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I am an AI optimist. We’ve got a lot of work in machine learning, which is sort of the polite

term for AI nowadays because it got so broad that it’s not that well defined.

Bill Gates (Scientific American Interview, 2004)

“If you invent a breakthrough in artificial intelligence, so machines can learn,” Mr. Gates

responded, “that is worth 10 Microsofts.” (Quoted in NY Times, Monday March 3, 2004)
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Nonlinear Mappings and Nonlinear Classifiers

• Regression:

– Linearity is often a good assumption when many inputs influence the output

– Some natural laws are (approximately) linear F = ma

– But in general, it is rather unlikely that a true function is linear

• Classification:

– Similarly, it is often not reasonable to assume that the classification boundaries

are linear hyper planes
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Trick

• We simply transform the input into a high-dimensional space where the regressi-

on/classification is again linear!

• Other view: let’s define appropriate features

• Other view: let’s define appropriate basis functions
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XOR is not linearly separable
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Trick: Let’s Add Basis Functions

• Linear Model: input vector: 1, x1, x2

• Let’s consider x1x2 in addition

• The interaction term x1x2 couples two inputs nonlinearly
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With a Third Input z3 = x1x2 the XOR Becomes Linearly
Separable

f(x) = 1− 2x1 − 2x2 + 4x1x2 = φ1(x)− 2φ2(x)− 2φ3(x) + 4φ4(x)

with φ1(x) = 1, φ2(x) = x1, φ3(x) = x2, φ4(x) = x1x2
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f(x) = 1− 2x1 − 2x2 + 4x1x2
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Separating Planes
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A Nonlinear Function
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f(x) = x− 0.3x3

Basis functions φ1(x) = 1, φ2(x) = x, φ3(x) = x2, φ4(x) = x3 und w =

(0,1,0,−0.3)

11



Basic Idea

• The simple idea: in addition to the original inputs, we add inputs that are calculated

as deterministic functions of the existing inputs and treat them as additional inputs

• Example: Polynomial Basis Functions

{1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3}

• Basis functions {φm(x)}Mφ
m=1

• In the example:

φ1(x) = 1 φ2(x) = x1 φ6(x) = x1x3 ...

• Independent of the choice of basis functions, the regression parameters are calculated

using the well-known equations for linear regression
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Review: Penalized LS for Linear Regression

• Multiple Linear Regression:

fw(x) = w0 +
M−1∑
j=1

wjxj = xTw

• Regularized cost function

costpen(w) =
N∑
i=1

(yi − fw(xi))2 + λ

M−1∑
i=0

w2
i

• Die penalized LS-Solution

ŵpen =
(
XTX + λI

)−1
XTy with X =

 x1,0 . . . x1,M−1
. . . . . . . . .
xN,0 . . . xN,M−1
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Regression with Basis Functions

• Model with basis functions:

fw(x) =

Mφ∑
m=1

wmφm(x)

• Regularized cost function with only basis function weights as free parameters (versi-

on 1)

costpen(w) =
N∑
i=1

yi − Mφ∑
m=1

wmφm(xi)

2

+ λ

MΦ∑
m=1

w2
m

• The penalized least-squares solution

ŵpen =
(
ΦTΦ + λI

)−1
ΦTy
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with

Φ =

 φ1(x1) . . . φMφ
(x1)

. . . . . . . . .
φ1(xN) . . . φMφ

(xN)





Nonlinear Models for Regression and Classification

• Regression:

fw(x) =

Mφ∑
m=1

wmφm(x)

As discussed, the weights can be calculated via penalized LS

• Classification:

ŷ = sign(fw(x)) = sign

 Mφ∑
m=1

wmφm(x)


The Perceptron learning rules can be applied, if we replace 1, xi,1, xi,2, ... with

φ1(xi), φ2(xi), ...
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Which Basis Functions?

• The challenge is to find problem specific basis functions which are able to effective-

ly model the true mapping, resp. that make the classes linearly separable; in other

words we assume that the true dependency f(x) can be modelled by at least one

of the functions fw(x) that can be represented by a linear combination of the basis

functions, i.e., by one function in the function class under consideration

• If we include too few basis functions or unsuitable basis functions, we might not be

able to model the true dependency

• If we include too many basis functions, we need many data points to fit all the unknown

parameters (This sound very plausible, although we will see in the lecture on kernels

that it is possible to work with an infinite number of basis functions)
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Radial Basis Function (RBF)

• We already have learned about polynomial basis functions

• Another class are radial basis functions (RBF). Typical representatives are Gaussian

basis functions

φj(x) = exp

(
−

1

2s2
j

‖x− cj‖2
)
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Three RBFs (blue) form f(x) (pink)
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Optimal Basis Functions

• So far all seems to be too simple

• Here is the catch: the number of “sensible” basis functions increases exponential with

the number of inputs

• If I am willing to use K RBF-basis functions“per dimension”. then I need KM RBFs

in M dimensions

• We get a similar exponential increase for polynomial basis functions; the number of

polynomial basis functions of a given degree increases quickly with the number of

dimensions (x2); (x2, y2, xy); (x2, y2, z2, xy, xz, yz), . . .

• The most important challenge: How can I get a small number of relevant basis func-

tions, i.e., a small number of basis functions that define a function class that contains

the true function (true dependency) f(x)?
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Strategy: Stepwise Increase of Model Class Complexity

• Start with a model class which is too simple and then incrementally add complexity

• First we only work with the original inputs and form a linear model

• Then we stepwise add basis functions that improve the model significantly

• For example we explore all quadratic basis functions. We include the quadratic basis
function that mostly decreases the training cost; then we explore the remaining basis
functions and, again, include the basis function that mostly decreases the training
cost, and so on

• Examples: Polynomklassifikatoren (OCR, J. Schürmann, AEG)

– Pixel-based image features (e.g., of hand written digits)

– Dimensional reduction via PCA (see later lecture)

– Start with a linear classifier and add polynomials that significantly increase per-
formance

– Apply a linear classifier
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Strategy: Stepwise Decrease of Model Class Complexity (Model
Pruning)

• Start with a model class which is too complex and then incrementally decrease com-

plexity

• First start with many basis functions

• Then we stepwise remove basis functions that increase the training cost the least

• A stepwise procedure is not optimal. Better: what is the best subset of K basis

functions. Unfortunately, this problem is NP-hard
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Model Selection: RBFs

• Sometimes it is sensible to first group (cluster) data in input space and to then use

the cluster centers as positions for the Gaussian basis functions

• The widths of the Gaussian basis functions might be derived from the variances of the

data in the cluster

• An alternative is to use one RBF per data point. The centers of the RBFs are simply

the data points themselves and the widths are determined via some heuristics (or via

cross validation, see later lecture)
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RBFs via Clustering
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One Basis Function per Data Point
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Application-Specific Features

• Often the basis functions can be derived from sensible application features

– Given an image with 256 × 256 = 65536 pixels. The pixels form the input
vector for a linear classifier. This representation would not work well for face
recognition

– With fewer than 100 appropriate features one can achieve very good results (ex-
ample: PCA features, see later lecture)

• The definition of suitable features for documents, images, gene sequences, ... is a very
active research area

• If the feature extraction already delivers many features, it is likely that a linear model
will solve the problem and no additional basis functions need to be calculated

• This is quite remarkable: learning problems can become simpler in high-dimensions,
in apparent contradiction to the famous“curse of dimensionality”(Bellman) (although
there still is the other “curse of dimensionality” since the number of required basis
functions might increase exponentially with the number of inputs! )
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Interpretation of Systems with Fixed Basis Functions

• The best way to think about models with fixed basis functions is that they implement

a form of prior knowledge: we make the assumption that the true function can be

modelled by the set of weighted basis function

• The data then favors certain members of the function class

• In the lecture on kernel systems we will see that the set of basis functions can be

translated in assuming certain correlations between (mostly near-by) function values,

implementing a smoothness prior
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Consider an Image as a Function of Two Dimensions

• greyValue(i, j) = f(i, j), with i = 1, . . . , N, j = 1, . . . , N

• We can model with basis functions

fw(i, j) =

Mφ∑
m=1

wmφm(i, j)

• Typical basis functions used in image analysis are Fourier basis functions and cosine

basis functions
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Or is an Image a N2-dimensional Vector

• f is an N2-dimensional vector with

fi(N−1)+j = f(i, j) i = 1, . . . , N, j = 1, . . . , N

• We can model using vector algebra

f =

Mφ∑
m=1

wm~φm

• A continuous function becomes an element in an infinite dimensional vector (Hilbert)

• One can define inner products for functions! Recall that 〈f , g〉 =
∑
i figi defines an

inner product for vectors. A generalization for square integrable function is

〈f , g〉 =

∫
f(x)g(x) dx
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