAIRS
TOTAL	56,661,782	660,430,059
UNIQUES	300,141	71,289,359

Therefore, we designed an efficient hashing scheme (based on Bloom Filters and Heavy Hitters) for probabilistic upper-bound statistics

#1	#2	#3	#4	#5	#6	#7

Upper-bound estimate for mean and its variance

Upper-bound estimate for mean and its variance Performance on news dataset: 104s/day with a Raspberry-Pi

LMU

Artificial trends evaluation

Inject artificial words with frequency α e.g. "Obama meets <X123> Netanyahu"

Hash table size large enough \rightarrow recall saturation

Refinement & clustering

- Inverted index (Apache Lucene) to verify trend candidates and measure exactly (without hashing) for precise reporting (false-positives can be eliminated)
- Single Link clustering with Ward of remaining trends (similarity matrix is built with the exact significance of all pairs)

• Future work: include topic modeling techniques (e.g. pLSI, LDA)

Thank You!

Questions?

Michael Weiler | SigniTrend: Scalable Detection of Emerging Topics in Textual Streams by Hashed Significance Thresholds