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A Disclaimer (kind of ...)

• Data streams usually are a very challenging source of data

• Analysis of data streams require to address several aspects such as
• The hardware
• The processing environment (like the operating system, the

programming language and the programming schema, . . . )
• The algorithmic design
• . . .

• In this lecture, we focus on the algorithmic aspects that are
necessary for processing data streams

• The lecture Big Data Management focuses on other aspects
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Batch Learning

• Most of the DM algorithms focus on batch learning
• The complete training/data set is available to the learning algorithm
• Data instances can be accessed multiple times
• e.g., for clustering: k-Means, DBSCAN
• e.g., for classification: decision trees, Naïve Bayes

• Implict assumption: instances are generated by some stationary
probability distribution; data is not volatile and so are patterns
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Example: Batch Clustering

• k -means (here k = 2) needs full access to the data in each iteration
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Example: Batch Classification

• Decision Trees are constructed in a top-down recursive divide-
and-conquer manner requiring full access to the data for each split

• At start, all the training examples are at the root node
• Select the best attribute for the root
• For each possible value of the test attribute, a descendant of the root

node is created and the instances are mapped to the appropriate
descendant node

• Repeat the splitting attribute decision for each descendant node, so
instances are partitioned recursively
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From Batch to Streams

• Many interesting applications nowadays come from dynamic
environments where data are generated over time, e.g., customer
transactions, call records, customer click data, social media
interactions

• Batch learning is not sufficient anymore as
• Data is never ending. What is the training set?
• Multiple access to the data is not possible or desirable

• And also, the data generation process is subject to changes over
time

• The patterns extracted upon such sort of data are also evolving
• Algorithms should respond to change (incorporate new data instances,

forget obsolete data instances)
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Examples

• Twitter stream for hastag “#refugeecrisis”

Source: https://www.twitter.com/
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Examples

• Trend of the search for “environment”

Source: https://www.google.com/trends/
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Examples

• Experiments at CERN are generating an entire petabyte (1PB=106
GB) of data every second as particles fired around the Large Hadron
Collider (LHC) at velocities approaching the speed of light are
smashed together

• “We do not store all the data as that would be impractical. Instead,
from the collisions we run, we only keep the few pieces that are of
interest, the rare events that occur, which our filters spot and send
on over the network”

• This still means CERN is storing 25PB of data every year — the
same as 1,000 years’ worth of DVD quality video — which can then
be analyzed and interrogated by scientists looking for clues to the
structure and make-up of the universe

Source: http://public.web.cern.ch/public/en/LHC/Computing-en.html

Source: http://www.v3.co.uk/v3-uk/news/2081263/cern-experiments-generating-petabyte
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Examples

• Network monitoring records e.g. TCP connection records of LAN
network traffic

• A connection is a sequence of TCP packets starting and ending at
some well defined times, between which data flows to and from a
source IP address to a target IP address under some well defined
protocol

• Connections are described in terms of 42 features like duration,
protocol type, service, flag, src bytes, dst bytes etc.

• Each connection is labeled as either normal, or as an attack, with
exactly one specific attack type

• Most of the connections are usually normal, but occasionally there
could be a burst of attacks at certain times

Source (with link to a real data set): http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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What is a Data Stream?

Everything flows, nothing stands still

Heraclitus (535-475 BC)

• Data evolve over time as new data arrive (and old data become
obsolete/irrelevant)

• We can distinguish between:
• Dynamic data arriving at a low rate (as e.g. in DWs): incremental

methods might work for such cases
• Data streams: possible infinite sequence of elements arriving at a

rapid rate: new methods are required to deal with the amount and
complexity of these data
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Incremental Methods

• Focus is on how to update the current pattern based on the newly
arrived data, without re-computing the pattern from scratch

• Requires (limited) access to raw data (i.e., only the data that is
affected by the changes)

• Example: incremental DBSCAN (insertion of a new point p)
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Challenges for Streams

• Data Mining over stream data is more challenging than batch
learning

• Huge amounts of data, thus, only a small amount can be stored in
memory

• Arrival at a rapid rate, thus, no much time for processing
• The generative distribution of the stream might change over time rather

than being stationary, thus, adapt and report on changes

• Requirements for stream mining algorithms
• Use limited computational resources (bounded memory, small amount

of available processing time)
• No random access to the data but rather only one look at the data

(upon their arrival)
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From Data Changes to Pattern Changes

Example: cluster evolution over time

Example: decision boundary drift over time
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Data Ageing

• Usually we are not interested in the whole history of the stream but
only in the recent history

• There are different ageing/weighting mechanisms or window models
that reflect which part of the stream history is important for learning

• Landmark window model
• Sliding window model
• Damped window model

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 3 – Data Streams — 1. Intorduction 17/64



Data Ageing Models

• Landmark (window) model
• Include all objects from a given landmark
• All points have an equal weight (usually w = 1)

• Sliding window model
• Remember only the n most recent entries, where n is the window size
• All points within the window have a weight w = 1, for the rest: w = 0
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Data Ageing Models

• Damped window model
• Data are subject to ageing according to a fading function f (t), i.e.,

each point is assigned a weight that decreases with time t via f (t)
• A widely used fading function in temporal applications is the

exponential fading function: f (t) = 2−λ t , where λ > 0 is the decae rate
that determines the importance of historical data (the higher the value
of λ , the lower the importance of old data)
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Time Frames

• Task: maintain the history of the stream
• Store snapshots at (regular) time intervals
• Use finer granularity for recent data for a

detailed representation
• Use coarser granularity for older data to

save space

• Tilted time frame (tilt time frame)
• Example: align time axis with natural calendar time, e.g.:

1 snapshot per minute for the 15 most recent minutes
1 snapshot per quarter for the 4 most recent quarters
1 snapshot per hour for the 24 most recent hours
1 snapshot per day for the 30 most recent day
1 snapshot per month for the 12 most recent months
Total number of snapshots for one year: 85

(compare to 60*24*30*12 = 518400 snapshots)
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Pyramidal Time Frame Model

• Stores snapshots in levels of
decreasing cardinality
(pyramid)

• Size (number of snapshots) is
controlled by two parameters
α,β ∈N

• For a new snapshot A provided at time tnow

• Store A on the highest level i with tnow modα i = 0
• If a level contains more than αβ +1 snapshots, remove the oldest

• Maximal height dlogα (tnow )e
• Number of snapshots is smaller than (αβ + 1) · dlogα (tnow )e
• Example: 1 snapshot per second for 100 years using α = 2 and

β = 1 results in 96 snapshots
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Overview

• The (batch) clustering problem
• Given a set of measurements, observations, etc., the goal is to group

the data into groups of similar data objects (clusters)

• The data stream clustering problem
• Continuously maintain a consistently good clustering of the sequence

observed so far, using a small amount of memory and time

• This implies
• Use incremental computations and techniques
• Maintaining cluster structures that evolve over time
• Working with summaries (of such cluster structures) instead of raw

data
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Challenges

• Traditional clustering methods require access upon the whole data
set

• Rather, we need online maintenance of patterns that captures
pattern drifts

• The underlying population distribution might change: drifts/ shifts of
concepts

• One clustering model might not be adequate to capture the evolution

• The role of outliers and clusters are often exchanged in a stream

• A clear and fast identification of outliers is often crucial for the
success
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Overview

Cluster Model Batch/static clustering Dynamic/stream clustering

Partitioning k-means, – Leader
methods k-medoid – STREAM k-Means

– CluStream
Density-based DBSCAN, – DenStream
methods OPTICS – incDBSCAN

– incOPTICS
Grid-based STRING – Dstream
methods
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Overview

• Goal: Construct a partition of a set of objects into k clusters

• Two types of methods
• Adaptive methods such as Leader (Spath 1980), Simple single pass

k-Means (Farnstrom et al., 2000), STREAM k-Means (OCaEtAl02)
• Online summarization - offline clustering methods such as CluStream

(AggEtAl03), DenStream (CaoEtAl06)
• Continous grid-based such as DStream (CheTu07)
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Leader

• The simplest single-pass partitioning algorithm

• Whenever a new instance p arrives from the stream
• Find its closest cluster (leader), cclos

• Assign p to cclos if their distance is below the threshold dthresh

• Otherwise, create a new cluster (leader) with p

• Properties
• 1-pass and fast algorithm
• No prior information on the number of clusters required
• Result depends on the order of the examples
• Sensitive to a correct guess of dthresh (which is fixed)
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STEAM k-Means

• Simple extension of batch k -Means to streams:
• Use a buffer (chunk) that fits in memory and apply k -Means locally in

the buffer

• STEAM k -Means:
• Apply k -Means on chunk Xi

• X ′ denotes the set of i ·k cluster centers from all chunks X1, ...Xi each
weighted by the number of points assigned to it

• Output the k centers obtained by clustering X ′
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STEAM k-Means

Properties:

• Pros:
• Single scan

• Cons:
• Expensive (according to authors)
• No aging
• Cluster model inherent limitations (no noise handling, ...)
• Fixed k in all chunks

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 3 – Data Streams — 2. Clustering 30/64



Kapitel 2: Clustering

1. Intorduction to Data Streams

2. Clustering in Data Streams

2.1 Adaptive Approaches

2.2 Online - Offline Approaches

2.3 Continous Grid-based Approaches

2.4 Change Detection

3. Classification in Data Streams

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 3 – Data Streams — 2. Clustering 31/64



Basic Idea

• Online component
• Maintain a larger number of small clusters

(micro-cluster)
• Reduce data, keep sufficient details
• Separate clusters for noise (improved

robustness)
• Provide accurate and fine grained input

for further steps

• Offline component
• Generate actual clustering on user

request using micro-cluster information
• Exchangeable clustering method
• Individual and changing parameterization

possible
• Only approximate clustering
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Micro Clusters: Cluster Features

• Clustering Features1 for a set of points X : CFX = (NX ,LSX ,SSX )

with
• NX is the number of points, i.e., |X |
• LSX is the linear sum of all points in X , i.e., ∑xi∈X xi

• SSX is the squared sum of all points in X , i.e., ∑xi∈X x2
i

• From CFX we can easily compute basic statistics of X such as
• Mean (centroid) of X
• Compactness measures such as radius, diameter, variance and std.

deviation

• CFs are additive, i.e., given two (disjunctive) sets X and Y with their
corresponding CFX and CFY , we can compute CFX∪Y as follows:

CFX∪Y = CFX + CFY = (NX + NY ,LSX + LSY ,SSX + SSY )

1Zhang, Ramakrishnan, Linvy: BIRCH: An Efficient Data Clustering Method for Very Large
Databases. Proc. ACM SIGMOD 1996
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Micro Clusters: Data Bubbles

• While CFs are good for partitioning based clustering, they do not
capture density estimations necessary for e.g. OPTICS

• Data Bubbles2 for a set of points X : BX = (NX ,MX , rX ) with
• NX is the number of points, i.e., |X |
• MX is the centroid of X
• rX is the radius of the ball centered at M capturing all points in X

• Data Bubbles can be computed from CFs

• Data Bubbles allow a good approximation of core/reachability
distances for hierarchical clustering

2Breunig, Kriegel, Kröger, Sander: Data Bubbles: Quality Preserving Performance
Boosting for Hierarchical Clustering. Proc. ACM SIGMOD 2001
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CluStream — Basics

• One of the first algorithms for streams proposing an online/offline
framework

• Uses cluster features to propose a k -Means like stream clustering
method

• Cluster Features (see above) are extended by the information of the
time slots T when points in X have arrived, i.e. xi has arrived at time
ti :
CFTX = (NX ,LSX ,SSX ,LSTX ,SSTX ), where

• N, LSX , and SSX are defined as above (note that LSX and SSX are
vectors)

• LSTX is the linear sum of time slots of X , i.e., ∑ti∈T ti
• SSTX is the linear sum of time slots of X , i.e., ∑ti∈T t2

i

• Again, important for the stream situation:
• CFT s can be maintained incrementally, i.e. CFTX∪p = CFTX +p
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CluStream — Method at a Glance

• General idea: a fixed number of q micro-clusters (represented as
CFTs) is maintained over time

• Initialize: apply q-Means over a buffer of initP observations and build
a summary for each cluster

• Both q and initP are input parameters

• Upon request, k -Means can be applied to a snapshot of the q CFTs
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CluStream — Online Phase

• Maintain q micro-clusters while adding a new observation xi from
the stream

• Find closest micro-cluster MCj according to distance dist(xi ,µj)

• If dist(xi ,µj)< α ·σj then add xi to MCj
• Else create a new micro-cluster containing only xi and delete a micro

cluster by using one of the following actions:
• Delete the least recent MC if its relevance stamp tr < tnow − τ

• Merge the two closest micro clusters

• α ·σj is called the maximal boundary of MCj

• The relevance stamp tr of MCj approximates the average time
stamp of the last m objects

• It is computed as the time of
arrival of the m/(2 ·N)-th
percentile (i.e., 1−m/2 ·N of the
time stamps in MCj
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CluStream — Offline Phase

• Snapshots of micro-clusters are stored in pyramidal time frame

• Given k and a time horizon h

• Locate all valid micro-clusters within h

• Final clusters are gained using a modified k -Means
• Micro-clusters over a certain time horizon are treated as pseudo-points
• In the initialization: seeds are not picked randomly, but sampled with a

probability proportional to N
• Distances are calculated between centroids of the micro-clusters
• New seeds are weighted by N
• The k clusters obtained from applying k -Means on the micro-clusters

are called macro-clusters
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CluStream — Properties

• Single scan, stream compression using micro-clusters

• Views the stream as a changing process over time, rather than
clustering the whole stream at a time

• Can characterize clusters over different time horizons in changing
environment

• Aging only for entire clusters

• Noise handling offline

• Not adaptive q is fixed, requires k < q

• Many parameters

• Sensitive to outliers and noise (also model inherent)
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DenStream — Motivation

• Density-base cluster model: clusters as regions of high density
surrounded by regions of low density (noise)

• Very appealing for streams
• No assumption on the number of clusters
• Discovering clusters of arbitrary shapes
• Ability to handle outliers and noise

• But, they miss a clustering model (or it is too complicated): clusters
are represented by all their points

• So we can again only hope to
approximate an arbitrary
shaped cluster by many small
(circular) micro-clusters
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DenStream — Basics

• The DenStream algorithm uses time-weighted cluster features at
time slot t given a time weighting function f for observations xi

arriving at time ti < t :

CF t
X = (N t

X ,LSt
X ,SSt

X )

where
• N t

X = ∑xi∈X f (t− ti)
• LSt

X = ∑xi∈X f (t− ti)xi

• SSt
X = ∑xi∈X f (t− ti)x2

i

• Usually, f (t) = 2−λ t models the damped window model (but other
functions are possible)
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DenStream — Basics

• If a new observation xi is added, a micro-cluster summary CF t
X can

be maintained incrementally (analogously as above)

• If no point is added to CF t
X for time interval ∆t , then

CF t
X = (2−λ∆t ·N,2−λ∆t ·LSt

X ,2
−λ∆t ·SSt

X )

• The radius rX of a micro-cluster X can be derived from the cluster
feature CF t

X as follows

rX =
√

SSt
X/N t

X − (LSt
X/N t

X )2

• Analogously, the center cX of a micro-cluster can be computed from
its CF t

X
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DenStream — Basics

Given the density threshold µ (#points) and ε (volume) and a weighting
factor β (0 < β ≤ 1), DenStream maintains three different types of
micro-clusters:

• Core (or dense) micro-clusters (CMC) X if
N t

X ≥ µ and rX ≤ ε

• Potential core micro-clusters (PCMC) X if
N t

X ≥ β ·µ and rX ≤ ε

(provides the opportunity for transitions between
new clusters and outliers)

• Outlier micro-clusters (OMC) X if
rX ≤ ε and N t

X < β ·µ

Note: all MC types always have a radius ≤ ε
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DenStream — Initialization

• Collect a set I of initP of initial points

• For any p ∈ I:
• Compute ε-neighborhood Nε (p) of p
• If |Nε (p)| ≥ µ (p is core), create a new CMC X = Nε (p) and remove X

from I

• For all remaining p ∈ I: create a new OMCs X = Nε (p) and remove
X from I
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DenStream — Online Phase

Online micro-cluster maintenance (when a new observation xi arrives)

• Core micro-clusters are not considered

• Find closest potential core micro-cluster Xp

• If dist(xi ,cXp )≤ ε

• Add xi to Xp

• Check if Xp becomes a CMC

• Else
• Find closest outlier micro-cluster Xo

• If dist(xi ,cXo )≤ ε , add xi to Xo and check if Xo becomes a PCMC
• Else: create a new OMC Xxi = {xi}

• After a given number of T time steps, check:
• Delete all CMC X with N t

X < µ

• Delete all OMC that did not become CMC within the last T time steps
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DenStream — Offline Phase

• Upon user request, run DBSCAN on current CMCs and PCMCs

• Use centers and weights of the micro-clusters
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DenStream — Discussion

• Single scan, stream compression using micro-clusters

• Noise/ outlier handling (model inherent)

• Flexible data aging model (for individual objects)

• Constant parameters over time, what about clusters with changing
density?
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Online/Offline-Approaches: Summary

CluStream DenStream

Online convex micro cluster

Offline k -Means DBSCAN

Aging entire MCs individual objects

• Cluster algorithm in offline phase exchangeable in principle

• Still “high” online costs (check all MCs)

• Many variants exist
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Basic Idea

• A grid structure is used to capture the density of the data set

• A cluster is a set of connected dense cells (see e.g. STING)

• Appealing features
• No assumption on the number of clusters
• Discovering clusters of arbitrary shapes
• Ability to handle outliers

• In case of streams
• The grid cells are considered as micro-clusters, i.e., summary

information on cells are maintained
• Update these summaries on the grid structure as the stream proceeds
• Sample method: DStream (CheTu07)
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DStream — Basics

• DStream divides each dimension into l partitions resulting in ld cells
(d : data dimensionality)

• Populated grid cells are maintained in a hash list

• For a grid cell C, the following summary is stored:

CFC = (tupdate, tspor ,NC , labelC ,statusC)

where
• tupdate is the last update time
• tspor last time, C has been removed
• NC = ∑xi∈C λ t−ti ·xi (count using damped window aging)
• label is the cluster label
• status ∈ {sporadic,normal}
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DStream — Overview

• DStream follows the online/offline paradigm

• Online mapping of the new data into the grid

• Offline computation of grid density and clustering of dense cells
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DStream — Summaries

• Three cell types are defined by parameters τdense and τsparse:
• Cell C is dense if NC > τdense

• Cell C is sparse if NC < τsparse

• Cell C is transitional if τsparse < NC < τdense

• Connected regions of dense or transitional cells form a cluster

• Changes of the status occur in the online component
• Set status to normal , if C changed from sparse to another type
• Set status to sporadic, if for C the number of insertions into C is less

than expected since the last update
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DStream — Online Phase

• Online grid cell maintenance (for new observation oi ):
• Determine the grid cell C that xi falls into
• Add C to the hash list if it is not already contained
• Update CFC w.r.t. xi and set status to normal if type changed from

sparse
• Periodically after T time steps

• Delete all grid cells from the hash list that have been marked as sporadic
and did not receive new points within the last T time steps

• Mark sparse grid cells as sporadic if requirements (see previous slide)
are met

• Adjust the clustering
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DenStream — Discussion

• Single scan, stream compression using micro-clusters

• Noise/ outlier handling (model inherent)

• Aging model for entire cells

• Constant parameters over time, what about clusters with changing
density?

• Curse of dimensionality (number of grid cells is ld )
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Grid-based Variant: Dynamic Splitting

• Initially generate coarse grid

• Online split cells with
interval > λ :

• Mean split in the
dimension with
maximal variance

• Around mean
segment in the
dimension with
minimal variance

• Delete outdated cells based on user defined threshold (initial grid
cells are never deleted)

• No particular offline component
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Kapitel 2: Clustering

1. Intorduction to Data Streams

2. Clustering in Data Streams

2.1 Adaptive Approaches

2.2 Online - Offline Approaches

2.3 Continous Grid-based Approaches

2.4 Change Detection

3. Classification in Data Streams

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 3 – Data Streams — 2. Clustering 57/64



Basic Idea

• Detect and differentiate different types of changes
• Disappearance of concepts
• Migration/changes/drift of concepts
• Merging of existing concepts
• Splitting of groups vs. newly emerging clusters
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MONIC: Modeling and Monitoring Cluster Transitions

• MONIC3 does not assume a particular cluster model

• Cluster matching for different points in time
• Let X be a cluster at tX and Y a cluster from the set of clusters ζY at a

later slot tY > tX and let the overlap between X and Y be

overlap(X ,Y ) =
∑o∈X∩Y age(tY ,o)

∑x∈X age(tY ,x)

• Y is a match for X , matchτ (X ,ζY ) = Y subject to a threshold
τ ∈ [0.5,1] if Y is the cluster with the maximum overlap of at least τ

where the overlap between two clusters X and Y is
• If there is no cluster in the clustering ζY at tY with an overlap of at

least τ , then matchτ (X ,ζY ) = /0
• The matching is not unique: several old clusters can be matched with

the same new cluster

3Spiliopoulou et al.: MONIC - Modeling and Monitoring Cluster Transitions. Proc. KDD’06
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MONIC: Cluster Transitions

Source: Spiliopoulou et al.: MONIC - Modeling and Monitoring Cluster Transitions. Proc.

KDD’06
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Summary: Stream Clustering

• A very important task given the availability of streams nowadays

• Stream clustering algorithm maintain a valid clustering of the
evolving stream population over time

• Two generic approaches
• Online maintenance of a final clustering model
• Online summarization of the stream and offline clustering

• Different window models

• Evaluation is not straightforward (existing measures mostly for static
case)

• Specialized approaches for text streams, high-dimensional streams.
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Selected Readings on Stream Clustering

• C. Aggarwal: Data Streams: Models and Algorithms. Springer, 2007

• C. C. Aggarwal, J. Han, J. Wang, P. S. Yu: A framework for clustering evolving data
streams. Proc. VLDB, 2003

• M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu: Incremental Clustering for
Mining in a Data Warehousing Environment. Proc. VLDB 1998

• J. Gama: Knowledge Discovery from Data Streams. Chapman and Hall/CRC, 2010

• F. Cao, M. Ester, W. Qian, A. Zhou: Density-Based Clustering over an Evolving Data
Stream with Noise. Proc. SDM 2006

• Y. Chen, L. Tu: Density-Based Clustering for Real-Time Stream Data. Proc. KDD,
2007

• F. Farnstrom, J. Lewis, C. Elkan: Scalability for clustering algorithms revisited. ACM
SIGKDD Expl. 2(1):51-57, 2000

• S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. O’ Callaghan: Clustering data
streams: Theory and practice. IEEE TKDE 15(3):515–528, 2003

• L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani: Streaming-Data
Algorithms for High-Quality Clustering. Proc. ICDE, 2002
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Kapitel 3: Classification i

1. Intorduction to Data Streams

2. Clustering in Data Streams

3. Classification in Data Streams
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Vorlesungsteam
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