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Trend detection on streams
should be early and accurate
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Twitter Streaming API on Feb. 19th 2014
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Trend detection on streams
should be early and accurate

O Term Facebook O Term WhatsApp O Pair {" Facebook WhatsApp}
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A
Facebook bought WhatsApp //
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Problem description

1. Statistical significance score
Popular topics # trending topics (e.g. Obama)

2. Track interacting terms
 Facebook bought WhatsApp

e Edward Snowden traveled to Moscow

3. Scalability
Efficient calculation for all terms and pairs
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SigniTrend on textual streams

tracking both: single terms and pairs

A. Preprocessing (stopwords, stemming, duplicates)
B. Trend detection cycle
 Temporal slicing for statistical aggregation

o Score all terms and pairs based on expectations
from past slices

C. Refinement with clustering
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Trend detection cycle

exceeds
2
Terms EEEEEN -> Count fre uenc ;t[::e-S-':?I-(; Trend
and pairs % y candidates
new alerting at the end of
thresholds each time slice

Update statistics
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Update statistics

for time slice t and term or pair e

« How many standard deviations is the current
frequency x higher than its mean

Lt,.e Ht—1,e
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Update statistics

for time slice t and term or pair e

« How many standard deviations is the current
frequency x higher than its mean

il xt,e_EWMAt—l,e
2 (Zte) = VEWMVar, ;.

 Exponential weighted moving average/variance for
continuous estimation on a stream [Finch09]
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[Finch09] T. Finch. Incremental calculation of weighted mean and variance. Technical report, University of Cambridge, 2009
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Significance and frequency
for term “Facebook”
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How to track statistics of all
pairs efficiently?

Problem: Too many terms and pairs to track everything

2013 News Dataset
STEMMED TERMS OBSERVED PAIRS

TOTAL 56,661,782 660,430,059

UNIQUES 300,141 71,289,359

Therefore, we designed an efficient hashing scheme
(based on Bloom Filters and Heavy Hitters)
for probabilistic upper-bound statistics
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Hashing scheme for efficient tracking
L=7 buckets, K=2 hash functions

{WhatsApp}: 60

#1 #H2 #3 #4 #5 H6 #/
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Hashing scheme for efficient tracking
L=7 buckets, K=2 hash functions

{WhatsApp}: 60

N1 ho

45 + 30 45 + 30

.|.
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Hashing scheme for efficient tracking
L=7 buckets, K=2 hash functions

{WhatsApp}: 60 {Facebook, WhatsApp}: 2

h1 ho

45 + 30 2 + 1 45 + 30 2 + 1

+
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Hashing scheme for efficient tracking
L=7 buckets, K=2 hash functions

{WhatsApp}: 60 {Facebook, WhatsApp}: 2 {Obama, US}: 25
h1 ho
45 + 30
45+30 | 2+ SEa? 2+ 20 + 10

Michael Weiler | SigniTrend: Scalable Detection of Emerging Topics in Textual Streams by Hashed Significance Thresholds | Page 8/10



Hashing scheme for efficient tracking
L=7 buckets, K=2 hash functions

{WhatsApp}: 60 {Facebook, WhatsApp}: 2 {Obama, US}: 25 write MAX
(upper bound)

1 ho

45 + 30 2+ 1 45 + 30 2+ 1 20 £ 10

+
+
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Hashing scheme for efficient tracking
L=7 buckets, K=2 hash functions

{WhatsApp}: 60 {Facebook, WhatsApp}: 2 {Obama, US}: 25 write MAX
(upper bound)

45 + 30 2+ 1 45 + 30 2+ 1 20+ 10
h1 hs

read {Obama, US}: gad MI.N.
Min (45230, 2010) = 20+10 owesycalision)

Upper-bound estimate for mean and its variance

+
+
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Hashing scheme for efficient tracking
L=7 buckets, K=2 hash functions

{WhatsApp}: 60 {Facebook, WhatsApp}: 2 {Obama, US}: 25 write MAX
(upper bound)

45 + 30 2+ 1 45 + 30 2+ 1 20 £ 10

read {Obama, US}: gad MI.N.
Min (45230, 2010) = 20+10 owesycalision)

Upper-bound estimate for mean and its variance
Performance on news dataset: 104s/day with a Raspberry-Pi

+
+
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Artificial trends evaluation

Inject artificial words with frequency a
e.g. “Obama meets <X123> Netanyahu”
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Hash table size large enough — recall saturation
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Refinement & clustering

* Inverted index (Apache Lucene) to verify trend
candidates and measure exactly (without
hashing) for precise reporting (false-positives can
be eliminated)

e Single Link clustering with Ward of remaining
trends (similarity matrix is built with the exact
significance of all pairs)

* Future work: include topic modeling techniques
(e.g. pLSI, LDA)
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Thank You!

Questions?
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