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Abstract. Hierarchical clustering methods are widely used in various scientific
domains such as molecular biology, medicine, economy, etc. Despite the maturity
of the research field of hierarchical clustering, we have identified the following
four goals which are not yet fully satisfied by previous methods: First, to guide the
hierarchical clustering algorithm to identify only meaningful and valid clusters.
Second, to represent each cluster in the hierarchy by an intuitive description with
e.g. a probability density function. Third, to consistently handle outliers. And
finally, to avoid difficult parameter settings. With ITCH, we propose a novel clus-
tering method that is built on a hierarchical variant of the information-theoretic
principle of Minimum Description Length (MDL), referred to as hMDL. Inter-
preting the hierarchical cluster structure as a statistical model of the data set, it
can be used for effective data compression by Huffman coding. Thus, the achiev-
able compression rate induces a natural objective function for clustering, which
automatically satisfies all four above mentioned goals.

1 Introduction

Since dendrograms and similar hierarchical representations provide extremely useful
insights into the structure of a data set, hierarchical clustering has become very popu-
lar in various scientific disciplines, such as molecular biology, medicine, or economy.
However, well-known hierarchical clustering algorithms often either fail to detect the
true clusters that are present in a data set, or they identify invalid clusters, which are
not existing in the data set. These problems are particularly dominant in the presence of
noise and outliers and result in the questions “How can we decide if a given represen-
tation is really natural, valid, and therefore meaningful?” and “How can we enforce a
hierarchical clustering algorithm to identify only the meaningful cluster structure?”

Information Theory for Clustering. We give the answer to these questions by relating
the hierarchical clustering problem to that of information theory and data compression.
Imagine you want to transfer the data set via an extremely expensive and small-banded
communication channel. Then you can interpret the cluster hierarchy as a statistical
model of the data set, which defines more or less likely areas of the data space. The
knowledge of these probabilities can be used for an efficient compression of the data
set: Following the idea of (optimal) Huffman coding, we assign few bits to points in
areas of high probability and more bits to areas of low probability. The interesting ob-
servation is the following: the compression becomes the more effective, the better our
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(a) Data set:
Δ display outliers.

(b) Hierarchical
representation.

(c) Cluster contents on each level
modeled by PDFs.

Fig. 1. Contributions of ITCH

statistical model, the hierarchical cluster structure, fits to the data. This so-called Mini-
mum Description Length (MDL) principle has recently received increasing attention in
the context of partitioning (i.e. non-hierarchical) clustering methods. Note that it can
not only be used to assess and compare the quality of the clusters found by different
algorithms and/or varying parameter settings. Rather, we use this concept as an ob-
jective function to implement clustering algorithms directly using simple but efficient
optimization heuristics.

In this paper, we extend the idea of MDL to the hierarchical case and develop hMDL
for hierarchical cluster structures. Whereas previous MDL approaches can only eval-
uate the result of partitioning clustering methods, our new hMDL criterion is able to
assess a complete cluster hierarchy. Moreover, hMDL can be used in combination with
an optimization heuristic to exactly determine that cluster hierarchy, which optimizes
the data compression according to the MDL criterion.

Challenges and Contributions. With an assessment condition for cluster hierarchies,
we develop a complete hierarchical clustering approach on top of the idea of hMDL.
This proposed algorithm ITCH (Information-Theoretic Cluster Hierarchies) yields nu-
merous advantages, out of which we demonstrate the following four:

1. All single clusters as well as their hierarchical arrangement are guaranteed to be
meaningful. Nodes only are placed in the cluster hierarchy if they improve the
data compression. This is achieved by optimizing the hMDL criterion. Moreover, a
maximal consistency with partitioning clustering methods is obtained.

2. Each cluster is represented by an intuitive description of its content in form of a
Gaussian probability density function (PDF). Figure 1(c) presents an example of a
3-stage hierarchy. The output of conventional methods is often just the (hierarchi-
cal) cluster structure and the assignment of points.

3. ITCH is outlier-robust. Outliers are assigned to the root of the cluster hierarchy or
to an appropriate inner node, depending on the degree of outlierness. For example,
in Figures 1(a) and 1(b) the outlier w.r.t. the three red clusters at the bottom level is
assigned to the parent cluster in the hierarchy, marked by a red triangle.

4. ITCH is fully automatic as no difficult parameter settings are necessary.

To the best of our knowledge, ITCH is the only clustering algorithm that meets all of
the above issues by now. The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief survey of related work. Section 3 presents a derivation of our hMDL
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criterion and introduces the ITCH algorithm. Section 4 documents the advantages of
ITCH on synthetic and real data sets. Section 5 summarizes the paper.

2 Related Work

Hierarchical Clustering. One of the most widespread approaches to hierarchical clus-
tering is the Single Link algorithm [12] and its variants [14]. The resulting hierarchy
obtained by the merging order is visualized as a tree, which is called dendrogram. Cuts
through the dendrogram at various levels obtain partitioning clusterings. However, for
complex data sets it is hard to define appropriate splitting levels, which correspond to
meaningful clusterings. Furthermore, outliers may cause the well-known Single Link
effect. Also, for large data sets, the fine scale visualization is not appropriate. The algo-
rithm OPTICS [1] avoids the Single Link effect by requiring a minimum object density
for clustering, i.e. MinPts number of objects are within a hyper-sphere with radius ε.
Additionally, it provides a more suitable visualization, the so-called reachability plot.
However, the problem that only certain cuts represent useful clusterings still remains
unsolved.

Model-based Clustering. For many applications and further data mining steps, it is
essential to have a model of the data. Hence, clustering with PDFs, which goes back
to the popular EM algorithm [8], is a widespread alternative to hierarchical clustering.
After a suitable initialization, EM iteratively optimizes a mixture model of K Gaussian
distributions until no further significant improvement of the log-likelihood of the data
can be achieved. Usually a very fast convergence is observed. However, the algorithm
may get stuck in a local maximum of the log-likelihood. Moreover, the quality of the
clustering result strongly depends on an appropriate choice of K , which is a non-trivial
task in most applications. And even with a suitable choice of K the algorithm is very
sensitive w.r.t. noise and outliers.

Model-based Hierarchical and Semi-supervised Clustering. [22] proposes a hierar-
chical extension of EM to speed up query processing in an object recognition applica-
tion. In [6] a hierarchical variant of EM is applied for image segmentation. Goldberger
and Roweis [9] focus on reducing the number of clusters in a mixture model. The con-
sistency with the initial clustering is assured by the constraint that objects belonging
to the same initial cluster must end up after the reduction in the same new cluster as
well. Each of these approaches needs a suitable parameter setting for the number of
hierarchy levels. Clustering respecting some kind of hierarchy can also be regarded as
semi-supervised clustering, i.e. clustering with side information. In most of some re-
cently published papers [13,4,3], this information is introduced by constraints on the
objects and typically consists of strong expert knowledge. In contrast, ITCH does not
consider any external information. The data itself is our single source of knowledge.

Information Theory in the Field of Clustering. Only a few papers on compression
based clustering, that avoid difficult parameter settings have been published so far. X-
Means [16], G-Means [11] and RIC [5] focus on avoiding the choice of K in partition-
ing clustering by trying to balance data likelihood and model complexity. This sensitive
trade-off can be rated by model selection criteria, among them the Akaike Information
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Criterion (AIC), the Bayesian Information Criterion (BIC) and Minimum Description
Length (MDL) [10]. X-Means provides a parameter-free detection of spherical Gaus-
sian clusters by a top-down splitting algorithm, which integrates K-Means clustering
and BIC. G-Means extends this idea to detect non-spherical Gaussian clusters. The
model selection criterion of RIC is based on MDL, which allows to define a coding
scheme for outliers and to identify non-Gaussian clusters.

There is a family of further closely related ideas, such as Model-based Clustering [2],
the work of Still and Bialek [20] and the so-called Information Bottleneck Method [21],
introduced by Tishby et al. This technique aims at providing a quantitative notation of
meaningful or relevant information. The authors formalize this perception by finding
the best tradeoff between accuracy and complexity when clustering a random variable
X , given a joint probability distribution between X and an observed relevant variable
Y . It is used for clustering terms and documents [19]. However, all parameter-free al-
gorithms mentioned so far, do not provide any cluster hierarchy. One recent paper [7]
presents a new method for clustering based on compression. In the first step, this method
determines a parameter-free, universal, similarity distance, computed from the lengths
of compressed data files. Afterwards a hierarchical clustering method is applied. In
contrast to ITCH, this work was not designed to handle outliers in an appropriate way.
Furthermore, no description of the content of a cluster is available.

3 Information-Theoretic Hierarchical Clustering

The clustering problem is highly related to that of data compression: The detected clus-
ter structure can be interpreted as a PDF fΘ(x) where Θ = {θ1, θ2, ...} is a set of
parameters, and the PDF can be used for an efficient compression of the data set n. It is
well-known that the compression by Huffman coding is optimal if the data distribution
really corresponds to fΘ(x). Huffman coding represents every point x by a number of
bits which is equal to the negative binary logarithm of the PDF:

Cdata(x) = − log2(fΘ(x)).

The better the point set corresponds to fΘ(x), the smaller the coding costs Cdata(x)
are. Hence, Cdata(x) can be used as the objective function in an optimization algo-
rithm. However, in data compression, Θ serves as a code book which is required to de-
code the compressed data set again. Therefore, we need to complement the compressed
data set with a coding of this code book, the parameter set Θ. When, for instance, a
Gaussian Mixture Model (GMM) is applied, Θ corresponds to the weights, the mean
vectors and the variances of the single Gaussian functions in the GMM. Considering
Θ in the coding costs is also important for the clustering problem, because neglecting
it leads to overfitting. For partitioning (non-hierarchical) clustering structures, several
approaches have been proposed for the coding of Θ [16,17,18] (cf. Section 2). These
approaches differ from each other because there is no unambiguous and natural choice
for a distribution function, which can be used for the Huffman coding of Θ, and differ-
ent assumptions lead to different objective functions. In case of the hierarchical cluster
structure in ITCH, a very natural distribution function for Θ exists: With the only ex-
ception of the root node, every node in the hierarchy has a parent node. This parent
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node is associated with a PDF which can naturally be used as a code book for the mean
vector (and indirectly also for the variances) of the child node. The coding costs of the
root node, however, are not important, because every valid hierarchy has exactly one
root node with a constant number of parameters, and therefore, the coding costs of the
root node are always constant.

3.1 Hierarchical Cluster Structure

In this Section, we formally introduce the notion of a hierarchical cluster structure
(HCS). A HCS contains clusters {A, B, ...} each of which is represented by a Gaus-
sian distribution function. These clusters are arranged in a tree:

Definition 1 (Hierarchical Cluster Structure). (1) A HCS is a tree T = (N , E)
consisting of a set of nodes N = {A, B, ...} and a set of directed edges E = {e1, e2, ...}
where A is a parent of B (B is a child of A) iff (A, B) ∈ E . Every node C ∈ N is
associated with a weight WC and a Gaussian PDF defined by the parameters μC and
ΣC such that the sum of the weights equals one:

∑

C∈N
WC = 1.

(2) If a path from A to B exists in T (or A = B) we call A an ancestor of B (B a
descendant of A) and write B � A.
(3) The level lC of a node C is the height of the descendant subtree. If C is a leaf, then
C has level lC = 0. The root has the highest level (length of the longest path to a leaf).

The PDF which is associated with a cluster C is a multivariate Gaussian in a
d-dimensional data space which is defined by the parameters μC and ΣC (where μC =
(μC,1, ..., μC,d)T is a vector from a d-dimensional space, called the location parameter,
and ΣC is a d × d covariance matrix) by the following formula:

N(μC , ΣC , x) =
1√

(2π)d · |ΣC |
· e−

1
2 (x−μC)T·Σ−1

C ·(x−μC).

For simplicity we restrict ΣC = diag(σ2
C,1, ..., σ

2
C,d) to be diagonal such that the mul-

tivariate Gaussian can also be expressed by the following product:

N(μC , ΣC , x) =
∏

1≤i≤d

N(μC,i, σ
2
C,i, xi)

=
∏

1≤i≤d

1√
2πσ2

C,i

· e
− (xi−μi)

2

2σ2
C,i .

Since we require the sum of all weights in a HCS to be 1, a HCS always defines
a function whose integral is ≤ 1. Therefore, the HCS can be interpreted as a com-
plex, multimodal, and multivariate PDF, defined by the mixture of the Gaussians of the
HCS T = (N , E):

fT (x) = max
C∈N

{WC N(μC , ΣC , x)}with
∫

Rd

fT (x)dx ≤ 1.
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If the Gaussians of the HCS do not overlap much, then the integral becomes close to 1.
The operations, described in Section 3.3, assign each point x ∈ DB to a cluster of

the HCS T = (N , E). We distinguish between the direct and the indirect association.
A point is directly associated with that cluster C ∈ N the probability density of which
is maximal at the position of x, and we write C = Cl(x) and also x ∈ C, with:

Cl(x) = arg max
C∈N

{WC · N(μC , ΣC , x)} .

As we have already stated in the introduction, one of the main motivations of our hi-
erarchical, information-theoretic clustering method ITCH is to represent a sequence of
clustering structures which range from a very coarse (unimodal) view to the data dis-
tribution to a very detailed (multi-modal) one, and that all these views are meaningful
and represent an individual complex PDF. The ability to cut a HCS at a given level L is
obtained by the following definition:

Definition 2 (Hierarchical Cut). A HCS T ′ = (N ′, E ′) is a hierarchical cut of a HCS
T = (N , E) at level L (in symbols: T ′ = HCL(T )), if the following properties hold:
(1) N ′ = {A ∈ N|lA ≥ L},
(2) E ′ = {(A, B) ∈ E|lA > lB ≥ L},
(3) For each A ∈ N ′ the following properties hold:

W ′
A =

{
WA if lA > L∑

B∈N ,B�A WB otherwise,

where WC and W ′
C is the weight of node C in T and T ′, respectively.

(4) Analogously, for the direct association of points to clusters the following property
holds: Let x be associated with Cluster B in T , i.e. Cl(x) = B. Then in T ′, x is
associated with:

Cl′(x) =
{

B if lB ≥ L
A|B � A ∧ lA = L otherwise.

Here, the weights of the pruned nodes are automatically added to the leaf nodes of
the new HCS, which used to be the ancestors of the pruned nodes. Therefore, the sum
of all weights is maintained (and still equals 1), and the obtained tree is again a HCS
according to Definition 1. The same holds for the point-to-cluster assignments.

3.2 Generalization of the MDL Principle

Now we explain how the MDL principle can be generalized for hierarchical clustering
and develop the new objective function hMDL. Following the traditional MDL prin-
ciple, we compress the data points according to their negative log likelihood corre-
sponding to the PDF which is given by the HCS. In addition, we penalize the model
complexity by adding the code length of the HCS parameters to the negative log like-
lihood of the data. The better the PDFs of child nodes fit into the PDFs of the parent,
the less the coding costs will be. Therefore, the overall coding costs corresponds to
the natural, intuitive notion of a good hierarchical representation of data by distribu-
tion functions. The discrete assignment of points to clusters allows us to determine the
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(a) Exact coding
of μB .

(b) Inexact coding
of μB .

(c) Different
Gaussians w.r.t.
different grid positions.

(d) All possible values
for recovered μB .

Fig. 2. Optimization of the grid resolution for the hMDL criterion

coding costs of the points clusterwise and dimensionwise, as explained in the follow-
ing: The coding costs of the points associated with the clusters C ∈ N of the HCS
T = (N , E) corresponds to:

Cdata = − log2

∏

x∈DB

max
C∈N

{
WC

∏

1≤j≤d

N(μC,j , σ
2
C,j , xj)

}
.

Since every point x is associated with that cluster C in the HCS which has maximum
probability density, we can rearrange the terms of the above formula and combine the
costs of all points that are in the same cluster:

= −
∑

x∈DB

log2

(
WCl(x)

∏

1≤j≤d

N(μCl(x),j , σ
2
Cl(x),j, xj)

)

= −
(( ∑

C∈N
nWC log2 WC

)
+

( ∑

x∈DB;

∑

1≤j≤d

log2 N(μCl(x),j, σ
2
Cl(x),j , xj)

))

= −
∑

C∈N

(
nWC log2 WC +

∑

x∈C;

∑

1≤j≤d

log2 N(μC,j , σ
2
C,j , xj)

)
.

The ability to model the coding costs of each cluster separately allows us now, to focus
on a single cluster, and even on a single dimension of a single cluster. A common inter-
pretation of the term −nWC log2 WC , which actually comes from the weight a single
Gaussian contributes to the GMM, is a Huffman coding of the cluster ID. We assume
that every point carries the information which cluster it belongs to, and a cluster with
many points gets a shortly coded cluster ID. These costs are referred to the ID cost of a
cluster C. Lets consider two clusters, A and B, where B � A. We now want to derive
the coding scheme for the cluster B and its associated points. Several points are asso-
ciated with B, where the overall weight of assignment sums up to WB . When coding
the parameters of the associated PDF of B, i.e. μB , and σB , we have to consider two
aspects: (1) The precision both parameters should be coded to minimize the overall de-
scription length depends on WB , as well as on σB . For instance, if only few points are
associated with cluster B and/or the variance σB is very large, then it is not necessary to
know the position of μB very precisely and vice versa. (2) The knowledge of the PDF
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of cluster A can be exploit for the coding of μB , because for likely positions (according
to the PDF of A) we can assign fewer bits. Basically, model selection criteria, such as
the Bayesian Information Criterion (BIC) or the Aikake Information Criterion (AIC)
already address the first aspect, but not the hierarchical aspect. To make this paper self
contained, we consider both aspects. In contrast to BIC, which uses the natural loga-
rithm, we use the binary logarithm to represent the code length in bits. For simplicity,
we assume that our PDF is univariate and the only parameter is its mean value μB . We
neglect σB by assuming e.g. some fixed value for all clusters. We drop these assump-
tions at the end of this section. When the true PDF of cluster B is coded inexactly by
some parameter μ̃B , the coding costs for each point x (which truly belongs to the dis-
tribution N(μB , σ2

B, x)) in B is increased compared to the exact coding of μB , which
would result in cex bits per point:

cex =
∫ +∞

−∞
− log2(N(μB , σ2

B, x)) · N(μB, σ2
B , x) dx = log2(σB

√
2π · e).

If μ̃B instead of μB is applied for compression, we obtain:

c(μ̃B , μB) =
∫ +∞

−∞
− log2(N(μ̃B, σ2

B , x)) · N(μB, σ2
B, x)dx.

The difference is visualized in Figure 2(a) and 2(b) respectively: In 2(a) μ̃B of the
coding PDF, depicted by the Gaussian function, fits exactly to μB of the data distri-
bution, represented by the histogram. This causes minimum code lengths for the com-
pressed points but also a considerable effort for the coding of μB . In Figure 2(b) μB

is coded by some regular quantization grid. Thereby, the costs for the cluster points
slightly increase, but the costs for the location parameter decreases. The difference be-
tween μ̃B and μB depends on the bit resolution and on the position of the quantiza-
tion grid. One example is depicted in Figure 2(b) by five vertical lines, the Gaussian
curve is centered by the vertical line closest to μB . We derive lower and upper limits of
μ̃B ∈ [μB −1/2b...μB +1/2b] from the number of bits b, spent for coding μ̃B . The real
difference between μB and μ̃B depends again on the grid position. Not to prefer clusters
that are incidentally aligned with the grid cells, we average over all possible positions
of the discretization grid. Figure 2(c) presents five different examples of the infinitely
many Gaussians that could be recovered w.r.t. different grid positions. Note that all po-
sitions inside the given interval have equal probability. Hence, the average coding costs
for every possible position of μ̃B can be expressed by the following integral:

cappx(b) = 2b−1

∫ μB+1/2b

μB−1/2b

c(μ̃B , μB) dμ̃B

=
1
2

log2(π · e · σ2
B) +

1
2

+
log2 e
6σ2

B

· 4−b.

Coding all n · WB coordinates of the cluster points as well as the parameter μB (ne-
glecting the ID cost) requires then the following number of bits:

Cappx(B) = cappx(b) · n · WB + b.

The optimal number bopt of bits is determined by setting the derivation of the above
term to zero.
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d
db

Cappx(B) = 0 =⇒ bopt =
1
2

log2(
n · WB

3 · σ2
B

).

The unique solution to this equation corresponds to a minimum, as can easily be seen
by the second derivative.

Utilization of the Hierarchical Relationship. We do not want to code the (inexact) po-
sition of μB without the prior knowledge of the PDF associated with cluster A. Without
this knowledge, we would have to select a suitable range of values and code μB at the
determined precision b assuming e.g. a uniform distribution inside this range. In con-
trast, μB is a value taken from the distribution function of cluster A. Hence, the number
of bits used for coding of μB corresponds to the overall density around the imprecise
interval defined by μB , i.e.

chMDL(μB) = − log2

∫ μB+1/2b

μB−1/2b

N(μA, σ2
A, x) dx.

Figure 2(d) visualizes the complete interval of all possible values for the recovered
mean value (marked in red) and illustrates the PDF of the clusterA, which is the prede-
cessor of cluster B. μ̃B can be coded by determining the whole area under the PDF of A
where μ̃B could be. The area actually corresponds to a probability value. The negative
logarithm of this probability represents the required code length for μB . The costs for
coding all points of cluster B and μB then corresponds to

cappx(b) · n · WB + chMDL(μB).

Note, that it is also possible to optimize b directly by setting the derivative of this for-
mula to zero. However, this is impossible in an analytic way, and the difference to the
optimum which is obtained by minimizing Cappx(B) is negligible. In addition, if the
parent A of B is not the root of the HCS, μB causes some own ID cost. In this case,
μB is a sample from the complex distribution function of the hierarchical cut (cf. Defi-
nition 2), which prunes the complete level of B and all levels below. Hence, the weight
of these levels is added to the new leaf nodes (after cutting), and the ID costs of μB

correspond to:
− log2 (

∑

X�A

WX).

A similar analysis can be done for the second parameter of the distribution function,
σB . Since it is not straightforward to select a suitable distribution function for the Huff-
man coding of variances, one can apply a simple trick: Instead of coding σB , we code
yB = μB ± v · σB , where v is a constant close to zero. Then, yB is also a sample
from the distribution function N(μA, σ2

A, x) and can be coded similar to μB . There-
fore, chMDL(σB) = chMDL(μB), and we write chMDL(param) for the coding costs
per parameter instead. In general, if the PDF, which is associated with a cluster has r
parameters, then the optimal number of bits can be obtained by the formula:

bopt =
1
2

log2(
n · WB

3 · r · σ2
B

).

And the overall coding costs are:
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ChMDL(B) = cappx(b) · n · WB + r · chMDL(param)

Until now, only the trade-off between coding costs of points and the parameters of the
assigned cluster are taken into account. If we go above the lowest level of the HCS, we
have to trade between coding costs of parameters at a lower level and coding costs of
the parameters at the next higher level. This can be done in a similar way as before: Let
bB be the precision, which has already been determined for the representation of μB

and σB , the parameters for cluster B, which is a subcluster of A. However, this is the
minimum coding costs assuming that μA and σA have been stored at maximum preci-
sion, and that μB and σB are also given. Now, we assume that μB is an arbitrary point
selected from the distribution function N(μA, σ2

A, x) and determine an expectation for
the cost: ∫ +∞

−∞
− log2

∫ μB+1/2bB

μB−1/2bB

N(μA, σ2
A, x)dx N(μA, σ2

A, μB)dμB .

Finally, we assume that μA is also coded inexactly by its own grid with resolution bA.
Then the expected costs are:

2bA−1

∫ μA+1/2bA

μA−1/2bA

∫ +∞

−∞

(
− log2

∫ μB+1/2bB

μB−1/2bB

N(y, σ2
A, x) dx

)
·

· N(μA, σ2
A, μB) dμB dy.

Since it is analytically impossible to determine the optimal value of bA, we can easily
get an approximation of the optimum by simply treating μB and σB like the points
which are directly associated with the cluster A. The only difference is the follow-
ing. While the above integral considers that the PDF varies inside the interval [μB −
1/2bB , μB + 1/2bB ] and determines the average costs in this interval, treating the pa-
rameters as points only considers the PDF value at one fixed position. This difference is
negligible provided that σB < σA, which makes sense as child clusters should usually
be much smaller (in terms of σ) than their parent cluster.

Coding Costs for a Cluster. Summarizing, the coding costs for a cluster can be ob-
tained as follows: (1) Determine the optimal resolution parameter for each dimension
according to the formula:

bopt =
1
2

log2(
n · WB + r · #ChildNodes(B)

3 · r · σ2
B

).

(2) Determine the coding costs for the data points and the parameters according to:

ChMDL(B) = cappx(b) · n · WB + r · chMDL(param)

(3) Add the costs obtained in step (2) to the ID costs of the points (−nWB log2(WB))
and of the parameters (− log2(

∑
X�A WX)). Whereas the costs determined in (2) are

individual in each dimension the costs in (3) occur only once per stored point or param-
eter set of a cluster.

Coding Costs for the HCS. The coding costs for all clusters sum up to the overall
coding costs of the hierarchy where we define constant ID costs for the parameters of
the root:
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hMDL =
∑

C∈N

(
ChMDL(C) − nWC log2(WC) − log2(

∑

X�parent of C

WX)
)
·

3.3 Obtaining and Optimizing the HCS

We optimize our objective function in an EM-like clustering algorithm ITCH. Reas-
signment of objects and re-estimation of the parameters of the HCS are done inter-
changeably until convergence. Starting from a suitable initialization, ITCH periodically
modifies the HCS.

Initialization of the HCS. Clustering algorithms that follow the EM-scheme have to
be suitable initialized before starting with the actual iterations of E- and M-step. An
established method is to initialize with the result of a K-Means clustering. This is typi-
cally repeated several times with different seeds and the result with best mean squared
overall deviation from the cluster centers is taken. Following this idea, ITCH uses a
initialization hierarchy determined by a bisecting K-Means algorithm taking the hMDL
value of the HCS as a stopping criterion for partitioning. First, a root node that contains
all points is created. Then this root node is partitioned into two subclusters by applying
K-Means with K = 2. This is done recursively until the hMDL of the binary HCS
does not improve anymore within three steps. This ensures not to get stuck in a local
minimum. Finally, after the best hierarchy is selected, μC and ΣC are determined for
each node C according to Section 3.2, and equal weights are assigned to the nodes, to
ensure that clusters compeed likewise for the data points.

E-step and M-step. Whenever an object is associated directly to a cluster C then it
is also indirectly associated with every ancestor of C. Nevertheless, points can also
be directly associated not only to leaf nodes but also to inner nodes of the HCS. For
instance, if a point Pi is an outlier w.r.t. any of the clusters at the bottom level of the
HCS, then Pi has to be associated with an inner node or even the root. As established in
Section 3.1, the clusters at all levels of the HCS compete for the data points. A point x
is directly associated with that Cluster C ∈ N the probability density function of which
is maximal:

Cl(x) = arg max
C∈N

{WC · N(μC , ΣC , x)} .

In the E-step of our hierarchical clustering algorithm, the direct association Cl(x) for
every object x is updated. Whereas, in the E-step only the direct association is used
in the M-step which updates the location and scale parameters of all clusters we use
both the direct and indirect association. The motivation is the following: The distribu-
tion function of every node in the HCS should always represent the whole data set in
this branch of the tree, and the root node should even represent the complete data set.
Therefore, for the location and scale parameters, all directly and indirectly associated
objects are considered, as in the following formulas:

μC =

∑
B∈N ,B�C

(∑
x∈B x

)
∑

B∈N ,B�C |B| , σ2
C,j =

∑
B∈N ,B�C

(∑
x∈B(xj − μC,j)2

)
∑

B∈N ,B�C |B|
ΣC = diag(σ2

C,1, ..., σ
2
C,d).

In contrast, the weight WC of each cluster should reflect the strenght of the individual
Gaussian in the overall mixture of the HCS and sum up to 1 in order to define a valid
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PDF with an integral over the complete data space of 1. Therefore, we use the direct
associations for calculating the cluster weight with WC = |C|.

Rearrangement of the HCS
The binary HCS that results from the ini-

C

(a) Initial. (b) Deletion.

C´

(c) Collapse.

Fig. 3. Restructure operations of ITCH

tialization, does not limit our generality.
ITCH is flexible enough to convert the ini-
tial HCS into a general one. Given a binary
hierarchy, which is deeper than any n-ary
hierarchy with n > 2, ITCH aims in flatten-
ing the HCS as far as the rearrangement im-
proves our hMDL criterion. Therefore we
trade off the two operations delete or col-
lapse a node to eliminate clusters that do
not pay off any more. Figure 3 visualizes
the operations for an extract of a given HCS. By deleting a cluster C, the child nodes of
C become child nodes of the parent of C (Figure 3(b)). By collapsing C, all of its child
nodes are merged into a new cluster C′ (including C), and therefore all of their child
nodes become child nodes of C′ (Figure 3(c)). Afterwards all points are redistributed,
and E- and M-step are performed alternately until convergence. ITCH rearranges the
HCS in an iterative way. In each iteration we tentatively delete/collapse each node in the
HCS and perform E- and M-steps. Then first, the node and the operation that improves
the hMDL criterion best is selected and second, the corresponding local neighborhood
(parent, child and sibling nodes) is processed. These two steps are performed alternately
until convergence.

4 Experimental Evaluation

Since ITCH is a hybrid approach combining the benefits of hierarchical and model-
based clustering, we compare to algorithms of both classes to demonstrate the effec-
tiveness of ITCH. We selected Single Link (SL) which probably is the most common
approach to hierarchical clustering. As especially on noisy data, SL suffers from the so-
called Single Link effect, we additionally compare to OPTICS, a more outlier-robust
hierarchical clustering algorithm. Unless otherwise mentioned, OPTICS is parameter-
ized with ε = 10, 000 and MinPts = 10. For an extensive description of parameter-
ization strategies, we refer to [1]. Furthermore, we compare to RIC, an outlier-robust
and parameter-free state-of-the-art algorithm to model-based clustering. In all plots, we
mark cluster points by circles and outliers by triangles respectively. To relieve evalua-
tion w.r.t. outliers, we added a color bar below the dendrograms of SL and the reacha-
bility plots of OPTICS, where colors refer to the class labels in the original data.

4.1 Synthetic Data

Experiments on DS1 demonstrate the superiority of ITCH on hierarchical data sets.
DS1 comprises about 3,500 2-dimensional points that form a hierarchy of 12 clusters
with outliers at different levels of the hierarchy. Seven Gaussian clusters are located at
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(a) Synthetic data set DS1.

cut at reachabilitycut at reachability

distance = 10

(b) Result of OPTICS. (c) Result of RIC.

Cut 1 Cut 2

(d) Result of SL. (e) Cut 1. (f) Cut 2.

(g) Result of ITCH including the PDFs for each cluster at level 0 and 1.

Fig. 4. Experimental evaluation on synthetic data set DS1

the bottom level (Figure 4(a)). Experiments on DS2 indicate the limitations of exist-
ing approaches to form meaningful clusters in extremely noisy non-hierarchical data.
DS2 is composed of two Gaussian clusters with 1,650 points each, overlapping in the
marginal area without any global outliers. The quantitative evaluation of the results is
always performed w.r.t. the “true” hierarchies present in these data sets.

Experimental Evaluation on DS1. As Clusters can be recognized as valleys in the
reachability plot, OPTICS yields a satisfactory result (Precision: 94.8% Recall: 95.4%
w.r.t. reachability distance < 10). But without our added color bar it would be impossi-
ble to spot the outliers since high distance peaks can also be caused by the usual jumps
(Figure 4(b)). At a first glance, the SL-hierarchy (Figure 4(d)) reflects the true hierar-
chy quite well. However, a closer look at the data partitioning w.r.t. different cuts does
not lead to meaningful clusters. Figure 4(e) illustrates the data that refers to a cut re-
sulting in seven clusters. SL identifies only five clusters and three outliers (Precision:
70.0% Recall: 85.9%). The four clusters on the left side are wrongly combined into two
clusters. Even at a much deeper split (Figure 4(f)) this effect remains for the orange
cluster. Actually, the cluster quality is getting worse (Precision: 8.5% Recall: 9.0%) as
the multiple outliers w.r.t. the three subclusters on the right side cause the well-known
SL effect. Even though, each outlier is assigned to a single cluster the points marked
by a red circle are not identified as outliers. Altogether, it is extremely hard to find the
right parameter to cut through the dendrogram which gives a meaningful cluster repre-
sentation. In order to apply RIC to the hierarchical data set, we preprocessed DS1 with
SL and applied RIC as postprocessing step in each level of the hierarchy. Figure 4(c)
demonstrates the result when applying RIC to Cut 1 of the SL dendrogram (Precision:
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(a) Result of RIC. (b) Result of OPTICS. (c) Result of SL.

(d) Result of ITCH including the PDFs for both clusters at level 0.

Fig. 5. Experimental evaluation on synthetic data set DS2

94,9% Recall: 92,2%). It is obvious that even RIC fails to successfully filter out all out-
liers. More precisely, RIC assigns points (marked by a dark blue and orange triangle
in the original data) that obviously are outliers w.r.t. two clusters on the left upper and
lower side misleadingly to clusters. Also a majority of the red outliers are incorrectly
identified as cluster points. ITCH is the best method to detect the true cluster hierarchy
including outliers fully automatically (Precision: 93.8% Recall: 97.5%), and ITCH pro-
vides meaningful models on the data for each level of the hierarchy (Figure 4(g)).

Experimental Evaluation on DS2. Figure 5(a) demonstrates that RIC merges the two
Gaussian clusters into only one cluster (Precision: 50.0% Recall: 100.0%). Also with
OPTICS, it is impossible to detect the true structure of DS2. The color bar in Fig-
ure 5(b) indicates that OPTICS assigns the points in an almost arbitrary order. Even
when increasing the parameter for the minimum object density per cluster to a large
value, OPTICS fails in detecting two clusters. SL miscarries due to the massive SL ef-
fect (Figure 5(c)). Here, OPTICS is not suitable to cure that problem. Moreover, the
hierarchies generated by OPTICS and SL are overly complex but do not capture any
cluster structure. Hence, it is not possible to evaluate these results in a quantitative fash-
ion. Only ITCH discovers a meaningful result without requiring any input parameters
(Precision: 99.2% Recall: 99.7%). All clusters that do not pay off w.r.t. our hMDL are
pruned and hence, only two Gaussian clusters remain in the resulting flat hierarchy
which are described by an intuitive description in form of a PDF (Figure 5(d)).

4.2 Real World Data

Finally, we show the practical application of ITCH on real data sets available at UCI1.

Glass Data. The Glass Identification data set comprises nine numerical attributes repre-
senting different glass properties. 214 instances are labelled according to seven different
types of glass that form a hierarchy as presented in Figure 6(a). ITCH perfectly sepa-
rates window glass from non window glass. Additionally, tableware and containers are

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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29 headlamps9 tableware13 containers0 vehicle76 building17 vehicle70 building

float processed non float processed

window glass non window glass

glass types

(a) Hierarchy in the original data set.

(b) Result of SL. (c) Result of OPTICS. (d) Result of ITCH.

Fig. 6. Hierarchical clustering of 9-dimensional glass data (214 instances)

almost perfectly separated from headlamps. The four subclusters of window glass are
very similar. Hence, ITCH arranges them at the same level. Some outliers are directly
assigned to window glass. In contrast to ITCH, neither SL nor OPTICS separates win-
dow glass from non window glass perfectly (Figures 6(b) and 6(c)). Containers and
tableware do not form discrete clusters but are constituted as outliers instead. In the
dendrogram only the headlamps can be identified, whereas in the reachability plot two
clusters are visible. Nevertheless, both approaches do not reflect the original hierarchy
successfully. As it is not clear where to define an adequate cut through the dendro-
gram we applied RIC at the bottom level. This results in only two clusters without any
separation between window glass or non window glass.

Cancer Data. The high-dimensional Breast Cancer Wisconsin data set contains 569
instances each describing 30 different characteristics of the cell nuclei, where each in-
stance is either labelled by benign (blue) or malignant (red). OPTICS and SL both fail to
detect a clear cluster structure in this data set (Figures 7(a) and 7(b)). Hence, we applied
RIC on top of a K-Means clustering with K=15. As stated by the authors we chose K
large enough compared to the number of classes. However, RIC also fails and results
in three mixed clusters. In contrast, despite the high dimensionality of the data, ITCH
almost perfectly separates the benign from the malignant objects which are then split

(a) Result of SL. (b) Result of OPTICS. (c) Result of ITCH.

Fig. 7. Hierarchical clustering of 30-dimensional breast cancer data (569 instances)
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into different subclusters (Figure 7(c)). This result is consistent with previous findings
as the two classes exhibit a degree of overlap with each other [15].

4.3 Stability of ITCH

Since we do not want to rely on single results we ad-
glass

DS1 DS2

glass

6.46%
cancer

3 89%DS1

0.03%

DS2

0.12%

glass

6.46%
cancer

3.89%DS1

0.03%

DS2

0.12%

glass

6.46%
cancer

3.89%DS1

0.03%

DS2

0.12%

glass

6.46%
cancer

3.89%DS1

0.03%

DS2

0.12%

glass

6.46%
cancer

3.89%

Fig. 8. Stability of the ITCH result
over 20 runs

ditionally tested the stability of ITCH over 20 runs
for each data set. Figure 8 shows the variance of the
hMDL value in percent depending on the mean value.
The result of ITCH is highly stable within DS1, DS2
having only a variance of 0.03% and 0.12%, respec-
tively. Also in the real world data sets the result of
ITCH shows only little variance.

5 Conclusions

We have introduced a new hierarchical clustering method to arrange only natural, valid,
and meaningful clusters in a hierarchical structure – ITCH. ITCH is based on an ob-
jective function for clustering that was guided by the information-theoretic idea of data
compression. We have shown that without difficult parameter settings ITCH finds the
real cluster hierarchy effectively, and that it provides accurate and intuitive interpretable
information in a wide variety of domains, even in the presence of outliers.

Acknowledgements. We thank Johannes Huber for assisting us with the evaluation.
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