
Linear Path Skylines in Multicriteria Networks

Michael Shekelyan, Gregor Jossé, Matthias Schubert

Institute for Informatics, Ludwig-Maximilians-University Munich
Oettingenstr. 67, 80538 Munich, Germany

{shekelyan,josse,schubert}@dbs.ifi.lmu.de

Abstract—In many graph applications, computing cost-
optimal paths between two locations is an important task for
routing and distance computation. Depending on the network
multiple cost criteria might be of interest. Examples are travel
time, energy consumption and toll fees in road networks. Path
skyline queries compute the set of pareto optimal paths between
two given locations. However, the number of skyline paths
increases exponentially with the distance between the locations
and the number of cost criteria. Thus, the result set might be
too big to be of any use. In this paper, we introduce multicriteria
linear path skyline queries. A linear path skyline is the subset
of the conventional path skyline where the paths are optimal
under a linear combination of their cost values. We argue that
cost vectors being optimal with respect to a weighted sum are
intuitive to understand and therefore, more interesting in many
cases. We show that linear path skylines are convex hulls of
an augmented solution space and propose an algorithm which
utilizes this observation to efficiently compute the complete linear
path skyline. To further control the size of the result set, we
introduce an approximate version of our algorithm guaranteeing
a certain level of optimality for each possible weighting. In our
experimental evaluation, we show that our approach computes
linear path skylines significantly faster than previous approaches,
including those computing the complete path skyline.

I. INTRODUCTION

In many important applications areas, data is organized as a
network or graph. One of the most important tasks in networks
is to compute a cost-optimal path between a start node and a
target node. In spatial transportation networks such as road
networks, public transportation networks or computer net-
works, computing cost-optimal paths is the core functionality
of routing and navigation functions. In other networks, such as
co-authorship or social networks computing cost-optimal paths
is used to measure the distance between nodes. Depending
on the given application, the cost for traversing a link has a
different meaning. In road networks, the cost might represent
travel time, travel distance, energy consumption or the number
of traffic lights. In computer networks, costs might represent
the used bandwidth and the latency between routers. When
considering more than one cost criterion at a time, the cost of
a link or a complete path is denoted as a vector where each
dimension consists of the cost value for one cost criterion.
Thus, the definition of an optimal path has to be modified. A
simple way is to map the cost vector to a value by employing a
monotonic combination function. However, finding a suitable
way of combining cost values is often a difficult task because
different types of costs might have different levels of scale.
Furthermore, naming an exact weighting for each type of cost
is usually rather inconvenient for a user. An alternative, to
selecting a combination function, is to compute the set of

pareto optimal cost vectors, i.e. all result paths being optimal
under any monotonic combination function. The set of all paths
between a given start and target node having a pareto optimal
cost vector is called path skyline [1]. Though path skyline
queries compute all potentially optimal paths, they have several
practical limitations. In general, the number of pareto optimal
paths might increase exponentially as a function of the distance
in the network and the amount of considered cost criteria.
In these cases, processing time and memory consumption
even for state-of-the-art methods usually degenerate. A further
drawback is that confronting a user with a large amount of
alternative results is often not very helpful. Thus, it does make
sense to consider which type of result paths are useful and
which result paths can be omitted.

In this paper, we argue that computing results for any
type of combination function might add results which are not
intuitively understandable in many cases. Therefore, we reduce
the result set to paths which are optimal under the most basic
type of monotonic combination functions, the weighted sum
or linear combination. We denote the task of computing all
paths being optimal under a linear combination function as
linear path skyline query. Intuitively, this corresponds to the
case where a user would weight each type of cost with a
percentage describing its importance. The linear path skyline is
a subset of the conventional path skyline and has in most cases
a much smaller cardinality. Having a smaller result set yields
the opportunity to improve the efficiency of query processing.
Therefore, we will present a new algorithm for computing
linear path skylines for an arbitrary amount of cost criteria
being considerably faster and more memory efficient than
state-of-the-art algorithms for processing conventional path
skylines. From a mathematic point of view, the linear path
skyline corresponds to the convex hull in an augmented set of
cost vectors. A simple way to compute the linear path skyline
is to compute the conventional path skyline and then compute
the convex hull on the resulting cost vectors. However, this
approach is rather inefficient due to the large amount of paths
which have to be examined while computing the much larger
conventional path skyline.

In contrast, our proposed algorithm LSCH constructs the
linear path skyline successively while only adding new paths
which are members of the result set. To add a new cost
vector, we employ single criterion shortest path searches which
combine the cost vectors based on the normal vectors of
the hyperplanes currently limiting the linear path skyline. To
identify areas on the linear skyline where additional results
might still exist, we employ multidimensional convex hull
computations. To process path searches as fast as possible,
we employ a query specific precomputation step to determine

lower bounds for each cost criterion. Based on these lower
bounds single-criterion shortest path searches can be processed
very efficiently by using A*-search. Let us note that there are
already solutions for computing linear path skylines for the
special case of having exactly two cost criteria [2]. However,
these methods heavily exploit the mechanics unique to two-
dimensional cost spaces and cannot be easily generalized to
our setting considering an arbitrary amount of cost criteria.
Though the linear skyline is usually much smaller than the
conventional skyline, the amount of result paths might still
exceed the amount of practically usable alternative paths. Thus,
we present an approximative variant of our algorithm which
we name ε-LSCH. The result of ε-LSCH guarantees that
for any possible linear weighting there exists a result path
where the combined cost value is at most ε% worse than
the cost value of the optimal path w.r.t. that weighting. We
will compare our new methods to a state-of-the-art method
for computing conventional path skylines and a method for
combinatorial optimization that is adaptable to our setting. Our
experiments are run on two different types of networks. The
first network is a road network of the city of Munich with up to
five cost criteria that is extracted from Open Street Map. The
second type of network are artificial lattice graphs allowing to
simulate different problem instances and parameter settings.
To conclude, the contributions of the paper are as follows:

• An introduction to linear path skyline queries and their
connection to multidimensional convex hulls.

• The algorithm LSCH (Linear Skyline Convex Hull)
which constructs only linear path skyline paths and
computes the complete linear path skyline.

• The approximative algorithm ε-LSCH which com-
putes a subset of paths and guarantees that for each
possible weighting the results divert only by a given
percentage ε from the optimal costs.

The rest of the paper is structured as follows: Section II
reviews related work in the area of path skyline computation,
linear skylines and multidimensional convex hulls. The general
setting and the definition of our task are described in section
III. Our new algorithms are presented in section IV. In section
V, we demonstrate the performance of our new methods based
on experiments on real and artificial network data. The paper
is concluded by section VI summarizing the contributions and
giving an outlook at future work.

II. RELATED WORK

In this section, we will survey related problems to linear
path skylines and convex hulls.

In the database community, the skyline operator was in-
troduced in [3]. Multiple approaches to compute skylines in
database systems on sets of cost vectors followed [4], [5], [6].

The most similar setting to the approach being presented in
this paper is computing route skylines [1]. In this task, we want
to find all paths between two nodes in a multicriteria network
where the costs of paths are not dominated by any other
path between the same two nodes. In Operations Research,
the problem of finding complete path skylines is known as
the Multiobjective Shortest Path problem, and surveys on
existing solutions to this problem can be found in [7], [8], [9],

[10]. Early on, [11] proved that the size of the path skyline
may increase exponentially with the number of hops between
start and target node, and that the problem therefore is NP-
hard. More recently, [12] showed that the number of routes
is in practice feasibly low when using strongly correlated
cost criteria. The current state of the art of computing path
skylines are label correcting methods [1], [13], [14] employing
lower bounds. In this setting, paths which cannot be extended
into result paths are pruned by two mechanisms. The first
mechanism is that paths ending at an intermediate node n
do not need to be extended if they are dominated by any
other path beginning at the start node s and ending at the
intermediate node n. The second pruning method is based
on the availability of a lower bound approximation of the
remaining cost for each cost criteria to the target t. Based
on this lower bounds it is possible to exclude paths early by
comparing them to the current set of result paths between s
and t. In [1], lower bounds are provided by a Reference Node
Embedding computed before any query is posed. Another
approach is to compute lower bound costs individually for each
query [15]. Tung and Chew [16] proposed to perform a single-
source all-target Dijkstra search for each cost criterion on the
graph in reverse direction to find the costs of the shortest paths
from all other nodes in the graph to the target node t. We will
refer to this approach as Multi-Dijkstra (MD) and employ it as
the lower bound computation step in our experiments because
it represents the state of the art of lower bound computations
for path skyline computation [14].

The methods reviewed so far aim at computing pareto
optimal paths which constitute a superset of the linear path
skyline discussed in this paper. There already exist some
approaches to directly compute linear path skylines. The first
approaches are limited to the case of two cost criteria [17],
[2], [18]. [18], [17] find all non-dominated paths in a two-
phase approach. The first phase computes the set of so-called
supported solutions, followed by the second phase determining
the remaining results. These supported solutions are equivalent
to members of the linear path skyline. In [17], the authors
compared several algorithms for determining the supported so-
lutions. [2] introduces a label correcting approach to compute
linear path skylines in bicriteria networks which outperformed
previous approaches. However, all of the previous approaches
heavily rely on the characteristics of a two dimensional cost
space as documented in [19], [20], [21].

In [22] the authors propose an algorithm called ExA for
computing extreme supported nondominated (ESN) points of
multiobjective mixed integer programs. Since computing all
ESN points is similar to computing the linear skyline, ExA
can be modified to process linear path skyline queries in the
multicriteria case. For d cost criteria, ExA searches all sets of
cost vectors having a cardinality of d and thus, specify a hyper-
plane in the solution space. Each of these sets is called a stage.
When processing a stage, ExA has to solve a linear equation
system to determine the normal vector of the plane. Afterwards
the normal vector is used to determine whether it is necessary
to compute a new solution based on the stage. A drawback
of ExA is that in some settings the number of stages can
dramatically increase, making the number of linear equation
systems which have to be solved extremely large. In contrast,
our new approach works with facets on the convex hull instead
of stages. Though computing facets causes an additional step

in the algorithms, there are far less facets than stages and
thus, the amount of linear equation systems which have to
be solved in our new approach is considerably smaller. Since
ExA is the only approach for computing linear path skyline
queries in multicriteria networks so far, we compare to ExA
in our experiments. A well known mathematical concept being
very similar to the linear skyline of cost vectors is the convex
hull. The linear path skyline corresponds to a subset of the
vertices on the convex hull of cost vectors. We will formally
discuss the connection of the linear skyline and the convex hull
when discussing our algorithm in section IV. Our algorithm
will use multidimensional convex hull computations to prune
the search space. Therefore, we give an overview of the used
algorithm on multidimensional convex hull computation. In our
algorithm, we employ the Beneath-and-Beyond approach [23]
which incrementally adds new points to the convex hull. The
method starts with a trivial point set spanning a d-dimensional
hyperplane. Given a new point p, it is tested whether p is inside
the hull. If so, the next point is examined. If p is placed outside
of the hull, the algorithm removes the facets being shaded by
p and computes a set of new facets. Though there exist more
recent and more sophisticated methods to compute the convex
hull, Beneath-and-Beyond fits very well to the requirements of
our algorithm. The convex hull computation in our new method
is started when a single element is added to the convex hull
and returns the resulting facets containing the new point. Let
us note that the setting in our algorithm can even guarantee that
each added point is part of the convex hull and thus, beneath
and beyond only has to compute new facets replacing an old
one. Let us note that faster convex hull algorithms like quick
hull [24] mainly optimize the selection of new points extending
the convex hull, but do not improve the step of computing its
new surface compared to Beneath-and-Beyond.

III. PROBLEM SETTING

In this section, we present the formalization of concepts
central to our work. First, we define the notion of a multicrite-
ria network in order to introduce the concept of a path. Then,
we formalize different concepts of skylines and the queries
which compute them.

A d-dimensional multicriteria network is a directed graph
G = (V,E) where V denotes the set of vertices and E ∈
V × V denotes the set of directed edges. The dimensional-
ity of the network refers to the number of cost functions.
In a d-dimensional multicriteria network d cost functions
c1, . . . , cd : E → R≥0 exist. For example, if G describes
a three-dimensional road network, the cost functions may
represent height differences, travel distances and the number of
traffic lights. We denote the d-dimensional cost vector of an
edge (u, v) ∈ E by c((u, v)) := [c1(u, v), . . . cd(u, v)]

T :=
[(u, v)1, . . . , (u, v)d]

T . A path P is a consecutive set of
edges ((s, v), . . . , (u, t)) which does not visit any node twice.
Likewise, any path has a d-dimensional cost vector p =
(p1, . . . , pd) =

∑
(u,v)∈P c((u, v)) which is the component-

wise sum of its edges. Note that most of the arguments
presented in this paper refer to cost vectors. Let us stress
that speaking of a given cost vector, we implicitly assume
there exists a given path (between two nodes in a multicriteria
network) with which the cost vector is associated. For reasons
of brevity, however, we might omit explicitly mentioning the

path which constitutes a given cost vector. When comparing
different cost vectors, we always assume the corresponding
paths to start and end at the same nodes within the underlying
multicriteria network. When referring to multiple cost vectors,
we either choose different letters (e.g. p, q) or superscript their
indices (e.g. pi). For given start and target nodes s, t ∈ V ,
respectively, we denote the set of all paths from s to t by
R(s, t) or R is s and t are clear from the context. Throughout
this paper, we assume G to be a d-dimensional multicriteria
network.

In order to distinguish between linear skylines and sky-
lines in the ordinary sense, we first give the definition of
a conventional skyline followed by that of a linear skyline.
Subsequently, these definitions are extended to path skylines.

Definition 1: Conventional Skyline
Let P be a set of points in a d-dimensional vector space. Then
x ∈ P is said to dominate y ∈ P , denoted as x ≺ y, iff

∃ 1 ≤ i ≤ d : xi < yi ∧ @ 1 ≤ i ≤ d : xi > yi.

The set of points which are not dominated, i.e. {x ∈ P | @ y ∈
P : x ≺ y}, is referred to as conventional skyline of P and
denoted by SC(P).

Definition 2: Linear Skyline
Let P be a set of points in a d-dimensional vector space. A

subset SL(P) ⊆ P is called linear skyline, iff the following
two conditions hold:

(i) Completeness: ∀ 0 6= w ∈ Rd
≥0 ∃ x ∈ SL such that:

wTx = minwT y for all y ∈ P .

(ii) Minimality: ∀ x ∈ SL ∃ 0 6= w ∈ Rd
≥0 such that:

wTx < wT y for any x 6= y ∈ P .

Now, we extend these definitions to the case of paths in
multicriteria networks. The definitions extend naturally since
for every path there exists a unique cost vector as defined
above.

Definition 3: Conventional Path Skyline
Let s, t ∈ V and let R(s, t) be the set of paths between s and
t in the multicriteria network G(V,E). The set of paths SC =
SC(R(s, t)) = {P 1, . . . , P k} ⊆ R(s, t) whose cost vectors
p1, . . . , pk form the conventional (point) skyline is referred to
as conventional path skyline.

Definition 4: Linear Path Skyline
Let s, t ∈ V and let R(s, t) be the set of paths between s
and t in the multicriteria network G(V,E). The set of paths
SL = SL(R(s, t)) = {P 1, . . . , P k} ⊆ R(S, t) whose cost
vectors p1, . . . , pk form the linear (point) skyline is referred to
as linear path skyline.

Note that SL ⊆ SC , which is illustrated in Figure 1
on a two-dimensional and three-dimensional dataset. This is
also implied by the following property: Given a point set
P , the conventional skyline is formed by those points of P
which are optimal under some monotonic cost function. The
linear skyline, in contrast, is formed by those points which
are optimal under a linear combination. Since the combination
functions incorporated in the definition of the linear skyline
are a subset thereof, it yields the above inclusion.

x

y

(a) Conventional Skyline 2D

x

y

(b) Linear Skyline 2D

(c) Conventional Skyline 3D (d) Linear Skyline 3D

Fig. 1. Comparison of the conventional and linear skylines for a 2D and 3D
dataset. In 3D it is viewed from the origin of the cost space.

Also, in the definition of the linear skyline it suffices to
require w ∈ Rd

>0 instead of w ∈ Rd
≥0. Since this property

is of importance to later results, it is proven in the following
lemma.

Lemma 1: Let P denote finite set of points in a d-
dimensional vector space. Let 0 6= w ∈ Rd

≥0 be an arbitrary
weight vector, and let x ∈ P such that wTx < wT y for any
x 6= y ∈ P . Then there exists ŵ ∈ Rd

>0 for which holds:
ŵTx < ŵT y for any x 6= y ∈ P .

Proof: Let I ⊆ {1, . . . , d} be such that wi = 0 for all
i ∈ I and wj > 0 for all j /∈ I . Let k := |I| denote the number
of dimensions in which w is zero. If k = 0, then w ∈ Rd

>0 is
already the case. Therefore, we assume k > 0, and by w 6= 0,
we have k < d. Furthermore, let M := max{yi | y ∈ P, 1 ≤
i ≤ d} denote the maximal component of all points in P . By
assumption, we have wTx < wT y for all x 6= y ∈ P . Let
m := min{wT y − wTx | x 6= y ∈ P} > 0. For w with k
components being zero, we now construct ŵ ∈ Rd

>0 for which
the required condition holds. Let w′i := wi for all i ∈ I , and
let w′j := wj + q for all j /∈ I where q := m/(2kM) > 0.
Hence, ŵ ∈ Rd

>0. Therefore, it remains to show that indeed
ŵTx < ŵT y for any x 6= y ∈ P . To prove this, we use the
following inequalities: ŵTx < wTx+ qkM and ŵT y > wT y.

ŵT y − ŵTx > wT y − ŵTx

> wT y − wTx− qkM

> m− m

2kM
kM =

2

m
> 0

This proves the lemma.

From the above lemma, we may derive the following
equivalence in the definition of the linear skyline.

Remark 1: In Definition 2, requiring the weight vectors w

in condition (i) and (ii) to be strictly positive, i.e. w ∈ Rd
>0,

yields the same result set.

Proof: Let S≥L denote the linear skyline as defined by
Definition 2, and let S>L denote the set of points which
are described by the definition if w ∈ Rd

>0 is required.
Furthermore, let P denote set of d-dimensional cost vectors.
We show: S≥L = S>L . Obviously, S>L ⊆ S≥L , because for
x ∈ S>L , there exists 0 6= w ∈ Rd

>0 ⊂ Rd
≥0 such that

wTx < wT y for all x 6= y ∈ P . Now, let x ∈ S≥L . By
definition, there exists 0 6= w ∈ Rd

≥0 such that wTx < wT y
for all x 6= y ∈ P . Lemma 1 states that it suffices to require
0 6= w ∈ Rd

>0. Therefore, x ∈ S>L which proves the statement.

As mentioned before, it is our goal to speed up skyline
computation while limiting the size of the result set. SL
generally holds significantly less elements than SC , however,
we may trim the result set even further. For this purpose we
introduce the notion of an ε-linear skyline.

Definition 5: ε-Linear Skyline
Let P be a set of points in a d-dimensional vector space, and
let ε > 0. A subset Sε ⊆ P has the so-called ε-linear skyline
property, iff the following two conditions hold:

(i) Completeness: ∀ 0 6= w ∈ Rd
≥0 ∃ x ∈ SL such that:

wTx ≤ (1 + ε)minwT y for all y ∈ P .

(ii) Minimality: ∀ x ∈ SL ∃ 0 6= w ∈ Rd
≥0 such that:

wTx < wT y for any P 3 y 6= x.

As before, we extend this definition to paths in a multicri-
teria network:

Definition 6: Let s, t ∈ V and let R(s, t) be the set of
paths between s and t in the multicriteria network G(V,E).
Furthermore, let ε > 0. A set of paths Sε = {P 1, . . . , P k} ⊆
R whose cost vectors p1, . . . , pk fulfill the ε-linear skyline
property is referred to as ε-linear path skyline.

The above definitions of ε-linear (path) skylines introduce
a fault tolerance for linear (path) skylines. ε is an upper bound
for the deviation of the best retrieved solution from the optimal
solution. By the tightened condition (i), we get Sε ⊆ SL.
Therefore, we have the following chain of inclusion: Sε ⊆
SL ⊆ SC . Note that equality is improbable and only occurs
for very small skyline sizes or pathological examples.

According to these notions of a skyline, we define three
different query types. Given a multicriteria network, a start and
a target node therein, the conventional skyline query computes
the conventional skyline, the linear skyline query computes
the linear skyline and the ε-linear skyline query computes
the corresponding ε-linear skyline for an additionally given
parameter ε.

IV. COMPUTING LINEAR PATH SKYLINES

A. Preliminaries

In this section, we will define convex hulls which are
inherently similar to linear skylines. This similarity will in
turn be emphasized in a series of statements. As a foundation
for what will follow, let us formalize the notion of convex
combinations. Convex combinations are weighted averages of

convex hull

w

-w

facet

vertex

a

b

convex hull convex hull

linear skyline

undesired vertices

facet

vertex -w

w
minw

maxw

convex hull

w

-w

facet

vertex

a

b

convex hull convex hull

linear skyline

undesired vertices

facet

vertex -w

w
minw

maxw

Fig. 2. The figure on the left illustrates the definition of convex hulls and
the figure on the right illustrates how linear skylines relate to convex hulls.

point sets. Let {α(1), α(2), . . . , α(k)} be non-negative weights
s.t. α(1) + α(2) + . . . + α(k) = 1. Any α(1)p(1) + α(2)p(2) +
. . .+α(k)p(k) are then convex combinations of the set of points
{p(1), p(2), . . . , p(k)}.

We may now introduce convex hulls in a similar way as
linear skylines are defined.

Definition 7: Convex Hulls
Let P ⊂ Rd

≥0 be a finite set of points, i.e. cost vectors of
all paths between two locations. A convex hull of P can be
defined as the convex combination of the hull’s vertices. A
set of points Conv(P) are the vertices of the convex hull of
P ⊂ Rd

≥0, iff the following two conditions are satisfied:

(i) Completeness: ∀ 0 6= w ∈ Rd ∃ x ∈ Conv(P) such
that: wTx = min y∈P w

T y

(ii) Minimality: ∀ x ∈ Conv(P) ∃ 0 6= w ∈ Rd such that
for any cost vector P 3 y 6= x : wTx < wT y.

The notion of a convex hull is illustrated in Figure 2. Note
that the concept of linear skylines only differs from that of
convex hulls in the requirement of the weight vectors being
non-negative (or strictly positive by Lemma 1). This is also
evident in Figure 2 (figure on the left). Another important
geometric notion is needed for the following argumentation,
namely the notion of facets of the convex hull:

Definition 8: Convex Hull Facets
Let P ⊂ Rd

≥0 be a finite set of points, i.e. cost vectors of
all paths between two locations. Let Conv(P) be the set of
convex hull vertices of P .

(i) All vertices {v1, . . . vk} of a facet lie on the same
hyperplane with the normal vector 0 6= w ∈ Rd, s.t.
wT v1 = . . . = wT vk.

(ii) wT v1 = min x∈Conv(P) w
Tx

As we rely on a rather untypical definition of convex
hulls, we shall now prove its equivalence to the conventional
definition.

Lemma 2: If for a point 0 6= x ∈ Rd exists a vector 0 6=
w ∈ Rd s.t. wTx < wT y for all x 6= y ∈ P , then it is not a
convex combination of P \ x.

Proof: The expression wTx can be interpreted as the
distance from a hyperplane which goes through the origin
and has the normal vector w. Convex combinations of a set

of points cannot have a larger or smaller distance to the
hyperplane than any of the points in the set.

Theorem 1: Conv(P) is the minimal set of points s.t. all
points in P are convex combinations of Conv(P).

Proof: From the completeness condition in the definition
follows that for each vector 0 6= w ∈ Rd there exists a convex
hull vertex a s.t. wTa = min x∈P w

Tx and a convex hull
vertex b s.t. wT b = min x∈P −wTx = max x∈P w

Tx. From
Lemma 2 therefore follows that convex hull vertices do not
lie on a line segment between any two points in P . Convex
hull vertices are therefore extreme points of a finite convex
set and it is well known that all points in the set are convex
combinations of the extreme points.

From the minimality condition in the definition follows
that for each convex hull vertex exists a hyperplane through
the origin to which the vertex has either a larger or smaller
distance than all other points in P . From Lemma 2 follows
that all convex hull vertices are essential.

B. Linear Skyline Convex Hulls

As depicted in Figure 2 (figure on the right), the linear
skyline is part of the convex hull. Intuitively one could think
that the linear skyline is the subset of the convex hull that
is visible from the origin, but the dotted line in the figure
disproves this notion. Geometrically, the linear skyline contains
all points that minimize the distance to some hyperplane
through the origin, but convex hull vertices can also maximize
that distance. In order to get rid of the undesired vertices,
the convex hull can be computed in the augmented cost vector
space P ∪ INF instead of P . Therefore, we now define infinity
points denoted by INF.

Definition 9: The set of infinity points INF is defined as
follows:

lim
ω→∞

{[ω, 0, . . . , 0]T , [0, ω, . . . , 0]T , . . . , [0, 0, . . . , ω]T }

The i-th criterion’s infinity point INF(i) ∈ INF lies on the i-th
criterion’s axis at infinity.

INF(i)
j = lim

ω→∞

{
j = i, ω

j 6= i, 0

The convex hull of P ∪ INF has two facets which have
exclusively infinity points as vertices. The front-infinity-facet
and the back-infinity-facet. The front-infinity facet’s normal
vector has only positive components and the back-infinity-
facet s normal vector has only negative components. The back-
infinity-facet is part of any convex hull in P ∪ INF.

We call the convex hull of the augmented cost vector space
P ∪ INF the linear skyline convex hull of P . In the following,
it will be shown that the vertices of the linear skyline convex
hull are simply the elements of the linear skyline in P and the
infinity points.

Lemma 3: Let P ⊂ Rd
≥0 be a finite set of points, i.e. cost

vectors of all paths between two locations.

SL(P) = Conv(P ∪ INF) \ INF

1. Start with convex hull of infinity points.
1.1 P = INF, open = {}, closed = {}
1.2 Add front-infinity-facet to open and back-

infinity-facet to closed.
2. Remove an open facet F with normal vector 0 6= w ∈

Rd
≥0 and vertices V ⊂ P from open.
2.1 Find x s.t. wTx = min y∈P w

T y.
2.2 If wTx < min y∈V wT y:

2.2.1 add x to P
2.3 If wTx ≥ min y∈V wT y:

2.3.1 add F to closed and go to step 4.
3. Determine facets of the convex hull and their normal

vectors. Add new facets to open.
4. If open 6= {} go to step 2, else return P \ INF.

Fig. 3. Proposed algorithm LSCH (Linear Skyline Convex Hull) to compute
the Linear Skyline of P .

Proof: Let positive vectors be vectors with exclusively
positive components. Let non-negative vectors be vectors with
exclusively non-negative components. Let negative vectors be
vectors with at least one negative component. Vectors that
minimize the dot product with a positive vector in P , also
minimize it in P ∪ INF. First, from Lemma 1 follows that
any vectors that minimize the dot product non-negative vectors
also minimize the dot product with positive vectors. Second,
the dot product of points in INF with positive vectors is clearly
larger than of any points P with positive vectors. Vectors
that minimize the dot product with a negative vector in P ,
do not minimize them in P ∪ INF. The dot product of one
of the infinity points and a vector with at least one negative
component is clearly smaller than of any points in P . The rest
follows from the almost equivalent definition of convex hulls
and linear skylines.

C. Proposed Algorithm for Incremental Linear Skyline Com-
putation

In the previous section, it was shown that the linear skyline
of P can be obtained by computing the convex hull in P∪INF,
but so far it was not shown how this can be used for computing
linear path skyline queries. There are too many paths between
two locations to create all of them. In the following, it is shown
how the complete linear skyline Convex Hull can be obtained
by only creating cost vectors and associated paths that are
contained in Conv(P ∪ INF). The basic idea is to find new
solutions in each iteration, determine the convex hull in P∪INF
of the known solutions and search for a new solution outside
of the convex hull by minimizing the dot product with the
normal vectors of the hull’s facets. To find a new solution
which minimizes the dot product an A*-search is performed
in the network which employs the normal vector for computing
the cost of a path. The computation terminates once it is known
that there are no more cost vectors outside the convex hull. Any
solutions that are known during the computation are elements
of the final result set and therefore, they can be immediately
presented to the user.

The proposed algorithm to compute the linear skyline is
outlined in Figure 3. An exemplary run of the algorithm for
two cost criteria is shown in Figure 4. It should be noted

[0,∞]T

[∞,0]T

[0,∞]T

[∞,0]T

back-infinity-facet

[0,∞]T

[∞,0]T

back-infinity-facet

Iteration 1
Iteration 3

Termination

back-infinity-facet

[0,∞]T

[∞,0]T

Iteration 2

back-infinity-facet

cost vectors
#1

#2

#3

#4

Linear Skyline ∪ INF

[0,∞]T

[∞,0]T

[0,∞]T

[∞,0]T

back-infinity-facet

[0,∞]T

[∞,0]T

back-infinity-facet

Iteration 1
Iteration 3

Termination

back-infinity-facet

[0,∞]T

[∞,0]T

Iteration 2

back-infinity-facet

cost vectors
#1

#2

#3

#4

Linear Skyline ∪ INF

Fig. 4. Exemplary linear skyline convex hull computation which obtains a
linear skyline with two cost vectors in four scalarized searches. Coordinates
are schematic, because it would otherwise not be possible to display the
coordinates at infinity.

that angles and distances are depicted incorrectly, in order to
display the infinity points. At first the algorithm begins with
the front-infinity-facet and back-infinity-facet which are both
depicted as lines connecting the infinity points. Open facets
are depicted as dashed lines and closed facets as solid lines.
The first search minimizes the normal vector of the front-
infinity-facet and finds a new solution which leads to the
removal of the front-infinity-facet and the addition of two new
open facets. The second and third search minimize the normal
vectors of these two open facets. The second search finds an
old solution and the corresponding facet is closed. The third
search finds a new solution which leads to the removal of the
facet and the addition of two new facets. One of these new
facets has the same normal vector as a previously processed
facet and is immediately closed. The fourth search finds an old
solution and the corresponding facet is closed. This concludes
the computation. It can be seen that instead of computing the
complete convex hull of all cost vectors in P , it only computes
the linear skyline of P .

1) Initialization: The algorithm starts with a convex hull of
INF which only contains the front- and back-infinity-facet. The
front-infinity-facet is added to the set of open facets and the
back-infinity-facet is added to the set of closed facets. In this
paper, the normal vector of the front-infinity-facet is chosen
as [1, 1, . . . , 1]T but this is not essential for the correctness of
the algorithm.

The algorithm maintains a set of open facets, a set of
closed facets and a list of linear skyline elements P ⊆ SL(P).
Facets are represented as a sorted integer array and vertices
are represented as list indices. Infinity points can then be given
negative vertex indices from −d to −1 and are not part of the
list, because they are not part of the linear skyline in P .

2) Find solutions outside current Convex Hull: In the sec-
ond step, the algorithm searches for further solutions outside of
the current convex hull. A facet’s hyperplane divides the space
in two halves. One half contains the origin and the other does
not. For all hyperplanes, any cost vectors inside the convex
hull lie in the half that does not contain the origin. To find
solutions that are outside of the convex hull, it is necessary
to find cost vectors that lie on the same side as the origin for
some facet’s hyperplane. If such a cost vector does not exist
for a facet’s hyperplane, the facet is a closed facet.

First, an open facet F with the vertices V and the normal
vector 0 6= w ∈ Rd

≥0 is selected. How normal vectors are de-
termined is outlined in the third step of the algorithm. Second,
the cost vector x s.t. wTx = min x∈P w

Tx and its associated
solution is computed. Third, if wTx is smaller than the minimal
dot product with the facet’s vertices min x∈V wTx, then x lies
outside the convex hull. If x lies outside the convex hull, the
facet F is simply removed from the set of open facets and x
is added to the list of linear skyline elements. If x does not
lie outside the convex hull, the facet F is moved from the set
of open facets to the set of closed facets.

Open facets of convex hulls in P∪INF always have normal
vectors with non-negative components. By definition, vertices
of facets have to lie on the same hyperplane and cost vectors
in P always have larger dot products than cost vectors in
INF for any normal vectors that contain negative components.
Therefore only facets which consist solely of infinity points

1. Compute shortest path costs from all nodes to the
destination to prepare heuristic for subsequent A*-
searches.

2. Compute Linear Path Skyline with LSCH using A*-
search for scalarized searches.

Fig. 5. Proposed algorithm for linear path skyline computation.

can have normal vectors w /∈ Rd
≥0 and the back-infinity-facet

is trivially never an open facet. Minimizing the dot product
with such vectors is therefore simply a search with scalarized
cost objectives. For linear path skylines, scalarized searches to
find cost-optimal paths between two query locations, can be
performed by shortest path algorithms like Dijkstra, Bidirec-
tional Dijkstra and A*-search. For a weight vector w and an
edge’s cost vector e the scalarized edge cost during shortest
path search is simply wT e.

If a search was previously conducted with the same weight
vector w, the search would trivially yield the same result. The
normal vectors of previous results should therefore be stored
to prevent such redundant searches.

3) Update convex hull and determine normal vectors of
facets: Finding the convex hull facets of a set of vertices
is a well-known problem called facet enumeration and can
be solved by most existing convex hull algorithms for an
arbitrary number of dimensions. Incremental approaches like
the Beneath-And-Beyond approach have the advantage, that
they do not need to recompute all facets and only determine
new facets. If the algorithm or its implementation does not
support infinitely large numbers, it can be approximated by a
very large number.

Normal vectors of facets can be determined by solving a
linear equation system Ax = b. The matrix A has the vertices
of the facets as row vectors, the vector b is any vector that has
the same positive value for all components and the vector x is
the resulting normal vector. When infinity points are vertices of
the facet, any components where infinity points have infinitely
large components have to be zero for the normal vector. The
infinity points and their infinity components therefore can be
excluded from the linear equation system only a d−k×d−k
linear equation system has to be solved if there are k infinity
point vertices.

4) Termination: If the set of open facets is not empty, the
algorithm returns to the second step and tries to find cost
vectors outside the new convex hull.

If the set of open facets is empty, the hyperplanes of the
closed facets define the convex hull of the augmented space
P ∪ INF and the algorithm terminates. After termination, the
algorithm’s list of linear skyline solutions P is equal to the
complete linear skyline SL(P).

D. Linear Path Skyline Computation

In the previous section, it was shown how the linear path
skyline computation can be reduced to scalarized searches.
We will now describe the details about how these scalarized
searches are performed. The linear path skyline computation
consists of the two steps outlined in Figure 5. In the first step
the shortest path distances between all nodes and the target

TABLE I. COMPARISON OF KNOWN UPPER BOUNDS OF THE PROPOSED
APPROACH AND KNOWN UPPER BOUNDS OF EXA.

k = 10 k = 50 k = 100 k = 250
Worst case number of stages with ExA[25]

d = 2 20 100 200 500
d = 4 130 19650 161800 2573250
d = 6 262 2118810 75287620 7817031550
Maximal number of facets with the proposed algorithm (LSCH)
d = 2 20 100 200 500
d = 4 45 1225 4950 31125
d = 6 60 17300 152100 2511500

node are computed for all cost criteria. This yields cost vectors
that can be scalarized for each of the scalarized searches.
The purpose of these scalarized shortest path distances is
to guide the searches towards the target and thereby speed
up the multiple searches between the same two locations.
In this paper, this technique is called Multi-Dijkstra, because
an all-target Dijkstra search with reversed edge directions is
performed for each of the d criteria [16]. In the second step, the
LSCH algorithm, as outlined in Figure 3, performs scalarized
searches with A*-search and uses the scalarized shortest path
distances as consistent cost heuristics.

E. Correctness of the proposed algorithm for Linear Path
Skyline Computation

Theorem 2: After the termination of the algorithm, P is
the complete linear skyline of P .

Proof: Let a facet with the set of vertices V and the
normal vector w be a closed facet in P , iff min x∈V wTx =
min y∈P w

T y.

The algorithm only terminates when all facets of the current
convex hull Conv(P ∪ INF) of P ⊆ P are closed facets. It
is a well-known property of convex hulls, that a cost vector
x ∈ P lies outside the convex hull of P ⊆ P iff the
convex hull Conv(P) has a facet with vertices V and normal
vector 0 6= w ∈ Rd s.t. wTx < min y∈V wT y. If all facets
are closed, there cannot exist such a facet. Therefore, all
vectors are contained in the convex hull. The rest follows from
Conv(P ∪ INF) \ INF being equal to the linear skyline SLP
which is shown in Lemma 3.

F. Termination and Worst Case Bounds of Proposed Algorithm

Theorem 3: Let P ⊂ Rd
≥0 be a finite set of points, i.e. cost

vectors of all paths between two locations. Each scalarized
search yields a previously unknown closed facet in P or a
previously unknown linear skyline element.

Proof: Let x ∈ P be the solution of the scalarized search
s.t. wTx = min x∈P w

Tx. The scalarization weights 0 6= w ∈
Rd
≥0 of the search are the normal vector of an open facet. Let V

be the vertices of this facet. If min x∈P w
Tx = min x∈P v

Tx,
then the facet is by definition a closed facet. If it is not the
case, it follows wTx < min x∈Conv(P ∪ INF) w

Tx because it is
a closed convex hull facet in P . Therefore, it is a new solution.

Table I displays the amount of facets leading to path
searches in LSCH in comparison to the amount of stages being
examined in ExA [25]. It can be observed that the theoretical
worst case amount of facets is considerably smaller than the
worst case amount of stages in ExA.

1. Start with convex hull of infinity points.
1.1 P = INF, open = {}, closed = {}
1.2 Add front-infinity-facet to open and back-

infinity-facet to closed.
2. Remove an open facet F with normal vector 0 6= w ∈

Rd
≥0 and vertices V ⊂ P from open.
2.1 Find x s.t. wTx = min y∈P w

T y.
2.2 If wTx < 1

1+ε min y∈V wT y:
2.2.1 add x to P

2.3 If wTx ≥ 1
1+ε min y∈V wT y:

2.3.1 add F to closed and go to step 4.
3. Determine facets of the convex hull and their normal

vectors. Add new facets to open.
4. If open 6= {} go to step 2, else return P \ INF.

Fig. 6. Proposed algorithm (ε-LSCH) to compute the ε-Linear Skyline of P .
For ε = 0 this algorithm is equivalent to the proposed algorithm to compute
the Linear Skyline.

Theorem 4: The maximal number of scalarized searches
and convex hull updates for a linear path skyline with k
solutions is with the algorithm k +

(
k−dd/2e

k−d
)
+
(
k−bd/2c

k−d
)
.

The number of searches and convex hull updates is with the
proposed incremental algorithm for a linear path skyline with
k solutions O(kb

d
2 c).

Proof: The algorithm performs at most one convex hull
update per scalarized search. Each scalarized search yields
either a new solution or a closed facet. The maximal number
of searches and convex hull updates is therefore the number
of solutions added with the number of closed facets. It should
be noted that the vertices of the closed facets are ignored in
this case and facets are only regarded as half-space represen-
tations. It is therefore irrelevant if there are multiple vertex
combinations that could be used to represent one of the convex
hull’s intersecting half-spaces. The Upper Bound Theorem [26]
states that the number of convex hull facets as a function
of the number of vertices is maximal for cyclical polytopes
which have

(
k−dd/2e

k−d
)
+
(
k−bd/2c

k−d
)

facets for k vertices. The
asymptotical version of the Upper Bound theorem [27] states
that the number of convex hull facets as a function of the
number of vertices is O(kb

d
2 c) for k vertices.

G. Computing ε-Linear Skylines

The proposed algorithm to compute ε-Linear Skylines is
outlined in Figure 7. The basic idea of this approach is to
check if a new solution x would lie inside the convex hull of
the previous solutions multiplied by 1

1+ε . If it does, previous
solutions P already contain for all 0 6= w ∈ Rd

≥0 a cost vector
y ∈ P s.t. wT y ≤ (1 + ε)wTx.

To simplify the proof of correctness, the convex hull
multiplied by 1

1+ε is defined as the ε-convex hull.

Definition 10: Let P ⊂ Rd
≥0 be a finite set of points, i.e.

cost vectors of all paths between two locations. The ε-convex
hull of P consists of the vertices of the convex hull of P
multiplied by 1

1+ε and is denoted by Convε(P).

Convε(P) =
{ 1

1 + ε
x |x ∈ Conv(P)

}
(1)

P1

P1

P2

P3P2

P3

convex hull of
{P1, P2, P3} ∪ INF

ε-convex hull of
{P1, P2, P3} ∪ INF

1
1+ε

1
1+ε 1

1+ε

Dienstag, 5. August 14

Fig. 7. Comparison of ε-convex hull with conventional convex hull in
P ∪ INF.

Multiplying a set of points P by 1
1+ε and then determining

the convex hull leads to the same result as first computing
the convex hull of the set of points and then multiplying all
convex hull vertices by 1

1+ε . As can be seen in Figure 7,
multiplying a set of points with a scalar simply scales all dot
products by the same amount and therefore does not affect
angles or distance relationships. The minima and maxima for
dot products with any 0 6= w ∈ Rd are just scaled. Intuitively
this is comparable to changing from coordinates in meters to
coordinates in kilometers, which clearly would not affect the
number of facets, which vertices belong to which facets and
the facets’ normal vectors.

Finally, it follows a proof for correctness.

Theorem 5: Upon termination of the algorithm, P is the
complete ε-linear skyline of P .

Proof: The algorithm only terminates when all facets of
the ε-convex hull are closed facets. Analogously to the proof
for the conventional LSCH algorithm in Theorem 2, all cost
vectors in P are upon termination contained in the ε-convex
hull of P ∪ INF.

The ε-convex hull of P ⊆ P contains for any 0 6= w ∈ Rd

the vertex x = min y∈P wT 1
1+εy. From this follows that the

convex hull contains (1+ε)x = min y∈P wT y. If a cost vector
x ∈ P does not lie outside the ε-convex hull of P ⊆ P , then
for each 0 6= w ∈ Rd there exists a vertex y ∈ P of the convex
hull of P ⊆ P s.t. wT y ≤ 1

1+εw
Tx.

It follows that if all solutions are inside the ε-convex hull
of P ∪ INF, the vertices of the convex hull of P ∪ INF contain
the ε-Linear Skyline.

V. EXPERIMENTAL EVALUATION

All experiments are performed on a dedicated machine with
an 2.2 Ghz Opteron Dual Core processor and 64 GB RAM. All
algorithms were implemented in Java 1.7 and a single core was
used for each experiment. If an algorithm is not able to solve
a task in less than 360 seconds the computation is aborted and
it is counted as a timeout.

We tested our algorithms on two types of networks. The
first type of network is the road network of Munich as derived

Munich‘s Airport

Munich‘s 25 City Districts
and Central Station

Fig. 8. Map of Munich with all selected start and end locations.

Munich‘s Airport

Munich‘s 25 city districts
and central station Fig. 9. 3×3×3 lattice graph, routing tasks are performed between opposing

corners.

from OpenStreetMap. This Munich graph consists of 221,465
nodes and 519,917 edges. The cost criteria utilized in the
experiments are travel time, route length, number of crossings,
penalized travel time and energy loss. The criterion travel time
assumes travel speeds to equal the speed limits whereas the
penalized travel time assumes additional 30 and 15 seconds
for each crossing with and without traffic lights, respectively.
The energy loss is a synthetic model roughly derived from
typical battery capacities of electric cars and their respective
ranges. It incorporates altitude differences in the following
sense: ascent increases the energy consumption by the gained
potential energy and descent reduces the energy consumption
(while negative values are corrected to zero). Let us stress
that the authenticity of the cost models used has absolutely no
influence on the computational benefits of our algorithms. For
experiments using two criteria, we employed travel time and
route length. For the three criteria setting, we added the number
of crossings. Finally for the five criteria settings, all five criteria
were used. As sample queries we selected the centers of the 25
city districts of Munich and added the central station and the
airport. Based on these start and target locations we conducted(
27
2

)
·2 = 702 sample queries. Figure 8 depicts the 27 locations

on the map.

The second type of graphs are three dimensional lattice
graphs of varying sizes (cf. Figure 9). In other words, we
generate lattices having n× n× n nodes for n ∈ {2, 4, 6, 8}.
Thus, the graph for n = 6 has 6 · 6 · 6 = 2016 nodes. As
attributes we artificially generated five cost values for each
edge. For each graph, each pair of diagonal edges was used
as a query. Thus, for each graph, we tested a total of eight
queries.

0

75

150

225

300

25 50 75 100 125 150 175

Munich, three cost criteria

av
g

nu
m

be
r

of
 r

ou
te

s

hops between query nodes

Path Skyline
Linear Path Skyline

(a) 3D

0

125

250

375

500

25 50 75 100 125

Munich, five cost criteria

av
g

nu
m

be
r

of
 r

ou
te

s

hops between query nodes

Path Skyline
Linear Path Skyline

(b) 5D

Fig. 10. Comparison of the number of skyline paths for conventional and
linear path skyline for 3 and 5 cost criteria in the Munich setting.

We compare our new algorithms LSCH and ε-LSCH with
the ExA algorithm proposed in [22]. Since ExA is designed for
multiobjective linear programs instead of linear path skyline
queries, we incorporated the A*-Search for computing shortest
paths w.r.t. a linear combination as in our own algorithm. To
have a state of the art comparison partner for computing the
conventional skyline, we compare to ARSC [1]. All tested al-
gorithms start query processing with the same precomputation
step to compute query specific lower bounds [16]. To the best
of our knowledge this is currently the best published method
for performing this task. However, if any better algorithm
for lower bound computation is available, all methods could
benefit from it.

In a first set of experiment, we compare the number of
result paths between conventional and linear path skylines. As
already claimed in the introduction, we argue that the set of
linearly optimal paths is usually much smaller than the set
of all pareto optimal paths. Furthermore, the increase of result
paths with an increasing path length and an increasing number
of criteria is far less extreme and thus, stays manageable in
many applications. Figure 10 displays the size of the path
skyline and the linear path skyline in the Munich setting for
three and five cost criteria. To measure the distance between
the locations, we determine the minimum number of hops
between the locations. The plots display the size of the skylines
as a function of the number of hops between the locations. It
can be seen that the amount of result paths in conventional
path skylines increases superlinearly with the number of hops
between start and destination. In contrast the size of the linear
skyline displays a weak linear increase. Thus, the size of linear
path skylines remains manageable even when the query points
are far away from each other. We can further observe that the

0

5

10

15

25 50 75 100 125 150

Munich, three cost criteria

ru
nt

im
e

in
 s

ec
on

ds

hops between query nodes

ARSC
ExA
LSCH

(a) 3D

0

100

200

300

400

25 50 75 100 125 150

Munich, five cost criteria

av
er

ag
e

ru
nt

im
e

in
 s

ec
on

ds

hops between query nodes

ARSC (136 timeouts)
ExA (24 timeouts)
LSCH

(b) 5D

Fig. 11. Runtime comparison between ARSC, ExA and LSCH in the Munich
setting.

increase w.r.t. the number of criteria, is also far less dramatic
as in the case of conventional skylines. While the average
amount of routes for five criteria in conventional path skyline
increases from 25 for three criteria to 145 for 5 criteria, the
linear skyline increases from 5 paths for three criteria to 22
paths for 5 criteria. To conclude, the increase of results in
linear path skylines with the distance of the query points and
the number of criteria is far less dramatic.

In the next experiment, we compare the runtime of LSCH
to ARSC and ExA in the Munich setting for three and five cost
criteria (cf. Figure 11). As expected, it can be seen that both
dedicated linear path skyline algorithms clearly outperform
ARSC when computing the complete path skyline. Thus, both
algorithms are able to exploit the fact that they have far less
result paths to compute. When comparing ExA to LSCH,
the effort needed to compute a linear path skyline is almost
identical for three criteria. The reason for the similar behavior
is that both algorithms require about the same amount of
A*-Searches in the graph and the number of solved linear
equations is comparable. For five cost criteria, we clearly see
that LSCH performs better than ExA for longer hop distances.
ExA has to solve more than 8 times more linear equation
systems than LSCH, and the number of linear equation systems
in LSCH is still rather small with about 22 updates of the
convex hull per query. Additionally, for this setting, ExA starts
to encounter queries where the time limit of 360 seconds does
not suffice to finish the computation. LSCH on the other hand,
does finish all given queries within the time limit.

We additionally test the runtime of all three algorithms on
the aforementioned lattice graphs. The results are depicted in
Figure 12. It can be seen that in this setting, ExA performs

100

200

300

400

2×2×2 4×4×4 6x6x6 8x8x8

lattice graph, five cost criteria

av
er

ag
e

ru
nt

im
e

in
 s

ec
on

ds

lattice graph dimensions

LSCH
ARSC

ExA

Fig. 12. Runtime comparison of ExA, ARSC and LSCH in the graphs.

0

15

30

45

60

25 50 75 100 125 150

Munich, five cost criteria

av
g

nu
m

be
r

of
 r

ou
te

s

hops between query nodes

ε=0
ε=0.1%
ε=1%
ε=5%

(a) Number of Paths

0

30

60

90

25 50 75 100 125 150

Munich, five cost criteria

av
er

ag
e

ru
nt

im
e

in
 s

ec
on

ds

hops between query nodes

ε=0%
ε=0.1%
ε=1%
ε=5%

(b) Runtime

Fig. 13. Impact of varying ε-values on the number of result paths and the
query runtime

very badly compared to both ARSC and LSCH, even in rather
small graphs. The reason for the large query times of ExA is
the large number of stages. This results in a dramatic increase
of linear equations which have to be solved. LSCH can avoid
this increase by using the concept of the convex hull which
prunes large amounts of possible search directions.

In a last runtime experiment, we wanted to compare LSCH
to an algorithm being dedicated to compute linear path skylines
for two criteria. We compared LSCH to BLRSC [2] for the
Munich setting. The result can be seen in Figure 14. For
smaller distances, both algorithms display a rather similar
runtime behavior. Even for larger distances, the advantage of
BLRSC is rather small. Thus, the computational overhead of
using LSCH compared to BLRSC barely justifies the overhead
to implement a specialized solution for the special case of
bicriteria networks.

In a final set of experiments, we compare the performance
of our approximative ε-linear path skyline algorithms ε-LSCH

0

0.2

0.4

0.6

25 50 75 100 125 150

Munich, two cost criteria

av
er

ag
e

ru
nt

im
e

in
 s

ec
on

ds

hops between query nodes

LSCH
BLRSC (only 2d)

Fig. 14. Runtime comparison of the ordinary LSCH and BLRSC being
optimized for bicriterion networks.

with the the exact version. We tested our method with ε ∈
{5.0%, 1.0%, 0.1%} to show the effect of different ε values.
In a first figure, we depict the impact of the ε parameter on
the size for the result set. Figure 13(a) shows the decrease in
the result paths for all three tolerance levels on the five criteria
Munich setting. Even a rather small tolerance of 0.1 percent
allows to half the amount the result paths. For the maximal
tolerance level of 5%, it can be observed that the number of
result paths stays at a very small level with about 6 result paths,
even for queries with more than 150 hops between start and
target node. Thus, ε-LSCH allows to compute small results
that are manageable by users while giving a guarantee on the
representativeness of the remaining routes.

After showing that ε-LSCH is suitable to control the
amount of result paths by tuning the ε parameter, we now want
to investigate whether ε-LSCH can exploit the reduced result
set size to speed up query processing. Figure 13(b) illustrates
the corresponding runtime in the five criteria Munich setting.
As can be seen, ε-LSCH reduces the processing times by the
same amount as the number of results. Thus, ε-LSCH allows to
compute small representative sets of alternative paths in very
efficient time. By tuning the ε parameter, the number of result
paths can be reduced in a controlled way. For any given ε there
is a guarantee that for any weighting vector there exists a path
in the result set which is at most ε percent less cost efficient
than the optimal solution.

VI. CONCLUSIONS

Path skyline queries compute the set of all pareto opti-
mal solutions between two given locations in a multicriteria
network. The cost vector of any pareto optimal is optimal
for at least one monotonic combination function mapping
the cost vector to a scalar cost value. In this paper, we are
interested in the subset of conventional skylines optimal under
linear combination functions. We argue that a linear path
skyline represents an interesting subset of the corresponding
conventional path skyline. Furthermore, the linear path skylines
are easier to handle for a user and faster to compute. To directly
compute linear path skylines in networks having an arbitrary
number of cost criteria, we propose an incremental algorithm
for using A*-searches w.r.t. a given linear combination. To
prune the search space, we maintain the facets of an augmented
convex hull of the cost vectors identified so far. To cope with
cases where there has to be a limited amount of representative
results, we propose ε-linear path skyline query which computes

a subset of the linear path skyline. The maximum difference
between the best cost value in the approximative skyline and
the optimal solution of the linear skyline is at most ε. In our
experiments, we demonstrate that linear path skylines indeed
accomplish the claimed reduction of cardinality even for larger
numbers of cost criteria and that our new algorithms LSCH and
ε-LSCH show competitive runtimes in street networks and grid
graphs. For future work, we plan to investigate cases for other
classes of monotonic combination functions. Furthermore, we
currently work on extending our method to other types of
network queries such as trip planning queries and ranking
queries.

REFERENCES

[1] H. P. Kriegel, M. Renz, and M. Schubert, “Route skyline queries: a
multi-preference path planning approach,” in Proceedings of the 26th
International Conference on Data Engineering (ICDE), Long Beach,
CA, 2010, pp. 261–272.

[2] M. Shekelyan, G. Jossé, M. Schubert, and H.-P. Kriegel, “Linear path
skyline computation in bicriteria networks,” in Database Systems for
Advanced Applications. Springer, 2014, pp. 173–187.

[3] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proceedings of the 17th International Conference on Data Engineering
(ICDE), Heidelberg, Germany, 2001.

[4] K. L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB), Roma, Italy, 2001.

[5] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky:
an online algorithm for skyline queries,” in Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), Hong
Kong, China, 2002.

[6] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in Proceedings of the ACM International
Conference on Management of Data (SIGMOD), San Diego, CA, 2003.

[7] A. J. Skriver, “A classification of bicriterion shortest path (bsp) algo-
rithms,” Asia Pacific Journal of Operational Research, vol. 17, no. 2,
pp. 199–212, 2000.

[8] A. Raith and M. Ehrgott, “A comparison of solution strategies for
biobjective shortest path problems,” Computers & Operations Research,
vol. 36, no. 4, pp. 1299–1331, 2009.

[9] Z. Tarapata, “Selected multicriteria shortest path problems: An analysis
of complexity, models and adaptation of standard algorithms,” Int. J.
Appl. Math. Comput. Sci., vol. 17, no. 2, pp. 269–287, Jun. 2007.
[Online]. Available: http://dx.doi.org/10.2478/v10006-007-0023-2

[10] M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography
of multiobjective combinatorial optimization,” OR-Spektrum, vol. 22,
no. 4, pp. 425–460, 2000.

[11] P. Hansen, “Bicriterion path problems,” in Multiple criteria decision
making theory and application. Springer, 1980, pp. 109–127.

[12] M. Müller-Hannemann and K. Weihe, “Pareto shortest paths is often
feasible in practice,” in Algorithm Engineering. Springer, 2001, pp.
185–197.

[13] B. S. Stewart and C. C. White III, “Multiobjective a*,” Journal of the
ACM (JACM), vol. 38, no. 4, pp. 775–814, 1991.

[14] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang, “Multi-
cost optimal route planning under time-varying uncertainty,” in Pro-
ceedings of the 30th International Conference on Data Engineering
(ICDE),Chicago,IL, USA, 2014.

[15] E. Machuca and L. Mandow, “Multiobjective heuristic search in road
maps,” Expert Syst. Appl., vol. 39, no. 7, pp. 6435–6445, Jun. 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.eswa.2011.12.022

[16] C. Tung Tung and K. Lin Chew, “A multicriteria pareto-optimal path
algorithm,” European Journal of Operational Research, vol. 62, no. 2,
pp. 203–209, 1992.

[17] A. Raith and M. Ehrgott, “A comparison of solution strategies for
biobjective shortest path problems,” Computers & Operations Research,
vol. 36, no. 4, pp. 1299–1331, 2009.

[18] J. Mote, I. Murthy, and D. L. Olson, “A parametric approach to solving
bicriterion shortest path problems,” European Journal of Operational
Research, vol. 53, no. 1, pp. 81–92, 1991.

[19] J. Brumbaugh-Smith and D. Shier, “An empirical investigation of some
bicriterion shortest path algorithms,” European Journal of Operational
Research, vol. 43, no. 2, pp. 216–224, 1989.

[20] A. J. Skriver and K. A. Andersen, “A label correcting approach for
solving bicriterion shortest-path problems,” Computers & Operations
Research, vol. 27, no. 6, pp. 507–524, 2000.

[21] E. Machuca and L. Mandow, “Multiobjective heuristic search in road
maps,” Expert Systems with Applications, vol. 39, no. 7, pp. 6435–6445,
2012.

[22] Ö. Özpeynirci and M. Köksalan, “An exact algorithm for finding
extreme supported nondominated points of multiobjective mixed integer
programs,” Management Science, vol. 56, no. 12, pp. 2302–2315, 2010.

[23] F. P. Preparata and M. I. Shamos, Computational Geometry: An Intro-
duction. Springer, 1985.

[24] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-
rithm for convex hulls,” ACM Transactions on Mathematical Software
(TOMS), vol. 22, no. 4, pp. 469–483, 1996.

[25] Ö. Özpeynirci and M. Köksalan, “An exact algorithm for finding
extreme supported nondominated points of multiobjective mixed integer
programs,” Management Science, vol. 56, no. 12, pp. 2302–2315, 2010.

[26] P. McMullen, “The maximum numbers of faces of a convex polytope,”
Mathematika, vol. 17, no. 02, pp. 179–184, 1970.

[27] R. Seidel, “The upper bound theorem for polytopes: an easy proof of
its asymptotic version,” Computational Geometry, vol. 5, no. 2, pp.
115–116, 1995.

