Neural Networks

Volker Tresp
Summer 2019

e In many applications, data might be uniformly distributed in input space, but com-

plexity in y-space might be nonuniform

e In the next slide the function has two areas of high complexity; RBF approaches, with

a notion of uniform complexity, have problems

Data
True function

If the RBFs are narrow, | might need a lot of them and the prediction is bad
near the center

If the RBFs are wide, they cannot model the transitionsvery accurately

-

e A sigmoidal basis function has the form

f(z) = sig(vz + vo)

where

1
1+ exp(—arg)

sig(arg) =

e The function is only complex near its center where arg =~ O

e Important: To get the location and the slope at the center, we need to
adapt the inner parameters vg,v. There is no closed-form solution for the esti-

mate of those parameters: we need to use gradient-based approaches like SGD

sig(0.5x - 25)

e With several weighted sigmoidal basis functions, we are able to model a variety of

functions with local complexity

H
flx) = > wy sig(vpz + vy 0)
h=1

B /sig(0.5x - 25)

0.2 sig(-0.5x + 27.5)
st -sig(0.5x - 22.5)
... sum of all three weighted basis functions

-0.2

0.4 (-

5ig(0.5x - 25) -sig(0.5x - 22.5) +0.2 sig(-0.5x + 27.5) |

20 40 &0 20 100

e Another approch would be to select a sparse subset in an overcomplete basis

e This is the approach used in Wavelets, Sparse coding, ...

e With several sigmoidal basis functions, we are able to model a variety of functions

with local complexity in a high dimensional input space

H M
F(x)= > wysig(Y vy x5+ vpo)

h=1 j=1

e This equation describes neural network, more specifically, a Multilayer Perceptron with

one hidden layer

sig(0.5x,+0.75x, - 25)
-sig(0.5x, +0.75x, - 22.5)
+0.2 sig(-0.5x, -0.75x, + 27.5)

(0.5, 0.75)7

e Note that the neural network can also performs dimensionality reduction: in the figure,

any components orthogonal to (0.5, O.75)T are ignored

e So neural networks are well suited for large M, large v and noisy features, if the

function has high complexity in the projection of some low-dimensional subspaces

Neural Networks are universal approximators: any continuous function can be approx-

imated arbitrarily well (with a sufficient number of neural basis functions)

Naturally, they can solve the XOR problem and at the time (mid 1980’s) were consid-
ered the response to the criticism by Minsky and Papert with respect to the limited

power of the single Perceptron

Important advantage of Neural Networks: a good function fit can often (for a large
class of important function classes) be achieved with a small number of neural basis

functions

Neural Networks scale well with input dimensions

e For regression, the output of a neural network is the weighted sum of basis functions

H
§=f(x) =wo+ Y wpsig(x'vp)
h=1

e Note, that in addition to the output weights w, the neural network also has inner

weights vy,

® T1,...,Tj4,...,T) Inputs
® 21,22,..-,2p,---,2H: Outputs of the H hidden units (Thus My — H)

® y: single neural network output, or y1,...,Yg, ..., Yx: K neural network outputs

10

e Special form of the basis functions

M

. T .
2, = sig(x’ vp) = vpo+sig | > vp
7=0

using the logistic function
1
1+ exp(—arg)

siglarg) =

e Adaption of the inner parameters vy, ; of the basis functions!

11

First, the activation function of the neu-
rons in the hidden layer are calculated as

the weighted sum of the inputs as

M
J=0
(note: xg = 1 is a constant input, so
that wq corresponds to the bias)
The sigmoid neuron has a soft (sigmoid)

transfer function

Perceptron : 4 = sign(h(x))

Sigmoidal neuron: § = sig(h(x))

Transfer Function

13

sig(/(x))

e Definition of the hyperplane

which means that:

e ‘carpet over a step”

M

Sig th,jxj = 0.5
=0

14

Architecture of a Neural Network

15

For a 2-class neural network classifier apply the sigmoid transfer function to the

output neuron, and calculate

j = sig(f(x)) = sig(z’ w)

For multi-class tasks (e.g., recognizing digits 0, 1, ..., 9), one uses several output

neurons. For example, to classify K digits

Ok = sig(fr(x)) =sig(z' wg) k=1,2,... K
and one decides for class I, with | = arg max(7)

(Nowadays on typically uses the softmax function: 3. = exp fr./Z with Z =

> .1 €XP fr, since then the outputs are nonnegative and sum to one)

A Neural Network with at least one hidden layer is called a Multilayer Perceptron

(MLP)

16

Architecture of a Neural Network for Several Classes

17

sig(fg (X))

4
N

e The goal again is the minimization of the squared error calculated over all training

patterns and all outputs

N
cost(W, V) = Z cost(x;, W, V)
i=1

- _ K ~ 2
with cost(x;, W, V') = > 1 1 (Vi k. — Ui k)
e The least squares solution for V' cannot be calculated in closed-form

e Typically both W and V are trained via (stochastic) gradient descent

18

e The gradient of the cost function for an output weight for pattern ¢ becomes

dcost(x;, W, V) 06, 1z
— i k%,

8wk7h

where
. T ~
8; k = sig' (z; Wi)lyik — Uik

is the back propagated error signal (error back propagation). Note, that 0; k 1s at-
tached to an output node k.

e The pattern based gradient descent learning becomes (pattern: j, output: k, hidden:
h):

Wi, p, < Wk p, + M0; k2 K

19

.. can be written elegantly as

exp(—in)

(1+exp(—in))2 sig(in) (1 — sig(in))

sig/ (in) =
Thus

6k = Uik — Ui) Wik — Uik)

20

e The gradient of an input weight with respect to the cost function for pattern ¢ becomes

ocost(x;, W, V)

= —20; pi,;
.) 2]
c%hﬂ
with the back propagated error
K K
— ST —
8 =sig' (X Vi) Y wi i =2 p(1 = 2p) Y wi bk

e Note, that 0; , is attached to hidden node node h.

e For the pattern based gradient descent, we get (pattern: i, hidden: h, input: j):

Vh,j = Uh,j T M0; hTi ;

21

e lterate over all training patterns

e Let x; be the training data point at iteration ¢

— Apply x; and calculate z;,y; (forward propagation)

— Via error backpropagation calculate the 9; 1, 9; 1

— Adapt

W j, < Wk p, + 105 12k

Vh,j = Uh,j T 10; hTi,;

e All operations are “local”: biologically plausible

22

e Neural networks work well in all situations covered in the discussion on basis function,

except for Case I. (curse of dimensionality)

e In particular, they offer an excellent solution for Case la (sparse basis).

23

e In comparison to conventional statistical models, a Neural Network has a huge number

of free parameters, which might easily lead to over fitting

e The two most common ways to fight over fitting are regularization and stopped-

training

e Let's first discuss regularization

24

e We introduce regularization terms and get

costPEM (W, V) = Z cost(x;, W,V)+ Z Z wi, A2 Z Z Yh,j

k=1 h=0 h=1j=0

e The learning rules change to (with weight decay term, the constant bias is typically
not regularized)

A1
WE p < Wi p TN (&k%h — W"Mc,h)

A2
Vh,j £ Vhy T (5i,h33z',j B W’”h,j)

25

Data for two classes (red/green circles) are generated
Classes overlap
The optimal separating boundary is shown dashed

A neural network without regularization shows over fitting (continuous line)

26

Neural Network - 10 Units, No Weight Decay

Training Error: 0.100 _' | O
Test Error: 0.259
Bayes Error; 0.210 : ' ' : 0)

e With regularization (A1 = Ao = 0.2) the separating plane is closer to the true class

boundaries

e The training error is smaller with the unregularized network, the test error is smaller

with the regularized network

27

Neural Network - 10 Units, Weight Decay=0.02

Training Error: 0.160
TestError: 0223 ;::ii:jiiciiciijiiiiififiifsiisitidt iftaisiti
Bayes Emor: 0210 :::::oicicczririaiiininiiarnin@einiiiiiiinin:

The regularization parameter is varied between 0 and 0.15
The vertical axis shows the test error for many independent experiments
The best test error is achieved with regularization parameter 0.07

The test error varies a lot with no regularization

28

Test Error

1.8 20 22

12 14 1.6

1.0

Sum of Sigmoids, 10 Hidden Unit Model

H

Weight Decay Parameter

Use more than one hidden layer (see deep learning)
Use tanh(arg) € (=1, 1) instead of sig(arg) € (0,1)
For the tanh(arg), use targets y € {—1, 1}, instead of y € {0, 1}

Often: Use tanh(arg) in the hidden layer and sig(arg) in the output layer

29

e Instead of the sum-squared-error cost function, use the cross-entropy cost function

o With y;,, € {0,1}

N
cost(W, V) =) _ cost(x;, W, V)
i=1
and
K
cost(x;, W,V) = — | > ;£ 109 7 + (1 — y; 1) 109(1 — Fj 1)
k=1

e Recall, that the gradient w.r.t output weights is

dcost(x;, W, V) 26, 1z
— i k%,

3’wk7h

e For cross entropy we get:
0ik = Wik — Uik)
30

(Derivation of this equation in the lecture on linear classifiers)
e For the squared loss, this term was:

6ik = Ui k(X — Ui)1 (Wi ke — Ui 1)
The differences are the terms in the squared bracket. Thus the squared error has the

problem that the gradient becomes zero when the output gets saturated g; . — 0/1,

thus also when the output is completely wrong! Today cross entropy is preferred!

e Often the outputs are mutual exclusive: a handwritten digit is exactly one out off 10
digit

e As activation, one uses softmax

T i
k —
Dk €XP [

The cost term is (one hot encoding with y; . € {0,1})

cost(x;, W, V) = | log Z exp fik | — Z YikJik
k k

31

In the next picture you can see typical behavior of training error and test error as a

function of training time (an epoch is one pass through all data during learning)
As expected the training error steadily decreases with epochs

As expected, the test error first decreases as well; maybe surprisingly there is a mini-

mum, after which the test error increases

Explanation: During training, the degrees of freedom in the neural network slowly

increase; with too many degrees of freedom, overfitting occurs

It is possible to regularize a neural network by simply stopping the adaptation at the
right moment (regularization by stopped-training)

32

J/n

validation

IIIIIIIIIFEPGC;TS
/I 2 3 4 5 6 7 8 9 10 11

learning
stopped

initial weights

R ————————

e Convergence can be influenced by the learning rate n

e Next figure: if the learning rate is too small, convergence can be very slow, if too

large the iterations can oscillate and even diverge

e The learning rate can be adapted to the learning process (“Adaptive Learning Rate
Control”); a popular variant is called Adaptive Moment Estimation (Adam) (see deep

learning lecture)

33

J J J J

A n= i A n= Hopt 'y Nopt <n < 2 Hapt 'y n= E’J'upr
L - L - L - W L -
qu: H'!.': “..15 H..;i.'

FIGURE 6.16. Gradient descent in a one-dimensional quadratic criterion with different learning rates. If 5 <
o, CONVergence is assured, but training can be needlessly slow. If i = gy, a single learning step suffices to
find the error minimum. If g < 1 < 2ijqu, the system will oscillate but nevertheless converge, but training is
needlessly slow. If § = 2i)q,, the system diverges. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.

Local Solutions

34

cost(w)

wr+1

opt

Local Solutions

35

st(w)

opt

local

'

SGD has Fewer Problems with Local Optima

36

st(w)

opt

e Restart: Simply repeat training with different initial values and take the best one

e Committee: Repeat training with different initial values and take all of them: for

regression, simply average the responses, for classification, take a majority vote

37

Bagging: Bootstrap AGGregatING

Committee as before, but each neural network is trained on a different bootstrap

sample of the training data

Bootstrap sample: From N training data, randomly select /N data points with re-
placement. This means one generates a new training data set with again /N data
points but where some data points of the original set occur more than once and some

not at all

If you apply this committee idea to decision trees you get Random Forests (used to

win many Kaggle competitions; now often beaten by deep neural networks)

38

AP WN -

Original data

QO ODN ==
AP WWN

AP DNDDN -

S P O0OW-

Bootstrap sample

Neural Networks are very powerful and show excellent performance

Training can be complex and slow, but one might say with some justification, that a
neural network really learns something: the optimal representation of the data in the

hidden layer
Predictions are fast!

Neural Networks are universal approximators and have excellent approximation prop-
erties

Key: Basis functions are not predifined by some more or less smart procedure (as
in fixed basis function approaches) but the learning algorithm attempts to find the

“optimal”, problem specific basis functions

Disadvantage: training a neural network is something of an art; a number of hyper
parameters have to be tuned (number of hidden neurons, learning rate, regularization

parameters, ...)

39

e Not all problems can be formulated as a neural network learning problem (but surpris-

ingly many real world problems)

e Disadvantage: A trained neural network finds a local optimum. The solution is not
unique, e.g. depends on the initialization of the parameters. Solutions: multiple runs,

committee machines

e Note added in 2016; Computing libraries like Theano, TensorFlow, and Keras use sym-
bolic differentiation; you never have to programm backprop: calculating the gradient

manually is error prone and tedious for complex structured models

APPENDIX: Approximation Accuracy of Neural Networks

40

How many hidden neurons are required for a certain approximation accuracy?

Define the complexity measure C's as

/ Wl F(w)] dw = C,

where f(w) is the Fourier transform of f(x). C'¢ penalizes (assigns a high value to)

non smooth functions containing high frequency components!
The task is to approximate f(x) with a given C'y with a model fw(x)
The input vector is X € RM | the neural network has H hidden units

The approximation error € is the mean squared distance between a target function
f(x) and the model fw(x)

EanE = /B (F) = faw(x))2p(dx) (1)

41

{4 is an arbitrary probability distribution on the sphere B = {x : |x| < r} with
radius » > O

Barron showed that for each f(x), for which C'f is finite, there is a neural network
with one hidden layer, such that for neural networks

(27°Cf)2

< 2
CANES — (2)

Thus for a good approximation, we might need many hidden units H, but the bound
does NOT contain the number of inputs M

Note that for approximations with fixed basis functions, one obtains with M basis

functions
1
1 M
€ X —
AAE qu
| T —M _
Comment: another way of writing this is that M, must be on the order of € 4 /r =

(1/eanp)™ (this result was already derived in the lecture on basis functions)

For important function classes it could be shown that C'y only increases weakly (e.g.,

proportional) with M

Comment: This is the case when the functions become very smooth in high dimensions

(Case Il (smooth)), or in Case la (sparse basis)

Comment: But remember, in Case | (curse of dimensionality) also neural networks

would suffer from the exponential increase in H!

Quellen: Tresp, V. (1995). Die besonderen Eigenschaften Neuraler Netze bei der

Approximation von Funktionen. Kiinstliche Intelligenz, Nr. 4.

A. Barron. Universal Approximation Bounds for Superpositions of a Sigmoidal Func-
tion. IEEE Trans. Information Theory, Vol. 39, Nr. 3, 1993.

The fact that M is on the order of EZ/ZZ\% indicates that one needs exponentially many
fixed basis functions. This might be true both for RBFs and sigmoidal basis functions

Assume the function class is such that it can be approximated by H <<< EZ/]\VE[

basis functions. In other words: almost all basis functions get zero weights. If we

work with fixed basis functions, this does not really help since we still have to initialize
with O(l/e;ﬁ-) basis functions

On the other hand, if we know H, we can design a model with only H RBFs or
sigmoidal basis functions. We make the assumption that SGD finds the globally best
solution for the all parameters (in the case of the sigmoidal basis functions, this would
include the weights from the input layer to the hidden layer; in the case of RBFs, this
would involve an adaptation of basis function centers ¢ and widths s). The number

of basis functions is then independent of M and only depends on H.

So the sigmoidal shape might not be as important as the use of SGD

42

