
1

Lecture Notes for
Managing and Mining Multiplayer Online Games

Summer Term 2019

Lecture Notes © 2012 Matthias Schubert 

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 5: Game Analytics



2

Overview

• What is Game Analytics?
• Reasons for Fraud in Computer Games
• Types of fraud and countermeasures
• Monitoring player behavior
• Typical balancing tasks
• Game Analytics and KDD



3

Design Goals

Factors influencing sustainability of player experience:
• Games should be challenging, but not frustrating

• Games should guarantee a fair competition

• Game accomplishments should be persistent

• Games should allow/encourage social interaction

• Achievements should be visible for other players

(Rankings, Title, Items, …)

• Games should be expanded and modified regularly 

• Games must adapt to growing player skill



4

Game Analytics

Data Mining and statistical analysis of observed player 
behavior to gain knowledge about the manner in which a 
game is being played:

• Creating a game does not make you it’s best player.
How is a game played most effectively?

• Thousands of players cannot be monitored manually.
• How much time do players spend with the game?

What aspect of the game occupies players most of the time?

• Game difficulty is relative to player skill:
• Who is playing, and what motivates players?
• How capable are players with respect to different skills?



5

Knowledge Discovery on Game Data
Objectives:
1. Fraud Detection
Fraud influences a MMMO’s long term success:
• micro-Transactions are no longer necessary
• wrecks other player’s game experience

2. Evaluating Game Balance
• controlling difficulty level and player progress
• balancing power for different kinds of factions, classes, avatars…
• analysis of player resources necessary for success: 

time, skill and money.



6

E-Sports Analytics 

How can players improve:
• How good do I play?
• How can I improve my performance?
• Which tactics and counter tactics exist?
• Which units are actually the best?
• What is the best team composition?
• What is the superior skill setup?
How strong are E-Sports team:
• How well will my team perform?
• Which new players should I recruit?
• How is my pool developing?
• How do I scout talents?



7

Why are Players committing fraud?
• Economic reasons

In-game currencies, goods or whole accounts have a real equivalent value:
Poker Bots, Gold Farming, Account Trading, Item Trading, …

Example: Portals for trading game goods exist (numbers 2013)
(playerauctions.com)

• More than 1 B USD accumulated  player-to-player commercial value

• On average 25,000 daily transactions (ca. 20 pro Minute) 

• More than 700 Massively Multi-Player Online Games are supported

• More than 30 MM completed transactions



8

Why are Players committing fraud?
• Saving time

example: AFK Bots (autonomous programs to control the game for 
completing task that do not require much skill (gathering, … ) in 
player absence

• Prestige
in social games success is coupled with a reputation. 
example: titles, rankings, ladders..

• Fun
beating other players is fun, even when you play unfair

Any motivation is problematic
• Providers directly loose money (micro transactions)
• Games loose sustainability and players loose interest

( unfair competition, no performance comparability, fair players get 
ftustrated)



9

Technical ways to cheat
• Exploits: taking advantage of bugs and bad design in the game
• Client Modifications (Hacks)

• Information Hack: player gets more information than intended.
(e.g. Map-Hacks, Wall-Hacks, …)

• circumventing game-physics or other rules (e.g. Teleportation Hack)
• Modifying other system components

• manipulation the network by manipulating latency, protocol headers or 
time-stamps(e.g. Protocol Hacks)

• manipulating device drivers (e.g. Wall-Hacks with transparent textures)
• Botting

• control of an avatar to save time (Farm Bots)
• control of an avatar to increase game power (Poker Bots, Aim Bots)

• Macros, scripts, programmable I/O-devices
• partly automating control of an avatar to simplify complex actions 

(Gaming Macros)
• programs that optimize user input



10

Other ways of Cheating

• Win-Trading
losing deliberately to speed up the opponents progress

• Account Kidnapping:
takeover of a player account for a limited time:
• selling the victims virtual possessions and in game currency
• obstructing the opponent during deciding game stages

• Illicit trade with virtual goods
• often in combination with account kidnapping
• external trade might trade ingame achievement with spending 

real money
(If  weak players control very successful avatars, it undermines 
the sustainability of fairly acquired successes)

• trade may decrease the revenue of the game
(less micro transactions)



11

Countermeasures: Prevention

Cheat/Fraud Prevention
• important operations are calculated on server side
• use of checksum methods on client programs
• clients receive software that checks for fraudulent behavior

(e.g. Punkbuster, Warden, …)

Advantage:
• prevents fraud before it affects other players

Disadvantages:
• control software has access to the client computer

(endangers privacy)
• server side computations cost expensive resources and cut down the in 

game response time (waiting for a RTT)
• client computer are always under player control

(virtual machines, Roots Kits, Code and DLL Insertion, …)



12

Countermeasure: Detection

Cheat/Fraud Detection:
• server side surveillance of players
• recognition of suspicious or fraudulent behavior
• players get sanctioned if caught

(temporary ban players from the game)

Advantages:
• fraud is detected on server side

⇒ cheaters are unable to analyze the detection mechanism
⇒ no breach of privacy

• flexible approach, capable of detecting new kinds of fraud without 
adjustment

Disadvantage:
• reactive approach 

(fraud must occur  before it can be sanctioned)



13

Monitoring player behavior
Challenges and Problems with Player surveillance:
• A chain of events is necessary for analysis.

(saving the course of play is crucial)

• Reviewing every player action constitutes a very large 
calculation effort.

• Reviews should be as unspecific as possible, so variations 
and new possibilities can be detected without additional 
effort.

• Sanctioning fraud has to consider all impacts and player 
perceptions
(Not every minor cheat/exploit should lead to a ban)



14

Monitoring Game Balance

Game Balance describes:
• the difficulty level of the game

(challenging, but not frustrating)
• the fairness of the game

(Do all players have a fair chance to win?)
• the influence of skill, money and time

(Should top players invest less or more money? 
How much time can/must be invested into the 
game?)

How are games balanced:
• defining design-goals
• establish mechanics to implement the goals
• observe the impact on game play



15

Monitoring Game Balance

Problems with Beta Tests:
• The more is seen during the beta-test, the less “fresh content” is left for 

the actual game. (Spoiler)

• Beta Tests are usually too small to include all group compositions, 
circumstances and possible tactics.

• New content should be released regularly
=> limited time frame for tests

⇒ Beta Tests require game analytics to be as comprehensive and effective 
as possible.

⇒ Control over current events and hot fixing problems are daily tasks of 
most MMOs.



16

Typical Game Balancing Tasks

• Predicting player skill and match making
• Which teams should compete against each other?

=> dependent on the skill level and the players currently queuing 
• How are new teams ranked?
• How should the player ranking be modified after the game?

• Analysis of character classes and units
• Is the choice of faction or class a deciding factor for success?
• What are the reasons behind this observation?

=> dependent on game-situations and player skill

• What kinds of players are there?
• Which players are most profitable?
• What are specific player groups’ needs?
• Which kind of players are necessary for sustainable success of the 

game?



17

Methods for Game Analyzing Balance
• Event Detection in data streams

• Monitoring of encounter-results

• Estimating player strength, to remove 
data bias

• Identification and description of 
characteristic strategies
=>   the more diverse, the more 
interesting is an encounter

• Analysis of social media (e.g. Forum) 
and specifically including player 
opinions



18

The Analytical Process in Games

1. define the goal of the analysis (Focussing)

2. extract relevant data
(players, events, …) (Selection)

3. model player behavior (Data Transformation)

4. apply data mining/machine learning (Mining)

5. evaluate the found patterns (Evaluation)

6. use results to develop measures to reach design-goals
(How do you use the results?)



19

Example: Analysis of DOTA2

• define question: At which time is it possible to predict the 
outcome of game?

• data acquisition and processing: download/parse replays
• model player behavior: accumulate gold/XP progress
• generating knowledge: build classifier for each time step
• evaluation: How good is the model? Is the result useful?

steam 
platform

replays raw-
storage

parser database

data 
extraction

data 
analysis

result
presentation

n

result
evaluation



20

When does Game Analytics work?

• Patterns and Frequency
• Patterns have to exist in some way and must be recognizable.
• Data should be correlated to the desired outcome.

• Generalization and Overfitting
• Transferring knowledge to new objects requires comparability / 

similarity to already analyzed data.
• The less information describes an object, the more objects are 

comparable. The more properties are considered, the more 
different objects become.

• Valid in a statistic sense
• Knowledge has room for errors => no absolute rules.
• Useful knowledge does not need to be 100% correct, it needs to 

be significantly better than guessing.



21

Overfitting

Over adaption of models to given data objects
=> insufficient transferability to other data objects

factors favoring overfitting:
• Complexity of object description: The more information is available, 

the less likely two objects are similar to each other.
• Specificity of attribute values: The more unique an attribute value, 

the smaller is its contribution to distinguish data objects.
(example: Object_ID)

• Model complexity: The more complex a function or a pattern is, the 
easier it adapts to the given training objects and does not generalize 
well.

Generalization: Model, attributes and object descriptions should not 
describe one individual, but all objects belonging to the same pattern
(class, cluster).



22

Feature Space, Distance and Similarity Measure

In how far do objects behave in an comparable way?
Example: 2 Players, who are controlled by the same bot are likely to create 

similar network-traffic.

Formalizing Similarity:
• Feature Space: data  mining algorithms’ perspective on objects. (Features, 

Structure, Values range, …)
• Similarity Measure: calculates similarity based on feature-space. 

(the higher, the more similar)
• Distance Function: calculates difference between two object descriptions. 

(the higher, the more dissimilar)

Note:  Feature Space and Similarity Measure are dependent:
• Changing the feature space changes the result of the measure.

• Similarity measure may only use parts of the description or may recombine 
existing elements. (equivalent to transforming the feature space)



23

Formal definition of distance function

Distance function: Let F be a feature space.
dist : F×F→ IR+

0 is called a distance function if the following 
properties hold:

• ∀p,q∈F, p≠q : dist(p,q) > 0 
• ∀o∈F: dist(o,o) = 0
• ∀p,q∈F: dist(p,q) = dist(q,p) 

Additionally, if  
∀o,p,q ∈Dom : dist(o,p) ≤ dist(o,q) + dist(q,p)

holds, dist ist called a metric.

reflexivity

symmetry

strictness

triangle inequality



24

Vectors as Object Presentation

Feature Vectors: standard representation in most algorithms
basic idea:
• feature: property describing an object.

example: average packages per second
• types of features: 

• nominal: equality and inequality (example: name)
• ordinal: values are ordered (example: position in ranking)
• numerical: differences of values are quantifiable

(level (discrete), package-rate (metric), …)

• Feature Vector: Set of all describing features
example:(name, guild rank, level, package rate, package size)

• There is a variety of algebraic functions and laws usable for analysis of  
purely numerical data.



25

Supervised Learning
Idea: Learn from example objects to optimize a predictive function.
given:
• target variable C

(classification: set of nominal values, regression: numerical values)
• objects: DB∈ F×C: Object o=(o.v,o.c)∈ DB
• training set: T ⊆ DB of which o is fully known.

goal: function f: F → C, mapping object representation to values of the 
target variable with minimal error.

error function: quantifies the quality of the model on T.
square loss/ quadratic error: 

hinge loss: 

𝐿𝐿2 𝑓𝑓, 𝑇𝑇 = �
(𝑥𝑥,𝑦𝑦)∈𝑇𝑇

𝑦𝑦 − 𝑓𝑓 𝑥𝑥 2

𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓, 𝑇𝑇 = �
(𝑥𝑥,𝑦𝑦)∈𝑇𝑇

max(0,1 − 𝑡𝑡 � 𝑓𝑓 𝑥𝑥 )



26

Training Supervised Methods

• given the type of the function f ,e.g., linear model

• adapt f to training set T by modifying parameter θ
example: f univariate linear function:

training: minimize loss function
• Loss function L describes the error of f  for T
• search parameters θ* minimizing L
• approach: build the gradient of L for θ

and compute the minimum θ*.
=> convex loss functions are beneficial

(the only extremum is the minimum)
=> general loss functions might have multiple local minima and

training can get stuck at suboptimal parameters

xxf ⋅+= 10),( θθθ∑
=

⋅+=
d

i
ii xxf

1
0),( θθθ

x

f(x, θ)

solution 2D case

θ

L(T, θ)

θ*



27

Example: 2D linear  regression

given: Trainingsmenge T∈ IR2

model:
loss function: 

gradient for θ0:

gradient for θ1:

xxf ⋅+= 10),( θθθ

( ) ( )

( )∑

∑∑

∈

∈∈

−−+++=

⋅−+=−=

Tyx

TyxTyx

yxyxxy

xfyxfyxfyTfL

),(
1010

2
0

2
1

2

),(

22

),(

22

222)(

),(2),(),(),(

θθθθθθ

θθθ

( ) 







−−+=+−=

∂
∂ ∑∑∑∑∑

∈∈∈∈∈ TyxTyxTyxTyxTyx
yxxxExyExxyxxL

),(),(
1

),(),(

2
1

),(
0

2
1

1

2

)()(2222 θθθθ
θ

( ) 







+−=+−=

∂
∂ ∑∑∑

∈∈∈ TyxTyxTyx
xyTxyL

),(
1

),(
0

),(
10

0

2

2222 θθθθ
θ

Xfeature space

ta
rg

et

Y

εi{

)()( 1
),(

1
),(

0 xEyE
T

xy
TyxTyx θ

θ
θ −=

−
=

∑∑
∈∈

)(
),(

)(

)(

),( ),(

2
),(),(

1 xVar
yxCov

xxEx

xyEyx

Tyx Tyx

TyxTyx =
−

−
=
∑ ∑

∑∑

∈ ∈

∈∈θ

:0
0

2

=
∂
∂
θ
L

:0
1

2

=
∂
∂
θ
L



28

Further Comments on Supervised Learning

• regularization: Often parameters θ can grow unrestricted
=> integrate regularization term to restrict the allowed solutions

example: linear ridge regression

• often optimization are more complicated by considering constraints
(quadratic programs, semi definite programs, …)

• loss functions do not have to be convex (neural networks)
=> optimization minimizes the loss until local convergence 

• there are other approaches to supervised learning not minimizing a 
loss function, e.g., maximize the likelihood 

( ) 2
2

1
0

2 ..1),( θαθθα ⋅+







⋅+−⋅−= ∑ ∑

∈ =To

d

i
ii vocoTfL

regularization



29

Instance-based Learning

idea: search the most similar objects in training set T and a 
use their target variables to estimate the target value.

two components:

• decision set of similar training objects:
• depends on similarity/distance measure (k-nearest neighbors in T)
• size of decision set  k describes the generalization of the method

• compute the prediction
• use majority vote (classification)/ mean (regression)
• distance weighted votes ( e.g., quadratic inverse weighting: 

1/d(q,x)2)



30

Rule of Bayes

How to compute the likelihood of B generating the given observation v.

• we assume p(v) =p(A)⋅p(v|A)+p(B)⋅p(v|B),
here: P(B), P(A) are called prior probabilities describing the general 
ratio of instances from B and A. (How much Bots are out there?)

=> the above formula implies that even if p(v|A) < p(v|B) it might be more 
likely that v is caused by a bot because bots might be very rare.

Generally:

• rule of Bayes:

• for all distributions C and observation v it holds:

(the observation has to follow a known model) 
• therefore,      is the most likely distribution

(class/value)

)(
)|()()|(

vP
BvPBPvBP ⋅

=

∑
∈

=
Cc

vcP 1)|(

( ))|(maxarg* vcPc
Cc∈

=



31

Bayesian Learning

idea: each observation is generated by a hidden statistical 
distribution/process.

Given a set of these distributions allows to determine the most likely 
explanation for any new observation.

example: Bot-Detection
given:  model A:  human player, model B: bot player

observation v (vector describing network traffic)
assumption: v follows either A or B.
task: compute the likelihood that v was generated by B.
solution: compute P(B|v) = likelihood of B given that v was already 
observed

caution: do not confuse with P(v|B) = likelihood that B generates vector v
It might be very unlikely that B exactly generates v.



32

Training Bayes Classifiers
• prior distribution P(c) are approximated as the ration of class 

members in the training set T
(17 out of 100 traffic snippets were generated by bots: P(B) =17%)

• to compute p(v|c) we assume a certain type of distribution
• in the most simple case training is done be computing relative 

probabilities in T.

example: consider two dices
• possible results: {1, 2, 3, 4, 5, 6}
• dice D1 is uniform distributed: 1/6 for all number from 1 to 6
• distribution for dice D2 : 1: 1/12, 2: 1/12, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/3 
• p(v=1|D1) = 1/6, p(v=6|D2)=1/3
• given: P(D1)= 0.2 und P(D2)=0.8:

𝑃𝑃 𝐷𝐷𝐷 5 =
0,8 � 1

6
0,2 � 1

6 + 0,8 � 1
6

= 0,8 𝑃𝑃 𝐷𝐷𝐷 6 =
0,8 � 1

3
0,2 � 1

6 + 0,8 � 1
3

=
8
9



33

Univariate Distributions
• discrete probability spaces:

• finite number of events 
• separate estimation for all basic events

• real valued distributions:
• infinite number of events

(each event has a probability 1/∞ → 0)
• estimation of using probability density 

functions (e.g. Gaussian distributions)
• training = estimate parameters of the density

function (e.g., mean and variance)
• to compute probabilities from density functions 

either integrate over an interval of events or 
apply the rule of Bayes to determine relative 
densities.

1
2

3
4

5
R1

0

5

10

15

20

25

30



34

Statistical Models

considering multiple features vi requires joint estimates of 
p(v1, …,vd|c) .

problem: How to consider correlations between v1, …, vd ?
• naive approach: consider all objects as independent => naive Bayes

pro: easy estimation and computation

con: limited expressiveness

• complete dependency: estimate joint probabilities for all value 
combinations (v1, …,vd)
pro: any correlation might be considered
con: number of possible events increases exponential in d
=> usually not enough training data
=> large models and slow training

• advanced solutions allow to consider some correlations but not all
(e.g., Bayes networks, graphical models ,etc.)

∏
=

=
d

i
id cvPcvvP

1
1 )|()|...,,(



35

Evaluating Supervised Learners

• optimization on the training data not very inclusive

⇒ generalization: how good does the method work on 
unknown data

• it is necessary to test classifiers and predictors on 
previously unknown and independent samples
(Train and Test)

• problem: Usually, there is not enough labeled data 
providing a correct target value.
=> ground truth is rare
=> manual labeling is cumbersome and expensive 



36

Testing Supervised Predictors

goal:
• train and test  on as many instances as possible
• train and test set must be disjunctive

Leave-One-Out:
• perform n tests for n data objects
• each element is picked once for testing and the rest is used for training
• results are reproducible
• maximum test effort (requires to train n predictors)
• only applicable to small data sets or instance-based methods



37

Stratified k-fold Cross Validation

• similar to leave-one-out. 
• build k folds and performs leave-one-out on folds instead of instances

• stratification: the class distribution in each fold is the same as in the 
complete data set. (each class is approx. represented by the same 
number of objects in each fold)

• the number of folds k controls the effort 
(the larger k the more effort, but the larger the training sets)

• result of k-fold cross validation depends on the sampling of the folds
=> results can vary when shuffling the data
=> k-fold cross validation might be applied several times on different  
shufflings to avoid this effect



38

1 fold:
1 a2 b

3 c
test set

classifier

train set

classification
results

1 a2 3 b c
set of all labeled data objects

2 fold:
1 a3 c

2 b
test set

classifier

train set

classification
results

3 fold:
2 b3 c

1 a
test set

classifier

train set

classification
results

green boxes: class 1 (folds:1, 2, 3) 
blue boxes: class 2 (folds: a, b, c)

joint
classification

result

Example: 3-fold stratified Cross Validation



39

Evaluating Classification Results

raw test result: confusion matrix

class 1    class 2  class 3  classe 4 class 5

class 1

class 2

class 3

class 4

class 5

35 1 1

0

3

1

3

31

1

1

50

10

1 9

1 4

1

1

5

2

210

15 13

classified as ...

re
al

 c
la

ss
la

be
l

Based on the confusion matrix the following measures are derived:
classification accuracy, classification error, precision, recall, F1-measure

correct
classifier
objects



40

Classification Metrics
• let f be a classifier, TR be the training set, TE be the test set

• o.c is the real class of object o

• f(o) is the predicted class of o

• classification accuracy of f onTE:

• true classification error of f on TE:

• apparent classification error on TR (used to determine overfitting)

||
|}.)(|{|)(

TE
coofTEofGTE

=∈
=

||
|}.)(|{|)(

TE
coofTEofFTE

≠∈
=

||
|}.)(|{|)(

TR
coofTRofFTR

≠∈
=



41

Classification Metrics

• Recall:
ratio of correctly classified instances of 
class i.  Let Ci= {o∈ TE | o.c = i}, then

),(Recall),(Precision
),(Recall),(Precision2),(F1

ifif
ififif

TETE

TETE
TE +

⋅⋅
=

||
|}.)(|{|),(

i

i
TE C

coofCoifRecall =∈
=

• Precision:
ratio of objects being correctly assigned to 
class i. Let Ki= {o∈ TE | f(o) = i}, then

Ci

Ki

classified as f(o)

re
al

 c
la

ss
 o

.c

1   2
1
2

• F1 score:
harmonic mean of precision and recall.  

||
|}.)(|{|),(

i

i
TE K

coofKoifPrecision =∈
=



42

Learning goals

• What is game analytics?
• Motivations for fraud
• Methods of fraud and counter measures
• Game Balance and Balancing Tasks
• Game Analytics as process
• Generalization and Overfitting
• Supervised Learning
• Minimizing Loss Functions
• Instance Based Learning
• Baysian Prediction
• Evalution of supervised methods



43

Bibliography
• J. Yan, B. Randell

A systematic classification of cheating in online games
In Proceedings of 4th ACM SIGCOMM Workshop on Network and System 
Support for Games, 2005. 

• Greg Hoglund, Gary McGraw:
Exploiting Online Games: Cheating Massively Distributed Systems
Software Security Series, Addison Wesley, 2007.

• script KDD I: 
http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_I_(KDD_I)

• Han J., Kamber M., Pei J.:
Data Mining: Concepts and Techniques
3rd edition, Morgan Kaufmann Publishers, March 2011.


	Chapter 5: Game Analytics
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Training Supervised Methods
	Example: 2D linear  regression
	Further Comments on Supervised Learning
	Instance-based Learning
	Rule of Bayes
	Bayesian Learning
	Training Bayes Classifiers
	Univariate Distributions
	Statistical Models
	Evaluating Supervised Learners
	Testing Supervised Predictors
	Stratified k-fold Cross Validation
	Foliennummer 38
	Evaluating Classification Results
	Classification Metrics
	Classification Metrics
	Foliennummer 42
	Foliennummer 43

