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ABSTRACT
Modern technology to capture geo-spatial information produce a
huge flood of geo-spatial and geo-spatio-temporal data as a new
user mentality of utilizing this technology to voluntarily share in-
formation. This location information, enriched with social infor-
mation, is a new source to discovery new and useful knowledge.
This work introduces geo-social co-location mining, the problem
of finding social groups that are frequently found at the same lo-
cation. This problem has applications in social sciences, allow-
ing to research interactions between social groups and permitting
social-link prediction. It can be divided into two sub-problems. The
first sub-problem of finding spatial co-location instances, requires
to properly address the inherent uncertainty in geo-social network
data, which is a consequence of generally very space check-in data,
and thus very space trajectory information. For this purpose, we
propose a probabilistic model to estimate the probability of a user
to be located at a given location at a given time, creating the notion
of probabilistic co-locations. The second sub-problem of mining
the resulting probabilistic co-location instances requires efficient
for large databases having a high degree of uncertainty. Our ap-
proach solves this problem by extending solutions for probabilistic
frequent itemset mining. Our experimental evaluation performed
on real (but anonymized) geo-social network data shows the high
efficiency of our approach, and its ability to find new social inter-
actions.

1. INTRODUCTION
Spatial features describe the presence or absence of geographic

object types at different locations. Examples of spatial features in-
clude plant species, animal species, road types, cancers, crime, and
business types, or features of individuals, such as personal prefer-
ences, or simply their id. A spatial co-location pattern represents
a subset of spatial features whose instances are frequently located
in a spatial neighborhood. For example, “botanists may have found
that there are orchids in 80% of the area where the middle-wetness
green-broad-leaf forest grows” (example taken from [26]). Spa-
tial co-location patterns may yield important insights for many ap-
plications. For example, a mobile service provider may be inter-
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ested in services frequently requested by geographical neighbors,
and thus gain sales promotion data. Other application domains in-
clude Earth science, public health, biology, transportation and geo-
social networks. Traditional solutions for the problem of frequent
co-location mining [26] considers classical spatial data, where each
data record has a (certain) spatial location.

In this project, which we wish to discuss with a broad audience
at GeoRich’15, we want to take the problem of spatial co-location
mining into a new context, by considering spatio-temporal data,
i.e., trajectory data of individuals. Thus, the problem now is to
find groups of users which frequently co-locate in geo-space over
time, creating the notion of geo-social co-location mining. There
is already an abundance of public data sets that can be mined, in-
cluding data sets from geo-social networks [7] and from social net-
works using geo-tags such as Twitter. Frequent co-location mining
on such data may yield interesting patterns, such as “Members of
LMU and HKU are frequently to be found at the same location,
while members of some other university are often found in solitude
or among themselves”. In such an application, each instance of a
co-location corresponds to a (l, t, S) triple, where S denotes the
set of individuals that have been at the same location l at the same
time t. The problem of geo-social co-location mining introduces
two major new challenges which have not been sufficiently covered
in existing work on traditional co-location mining. Firstly, the tem-
poral dimension leads to very large sets of co-location instances,
since every location and time pair leads to a possibly non-empty
co-location instance, secondly existing solutions do not consider
the uncertainty which is inherent in spatial data: Spatial data may
be imprecise (e.g., due to measurement errors), data can be obso-
lete (e.g., when the most recent position update is already minutes
old), data may originate from unreliable sources (such as crowd-
sourcing), or it may be blurred to prevent privacy threats and to
protect user anonymity [8]. For example, the oval regions in Fig-
ure 1 may correspond to individual persons, while the color of each
person may represent the individual’s affiliations. Here, the loca-
tion of each person is a conservative approximation based on the
users GPS history. It is important to note that we are considering
historic data. Thus, for a given point of time t, both past and future
GPS positions of a user may be available.1 Given these approxima-
tions, it becomes possible to estimate which point of interest each
user is currently visiting, yielding probability distribution as shown
in the table in Figure 1 for depicted point of time (22:00) and for a
point of time one hour later.

Given such data, we can immediately envision a number of use-
ful applications:

• Find groups of people often co-locating. In the setting de-
1A probabilistic model to estimate the position of a mobile user
given past and future observations can be found in [21].
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Figure 1: Spatial co-location mining in uncertain spatio-
temporal data.

scribed above, two individuals being located at the same lo-
cation may not actually be there together, but if the two indi-
viduals co-locate very often, it becomes highly unlikely that
their co-locations are independent random events.

• Find groups of people visiting the same types of points of
interest, even not at the same time. This allows to cluster
user’s by their points of interest, thus allowing to predict new
locations that a user might find interesting, based on other
users in the same cluster.

• Classify points of interest by the people that visit these. For
example, if a point of interest that is unlabeled is being vis-
ited by a significant fraction of user’s which (individually or
even together) visit Italian restaurants, then it might be pos-
sible to predict the label of this point of interest.

• Visiting a new city, such as Melbourne, new people, that are
similar to people you hang out with at home, and new point
of interest, that are similar locations you visit at home, can
be predicted to you and to the people that you now hang out
with in Melbourne.

2. PROBLEM DEFINITION
In traditional co-location mining, the location of an object is

known for certain. Under this assumption, a lot of work has been
published in the last decade [30, 13, 28, 22, 12, 30]. A survey on
the field of co-location mining on certain spatial data be found in
[19, 20]. However, in many real applications such as plant disease
diagnosis, environmental surveillance and geo-social networks, the
location of objects is uncertain. In the following, the problem of
probabilistic spatial collocation mining on uncertain spatial data is
defined.

To formally define the problem of spatial co-location mining, we
first have to define the concept of a spatial co-location. In this work,
a neighbor relation will be used that is particularly important in
social network applications. This relation uses a set of interesting
spatial locations, such as bars, restaurants and football stadiums.
Two individuals are co-located if they are sufficiently close to the
same location, formally.

DEFINITION 1. Let L be a set of spatial locations, and letD be
a database of spatial objects. The neighbor relation R is defined
as follows

(oi ∈ D, oj ∈ D) ∈ R ⇔ ∃l ∈ L : dist(oi, l) ≤ ε∧dist(oj , l) ≤ ε

An example of the problem of frequent co-location mining in
uncertain spatial data using the neighborhood relation of Definition
1 is given in the following.

EXAMPLE 1. Consider uncertain positions of individuals in a
geo-social network application. The task is to find groups of people
that commonly spend time at the same locations, in order to predict
missing social links in the underlying social network, or in order to
direct special deals to such groups. Figure 1 exemplarily shows the
position of a individuals A, ..., G, together with three locations: a
café, a restaurant and a bar. For simplicity, each of these locations
is represented by an oval region, but in practice, these uncertainty
region can have arbitrary shapes [21]. It is not possible to tell for
certain, whether user A is located inside the café, or just barely
outside of it. In contrast, user D is certainly inside the restaurant,
while user C is certainly outside all three places. The probability
P (U in l) that a user U is located inside a location l can be com-
puted using techniques for range queries on uncertain data [5].2

Exemplary probabilities P (U in l) for all users U and all locations
l are shown in the table of Figure 1. At the time stamp 22:00, the
users E, F and G are co-located at the bar with a high probabil-
ity. However, at time 23:00, user G is likely no longer located with
users E and F . In contrast, it is likely that the group consisting of
users B and D remained together, in the restaurant.

Clearly, the number of co-locations may be extremely large, since
in an application like this, there may be one non-empty co-location
for each combination of time stamp and location. The task of prob-
abilistic co-location mining is to find groups of users (objects),
having a significantly high probability of having spent time at the
same location for a sufficiently large number of times. Formally,
the problem of probabilistic frequent spatial Co-location mining is
defined as follows.

DEFINITION 2. Given a set F = {f1, ..., fk} of k spatial fea-
tures, given a database D = {o1, ..., oN} of N uncertain spatial
objects each having a set f(oi ∈ D) ⊆ F of spatial features,
and given a positive integer minSup and a probability threshold
τ , a probabilistic frequent spatial co-location mining algorithm re-
turns all sets S ⊆ F of features such that the probability there
exists at least minSup spatial co-locations instances I such that
S ⊆

⋃
o∈I f(o) is at least τ .

To find probabilistic frequent spatial co-locations, consider the fol-
lowing example.

EXAMPLE 2. Returning to Example 1 assume that minSup =
2 and τ = 0.5 and consider the spatial features F = {red, green,
purple}, depicted by the corresponding colors in Figure 1, which
may e.g., correspond to the affiliations of mobile users. In this ex-
ample, we have two possible co-locations instances of features red
and green, in the café and in the bar at times 22:00 and 23:00. As-
suming independence between uncertain objects3, the probability
of a co-location of green and red at time 22:00 can be computed
by the product of marginal probabilities P (A ∧ B) = P (A) ·

2For the case proximity to a location is not modelled by a circle,
an adaption of the techniques in Section 4 can be made easily, by
replacing distance calculation by intersection tests between points
and polygons.
3We argue that in many applications, this assumption holds true.
Note that the position of mobile objects can be strongly correlated,
as for example friends are more likely to travel together. However,
the assumption that measurement errors are mutually independent
does often hold. For example, GPS errors between different de-
vices can be assumed to be independent, and uncertainty regions
the are added deliberately for privacy preservation should be in-
dependent as well. Nevertheless, this assumption of independent
random variables of spatial locations can be a base for discussions
at GeoRich’15 workshop.



P (B) = 0.4 · 0.2 = 0.08. At the bar at time 22:00, the proba-
bility of a co-location between red and green can be computed by
P (E∧(F∨G)) = P (E∧¬(¬F∧¬G)) = P (0.6·(1−0.3·0.2)) =
0.564. At time 23:00, can obtain the co-location probabilities red
and green at the café and the bar of 0.9 and 0.588, respectively.
Given these probabilities, we can compute the probability that at
least minSup = 2 co-location instances exist by applying the
generating functions technique of [16, 17], yielding a probability
of 0.778 which is greater than τ = 0.5. Thus the set of spatial
features red and green will be returned as a probabilistic frequent
co-location.

In the following section, we propose solutions to compute the prob-
abilities of probabilistic frequent co-locations efficiently.

3. RELATED WORK
Traditional co-location mining on (certain) spatial data has been

studied in the past [27, 30, 12]. These works define a spatial neigh-
borhood relation on pairs of objects not exceed a given distance
threshold. Due to the assumption of certain objects, the works can
solve the problem of frequent co-location mining by applying tradi-
tional frequent pattern mining solutions such as Apriori-algorithm
[2] combine the discovery of spatial neighborhoods with the mining
process.

The problem of probabilistic co-location mining in uncertain spa-
tial data is related to the problem of frequent itemset mining in
uncertain transaction databases. Existing solutions for this prob-
lem transform uncertain items into certain ones by thresholding the
probabilities. For example, by treating all uncertain items with a
probability value higher than 0.5 as being present, and all others
as being absent in a transaction. Such an approach loses useful
information and leads to inaccuracies. Existing approaches in the
literature are based on expected support ([9, 10, 1]). Itemsets are
considered frequent if the expected support exceeds minSup. Ef-
fectively, this approach returns an estimate of whether an object
is frequent or not with no indication of how good this estimate is.
Since uncertain transaction databases yield uncertainty w.r.t. the
support of an itemset, the probability distribution of the support
and, thus, information about the confidence of the support of an
itemset is very important. This information, while present in the
database, is lost using the expected support approach.

There is a large body of research on Frequent Itemset Mining
(FIM) but very little work addresses FIM in uncertain databases
[9, 10, 15]. The approach proposed by Chui et. al [10] computes
the expected support of itemsets by summing all itemset probabil-
ities in their U-Apriori algorithm. Later, in [9], they additionally
proposed a probabilistic filter in order to prune candidates early. In
[15], the UF-growth algorithm is proposed. Like U-Apriori, UF-
growth computes frequent itemsets by means of the expected sup-
port, but it uses the FP-tree [11] approach in order to avoid expen-
sive candidate generation. In contrast to our probabilistic approach,
itemsets are considered frequent if the expected support exceeds
minSup. The main drawback of this estimator is that information
about the uncertainty of the expected support is lost; [9, 10, 15]
ignore the number of possible worlds in which an itemsets is fre-
quent. [29] proposes exact and sampling-based algorithms to find
likely frequent items in streaming probabilistic data. However, they
do not consider itemsets with more than one item. To the best of
our knowledge, our approach in [3] was the first that is able to find
frequent itemsets in an uncertain transaction database in a proba-
bilistic way.

However, this publication has stimulated research on the field of
probabilistic mining of frequent itemsets in uncertain transaction
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Figure 2: Workflow of probabilistic spatial co-location mining.

data, creating a large number of follow up publications. A detailed
survey can be found in [23]. In [24, 25], an approach is presented
to approximate the support PDF of an itemset using a Poisson dis-
tribution. Approach yields a very small error if the database is suf-
ficiently large. This approximation furthermore allows to compute
the support PDF of an item much faster than the exact approach
presented in [3] and in this chapter. The idea of [24, 25] is used to
study a variety of approximation techniques in Chapter 4, including
Expected support, Normal approximation and Poisson approxima-
tion. An approach to accelerate the computation of our approach
in [3] was presented by [14], using massive parallelization exploit-
ing GPGPU (General-Purpose computation on GPU). Furthermore,
the related problem of mining frequent subgraphs over uncertain
graphs [18, 32, 31] has gained alot of research interest in the last
years. Finally, an approach for probabilistic frequent itemset min-
ing on uncertain data avoiding multiple database scans incurred by
the candidate generation step of [3] has been proposed by us in [4].

Only recently, the research community has tackled the challenge
of spatial co-location mining in uncertain data. Recent work ([26])
considers existential uncertainty in spatial data. In this model, each
object has a probability to be present in the database. The solution
of [26] has a run-time polynomial in the number of possible worlds,
thus exponential in the number of uncertain objects. The reason for
this high complexity is the neighborhood relation R(., .) used in
[26] is arbitrary, i.e., this approach can be applied to any neighbor-
hood relation. This fact makes efficient co-location mining hard:
For three uncertain objects A, B and C, the predicates R(A,B)
and R(B,C) are stochastically dependent, despite the assumption
of independence between objects.

4. PROBABILISTIC FREQUENT CO-
LOCATION MINING

In a nutshell, the problem of probabilistic co-location mining re-
quires two subtasks to be solved, as illustrated in Figure 2:

• First, for each location l and each time interval t, probabilis-
tic instances have to be computed and derived. This requires
to compute the probabilities of all objects, to be close to loca-
tion l at time t. This task requires to utilize probabilistic sim-
ilarity search methods on uncertain spatial data to derive the
probability that a given object is a member of a co-location
instance. For the neighbor relation given in Definition 1, this
step requires to perform probabilistic range queries, using the
locations L as query points. As a result of the first step, an
uncertain spatial database is transformed into a probabilistic
co-location database such as depicted in Figure 4.

• Second, all probabilistic co-location instances need to be mined
in order to detect subsets of spatial features having a sta-
tistically significantly high probability to be co-located fre-
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Figure 3: Grid based spatial index for efficient nearest neigh-
bour queries

quently in the database. For this subtask, we can assume that
a databaseD of probabilistic co-locations such as featured in
Figure 4 is given as a result of solving the first subtask. Given
such a database, the task of finding probabilistic frequent co-
locations in such a database is equivalent to the problem of
probabilistic frequent itemset mining [3] in uncertain trans-
action data. Both problems, of probabilistic mining of spatial
co-locations in uncertain spatial data, as well the the problem
of probabilistic frequent itemset mining in uncertain transac-
tion data, are formally defined in the following.

4.1 Occurrence Probability Estimation
At each time interval t we estimate the probability of a user u

being at a certain location l. Therefore we first determine the geo-
graphical distance du,l by using the Haversine formula defined as
follows:

2r arcsin

√
sin2

(
φl − φu

2

)
+ cos(φu) cos(φl) sin

2

(
λl − λu

2

)
where φu, φl represent the latitude of the coordinates of user u and
location l and λu, λl the longitude respectively. The probability
Pt,u,l that a user u occurs at location l at time interval t is then
given by

Pu,l =
ρ (du,l)∑

lt∈Lu,t
ρ (du,lt)

, ρ (du,l) =

0 du,l ≥ τd
1

σ
√
2π
e
− (x−µ)2

2σ2 du,l < τd

where ρ is the density (PDF) regarding a normal distribution
N (µ, σ2) with µ = 0 and σ2 = τd

3
. Thereby τd denotes a dis-

tance threshold parameter (e.g. 100 meters) to cut the long tail
of the probability distribution to 0 for each user with a distance
d > τd. We utilize this threshold in our implementation for a sim-
ple yet effective spatial index based on grid cells of the size τd. For
a latitude φ and longitude λ of a user or location we determine the
corresponding (x, y) grid cell as such

(⌊
φ

taud

⌋
,
⌊

λ
taud

⌋)
. An ex-

ample is shown in Figure 3: For the userU only locations within the
neighbour cells ±1 around the user’s cell are candidates. Thereby
locations that share the same cell with the user (e.g. location C)
are certain hits because their distance must smaller than τd. Loca-
tions like A which are at least 1 complete cell away must not be
considered as their distance to the user must be greater than τd.

4.2 Transformation to Probabilistic Frequent
Itemset Mining

The definition of a uncertain co-location database can be mapped
to the definition of an uncertain transaction database defined in [3].

DEFINITION 3 (UNCERTAIN TRANSACTION DATABASE). Let
I be a set of items. An uncertain transaction database T is a set of
probabilistic transactions. Each transaction T = (i ∈ I, P (i)) ∈

T contains a set of items, each associated with a probability. For
each pair (i ∈ I, P (i)), the probability P (i) describes the likeli-
hood that i is present in the probabilistic transaction T .

This equivalence between Definition 2 and Definition 3 allows to
interpret the problem of probabilistic frequent co-location mining
in uncertain spatial data, as the problem of probabilistic frequent
itemset mining in uncertain transaction data. This can be done
by interpreting a spatial feature as an item or a probabilistic co-
location instance as a transaction. Thus, solutions for the problem
of probabilistic frequent item-set mining can now be applied. In
fact, a large body of efficient algorithms (e.g. [24, 25, 14, 6]) have
been proposed for the problem definition of [3]. Yet, a main com-
mon problem of these works is the lack of a real world application
for the problem of probabilistic frequent itemset mining. We argue,
that probabilistic frequent itemset mining and probabilistic spatial
co-location mining can bridge this gap, thus providing spatial ap-
plications. In the following subsections, we will briefly outline a
mapping of existing solutions to the problem of probabilistic co-
location mining. Firstly, as a baseline a naive solution is presented,
omitting the uncertainty information. Then, the exact solutions of
[3] is reviewed and mapped to co-location mining. Finally, the
same is done for the approximate solutions of WanCheLee10. For
these solutions, an initial experimental run-time evaluation is pre-
sented in Section 5, by using a real-world data set consisting of
geo-tagged tweets.

4.2.1 Naive Probabilistic Co-Location Mining
One naive approach is to transform an uncertain database into a

non-uncertain database by setting the item probabilities to 0 or 1
and then applying a traditional frequent itemset detection method.
For example, probabilities less then 0.5 could be mapped to 0 and
probabilities above 0.5 could be mapped to 1. However, such a
transformation obviously involves loss of information and accu-
racy. Furthermore, we would have no idea how confident we could
be in the results. In particular, itemsets that are often associated
with probabilities close to 0.5 yield a very large error in the re-
sult. Another approach is to use the probabilities associated with
the itemsets in order to compute the expected support of an item-
set.

To avoid incurring a biased result, previous work was based on
the expected support [9, 10, 15], i.e., the expected number of spatial
co-locations of a group of spatial features.

DEFINITION 4. Given a setF of spatial features and a database
of co-location instances I , the expected support E(X) of a set of
spatial features X ⊆ F is defined as E(X)=

∑
i∈I P (X ⊆ i).

The expected support of set of spatial features X can be efficiently
computed by a single scan over all co-location instances. An item-
set is considered frequent if its expected support is above minSup.
However, the later step has the major drawback that the uncertainty
information is forfeited when using the expected support approach.
Thus, information is lost about the likelihood that X is frequent.

EXAMPLE 3. As an example, consider the database depicted
in Figure 4, containing a set of uncertain co-location instances.
Treating each co-location instance as a transaction, the expected
support of the itemset {D} is E({D}) = 3.0. The fact that {D}
occurs for certain in one transaction, namely in t2, and that there
is at least one possible world where X occurs in five transactions
are totally ignored when using the expected support in order to
evaluate the frequency of an itemset. Indeed, suppose minSup =
3; do we call {D} frequent? And if so, how certain can we even
be that {D} is frequent? By comparison, consider itemset {G}.



ID Co‐location

t1 (A, 0.8) ; (B, 0.2) ; (D, 0.5) ; (F, 1.0)

t2 (B, 0.1) ; (C, 0.7) ; (D, 1.0) ; (E, 1.0) ; (G, 0.1)

t3 (A, 0.5) ; (D, 0.2) ; (F, 0.5) ; (G, 1.0)

t4 (D, 0.8) ; (E, 0.2) ; (G, 0.9)

t5 (C, 1.0) ; (D, 0.5) ; (F, 0.8) ; (G, 1.0)

t6 (A, 1.0) ; (B, 0.2) ; (C, 0.1)

Figure 4: Example of an uncertain co-location database.

This also has an expected support of 3, but its presence or absence
in transactions is more certain. It turns out that the probability
that {D} is frequent is 0.7 and the probability that G is frequent is
0.91. While both have the same expected support, we can be quite
confident that {G} is frequent, in contrast to {D}. An expected
support based technique does not differentiate between the two.

Concepts to evaluate the co-location instances in a probabilistic
way are presented in the following.

4.2.2 Exact Probabilistic Support
A co-location is a frequent co-location if it occurs in at least

minSup co-location instances, where minSup is a user specified
parameter. The number of instances of a co-location is denoted
as the support supp(S) of S. In uncertain co-location databases
however, the support of a co-location is uncertain; it is defined by a
discrete probability distribution function (PDF).

DEFINITION 5 (PROBABILISTIC SUPPORT). LetD be an un-
certain co-location database and let X ⊆ F be a set of spatial
features. The support of X is a probability density function

supp(X) : IN0 → [0, 1]

n 7→ P (supp(X) = n).

that maps each non-negative integer n to the probability that the
support of features X equals n.

Therefore, each set of spatial features has a frequentness probability
– the probability that it is frequent.

The number of possible worlds |W | that need to be considered
for the computation of Pi(X) is extremely large. In fact, we have
O(2|T |·|I|) possible worlds, where |I| denotes the total number of
items. In the following, we show how to compute Pi(X) without
materializing all possible worlds [3].

LEMMA 1. For an uncertain transaction database T with mu-
tually independent transactions and any 0 ≤ i ≤ |T |, the support
probability Pi(X) can be computed as follows:

Pi(X) =
∑

S⊆T,|S|=i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S

(1−P (X ⊆ t))) (1)

Note that the transaction subset S ⊆ T contains exactly i transac-
tions.

PROOF. The transaction subset S ⊆ T contains i transactions.
The probability of a world wj where all transactions in S contain
X and the remaining |T − S| transactions do not contain X is
P (wj) =

∏
t∈S P (X ⊆ t) ·

∏
t∈T−S(1 − P (X ⊆ t)). The sum

of the probabilities according to all possible worlds fulfilling the
above conditions corresponds to the equation given in Definition
5.

Figure 5: Calculation runtime comparison between enumera-
tion and an estimation of support probability.

4.2.3 Support Probability Estimation
An approximation of the probabilistic support has been proposed

in [24]. Here, the idea is to approximate the probabilistic support
(cf. Definition 5) by a Poisson distribution. For each set of spa-
tial features X , the single parameter λ of the Poisson distribution
Po(λ) used to approximate the support distribution of X corre-
sponds to the expected support of X , which can be computed anal-
ogously to solutions using expected support (cf. Subsection 4.2.1).
Then, the probability that the support of X exceeds minSup can
be computed by evaluating the cumulative distribution function of
Po(λ):

P (Po(λ) ≥ minSup) = 1− P (Po(λ) < minSup) =

e−λ
minSup−1∑

i=0

λi

i!
.

5. EXPERIMENTS
We chose to use data from Twitter4 to prove the concept of our

approach. For this, we collected over 8 Million tweets issued be-
tween September 2014 and March 2015 (approx. 1954 per hour)
that were geo-tagged within the county of Los Angeles, USA us-
ing their public streaming API. Note that the openly available API
only reveals one tenth of total tweets, and out of those only the ones
carrying a geotag were useful. Therefore we decided to use Los
Angeles since the tweet density is fairly high there. We discretized
time into slots of one hour – smaller timeslots would have resulted
in fewer co-locations, whereas larger values would yield less in-
teresting results, e.g., users a and b patronized the same restaurant
within the same day.

We cross-referenced this data with points of interest out of Open-
StreetMap5, out of which around 16 thousand were within the in-
vestigated region and of a fitting type (we excluded points like traf-
fic lights or garbarge bins). We paired each of these points of inter-
est with all observations (tweets) within their τd-meter neighbor-
hood and selected those pairs of PoIs p and timeslots t that con-
tained at least two distinct observations. Each of these 184.452
(p, t)-pairs also specifies a list of the observed users with their re-
spective sojourn probability at p.

For evaluation we implemented an algorithm based on Apri-
ori[2] to estimate support probabilities. Figure 5 shows a perfor-
mance evaluation against a simple enumeration of user combina-
tions, which becomes practically unusable after surpassing only a
4http://www.twitter.com/
5http://www.openstreetmap.org/



few observations. For an input of between 10 and 250 distinct ob-
servations, we recorded the runtime to calculate support. As the
graph shows, a full enumeration exhibits a quick super-exponential
growth after about 25 observations, while the estimation approach
terminates in interactive time.

Please note that our existing implementation is far from efficient
due to the use of inefficient libraries and a slow runtime, since its
purpose is merely to show feasibility of our concept.

6. CONCLUSIONS
In this paper we developed an efficient solution for finding prob-

abilistic co-location patterns in uncertain locations, e.g., inaccurate
observations derived from social media data. Our solution is mainly
based on techniques used for probabilistic frequent itemset mining.
In our experiments we show that the proposed methods enable co-
location mining in data sets significantly larger than possible using
straightforward methods.
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