
Time Series and Sequential Data

Volker Tresp

Summer 2019

1



Modelling of Time Series

• In some applications observations have a sequential order

• Observation {xt,yt}t have a sequential label t

• In some applications, in testing only the inputs xt are measured, but past inputs

...,xt−2,xt−1 or later inputs xt+1,xt+2, ... might be relevant for predicting yt;
a typical example is the labelling of words in a sentence

• In other applications, past outputs ...,yt−2,yt−1 are available as well; this is the

case in time series prediction; there are also applications in language modelling

• We start with the latter case

• The next figure shows a time series (DAX)

• Other interesting time-series: energy prize, energy consumption, gas consumption,

copper prize, ...

• In a real application a number of preprocessing and normalization steps are perfroems

(removal of linear or periodic trends, ...), which we do not discuss here

2





ARX Models / TDNN

3



Neural Networks for Time-Series Modelling

• Let yt, t = 1,2, . . . be the time-discrete time-series of interest (example: DAX)

• Let xt, t = 1,2, . . . denote a second time-series, that contains information on yt
(Example: Dow Jones)

• For simplicity, we assume that both yt and xt are scalar. The goal is the prediction

of the next value of the time-series

• We assume a system of the form

yt = f(yt−1, . . . , yt−T , xt−1, . . . , xt−T ) + εt

with i.i.d. random numbers εt, t = 1,2, . . . which model unknown disturbances.

4



Neural Networks for Time-Series Modelling (cont’d)

• We approximate, using a neural network,

f(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

≈ fw,V (yt−1, . . . , yt−T , xt−1, . . . , xt−T )

and obtain the cost function

cost(w, V ) =
N∑
t=1

(yt − fw,V (yt−1, . . . , yt−T , xt−1, . . . , xt−T ))2

• The neural network can be trained as before with simple back propagation if in training

all yt and all xt are known!

• This is a NARX model: Nonlinear Auto Regressive Model with external inputs. An-

other name: TDNN (time-delay neural network).

• Note the ”convolutional“ idea in TDNNs: the same neural network is applied in all

time instances

5



Prediction

• For single step prediction, we use

ŷt = f(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

6



Mutiple-Step Prediction based on Single-Step Prediction

• Predicting multiple time steps in the future is not trivial for nonlinear models

• Consider the multivariate model

(yt, xt)
T = fw(yt−1, . . . , yt−T , xt−1, . . . , xt−T ) + εt

where we model the progression of both time series models and where εt ∼ N (0,Σ)

• In training we can learn fw(·) (now with two outputs) and Σ

• For multiple-step prediction, we can simulate (i.e., sample) the joint (yt, xt) for the

desired number of time steps in the future (Monte-Carlo simulation) and can derive

estimated means and covariances

7



Mutiple-Step Prediction based on Multiple Step Prediction

• Of course it is also possible to directly predict the value of the time series τ steps in

the future

ŷt+τ = f(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

• This is done in system simulation: the prediction based on detailed system models

might be computationally very expensive and cannot be done online; the idea is to

train a neural network predictive model off-line and then use that one online instead

of an expensive simulation

8



Representation Models and
Language Models

9



Language Model

• A similar idea has been used in language modeling

• The ideas is to predict the next word (out off a vocabulary of Nw words) in a text,

based on the last T words

• Consider we want to predict yt: yt has as Nw components, one for each word

• The inputs to the models are past words; the model assumption is that a word i is

associated with an embedding vector ai of dimension r

• Thus in a first step, a one-hot encoding word i is mapped to the embedding vector of

word ai which is then the input to a neural network

• We get

P (yt = k|yt−1, . . . , yt−T ) = softmaxk

(
fw(ai(t−1), . . . , ai(t−T ))

)
where i(t −m) is the index of the word at position t −m and where fw(·) is a

neural network with one hidden layer

10



Embeddings

• Training of the word embeddings and the neural network parameters can be done

self-supervised on a huge corpus (without human labelling)

• After training, one obtains latent word representations (word embeddings) which are

published and can be used in other applications

• State of the art are embeddings derived from language models like: ELMo, BERT,

Word2vec, and GloVe

• The embedding idea is extremely powerful and one of the corner stones of modern

machine learning

• In the next figure, the word embedding matrix is denoted as C

11





Recurrent Neural Networks

12



Recurrent Neural Network

• Recurrent neural networks (RNNs) are powerful methods for sequence modelling

• In their simplest form they are used to improve an output prediction by providing a

memory for previous inputs

13



A Feedforward Neural Network with a Time Index

• We start with a normal feedforward neural network where the pattern is a sequential

index t

14





A Recurrent Neural Network Architecture unfolded in Time

• The hidden layer now also receives input from the hidden layer of the previous time

step

• The hidden layer now has a memory function reflecting hidden inputs

• Thus a Recurrent Neural Network (RNN) is a nonlinear state-space model

15





A Recurrent Neural Network Architecture unfolded in Time
(cont’d)

• In a compact notation, we write,

zt = sig(Bzt−1 + V xt)

yt = sig(Wzt)

where we permit several outputs; also, in the last layer we might replace the sig with

the softmax

16



Recurrent Representation

• The next slide shows an RNN as a recurrent structure

17





Backpropagation through time (BPTT)

• Training can be performed using backpropagation through time (BPTT), which is an

application of backpropagation (SGD) to the unfolded network structure

• As an additional complexity, the error which occurs to the outputs at time t is not

only backpropagated to the previous layers at time t, but also backward in time to all

previous neural networks

• In principle, one would propagate back to t = 1; in practice, one typically truncates

the gradient calculation

18



Echo-State Network

• Recurrent Neural Networks are sometimes difficult to train

• A simple alternative is to initialize B and V randomly (according to some recipe) and

only train W

• W can be trained with the simple learning rules for linear regression or classification

• This works surprisingly well and is done in the Echo-State Network (ESN)

• ESN (and also liquid-state machines) are examples of so called reservoir computing

19





Issues in Prediction

• An RNN is typically used as predictive model in an iterative setting

• Due to the deterministic nature of the model: if the output yt is predicted and then

becomes available, it will not affect future predictions, since there is no information

flowing back from yt to zt

• This is in contrast to some probabilistic models such as hidden Markov models (HMMs),

Kalman filters, stochastic state space models

20



Bidirectional RNNs

• The predictions in bidirectional RNNs depend on past and future inputs

• Useful for sequence labelling problems: handwriting recognition, speech recognition,

bioinformatics, ...

• Bidirectional recurrent

zt = [zft ; zbt] =
[
sig
(
V fxt +Bfzft−1

)
; sig

(
V bxt +Bbzbt+1

)]

21





LSTMS

22



Issues in Prediction

• Although the RNN has a memory, it has difficulties remembering important informa-

tion far in the past

• This can be attributed to the vanishing gradient problem

• Solutions are the long short-term memory (LSTM), and the gated recurrent units

(GRUs)

• We now discuss the LSTM

23



We Start with a Feedforward Neural Network

• Consider a feedforward neural network

st = sig(V xt) zt = tanh(st)

ŷt = sig(Wzt)

• The transfer function of the hidden neuron is a bit strange, tanh(sig(V xt))

• st is called the cell state vector, zt is the output vector (of the units, not the

neural network)

• In the following steps, each latent unit will become an LSTM unit; thus we will have

H LSTM units in the network

24



We Enter Input and Output Gates

• We now use input and output gates which can turn on and off individual LSTM units

• With input gate vector gt and output gate vector qt

st = gt ◦ sig(V xt) zt = qt ◦ tanh(st)

Here, ◦ is the elementwise (Hadamard) product. As before,

ŷt = sig(Wzt)

• Input gates and output gates are also functions of the inputs

gt = sig(V gxt) qt = sig(V qxt)

• Gates are commonly used in mixture of expert neural networks, if the function switches

between modes of operations

25



With Feedback

• We add recurrent connections to the cell state vector and the gates

st = gt ◦ sig(V xt +Bzt−1) zt = qt ◦ tanh(st)

• Input Gate

gt = sig(V gxt +Bgzt−1)

• Output Gate

qt = sig(V qxt +Bqzt−1)

26



Cell State Vector with Self-recurrency and Forget Gate

• We add self-recurrency to the cell state vector, including a forget gate

st = ft ◦ st−1 + gt ◦ sig(V xt +Bzt−1)

• Forget gate

ft = sig(V fxt +Bfzt−1)

27



Long Short Term Memory (LSTM)

• As a recurrent structure the Long Short Term Memory (LSTM) approach has been

very successful

• Basic idea: at time t a newspaper announces that the Siemens stock is labelled as

“buy”. This information will influence the development of the stock in the next days.

A standard RNN will not remember this information for very long. One solution is to

define an extra input to represent that fact and that is on as along as “buy” is valid.

But this is handcrafted and does not exploit the flexibility of the RNN. A flexible

construct which can hold the information is a long short term memory (LSTM) block.

• The LSTM was used very successful for reading handwritten text and is the basis for

many applications involving sequential data (NLP, machine translation, ...)

• For the rest of the network, an LSTM node looks like a regular hidden node

28







LSTM Applications

• Wiki: LSTM achieved the best known results in unsegmented connected handwriting

recognition, and in 2009 won the ICDAR handwriting competition. LSTM networks

have also been used for automatic speech recognition, and were a major component

of a network that in 2013 achieved a record 17.7% phoneme error rate on the classic

TIMIT natural speech dataset

• Applications: Robot control, Time series prediction, Speech recognition, Rhythm

learning, Music composition, Grammar learning, Handwriting recognition, Human ac-

tion recognition, Protein Homology Detection

29



Encoder-Decoder Networks for
Machine Translation

30



Encoder Decoder Architecture

• Most machine translation systems rely on the encoder-decoder approach

• Neural Machine Translation (NMT)

• Typical numbers: embedding rank: r = 1000, and 1000 hidden units per layer

31





Encoder

• An encoder is an RNN (often an LSTM) with no output layer (no yt), but maybe

several layers of recurrent units; as in the language model, the inputs are latent em-

beddings of the words

• The encoder vectors are the last hidden states (end-of-sentence)

32



Decoder

• The initial latent state of the decoder are the encoder vectors

• In its simplest form, the latent state of the decoder evolves as

zt = sig(Bzt−1 + V ayt−1)

yt = sig(Wzt)

• In training the input to the decoder is the embedding of the previous word ; the output

is the one-hot encoding of the current word

• Training is based on bilingual, parallel corpora; each hidden layer might consist of

1000 hidden units

• In testing one finds the most likely decoded sequence of words (e.g., using beam

search)

• Often one uses two or more hidden layers of LSTM units

33



Encoder-Decoder Approach in NMT

• Neural Machine Translation (NMT) achieved state-of-the-art performances in large-

scale translation tasks such as from English to French

• NMT has the ability to generalize well to very long word sequences.

• The model does not have to explicitly store gigantic phrase tables and language models

as in the case of standard MT; hence, NMT has a small memory footprint.

• Implementing NMT decoders is easy unlike the highly intricate decoders in standard

MT

34



Attention

35



Introduction

• The concept of“attention”has gained popularity recently in training neural networks,

allowing models to learn alignments between different modalities, e.g., between image

objects and agent actions in the dynamic control problem, between speech frames and

text in the speech recognition task, or between visual features of a picture and its text

description in the image caption generation task

• Attention has successfully been applied to jointly translate and align words

• Attention-based NMT models are superior to non attentional ones in many cases, for

example in translating names and handling long sentences

• We follow: Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2016.

“Effective Approaches to Attention-based Neural Machine Translation”

• First work: D. Bahdanau, K. Cho, and Y. Bengio. 2015. “Neural machine translation

by jointly learning to align and translate.” In ICLR

36



Overall Architecture

• The next figure shows the overall architecture

• The attention layer sits on top of the normal encoder-decoder network

• Based on the neural activations in the encoder-decoder, it calculates new activations

(grey boxes)

• Notation: h in the figures is our z

37





Attention

• Let zt be a target hidden state vector of interest in the decoder

• Let ct be the source-side context vector (derived further down)

• The attentional hidden state is

z̃t = sig (V zt +Dct)

• The sig is typically the tanh; note that this is a normal layer in a neural network

where the layer zt is the lower layer and z̃t is the upper layer and where the lower

layer is appended with ct

• The decoded word probability is then calculated as softmax(Wsz̃t)

38



Global Attention

• Let z̄s be any activation vector in the encoder (source hidden state) (often restricted

to the top layer)

• The alignment of s for t is a scalar,

at(s) = align(zt, z̄s) =
exp(score(zt, z̄s))∑
s′ exp(score(zt, z̄s′))

• The alignment score function calculates a similarity measure: A typical score is the

dot product, score(zt, z̄s) = zTt z̄s

• A context vector is then calculated as

ct =
∑
s

at(s)z̄s

39





Local Attention Model / Position Encoding

• The global attention has a drawback that it has to attend to all words on the source

side for each target word, which is expensive and can potentially render it impractical

to translate longer sequences, e.g., paragraphs or documents

• To address this deficiency, we propose a local attentional mechanism that chooses to

focus only on a small subset of the source positions per target word.

• The alignment becomes

at(s) = align(zt, z̄s) exp

(
(s− pt)2

2σ2

)
• pt is the expected position in the input sequence predicted from zt using a neural

network

pt = Ssig(vTp tanh(Wpzt))

S is the source sentence length

40





Overall Architecture

• The next figure shows again the architecture (ignore the dashed lines)

41





Self-Attention

• An attention mechanism can be applied to any deep neural network

• Self-attention can replace convolutional and recurrent approaches (“attention is all you

need”)

• In self-attention, the activation of a hidden layer zt is calculated based on a previous

layer xt of all entities/data points as

zt = sig (V xt +Dct)

• Here,

ct =
∑
t′
a(xt,xt′)xt′

• The sig is typically the tanh

42



Comparison

• Feed forward neural network

zt = sig (V xt)

so here each word label at position t is predicted separately; this i sthe i.i.d situation

• Fully connected (not used)

zt = sig

V xt +
∑
t′
Ct,t′xt′


The embeddings of all words are the inputs to one neural network; here one would need

to use a standard length sentence (short sentences are dealt with by zero-passing); a

problem with this approach is the huge number of parameters in the neural network

43



Comparison (cont’d)

• Convolutional layer

zt = sig

V xt +
∑
k

∑
t′
Ckt−t′xt′


Very powerful approach and very successful in NLP; needs zero padding at sentence

boundaries

• Recurrent neural networks

zt = sig
(
V xt +Bzt−1

)
Very powerful approach and very successful in NLP; often LSTM units are used

• Bidirectional recurrent neural networks

zt = [zft ; zbt] =
[
sig
(
V fxt +Bfzft−1

)
; sig

(
V bxt +Bbzbt+1

)]
44



Comparison (cont’d)

• Self-Attention

zt = sig (V xt +Dct)

ct =
∑
t′
a(xt,xt′)xt′

(the sig is often the tanh) self-attention can replace convolutional or recurrent layers

• Compare to graph convolution networks (GCNs): here ct is the average over the

neighbors in the graph, including xt; V = 0;

• GCNs with attentions: Graph Attention Networks: enhances GCNs with an attention

mechanism

45



APPENDIX: Transformer

46



Transformer

• Bottleneck of previous approaches in NMT: sequential processing at the encoding step

• The Transformer dispensed the recurrence and convolutions involved in the

encoding step entirely and based models only on attention mechanisms to capture the

global relations between input and output

• Each layer has two sub-layers comprising multi-head attention layer followed by a

position-wise feed forward network.

47



Encoder

• Consider self-attention with

ct =
∑
t′
a(WQxt,W

Kxt′) W
V xt′

The WQ, WK , WV , matrices are not necessarily quadratic: the dimension of ct
might be different from the dimension of xt

• The transformer uses Multi-Head Attention,

ct =
∑
t′

∑
k

a(WQ
k xt,W

K
k xt′) W

O
k W

V
k xt′

The dimensions of WO
k are such that the dimensions of ct and xt agree

• Then it uses a simple feedforward neural network fw(·) to compute

zt = V xt +Dct + fw (V xt +Dct)

48



Encoder (cont’d)

• In training masking operations are being used to hide the downstream target words

• It adds another normalization: Layer Normalization (related to batch normalization)

• Positional Encoding: To address this, the transformer adds a vector to each input

embedding. These vectors follow a specific pattern that the model learns, which helps

it determine the position of each word, or the distance between different words in the

sequence.

49





Decoder

• The decoder is similar to the encoder but uses two more layers

• We start with the zs from the encoder (the output from the top payer; encoder stack)

• The inputs are the previously decoded words; we start with no decoded word

• We calculate the ct, as before, with the decoded words as input and with Multi-Head

Attention

• Then we do a multi-head attention with the encoder latent representations {zs}s
(last layer)

50



Decoder (cont’d)

• Multi-Head Attention:

ct =
∑
k

∑
s

a(WQ
k xt,W

K
k zs) W

O
k W

V
k zs

• Positional Encoding: To address this, the transformer adds a vector to each input

embedding. These vectors follow a specific pattern , which helps to determine the

position of each word, or the distance between different words in the sequence.

51






