

Database Systems Group • Prof. Dr. Thomas Seidl

Praktikum Big Data Science SS 2017

Lecturer: Prof. Dr. Thomas Seidl

Assistants: Julian Busch

Evgeniy Faerman

Daniyal Kazempour

Sebastian Schmoll

Agenda

- Lab Organization
- Introduction
 - Data Science
 - Big Data
- Lab Goals
- Time Schedule
- Next Week
- References
- Topics

Lab Organization

- The lab is offered for the first time as part of the ZD.B Innovation Lab Big Data Science¹, coordinated by the chairs of
 - Prof. Dr. Bernd Bischl
 - http://www.compstat.statistik.uni-muenchen.de/
 - Prof. Dr. Dieter Kranzlmüller
 - http://www.nm.ifi.lmu.de
 - Prof. Dr. Thomas Seidl
 - http://www.dbs.ifi.lmu.de
- The lab will be hosted alternately at the chairs of Prof. Bischl (winter term) and Prof. Seidl (summer term) and is open to master students in Informatics and Statistics programmes
- Technical infrastructure for the lab is provided and maintained by the chair of Prof. Kranzlmüller and the Leibniz-Rechenzentrum (LRZ)

¹https://zentrum-digitalisierung.bayern/massnahmen-alt/innovationslabore-fuer-studierende/

Lab Organization

Supervisors

•	Julian Busch	<u>busch@dbs.ifi.lmu.de</u>	Room F 104
•	Evgeniy Faerman	faerman@dbs.ifi.lmu.de	Room F 109
•	Daniyal Kazempour	kazempour@dbs.ifi.lmu.de	Room F 106
•	Sebastian Schmoll	schmoll@dbs.ifi.lmu.de	Room F 110

Website

- http://www.dbs.ifi.lmu.de/cms/Praktikum Big Data Science
- Time schedule and material
- Check regularly for updates and announcements

Lab Process

- Students will be assigned to groups of 5 students
- Each group can specify preferences for 4 different topics
- The lab is divided into two phases
 - Introductory phase
 - Prepare background, material and tools necessary for the lab
 - Get familiar with your topic and prepare related theory
 - Project phase
 - Solve the tasks specified by your topic

Lab Process

- Each group will work on its topic following an agile scrum-like process
 - The lab is divided into sprints
 - Each sprint starts with a sprint planning session
 - "Daily" stand-ups (2 appointments per week)
 - Each sprint ends with a sprint review and retropective
 - At the end of each sprint, the group will give a short report in the plenum
 - The group will maintain a documentation of its work
- During the last plenum session, all groups will present their results and provide a demonstration of their developed systems

Infrastructure

- For this lab, you will be provided with technical infrastructure
 - Project management
 - GitLab
 - JIRA

- Compute cloud
 - OpenNebula

- CIP Room N005/N006 (Baracke)
 - You will have exclusive access on Wednesdays, 14:00 18:00
 - The room is equipped with CIP-terminals, beamers and whiteboards
- For GitLab and the CIP-terminals, you will need your CIP-account
 - If you don't have one, you can register in Room LU113, Mon. Fri., 14 17
 http://www.rz.ifi.lmu.de/FAQ/NeueKennung.faq.html

ethical issues

· Management of raw data

· Data Crawling

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Data Science

Math and

Statistics

Empirical

Research

Machine

Learning

Data Science

Domain Knowledge

Computer

Science

Software

Development

- Science of managing and analyzing data to generate knowledge
- The Data Science process
 - Requires knowledge from several domains
 - Usually consists of the following steps:

cleaning

 Transformation Modelling

 Data Mining · Analysis of the requirements · Machine Learning · Decision Making · Understanding of the data Statistical Analysis · Integration into the Business · Understanding of the Business Knowledge/ Interpretation/ Understanding **Preprocessing Analysis Evaluation** Action · Clarification of juristic and · Understanding of the results Selection · Preprocessing, integration, Visualisation

Data Science

- Data Science Tasks:
 - Feature Extraction & Representation Learning
 - Clustering
 - Outlier & Trend Detection
 - Classification & Regression
 - Network Analysis & Graph Learning
 - Search & Retrieval

•

Big Data

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

Big Data

- Big data requires large-scale data processing
 - In contrast to traditional grid computing, MapReduce offers a high-level programming interface that
 - Implicitly manages data flow
 - Partitions data to conserve network bandwidth
 - Is tolerant to hardware faults
 - Apache Flink: Open-source framework for batch and real-time stream processing based on MapReduce

Lab Goals

- What will we do in this lab?
 - Literature study and familiarization with an active research direction in data science and related approaches
 - Implementation of state-of-the-art approaches in Apache Flink
 - Application of these approaches to a use case on real data
 - Evaluation of the approaches w.r.t.
 - Result quality
 - Efficiency
 - Scalability
 - Implementation of a demo framework for visualization and exploration
 - Integration of your implemented approaches
 - Presentation of your use case and evaluations

Lab Goals

- What will you learn?
 - Hands-on experience with a Data Science topic
 - Familiarization with a research direction
 - Application of the Data Science process

- In-depth experience with a big data processing platform
 - Apache Flink

- Working with a cloud computing system
 - OpenNebula

GitLab, JIRA

Successful Participation

- In order to successfully complete the lab, you have to
 - Attend all meetings
 - Contribute actively in your group
 - As a guideline: 1 ECTS = 30 hours of work, i.e. during the 12 weeks of the lab course, you are expected to spend ≤ 30 hours per week on the lab
 - The topics are designed such that they can be flexibly rescaled if we observe that the workload is too small/large
 - Note: What counts is what you achieve, not how much time you need
 - Implement the backlog items specified by your topic according to their respective definitions of done
 - Maintain your group documentation and provide regular reports
 - Present your final results and your developed system
 - Participate in the discussions of other presentations

Time Schedule

Introductory phase

Project phase

Fixed dates

- 03.05. Kickoff-Meeting
- 10.05. Planning of Sprint 0
- 24.05. End of Sprint 0, Planning of Sprint 1
- 07.06. End of Sprint 1, Planning of Sprint 2
- 21.06. End of Sprint 2, Planning of Sprint 3
- 05.07. End of Sprint 3, Planning of Sprint 4
- 19.07. End of Sprint 4, Final presentations

Times

- Wed. 14:00 16:00: Scrum Meetings
- Wed. 16:00 17:00: Plenum Session
- Stand-up meetings on appointment with your supervisor

Homework

- Homework until next week
 - Get together with your group
 - Decide for a group name
 - Decide on a ranking for the topics with your group
 - Send us an e-mail until next Monday, 08.05., 09:00
 - Will will then match the groups to the topics based on your rankings
 - Get familiar with Apache Flink
 - Get an overview and a basic understanding of the framework
 - Complete the Flink training by dataArtisans
 - http://dataartisans.github.io/flink-training/
 - Complete at least the DataStream and DataSet API parts
 - In the end, everyone should have a development environment ready
 - Get familiar with GitLab and JIRA
 - Get familiar with OpenNebula

Next Week

- Agenda for next week
 - Plenum session (14:00 15:00)
 - Short introduction to Scrum and how we will implement it in the lab
 - Short introduction to GitLab and JIRA and how we will use it
 - You will get your accounts for JIRA and OpenNebula
 - Planning of Sprint 0 (15:00 17:00)
 - Setup and configuration of GitLab and JIRA
 - Sprint goals:
 - Theoretical preparation of your topic
 - Setup of a Flink cluster in OpenNebula

References

- Useful references (not exhaustive)
 - Related lectures at DBS
 - http://www.dbs.ifi.lmu.de/cms/Big Data Management and Analytics WS1617
 - http://www.dbs.ifi.lmu.de/cms/Knowledge Discovery in Databases I (KDD I) 16
 - http://www.dbs.ifi.lmu.de/cms/Knowledge Discovery in Databases II (KDD II)
 WS1516
 - http://www.dbs.ifi.lmu.de/cms/Maschinelles Lernen und Data Mining 16
 - Apache Flink
 - https://flink.apache.org/
 - https://mapr.com/introduction-to-apache-flink/
 - https://ci.apache.org/projects/flink/flink-docs-release-1.3/
 - GitLab, JIRA, Scrum
 - https://gitlab.cip.ifi.lmu.de/help
 - https://www.atlassian.com/software/jira
 - https://www.atlassian.com/agile/scrum
 - OpenNebula
 - https://www.lrz.de/services/compute/cloud_en/