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Trend detection on streams 
should be early and accurate
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Facebook bought WhatsApp

Trend detection on streams 
should be early and accurate

Te
rm

 f
re

qu
en

cy

0

14

28

42

56

70

10:47 10:49 10:51 10:53 10:55 10:57 10:59 11:01 11:03 11:05 11:07 11:09 11:11 11:13

Term “Facebook” Term “WhatsApp” Pair {“Facebook”, “WhatsApp”}

 Michael Weiler | SigniTrend: Scalable Detection of Emerging Topics in Textual Streams by Hashed Significance Thresholds | Page 1/10

B
A



Problem description

1. Statistical significance score 
Popular topics ≠ trending topics (e.g. Obama) 

2. Track interacting terms 
• Facebook bought WhatsApp 
• Edward Snowden traveled to Moscow 

3. Scalability 
Efficient calculation for all terms and pairs
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SigniTrend on textual streams 
tracking both: single terms and pairs 

A. Preprocessing (stopwords, stemming, duplicates) 

B. Trend detection cycle 

• Temporal slicing for statistical aggregation 

• Score all terms and pairs based on expectations  
from past slices 

C. Refinement with clustering
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Trend detection cycle

Count frequency

Update statistics

exceeds  
threshold?
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Trend  
candidates

Terms  
and pairs

at the end of 
each time slice

new alerting  
thresholds



• How many standard deviations is the current 
frequency x higher than its mean
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Update statistics 
for time slice t and term or pair e



• How many standard deviations is the current 
frequency x higher than its mean 

!

• Exponential weighted moving average/variance for 
continuous estimation on a stream [Finch09]

Update statistics 
for time slice t and term or pair e
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[Finch09] T. Finch. Incremental calculation of weighted mean and variance. Technical report, University of Cambridge, 2009
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Significance and frequency 
for term “Facebook”
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Problem: Too many terms and pairs to track everything 

!

!

!

Therefore, we designed an efficient hashing scheme 
(based on Bloom Filters and Heavy Hitters)  

for probabilistic upper-bound statistics

How to track statistics of all 
pairs efficiently?

2013 News Dataset
STEMMED TERMS OBSERVED PAIRS

TOTAL 56,661,782 660,430,059

UNIQUES 300,141 71,289,359
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Hashing scheme for efficient tracking 
L=7 buckets, K=2 hash functions
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Hashing scheme for efficient tracking 
L=7 buckets, K=2 hash functions

{WhatsApp}: 60
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Hashing scheme for efficient tracking 
L=7 buckets, K=2 hash functions

{WhatsApp}: 60
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Hashing scheme for efficient tracking 
L=7 buckets, K=2 hash functions

{WhatsApp}: 60 write MAX 
(upper bound)
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Hashing scheme for efficient tracking 
L=7 buckets, K=2 hash functions

{WhatsApp}: 60

Upper-bound estimate for mean and its variance  

read MIN 
(lowest collision)

write MAX 
(upper bound)

read {Obama, US}:  
min(45±30, 20±10) = 20±10
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Hashing scheme for efficient tracking 
L=7 buckets, K=2 hash functions

{WhatsApp}: 60

Upper-bound estimate for mean and its variance  
Performance on news dataset: 104s/day with a Raspberry-Pi

read MIN 
(lowest collision)

write MAX 
(upper bound)

read {Obama, US}:  
min(45±30, 20±10) = 20±10
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Inject artificial words with frequency α 
e.g. “Obama meets <X123> Netanyahu”

Artificial trends evaluation
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Hash table size large enough → recall saturation



• Inverted index (Apache Lucene) to verify trend 
candidates and measure exactly (without 
hashing) for precise reporting (false-positives can 
be eliminated) 

• Single Link clustering with Ward of remaining 
trends (similarity matrix is built with the exact 
significance of all pairs) 

• Future work: include topic modeling techniques  
(e.g. pLSI, LDA)

Refinement & clustering
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Thank You!
Questions?
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