
Basis Functions

Volker Tresp
Summer 2019

1

Nonlinear Mappings and Nonlinear Classifiers

• Regression:

– Linearity is often a good assumption when many inputs influence the output

– Some natural laws are (approximately) linear F = ma

– But in general, it is rather unlikely that a true function is linear

• Classification:

– Linear classifiers also often work well when many inputs influence the output

– But also for classifiers, it is often not reasonable to assume that the classification

boundaries are linear hyperplanes

2

Trick

• We simply transform the input into a high-dimensional space where the regression/classification

might again be linear!

• Other view: let’s define appropriate features (feature engineering)

• Other view: let’s define appropriate basis functions

• Challenge: XOR-type problem with patterns

0 0 → +1
1 0 → −1
0 1 → −1
1 1 → +1

3

XOR-type problems are not Linearly Separable

4

Trick: Let’s Add Basis Functions

• Linear Model: input variables: x1, x2

• Let’s consider the product x1x2 as additional input

• The interaction term x1x2 couples two inputs nonlinearly

5

With a Third Input z3 = x1x2 the XOR Becomes Linearly
Separable

f(x) = 1− 2x1 − 2x2 + 4x1x2 = φ0(x)− 2φ1(x)− 2φ2(x) + 4φ3(x)

with φ0(x) = 1, φ1(x) = x1, φ2(x) = x2, φ3(x) = x1x2

6

Separating Planes

7

f(x) = 1− 2x1 − 2x2 + 4x1x2

8

A Nonlinear Function

9

f(x) = x− 0.3x3

Basis functions φ0(x) = 1, φ1(x) = x, φ2(x) = x2, φ3(x) = x3 und w =

(0,1,0,−0.3)

10

Basic Idea

• The simple idea: in addition to the original inputs, we add inputs that are calculated

as deterministic functions of the existing inputs, and treat them as additional inputs

• Example: Polynomial Basis Functions

{1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3}

• Basis functions {φm(x)}Mφ
0=1

• In the example:

φ0(x) = 1 φ1(x) = x1 φ5(x) = x1x3 ...

• Independent of the choice of basis functions, the regression parameters are calculated

using the well-known equations for linear regression

11

Linear Model Written as Basis Functions

• We can also write a linear model as a sum of basis functions with

φ0(x) = 1, φ1(x) = x1, . . . φM(x) = xM

12

Review: Penalized LS for Linear Regression

• Multiple Linear Regression:

fw(x) = w0 +
M∑
j=1

wjxj = xTw

• Regularized cost function

costpen(w) =
N∑
i=1

(yi − fw(xi))2 + λ

M∑
j=0

w2
j

• The penalized LS-Solution gives

ŵpen =
(
XTX + λI

)−1
XTy with X =

 x1,0 . . . x1,M
.
xN,0 . . . xN,M


13

Regression with Basis Functions

• Model with basis functions:

fw(x) = w0 +

Mφ∑
m=1

wmφm(x)

• Regularized cost function with weights as free parameters

costpen(w) =
N∑
i=1

yi − Mφ∑
m=0

wmφm(xi)

2

+ λ

MΦ∑
m=0

w2
m

• The penalized least-squares solution

ŵpen =
(
ΦTΦ + λI

)−1
ΦTy

14

with

Φ =

 1 φ1(x1) . . . φMφ
(x1)

.
1 φ1(xN) . . . φMφ

(xN)



Nonlinear Models for Regression and Classification

• Regression:

fw(x) = w0 +

Mφ∑
m=1

wmφm(x)

As discussed, the weights can be calculated via penalized LS

• Classification:

ŷ = sign(fw(x)) = sign

w0 +

Mφ∑
m=1

wmφm(x)


The Perceptron learning rules can be applied, or some other learning rules for linear

classifiers, if we replace 1, xi,1, xi,2, ... with 1, φ1(xi), φ2(xi), ...

15

Which Basis Functions?

• The challenge is to find problem specific basis functions which are able to effectively

model the true mapping, resp. that make the classes linearly separable; in other

words we assume that the true dependency f(x) can be modelled by at least one

of the functions fw(x) that can be represented by a linear combination of the basis

functions, i.e., by one function in the function class under consideration

• If we include too few basis functions or unsuitable basis functions, we might not be

able to model the true dependency

• If we include too many basis functions, we need many data points to fit all the unknown

parameters (This sound very plausible, although we will see in the lecture on kernels

that it is possible to work with an infinite number of basis functions)

16

Radial Basis Function (RBF)

• We already have learned about polynomial basis functions

• Another class are radial basis functions (RBF). Typical representatives are Gaussian

basis functions

φj(x) = exp

(
−

1

2s2
‖x− cj‖2

)

17

Three RBFs (blue) form f(x) (pink)

18

Optimal Basis Functions

• So far all seems to be too simple

• Here is the catch: in some cases, the number of “sensible” basis functions increases

exponentially with the number of inputs

• If d is a critical lower length scale of interest and inputs are constraint in a ball of

diameter L, then one would need on the order of (L/d)M RBFs in M dimensions

• We get a similar exponential increase for polynomial basis functions; the number of

polynomial basis functions of a given degree increases quickly with the number of

dimensions (x2); (x2, y2, xy); (x2, y2, z2, xy, xz, yz), . . .

• The most important challenge: How can I get a small number of relevant basis func-

tions, i.e., a small number of basis functions that define a function class that contains

the true function (true dependency) f(x)?

19

Forward Selection: Stepwise Increase of Model Class
Complexity

• Start with a linear model

• Then we stepwise add basis functions; at each step add the basis function whose

addition decreases the training cost the most (greedy approach)

• Examples: Polynomklassifikatoren (OCR, J. Schürmann, AEG)

– Pixel-based image features (e.g., of hand written digits)

– Dimensional reduction via PCA (see later lecture)

– Start with a linear classifier and add polynomials that significantly increase per-

formance

– Apply a linear classifier

20

Backward Selection: Stepwise Decrease of Model Class
Complexity (Model Pruning)

• Start with a model class which is too complex and then incrementally decrease com-

plexity

• First start with many basis functions

• Then we stepwise remove basis functions; at each step remove the basis function

whose removal increases the training cost the least (greedy approach)

• A stepwise procedure is not optimal. The problem of finding the best subset of K

basis functions is NP-hard

21

Example: Ad Placements

• The decision of which ad to place for which user in which context is defined as a

classification or regression problem in a high-dimensional feature space

• Here the features are often handcrafted and new features are continuously added and

removed, optimizing the prediction in the long run

• Speed in training and recall and a small memory trace are important criteria

22

Just Function Fitting? Informal
Complexity Analysis

23

Best Approximation Error

• We are concerned with the properties of the true function f(x), a model class

{fw(x)}w, and the best approximating function out off this class fwopt(x)

• Average Approximation Error: What is the approximation error between the true

function and the best model out of the model class, averaged over a unit ball

εAAE(f, fwopt) =

∫
B

(f(x)− fwopt(x))2dx

• Expected Approximation Error: What is the smallest approximation error between

the true function and the best model out of the model class, weighted by the input

data distribution P (x); important special case: data is on a manifold

εEAE(f, fwopt) =

∫
(f(x)− fwopt(x))2P (x)dx

εAAE is (up to a constant) the same as εAAE, if the input data is distributed uniformly

in the unit ball; the εEAE is related to the square of the Bias in statistics

24

Data Complexity and Computational Complexity

• Statistics and Generalization (S&G): How many training data points N are

requires such that for the parameters ŵ that minimize the cost function, we have that

εEAE(fŵ, fwopt) is small; the last term is related to the Model Variance in statistics;

in general, we assume that N must be on the order of the number of free parameters

• Computational Complexity (CC): What is the computational cost for training

(finding ŵ)? Are there problems with local optima?

25

Analysis of Dimensionality

• Consider input space dimension M . We consider a ball of a unit ball of diameter 1
(w.l.o.g.)

• Let us consider that d is a minimum length scale of interest, e.g., d = 0.15, thus

the true f(x) might change significantly (e.g., from 1 to -1) if I move a distance d

in some direction

• Then the bandwidth ν = 1/(2d) would be an upper frequency of interest; example:

with d = 0.15, ν = 3.3

• Thus ν is a complexity measure: the larger ν, the more complex the function; in the

following figure (1/(2ν))M corresponds to the number of maxima and minima of

the underlying true function

• εAAE: If fw(x) represents fixed basis functions, where only the weights are learned,

then Mφ (the number of basis functions) should be on the order of (if one cannot

exploit some form of regularities)

O((2ν)M)

26

Case I: Curse of Dimensionality

• Here M is large, and ν is large

• εAAE: Mφ on the order of O((2ν)M) would indicate that we need exponentially

many basis functions

• This is the famous “Curse of Dimensionality”

• (The curse of dimensionality can also be related to the fact that you needO((2ν)M)

data points for a nearest neighborhood approach to make sense or the fact that

randomly generated data points tend to be equidistant in high dimensions)

• S&G: To be able to learn all the parameters, one would need the same order of data

points N ≈Mφ

• CC: The computational cost is on the order of M3
φ

27

Case II: Blessing of Dimensionality

• M is small but ν is large

• εAAE: With Mφ on the order of O((2ν)M) would indicate that we many “many”

(but not a huge number of) basis functions (recall, that M is small)

• This is what I would call the“Blessing of Dimensionality”, since a nonlinear classification

problem can be solved by a transformation into a high-dimensional space where it

becomes linearly separable

• S&G: The number of required training data is N ≈Mφ

• (Consider also that we only need on the order than (2ν)M data points (with M

small) for a nearest neighborhood approach to make sense)

• CC: The computational cost is on the order of M3
φ

28

Case III: Smooth

• Here, M is large and ν is small; this is the case when the system has a voting behavior:

each input itself has a (small) contribution to the output

• εAAE: Then Mφ ≈ (2ν)M and N ≈Mφ might not be too large

• A special case would be a linear function, where Mφ = M + 1

• (Interestingly, a nearest neighborhood approach would still have problems with the

high M ; this shows the advantage of training discriminately! Neighborhood methods

sometimes learn the distance metrics to approach this issue (learning of Mahalanobis

distance)

• Trivially, the fourth situation (Case IV: simple), small M and small ν is quite easy to

model

29

Case Ia: Sparse Basis: No Curse of Dimensionality with a
Neural Network

• εAAE: We have Case I (curse), but only H basis functions have nonzero

weights; e.g., high complexity might only be in some regions in input space. The

number of hidden units is otherwise independent of M !

• Neural networks with H hidden units can adaptively find the sparse basis (with back-

propagation)

• But note that to learn the correct basis functions, I need the training data targets y

• S&G: For a neural network, the number of required data points is on the order of

O(H ×M) (essentially the parameters in the V matrix (see following lecture))

• CC: Due to the nonlinear characteristics of the optimization problem, computational

cost can be high (backpropaagtion) and local optima might become a problem

30

Case Ib: Manifold

• εAAE: So far we did not assume any particular input data distribution: x might be

uniformly distributed

• Sometimes x is restricted to a subspace (in the nonlinear case: manifold) (see lecture

on manifolds)

• εEAE/S&G: If the data is on anMh-dimensional manifold, one only needO((2ν)Mh)

basis functions and data points and the performance for test data on the manifold

might be excellent

• εAAE: but if we consider test data outside of the manifold (as in a unit sphere)

performance degrades: εAAE could be large!

31

Illustration

• With M = 500 input dimensions, we generated N = 1000 random data points

{xi}1000
i=1

• “Curse of dimensionality”: near equidistance between data points (see next figure):

distance-based methods, such as nearest-neighbor classifiers, might not work well

• No “Curse of dimensionality” if supervised learning is used and the function has low

complexity, ν ≈ 1:

• A linear regression model with N = 1000 training data points gives excellent results

32

Functions with Unlimited Bandwidth

• So far, we assumed that the true function f(x) had a limited bandwidth ν; we

concluded that if the model class would be able to approximate such a function, then

εAAE would be sufficiently small; of course, in general ν is unknown

• Another approach is to assume that f(x) has unlimited bandwidth, and one analyses

how the approximation errors εAAE scales with the number of model parameters

• In the previous equations, we substitute ν → 1/εAAE

• Then the number of required basis functions Mφ is on the order of

O

(
1

εAAE

M
)

or, equivalently, O
(
εAAE

−M
)

(this expression is often found in literature)

33

Conclusions

• Basis functions perform a nonlinear transformation from input space to basis function

space

• For a good model fit, one needs O((2ν)M) fixed basis functions and training data

points; thus either M should be small (Case II (blessing)) or ν ≈ 1 (Case III)

(smooth) or (Case IV) (simple)

• With M and ν large, we experience the curse of dimensionality; if, actually, data is

distributed in a subspace (or nonlinear manifold) with dimension Mh, then one only

needs O((2ν)Mh) fixed basis functions and training data points

• Neural networks are effective when the basis is sparse (Ia (sparse basis))

• The next table evaluates distance-based methods (like nearest neighbor methods),

models with fixed basis functions, neural networks, and deep neural networks

34

Case Neighb. Methods fixed BF Neural Nets Deep NNs Kernels
I (curse) - - - - -
II (blessing) + + + + +
III (smooth) - + + + +
IV (simple) + + + + +
Ia (sparse basis) - - + + -
Ib (manifold) + (dr) + (dr) + + +
Ic (compos.) - - - + -

(dr) stands for dimensionality reduction by a preprocessing step;

Case Ic are compositional functions, introduced in the lecture on deep neural networks

Kernels are introduced in a later lecture

