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A Disclaimer (kind of ...) \M‘

» Data streams usually are a very challenging source of data
 Analysis of data streams require to address several aspects such as
» The hardware
» The processing environment (like the operating system, the
programming language and the programming schema, ...)
» The algorithmic design

* In this lecture, we focus on the algorithmic aspects that are
necessary for processing data streams

» The lecture Big Data Management focuses on other aspects



Batch Learning \M‘

» Most of the DM algorithms focus on batch learning
» The complete training/data set is available to the learning algorithm
+ Data instances can be accessed multiple times
* e.g., for clustering: k-Means, DBSCAN
* e.g., for classification: decision trees, Naive Bayes

« Implict assumption: instances are generated by some stationary
probability distribution; data is not volatile and so are patterns



Example: Batch Clustering

LMU

+ k-means (here k = 2) needs full access to the data in each iteration
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Example: Batch Classification LMU

« Decision Trees are constructed in a top-down recursive divide-
and-conquer manner requiring full access to the data for each split

At start, all the training examples are at the root node

+ Select the best attribute for the root

» For each possible value of the test attribute, a descendant of the root
node is created and the instances are mapped to the appropriate
descendant node

» Repeat the splitting attribute decision for each descendant node, so
instances are partitioned recursively

[29+,35-] Al1=7? [29+,35-] A2=7
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From Batch to Streams
LMU

» Many interesting applications nowadays come from dynamic
environments where data are generated over time, e.g., customer
transactions, call records, customer click data, social media
interactions

+ Batch learning is not sufficient anymore as

+ Data is never ending. What is the training set?
+ Multiple access to the data is not possible or desirable

» And also, the data generation process is subject to changes over
time

» The patterns extracted upon such sort of data are also evolving
+ Algorithms should respond to change (incorporate new data instances,
forget obsolete data instances)



Examples

« Twitter stream for hastag “#refugeecrisis”
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Source: https://www.twitter.com/
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« Trend of the search for “environment”
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Source: https://www.google.com/trends/
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Examples LMU

« Experiments at CERN are generating an entire petabyte (1PB=106
GB) of data every second as particles fired around the Large Hadron
Collider (LHC) at velocities approaching the speed of light are
smashed together

» “We do not store all the data as that would be impractical. Instead,
from the collisions we run, we only keep the few pieces that are of
interest, the rare events that occur, which our filters spot and send
on over the network”

 This still means CERN is storing 25PB of data every year — the
same as 1,000 years’ worth of DVD quality video — which can then
be analyzed and interrogated by scientists looking for clues to the
structure and make-up of the universe

Source: http://public.web.cern.ch/public/en/LHC/Computing-en.html

Source: http://www.v3.co.uk/v3-uk/news/2081263/cern-experiments—-generating-petabyte


http://public.web.cern.ch/public/en/LHC/Computing-en.html
http://www.v3.co.uk/v3-uk/news/2081263/cern-experiments-generating-petabyte

Examples LMU

» Network monitoring records e.g. TCP connection records of LAN
network traffic

+ A connection is a sequence of TCP packets starting and ending at
some well defined times, between which data flows to and from a
source IP address to a target IP address under some well defined
protocol

« Connections are described in terms of 42 features like duration,
protocol type, service, flag, src bytes, dst bytes etc.

» Each connection is labeled as either normal, or as an attack, with
exactly one specific attack type

» Most of the connections are usually normal, but occasionally there
could be a burst of attacks at certain times

Source (with link to a real data set): http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

What is a Data Stream? \M[

Everything flows, nothing stands still
Heraclitus (535-475 BC)
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+ Data evolve over time as new data arrive (and old data become
obsolete/irrelevant)
+ We can distinguish between:
» Dynamic data arriving at a low rate (as e.g. in DWs): incremental
methods might work for such cases
+ Data streams: possible infinite sequence of elements arriving at a
rapid rate: new methods are required to deal with the amount and
complexity of these data



Incremental Methods
LMU

» Focus is on how to update the current pattern based on the newly
arrived data, without re-computing the pattern from scratch

» Requires (limited) access to raw data (i.e., only the data that is
affected by the changes)
» Example: incremental DBSCAN (insertion of a new point p)
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Figure 3: : Affected objects in a sample database



Chall for St
allenges for Streams LMU

« Data Mining over stream data is more challenging than batch
learning
* Huge amounts of data, thus, only a small amount can be stored in
memory
« Arrival at a rapid rate, thus, no much time for processing
» The generative distribution of the stream might change over time rather
than being stationary, thus, adapt and report on changes
* Requirements for stream mining algorithms
+ Use limited computational resources (bounded memory, small amount
of available processing time)
* No random access to the data but rather only one look at the data
(upon their arrival)



From Data Changes to Pattern Changes

Example: cluster evolution over time

Cluster e" Xpands
N

Cluster is sf
.

| Cluster s

Figure: Data records at three consecutive time stamps, the clustering gradually changes
(from: MONIC - Modeling and Monitoring Cluster Transitions, Spiliopoulou et al, KDD 2006)

Example: decision boundary drift over time

Time T, Time T, Time T,

Fig. 1. An illustration of concept drifting in data streams. In the three consecutive time stamps T, T, and T;, the classification
boundary gradually drifts from b, to b, and finally to b..
(from: A framework for application-driven classification of data streams, Zhang et al, Journal Neurocomputing 2012)



» Usually we are not interested in the whole history of the stream but
only in the recent history
» There are different ageing/weighting mechanisms or window models
that reflect which part of the stream history is important for learning
» Landmark window model
+ Sliding window model
» Damped window model
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Data Ageing Models

* Landmark (window) model

* Include all objects from a given landmark
 All points have an equal weight (usually w = 1)

« Sliding window model

* Remember only the n most recent entries, where n is the window size
+ All points within the window have a weight w = 1, for the rest: w =0




Data Ageing Models \M‘

» Damped window model

- Data are subject to ageing according to a fading function f(t), i.e.,
each point is assigned a weight that decreases with time ¢ via f(t)

» A widely used fading function in temporal applications is the
exponential fading function: f(t) = 2-*!, where 1 > 0 is the decae rate
that determines the importance of historical data (the higher the value
of A, the lower the importance of old data)

The effect of A
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Time F
ime Frames LMU

 Task: maintain the history of the stream
« Store snapshots at (regular) time intervals

 Use finer granularity for recent data for a J—‘—‘M‘T

detailed representation
» Use coarser granularity for older data to
save space

+ Tilted time frame (tilt time frame)

» Example: align time axis with natural calendar time, e.g.:
1 snapshot per minute for the 15 most recent minutes
1 snapshot per quarter for the 4 most recent quarters
1 snapshot per hour for the 24 most recent hours
1 snapshot per day for the 30 most recent day
1 snapshot per month for the 12 most recent months
Total number of snapshots for one year: 85

(compare to 60*24*30*12 = 518400 snapshots)



Pyramidal Time Frame Model
y LMU

5 height =6
« Stores snapshots in levels of . el
decreasing cardinality ,
(pyramld) 2 20, 28, 36, 44, 52
* Size (number of snapshots) is N 540 6, 5,5 =
controlled by two parameters o 57,725, 5 55,55 §:§

a,BeN —
width=5 [=af+1]

» For a new snapshot A provided at time t,on
+ Store A on the highest level i with tnowmoda’ =0
« If a level contains more than of + 1 snapshots, remove the oldest

+ Maximal height [log (thow)]
« Number of snapshots is smaller than (o? 4 1) - [logy (fhow)]

» Example: 1 snapshot per second for 100 years using o =2 and
B =1 results in 96 snapshots
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Overview LMU

» The (batch) clustering problem
» Given a set of measurements, observations, etc., the goal is to group
the data into groups of similar data objects (clusters)
» The data stream clustering problem
+ Continuously maintain a consistently good clustering of the sequence
observed so far, using a small amount of memory and time
 This implies
» Use incremental computations and techniques

+ Maintaining cluster structures that evolve over time
» Working with summaries (of such cluster structures) instead of raw

data



Challenges LMU

« Traditional clustering methods require access upon the whole data
set

+ Rather, we need online maintenance of patterns that captures
pattern drifts

» The underlying population distribution might change: drifts/ shifts of
concepts

» One clustering model might not be adequate to capture the evolution
» The role of outliers and clusters are often exchanged in a stream

» A clear and fast identification of outliers is often crucial for the
success



Overview

my

Cluster Model H Batch/static clustering

Dynamic/stream clustering

methods

Partitioning k-means, — Leader
methods k-medoid — STREAM k-Means
— CluStream
Density-based || DBSCAN, — DenStream
methods OPTICS — incDBSCAN
— incOPTICS
Grid-based STRING — Dstream




Overview LMU

» Goal: Construct a partition of a set of objects into k clusters
 Two types of methods
» Adaptive methods such as Leader (Spath 1980), Simple single pass
k-Means (Farnstrom et al., 2000), STREAM k-Means (OCaEtAI02)
» Online summarization - offline clustering methods such as CluStream
(AggEtAI03), DenStream (CaoEtAIO6)
+ Continous grid-based such as DStream (CheTu07)
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Leader LMU

» The simplest single-pass partitioning algorithm
» Whenever a new instance p arrives from the stream
» Find its closest cluster (leader), Cglos
+ Assign p to cgps if their distance is below the threshold dipresh
+ Otherwise, create a new cluster (leader) with p
 Properties
» 1-pass and fast algorithm
+ No prior information on the number of clusters required
* Result depends on the order of the examples
 Sensitive to a correct guess of diresn (Which is fixed)



STEAM k-Means LMU

» Simple extension of batch k-Means to streams:
+ Use a buffer (chunk) that fits in memory and apply k-Means locally in
the buffer
* STEAM k-Means:
» Apply k-Means on chunk X;
+ X’ denotes the set of i - k cluster centers from all chunks Xj,...X; each
weighted by the number of points assigned to it
« Output the k centers obtained by clustering X’

T
X' k centers

T
X'

3 4 L 4 4 4 4
) k centers k centers k centers k centers k centers ! 0 k centers



Properties:

* Pros:
+ Single scan
» Cons:

» Expensive (according to authors)

» No aging

« Cluster model inherent limitations (no noise handling, ...)
+ Fixed k in all chunks
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Basic |
asic ldea LMU

* Online component

» Maintain a larger number of small clusters
(micro-cluster)

» Reduce data, keep sufficient details

» Separate clusters for noise (improved
robustness)

 Provide accurate and fine grained input
for further steps

« Offline component

+ Generate actual clustering on user
request using micro-cluster information

» Exchangeable clustering method

« Individual and changing parameterization
possible

» Only approximate clustering




Micro Clusters: Cluster Features
LMU

« Clustering Features' for a set of points X: CFx = (Nx, LSx, SSx)
with
Ny is the number of points, i.e., | X|
* LSy is the linear sum of all points in X, i.e., ¥x.cx Xi
« SSx is the squared sum of all points in X, i.e., Ly.ex X
» From CFx we can easily compute basic statistics of X such as
* Mean (centroid) of X

« Compactness measures such as radius, diameter, variance and std.
deviation

» CFs are additive, i.e., given two (disjunctive) sets X and Y with their
corresponding CFx and CFy, we can compute CFxyy as follows:

CFxuy = CFx+ CFy = (NXJr Ny,LSx + LSy, SSx + SSy)

1Zhang, Ramakrishnan, Linvy: BIRCH: An Efficient Data Clustering Method for Very Large
Databases. Proc. ACM SIGMOD 1996



Micro Clusters: Data Bubbl
icro Clusters: Data Bubbles LMU

» While CFs are good for partitioning based clustering, they do not
capture density estimations necessary for e.g. OPTICS
- Data Bubbles? for a set of points X: Bx = (Nx, My, rx) with
* Ny is the number of points, i.e., | X|
* My is the centroid of X
* ry is the radius of the ball centered at M capturing all points in X

» Data Bubbles can be computed from CFs

» Data Bubbles allow a good approximation of core/reachability
distances for hierarchical clustering

2Breunig, Kriegel, Kréger, Sander: Data Bubbles: Quality Preserving Performance
Boosting for Hierarchical Clustering. Proc. ACM SIGMOD 2001



| — Basi
CluStream asics LMU

+ One of the first algorithms for streams proposing an online/offline
framework

» Uses cluster features to propose a k-Means like stream clustering
method

» Cluster Features (see above) are extended by the information of the
time slots T when points in X have arrived, i.e. x; has arrived at time
ti:

CFTX = (Nx, LSX, SSX, LSTX7 SST)(), where
* N, LSx, and SSx are defined as above (note that LSy and SSx are
vectors)
+ LSTx is the linear sum of time slots of X, i.e., Y1c7t;
« SSTy is the linear sum of time slots of X, i.e., Yyc7 12
 Again, important for the stream situation:
+ CFTs can be maintained incrementally, i.e. CFTxyp = CFTx +p



CluStream — Method at a Glance LMU

» General idea: a fixed number of g micro-clusters (represented as
CFTs) is maintained over time

« Initialize: apply g-Means over a buffer of initP observations and build
a summary for each cluster

» Both g and initP are input parameters

» Upon request, k-Means can be applied to a snapshot of the g CFTs



CluStream — Online Phase LMU

+ Maintain g micro-clusters while adding a new observation x; from
the stream
+ Find closest micro-cluster MC; according to distance dist(x;, 11;)
« If dist(x;, ;) < a - oj then add x; to MC;
+ Else create a new micro-cluster containing only x; and delete a micro
cluster by using one of the following actions:

» Delete the least recent MC if its relevance stamp t, < thow — T
» Merge the two closest micro clusters
- oj is called the maximal boundary of MC;

+ The relevance stamp {; of MC; approximates the average time
stamp of the last m objects

¢ Itis computed as the time of
arrival of the m/(2- N)-th o,
percentile (i.e., 1 —m/2- N of the |
time stamps in MC;



| — Offline Ph
CluStream — Offline Phase LMU

» Snapshots of micro-clusters are stored in pyramidal time frame
+ Given k and a time horizon h
* Locate all valid micro-clusters within h
« Final clusters are gained using a modified k-Means
» Micro-clusters over a certain time horizon are treated as pseudo-points
« In the initialization: seeds are not picked randomly, but sampled with a
probability proportional to N
» Distances are calculated between centroids of the micro-clusters
* New seeds are weighted by N

» The k clusters obtained from applying k-Means on the micro-clusters
are called macro-clusters



CluStream — Properties LMU

« Single scan, stream compression using micro-clusters

* Views the stream as a changing process over time, rather than
clustering the whole stream at a time

+ Can characterize clusters over different time horizons in changing
environment

 Aging only for entire clusters

* Noise handling offline

» Not adaptive q is fixed, requires k < g
* Many parameters

+ Sensitive to outliers and noise (also model inherent)



DenStream — Motivation
LMU

 Density-base cluster model: clusters as regions of high density
surrounded by regions of low density (noise)
» Very appealing for streams
» No assumption on the number of clusters
+ Discovering clusters of arbitrary shapes
« Ability to handle outliers and noise
 But, they miss a clustering model (or it is too complicated): clusters
are represented by all their points

« So we can again only hope to 3
approximate an arbitrary F
shaped cluster by many small yj ’i""'_

, . itigiEt
(circular) micro-clusters




» The DenStream algorithm uses time-weighted cluster features at
time slot t given a time weighting function f for observations x;
arriving attime t; < t:

CFj = (N, LSk, SSk)

where
« N =Yuexf(t—t)
* LS} = Yyexf(t—t)xi
. SSl =Y, exf(t—t)x2
« Usually, f(t) = 2-*! models the damped window model (but other
functions are possible)
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DenStream — Basics LMU

+ If a new observation x; is added, a micro-cluster summary CF)’( can
be maintained incrementally (analogously as above)

« If no point is added to CF}, for time interval At, then
CFl = (2724t N, 2-AAL. | St 2-AAL. SSL)

» The radius rx of a micro-cluster X can be derived from the cluster
feature CF}, as follows

rx = \/ S} /Ni — (LS} /Ng )2

Analogously, the center cx of a micro-cluster can be computed from
its CF}



DenSt — Basi
enStream asics LMU

Given the density threshold p (#points) and € (volume) and a weighting
factor B (0 < B < 1), DenStream maintains three different types of
micro-clusters:

 Core (or dense) micro-clusters (CMC) X if
Ni>pandry <e

« Potential core micro-clusters (PCMC) X if
N, >B-pandry <e
(provides the opportunity for transitions between
new clusters and outliers)

* Qutlier micro-clusters (OMC) X if
rx <eand Ni < B-pu

Note: all MC types always have a radius < ¢



* Collect a set / of initP of initial points
* Foranype

» Compute e-neighborhood N¢(p) of p
 If [INe(p)| > u (pis core), create a new CMC X = N¢(p) and remove X
from /

« For all remaining p € I: create a new OMCs X = N,(p) and remove
X from |
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DenStream — Online Phase LMU

Online micro-cluster maintenance (when a new observation x; arrives)

» Core micro-clusters are not considered

» Find closest potential core micro-cluster X,
o If dist(x;, cxp) <eg
+ Add x; to X,
* Check if X, becomes a CMC
* Else
» Find closest outlier micro-cluster X,
« If dist(x;,cx,) < &, add x; to X, and check if X, becomes a PCMC
« Else: create a new OMC Xy, = {x;}
« After a given number of T time steps, check:
+ Delete all CMC X with N§ < u
+ Delete all OMC that did not become CMC within the last T time steps



» Upon user request, run DBSCAN on current CMCs and PCMCs
» Use centers and weights of the micro-clusters
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« Single scan, stream compression using micro-clusters
» Noise/ outlier handling (model inherent)
* Flexible data aging model (for individual objects)

» Constant parameters over time, what about clusters with changing
density?
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CluStream DenStream
Online convex micro cluster
Offline | k-Means DBSCAN
Aging | entire MCs | individual objects

« Cluster algorithm in offline phase exchangeable in principle
« Still “high” online costs (check all MCs)

* Many variants exist
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Basic Idea LMU

A grid structure is used to capture the density of the data set

A cluster is a set of connected dense cells (see e.g. STING)
+ Appealing features

» No assumption on the number of clusters

+ Discovering clusters of arbitrary shapes

+ Ability to handle outliers
* In case of streams

» The grid cells are considered as micro-clusters, i.e., summary

information on cells are maintained

» Update these summaries on the grid structure as the stream proceeds
» Sample method: DStream (CheTu07)



DStream — Basics
LMU

- DStream divides each dimension into / partitions resulting in /9 cells
(d: data dimensionality)

 Populated grid cells are maintained in a hash list

 For a grid cell C, the following summary is stored:
CFC = (tupda[e, tspor, NC, /abelC, StatUSC)

where
* lypdate is the last update time
* tspor last time, C has been removed
* Ng =Yyxec Al x; (count using damped window aging)
* label is the cluster label
« status € {sporadic, normal}



DStream — Overview
LMU

+ DStream follows the online/offline paradigm
+ Online mapping of the new data into the grid

« Offline computation of grid density and clustering of dense cells

Data Stream

Density Grid Clustering results

- -
‘Online processing Offline processing



DSt —S i
ream ummaries LMU

» Three cell types are defined by parameters tqyense and tsparse:

» Cell Cis dense if N¢c > Tgense
* Cell Cis sparse if N¢ < Tsparse
+ Cell Cis transitional if Tsparse < N¢ < Tdense

» Connected regions of dense or transitional cells form a cluster

» Changes of the status occur in the online component

+ Set status to normal, if C changed from sparse to another type
« Set status to sporadic, if for C the number of insertions into C is less
than expected since the last update



DStream — Online Phase LMU

* Online grid cell maintenance (for new observation 0;):

» Determine the grid cell C that x; falls into
» Add C to the hash list if it is not already contained
» Update CF¢ w.r.t. x; and set status to normal if type changed from
sparse
 Periodically after T time steps
« Delete all grid cells from the hash list that have been marked as sporadic
and did not receive new points within the last T time steps
» Mark sparse grid cells as sporadic if requirements (see previous slide)
are met
» Adjust the clustering



« Single scan, stream compression using micro-clusters
» Noise/ outlier handling (model inherent)
» Aging model for entire cells

» Constant parameters over time, what about clusters with changing
density?

« Curse of dimensionality (number of grid cells is /)
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Grid-based Variant: Dynamic Splitting LMU

* Initially generate coarse grid

* Online split cells with

v
2(ASlcu.a)
AS=Lrs, 15,755}

interval > A:
« Mean split in the M@#ﬂﬂ?ﬁi‘ﬁiwuk
\ 82
=5

dimension with .

maximal variance
» Around mean

segment in the

dividing
dimension &

dividing

! 1.2
dimension & i he gl

i e P e

dimension with s(ASLclulol)  gARS2c2uzo2)  efASILclulol) g(RS2.c2ul.ol)
. . AS1={rs,, 5515} BS2={ 152,155} RSI={rsyrs'y  ASZ=Lrs, %)
minimal variance @ u-partition ®) o -parttion

 Delete outdated cells based on user defined threshold (initial grid
cells are never deleted)

+ No particular offline component
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» Detect and differentiate different types of changes
» Disappearance of concepts
 Migration/changes/drift of concepts
» Merging of existing concepts
+ Splitting of groups vs. newly emerging clusters

drift

split
novelty
disappearance
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MONIC: Modeling and Monitoring Cluster Transitions LMU

« MONIC? does not assume a particular cluster model
+ Cluster matching for different points in time

 Let X be a cluster at ty and Y a cluster from the set of clusters {y at a
later slot ty > tx and let the overlap between X and Y be

Yoexny age(ty,0)

overlap(X,Y) = Y xex age(ty, x)

« Yis a match for X, match:(X,{y) = Y subject to a threshold
T € [0.5,1] if Y is the cluster with the maximum overlap of at least t
where the overlap between two clusters X and Y is

- If there is no cluster in the clustering {y at ty with an overlap of at
least , then match;(X,{y) =0

« The matching is not unique: several old clusters can be matched with
the same new cluster

3Spiliopoulou et al.: MONIC - Modeling and Monitoring Cluster Transitions. Proc. KDD'06



MONIC: Cluster Transitions

Transition Notation Indicator

the cluster survives X—Y Y =match,(X,(;) AND BZ € (; \ {X}:Y = match-(Z,(;)

the cluster is split into mul- | X S {Vi,...,Yp} | (Yu=1...p: overlap(X,Yu) > Teptit) A overlap(X,U2_, Yu) > 7 A
tiple clusters (BY e G\ {Y1....Y,} s overlap(X,Y) = Topiir)

the cluster is absorbed XSy Y = match, (X,¢;) AND 3Z € & \ {X} : Y = match. (Z,¢;)

the cluster disappears X =G none of the above cases holds for X

a new cluster has emerged | & =V

Table 1: External transitions of a cluster

Transition type Subtype Notation Indicators

1. Size transition Ta. the cluster shrinks XY Daex age(z,ti) > 37 oy age(y,t;) + €
1b. the cluster expands XY XVEY age(y.t;) > 3 . x age(a,ti) + ¢

2. Compactness 2a. the cluster becomes compacter | X %Y aY)<o(X)—4d

transition 2b. the cluster becomes diffuser XY o(Y)>o(X)+4

3. Location transition | Shift of center (I1) or X-oo=Y | Il [p(X) —p(Y)|>71 //mean
distribution (12) 2. y(X) =y >m //skewness

No change X =Y

Table 2: Internal transitions of a cluster

Source: Spiliopoulou et al.: MONIC - Modeling and Monitoring Cluster Transitions. Proc.

KDD’06



Summary: Stream Clustering LMU

A very important task given the availability of streams nowadays

« Stream clustering algorithm maintain a valid clustering of the
evolving stream population over time

» Two generic approaches

» Online maintenance of a final clustering model
+ Online summarization of the stream and offline clustering

« Different window models

 Evaluation is not straightforward (existing measures mostly for static
case)

 Specialized approaches for text streams, high-dimensional streams.
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3. Classification in Data Streams

Prof. Dr. Peer Kroger: KDD2 (SoSe 2019) — Lecture 3 — Data Streams — 3. Classification



Prof. Dr. Peer Kréger: KDD2 (SoSe 2019, ecture 3 — Data



	Intorduction to Data Streams
	Clustering in Data Streams
	Adaptive Approaches
	Online - Offline Approaches
	Continous Grid-based Approaches
	Change Detection

	Classification in Data Streams

