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Feature Transformation

Feature Transform

• Consider the following spaces:
• U denotes the universe of data objects
• F⊆Rn denotes an n-dimensional feature space

• A feature transformation is a mapping f :U→Rn of objects from U
to the feature space F.

Similarity Model

• A similarity model S :U×U→R is defined for all objects p,q ∈U
as

S(p,q) = sim(f (p), f (q))

where sim :Rn×Rn→R is a similarity measure or a dissimilarity
(distance) measure in F.
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Similarity versus Dissimilarity

Comments:

• Often, dissimilarity (distance) is measured instead of similarity

• This is a small but important difference!
• A similarity measure (sim) assigns high values to similar objects
• A dissimilarity measure (dist) assigns low values to similar objects

• The design of f and the definition of sim/dist are important
assumptions about the patterns we want to find later in the data

• As explained before, f and sim/dist can be derived manually (explicit
transformation and coding versus implicit Kernels) or automatically
(representation learning)
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Dissimilarity

• Dissimilarity measures follow the idea of the geometric approach
• objects are defined by their perceptual representations in a perceptual

space
• perceptual space = psychological space
• geometric distance between the perceptual representations defines

the (dis)similarity of objects

• Within the scope of Feature-based similarity
• perceptual space = feature space F or feature representation space
R

n

• geometric distance = distance function
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Distance Functions

• The distance measure dist is a distance function if it is reflexive,
non-negative, and symmetric

• A distance function dist is a metric if it additionally satisfies the
triangle inequality

• Comments:
• Sound mathematical interpretation
• Allow domain experts to model their notion of dissimilarity
• Metric distances allow to tune efficiency of data mining approaches
• Long-lasting discussion of whether the distance properties and in

particular the metric properties reflect the perceived dissimilarity
correctly, see the following contradicting example:
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Similarity versus Dissimilarity (again)

• Transformation
• Let F be a feature space and dist :F×F→R be a distance function
• Any monotonically decreasing function f :R→R defines a similarity

function s :F×F→R as follows

∀x ,y ∈F : s(x ,y) = f (dist(x ,y))

• Some prominent similarity functions (x ,y ∈F):
• exponential:

s(x ,y) = e(−dist(x ,y))

• logarithmic:
s(x ,y) = 1− log(1+dist(x ,y))

• linear: s(x ,y) = 1−dist(x ,y)
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Similarities: Examples (only very few)

• Dot-Product (x ,y ∈F⊆Rd )

x ·yT =
d

∑
i=1

xi ·yi = ‖x‖ · ‖y‖ · cos^(x ,y)

• Cosine (x ,y ∈F⊆Rd )
x ·yT

‖x‖ · ‖y‖
• Pearson Correlation (x ,y ∈F⊆Rd )

∑
d
i=1(xi − x̄i ) · (yi − ȳi )√

∑
d
i=1(xi − x̄i )2 ·

√
∑

d
i=1(yi − ȳi )2

where z̄i denotes the mean in attribute i over all data points

• Random-Walk Kernel (for graphs x ,y )

• Count common (random) walks in x and y
• Walks are sequences of nodes (connected by edges)
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Distances: Examples (only very few)

• Lp-norm (aka Minkowski metric) (x ,y ∈F⊆Rd )

Lp(x ,y) = p

√
d

∑
i=1
|xx −yi |p

where
• p < 1: fractional Minkowski distance
• p = 1: Manhattan distance
• p = 2: Euclidean distance
• p = ∞: Chebyshev/Maximum distance

• Malahanobis distance

• Hamming distance HammingDist(x ,y) = ∑
d
i=1

{
1 : xi 6= yi

0 : else
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A Motivating Example

• Let’s play the baby shapes game (truly motivating for students ...):
Group the items!!!

• What about grouping based on both shape and color?

• Lesson to learn: there may be different semantic concepts (and their
corresponding patterns) hidden in the data (here: shape and color)
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The More the Merrier or More is Less?

The good old days of data mining . . .

• Data generation and, to some extend, data storage was costly (hard
to imagine but those were the days ...)

• Domain experts carefully considered which features/variables to
measure before designing experiments/a feature transform/. . .

• Consequence: also data sets were well designed and potentially
contained only a small number of relevant features
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The More the Merrier or More is Less?

Nowadays, data science is also about integrating everything

• Generating and storing data is easy and cheap

• People tend to measure everything they can and even more
(including even more complex feature transformations)

• The Data Science mantra is often interpreted as “we can analyze
data from as many sources as (technically) possible, just record
anaything you can”

• Consequence: data sets are high-dimensional containing a large
number of features but the relevancy of each feature for the analysis
goal is not clear a priori
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High-dimensional Data is NOT a Myth

• Example: Image data
• Low-level image descriptors (color

histograms, textures, shape
information ...)

• Regional descriptors: between 16
and 1,000 features

• ...

• Example: Metabolome data
• Feature = concentration of one metabolite

(intermediates/results of metabolism)
• Bavaria newborn screening (for each baby, the

blood concentrations of 43 metabolites are
measured in the first 48 hours after birth)

• between 50 and 2,000 features
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More High-dimensional Data

• Example: Microarray data (deprecated)
• Features correspond to genes
• Up to 20,000 features
• Dimensionality is much higher than the

sample size

• Example: Text data
• Term frequency: features

correspond to words/terms
• Between 5,000 and 20,000

features (and even more)
• Often, esp. in social media:

abbreviations, colloquial
language, special words
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Problems with High-dimensional Data

Overview:

• Distances grow

• Contrast of distances diminish (concentration problem)

• Meaning of “neighborhood” concept

• Growing data space

• Growing hypothesis space

• Empty spaces and importance tails

• Different semantic layers

• ...

So let us have a closer look on these problems ...
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Distances Grow

The following example uses the Euclidean distance but holds for most
distance measures:

• Consider 2D vectors a = (1,2) and
b = (4,3)

• The Euclidean distance between a
and b is

L2(a,b) = L2((1,2),(4,4))

=
√

(1−4)2 + (2−3)2

=
√

10

which corresponds to the norm of the difference vector c = (3,1):

‖c‖2 =
√

32 + 12
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Distances Grow

With increasing dimensionality, distances grow, too:

• Example: L2((1,2),(4,3)) =
√

10

• Now double the feature vector length (double the original features):
L2((1,2,1,2),(4,3,4,3)) =

√
(32 + 12 + 32 + 12) =

√
20

• Effect seems not so important, values might be only in a larger
scale?

• NOPE:

Contrast of distances is lost in high dimensional data since
distances grow more and more alike!

This is know as the Concentration of Distances problem (see next)
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Concentration of Distances

Concentration Phenomenon

• As dimensionality grows, distance values grow, too, such that the
(numerical) contrast provided by usual measures decreases or even
diminishes

• In other words, the distribution of norms in a given distribution of
points tends to concentrate

• Example: Euclidean norm of vectors consisting of several variables
that are (assumed to be) independent and identically distributed

‖y‖2 =
√

y2
1 + y2

2 + . . . + y2
d

• In high dimensional spaces this norm behaves unexpectedly . . .
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Concentration of Distances

Theorem: Concentration of Distances

• Let y be a d-dimensional vector (y1, ...,yd ) where all components
yi (1≤ i ≤ d) are independent and identically distributed

• Then the mean and the variance of the Euclidean norm are:

µ‖y‖ =
√

a ·d−b +O(d−1) and σ‖y‖ = b +O(d−1/2)

where a and b are parameters depending only on the central
moments of order 1, 2, 3, 4.

Interpretation:
• The norm grows proportionally to

√
d , but the variance remains

approx. constant for large d (because limd→∞ d−const = 0)

• With growing dimensionality, the relative error made by taking µ‖y‖
instead of ‖y‖ becomes negligible

0John A Lee and Michel Verleysen: ”Nonlinear Dimensionality Reduction”. Springer, 2007.
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Neighborhood Concept Become Meaningless

Implications from the concentration of distances:

• A lot of data mining methods use distances and neighborhoods to
define patterns (e.g. kNN classifier, density-based clustering,
distance-based outlier detection, ...

• Using neighborhoods is based on a key assumption:
• Objects that are similar to an object o are in its neighborhood
• Object that are dissimilar to o are not in its neighborhood

• What if all objects are in the same neighborhood?
• Consider the above effect on distances: kNN distances are almost

equal to each other, i.e., the k nearest neighbors are random objects
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Neighborhood Concept Become Meaningless

Definition: Unstable Neighborhood

• A NN-query is unstable for a given ε

if the distance from the query point
to most data points is less than
(1 + ε) times the distance from the
query point to its nearest neighbor

• It can be shown that with growing
dimensionality, the probability that
a query is unstable converges to 1
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Neighborhood Concept Become Meaningless

• Consider a d-dimensional query point
q and n d-dimensional sample points
x1, ...xn (independent and identically
distributed)

• We define:
DMINd = min{L2(xi ,q)|1≤ i ≤ n} (dist to next neighbor)
DMAXd = max{L2(xi ,q)|1≤ i ≤ n} (dist to farthest neighbor)

Theorem

• If limd→∞(
VARL2(xi ,q)

µ2
L2(xi ,q)

) = 0

• Then ∀ε > 0 : limd→∞P(DMAXd ≤ (1 + ε)DMINd ) = 1

In other words: if the precondition holds, all points converge to the same
distance from the query!
0Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft: When is ”nearest neighbor” meaningful? In ICDT 1999.
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Neighborhood Concept Become Meaningless

Visually: Pairwise distances of a sample of 105 instances drawn from a
uniform [0,1] distribution, normalized (1/

√
d).
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Neighborhood Concept Become Meaningless

• Be clear about the precondition of the Theorem!!!

• Consider the feature space of d relevant features for a given
application (i.e., truly similar objects display small distances in most
features)

• Now add d ·c additional features being independent of the initial
feature space

• With increasing c the distance in the independent subspace will
dominate the distance in the complete feature space

• So the question is:
How many relevant features must be similar to indicate object
similarity?
(or: how many relevant features must be dissimilar to indicate
dissimilarity?)

• With increasing dimensionality the likelihood that two objects are
similar in every respect gets smaller.
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Growing Data Space

• OK, the data space grows with increasing dimensionality

• But what are the problems?

• In low dimensional spaces we have some (intuitive) assumptions on
the behavior of volumes (sphere, cube, etc.) and on the distribution
of data objects

• However, basic assumptions do not hold in high dimensional
spaces:

• Spaces become sparse or even empty and the probability of one
object inside a fixed range tends to become zero

• Distribution of data has a strange behavior e.g. a normal distribution
has only few objects in its center and the tails of distributions become
more important

We will have a closer look on these issues ...
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Growing Hypotheses Space

• The more features, the larger the hypothesis space

• The lower the hypothesis space is,
• the easier it is to find the correct hypothesis
• the less examples you need to properly test hypothesis
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Growing Hypotheses Space

• Consider f a unit multivariate normal distribution and normal kernel
(KDE)

• The aim is to find an estimate f̂ of f at the point 0

• The relative mean square error should be fairly small, e.g.
µ2

f̂ (0)−f (0)

f (0)2 < 0.1

Dim. Req. sample size to achieve 0.1 error estimate

1 4
2 19
5 768
8 43.700

10 842.000

Even with only 10 dimensions, we need nearly a million observations to
estimate a distribution with an error less than 0.1!!!
0B.W. Silverman: ”Density Estimation for Statistics and Data Analysis”. Chapman and Hall/CRC, 1986.
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Empty Spaces and Tails

• Consider a d-dimensional space with
partitions of constant size 1/m

• The number of cells N increases
exponentially in d : N = md

• Suppose x points are randomly placed
in this space

• In low-dimensional spaces there are
few empty partitions and many points
per partitions

• In high-dimensional spaces there are
far more partitions than points there
are many empty partitions
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Empty Spaces and Tails

Analogously:

• Consider a simple partitioning scheme, which splits the data in each
dimension in 2 halves

• For d dimensions we obtain 2d partitions

• Consider n = 106 samples in this space

• For d ≤ 10 such a partition may make sense

• For d = 100 there are around 1030 partitions, so most partitions are
empty (given the above 106 points)
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Empty Spaces and Tails

• Consider a hyper-cube range query
with length s in all dimensions, placed
arbitrarily in the data space [0,1]d

• E is the event that an arbitrary point
lies within the query cube

• The probability for E is P(E) = sd

⇒ with increasing
dimensionality, even very large
hyper-cube range queries are
not likely to contain a point
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Empty Spaces and Tails

• The same holds of course for a spherical range query (instead of a
cubical range query)

• Consequence: with increasing dimensionality the center of the
hyper-cube (or more generally: of the data space) becomes less
important and the volume of the data space concentrates in its
corners (i.e. randomly distributed points tend to be on the border of
the data space . . . )

• This seems to be a distortion of space compared to our 3D way of
thinking — and that is actually what it is ...
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Empty Spaces and Tails

And that also means, that the tails of a distribution become extremely
important

• Consider standard density
function f

• Consider f̂ with

f̂ (x) =

{
0 f (x) < 0.01

f (x) else

• Rescaling f̂ to a density function will make very little difference in 1D,
since very few data points occur in regions where f is very small
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Empty Spaces and Tails

But for high dimensional data:

• More than half of the data has less then 1/100 of the maximum
density f (0) (for µ = 0)

• Example: 10-dimensional Gaussian distribution X :

f (X )

f (0)
= e(− 1

2 XT X) ≈ e(− 1
2 χ2

10)

since the median of the χ2
10 distribution is 9.34, the median of f (X)

f (0) is

e
−9.34

2 = 0.0094

• Thus, most objects occur at the tails of the distribution

• In other words, in contrast to the low dimensional case, regions of
relatively very low density can be extremely important parts
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Empty Spaces and Tails

But for high dimensional data:

• More than half of the data has less then 1/100 of the maximum
density f (0) (for µ = 0)

• Example: 10-dimensional Gaussian distribution X :

f (X )

f (0)
= e(− 1

2 XT X) ≈ e(− 1
2 χ2

10)

since the median of the χ2
10) distribution is 9.34, the median of f (X)

f (0)

is e
−9.34

2 = 0.0094

• Thus, most objects occur at the tails of the distribution

• In other words, in contrast to the low dimensional case, regions of
relatively very low density can be extremely important parts
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Empty Spaces and Tails

Example: (µ = 0,σ = 1)

• 1D: 90% of the mass of the distribution lies between −1.6 and 1.6

• 10D: 99% of the mass of the distribution is at points whose distance from the origin is
greater than 1.6

• Thus, it is difficult to estimate the density, except for enormous samples becausein
very high dimensions virtually the entire sample will be in the tails

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 2. Challenges 37/248



Further Problems

• Patterns and models on high-dimensional data are often hard to
interpret, e.g. long decision rules

• Efficiency in high-dimensional spaces is often limited because e.g.
index structures degenerate and distance computations are much
more expensive

• There may be different semantic layers so pattern might only be
observable in subspaces or projected spaces (cf. the baby shape
game)

• Cliques of correlated features dominate the object description
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The Case Kröger versus Tresp

• Summarizing: the higher the dimensionality, the worse is the
expected outcome of the mining algorithm (i.e., dimensionality is a
curse, says Kröger)

• Well, not in general, the Kernel trick shows the opposite: through the
extension of the data space with new attributes, the mining algorithm
(e.g. a SVM classifier) gets more accurate (i.e., dimensionality is a
blessing, says Tresp in his ML course)

• So: Who is right???????? – Both – What????
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The Case Kröger versus Tresp

• Look at what we assumed for the curse: attributes are independent
(and often even uniformly distributed)

• These attributes are likely to be irrelevant for the mining task

• And the blessing: a Kernel (if it works) adds relevant attributes (even
more relevant than the original ones)

• Message: high-dimensional data is tricky and the curse can come by
as several problems

• Some are due to irrelevant attributes, so try to get rid of irrelevant
attributes and keep the relevant ones

• Some are instead of relevant attributes, so among the relevant
attributes, try to get rid of redundant ones
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Feature Selection

• A task to remove irrelevant and/or redundant features
• Irrelevant features:

• Not useful for a given task
• Probably decrease accuracy

• Redundant features:
• Strongly correlated with another relevant feature
• Does not drop the accuracy, but may drop efficiency, explainability, etc.

• Deleting irrelevant and redundant features can improve the quality
as well as the efficiency of the methods and the found patterns.

• New feature space: Delete all useless features from the original
feature space.

Keep in mind...
Feature selection 6= Dimensionality reduction
Feature selection 6= Feature extraction
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Irrelevant and Redundant Features (Unsupervised Case)

Irrelevance

Feature y is irrelevant, because if
we omit x , we have only one clus-
ter, which is uninteresting.

Redundancy

Features x and y are redundant,
because x provides (appr.) the sa-
me information as feature y with re-
gard to discriminating the two clus-
ters

0Source: Feature Selection for Unsupervised Learning, Dy and Brodley, Journal of Machine Learning Research 5 (2004)
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Irrelevant and Redundant Features (Supervised Case)

Irrelevance
Feature y separates well the two clas-
ses. Feature x is irrelevant. Its addition
“destroys” the class separation.

Redundancy

Features x1 and x2 are redundant.

Individually irrelevant
together relevant

0Source: http://www.kdnuggets.com/2014/03/machine-learning-7-pictures.html
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Problem Definition

• Input: Vector space F = d1×·· ·×dn, dimensions D = {d1, . . . ,dn}.
• Output: a minimal subspace M over dimensions D′ ⊆ D which is

optimal for a given data mining task.
• Minimality increases the efficiency, reduces the effects of the curse of

dimensionality and increases interpretability.

Challenges:
• Optimality depends on the given task.
• There are 2d possible solution spaces (exponential complexity)
• This search space is similar to the frequent itemset mining problem,

but:
• There is often no monotonicity in the quality of subspace (which is

important for efficient searching)
• Features might only be useful in combination with other certain

features.

⇒ For many popular criteria, feature selection is an exponential problem.

⇒ Most algorithms employ search heuristics.
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Two Main Components (Steps)

1. Feature subset generation
• Single dimensions
• Combinations of dimensions (subspaces)

2. Feature subset evaluation
• Importance scores like information gain, χ2

• Performance of a learning algorithm

⇒ How to select/evaluate features? How to traverse the search space?
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Feature Selection/Evaluation Methods

1. Filter methods
– Explores the general characteristics of the data, independent of the

learning algorithm.

2. Wrapper methods
– The learning algorithm is used for the evaluation of the subspace.

3. Embedded methods
– The feature selection is part of the learning algorithm.
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Feature Selection/Evaluation Methods

• Filter methods
– Basic idea: assign an “importance” score to each feature to filter out

useless ones
– Examples: information gain, χ2-statistic, TF-IDF for text...
– Disconnected from the learning algorithm.
– Pros:

◦ Fast and generic
◦ Simple to apply

– Cons:
◦ Doesn’t take into account interactions between features
◦ Individually irrelevant features, might be relevant together
◦ Too generic?
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Feature Selection/Evaluation Methods

• Wrapper methods
– A learning algorithm is employed and its performance is used to

determine the quality of selected features.
– Pros:

◦ take feature dependencies into account
◦ interaction between feature subset search and model selection

– Cons:
◦ higher risk of overfitting than filter techniques
◦ very computationally intensive, especially if building the classifier has a

high computational cost.
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Feature Selection/Evaluation Methods

• Embedded methods
– Such methods integrate the feature selection in model building
– Example: decision tree induction algorithm: at each decision node, a

feature has to be selected.
– Pros:

◦ less computationally intensive than wrapper methods.

– Cons:
◦ specific to a learning method

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 3. Feature Selection 50/248



Search Strategies in the Feature Space

• Forward selection
– Start with an empty feature space and add relevant features

• Backward selection
– Start with all features and remove irrelevant features

• Branch-and-bound
• Find the optimal subspace under the monotonicity assumption

• Randomized
– Randomized search for a k dimensional subspace

• ...
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General Idea

Input

• Target dimensionality k ≤ d

• Training set of n-dimensional feature vectors with features
d1,d2, . . . ,dn and target variable C

General Approach

• Compute the quality q(di ,C) for each dimension di ∈ {d1, ...,dn} to
predict the correlation to C

• Sort the dimensions d1, ...,dn w.r.t. q(di ,C)

• Select the bestk dimensions

Basic Assumption

• Attribute independence (no correlations between features)
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General Idea

Key Concept

• Quality of feature di : How suitable is the feature for predicting the
value of class attribute C?

• Statistical measures
• Rely on distributions over feature values and target values
• How strong is the correlation between both value distributions?
• How good does splitting the values in the feature space separate

values in the target dimension?
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Quality of Features

How to measure the distribution?

• For discrete values: determine probabilities for all value pairs.

• For real valued features:
• Discretize the value space (reduction to the case above)
• Use probability density functions (e.g. uniform, Gaussian,..)

• Example quality measures:
• Information Gain
• Chi-square χ2-statistics
• Mutual Information
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Quality of Features: Entropy

• Idea: Evaluate class discrimination in each dimension (Used in ID3
algorithm for decision trees)

• It uses entropy, a measure of pureness of the data set S w.r.t. the
class labels ci ∈ C

Entropy(S) = ∑
ci∈C
−pci · log2(pci )

where pci is the relative frequency of class ci in S
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Quality of Features: Entropy

Example

• Let S be a collection of positive and negative examples for a binary
classification problem, i.e., C = {+,−}

• Then Entropy(S) =−p+ log2(p+)−p− log2(p−)

• p+ is the percentage of positive examples in S
• p− is the percentage of negative examples in S

• Example splits:
• Let S : [9+,5−]: Entropy(S) =− 9

14 log2(
9

14 )−
5
14 log(

5
14 ) = 0.940

• Let S : [7+,7−]: Entropy(S) =− 7
14 log2(

7
14 )−

7
14 log(

7
14 ) = 1

• Let S : [14+,0−]: Entropy(S) =− 14
14 log2(

14
14 )−

0
14 log(

0
14 ) = 0

• Obviously: Entropy is 0, when all samples belong to the same class
while Entropy is 1, when there is an equal number of samples in all
splits
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Quality of Features: Information Gain

• The information gain Gain(S,di ) of a feature di relative to a training
set S measures the gain reduction in S due to splitting on di , i.e., the
entropy of the data set S before splitting minus the weighted sum of
the entropies of all splits Sj in a given feature di :

Gain(S,di ) = Entropy(S)−∑
Sj

|Sj |
|S|
·Entropy(Sj )

• For nominal attributes: use attribute values for splitting, i.e. each
possible value vj in di defines one split and Sj contains all objects
having vj in di

• For real valued attributes: Determine a splitting position v in the
value set and split e.g. into S1 containing all objects with values ≤ v
and S2 containing all objects with values > v in di
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Quality of Features: Information Gain

Example

• Which dimension, “Humidity” or “Wind”, is better?

• Larger values are better!
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Quality of Features: Chi-square Statistics

• Idea: Measures the independence of a feature d from the class
variable C

• Contingency table: divide data based on a split value s or based on
discrete values

• Example: Does “liking science fiction movies” imply “playing chess”?

• Chi-square χ2 test

χ
2 =

|C|

∑
i=1

|Values(d)|

∑
j=1

(oij −eij )
2

eij

oij : observed freq. of value j in class i
eij : expected freq. of value j in class i
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Quality of Features: Chi-square Statistics

Example

• Compute the χ2 values for the following table (numbers in
parenthesis are expected counts calculated based on the data
distribution in the two categories)

χ
2 =

(250−90)2

90
+

(50−210)2

210
+

(200−360)2

360
+

1000−840)2

840
= 507.93

• Smaller values are better!
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Quality of Features: Mutual Information

• In general, the Mutual Information (MI) between two variables x and
y measures how much knowing one of these variables reduces
uncertainty about the other

• In our case, it measures how much information a feature contributes
to making the correct classification decision, i.e., x is the dimension
di we want to evaluate and y is the class variable C.

• MI is based on probability distributions:
• p(x) and p(y) are the marginal probability distributions of x and y ,

respectively
• p(x ,y) is the joint probability distribution function
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Quality of Features: Mutual Information

• Discrete case

MI(x ,y) = ∑
xi∈x

∑
yi∈y

p(xi ,yi ) · log
p(xi ,yi )

p(xi )p(yi )

• Continuous case

MI(x ,y) =
∫

x

∫
y

p(x ,y) · log
p(x ,y)

p(x)p(y)
dxdy

• Interpretation: if x and y are statistically independent, then
• p(x ,y) = p(x) ·p(y) and, thus, log(1) = 0
• Or in other words: knowing x does not reveal anything about y
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Forward Selection and Feature Ranking: Discussion

Advantages

• Efficiency: it compares each feature {d1,d2, . . . ,dn} separately to
the class attribute C (and takes the best k ) instead of testing

(n
k

)
subspaces

• Works already for rather small sample sizes

Limitations

• Independency assumption: Classes and features must display a
direct correlation

• In case of correlated features: Always selects the features having
the strongest direct correlation to the class variable, even if the
features are strongly correlated with each other
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Backward Elimination: General Idea

General Approach

• Start with the complete feature space and delete redundant features

• Greedy Backward Elimination
1. Generate the subspaces R of the feature space F
2. Evaluate subspaces R with the quality measure q(R)

3. Select the best subspace R∗ w.r.t. q(R)

4. If R∗ has the target dimensionality, terminate else start backward
elimination on R∗.

Remarks

• Useful in supervised and unsupervised setting (in the latter scenario,
q(R) measures structural characteristics)

• Greedy search if there is no monotonicity on q(R); for monotonous
measures, branch and bound can be employed
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Supervised Quality Measure: Distance-based

• Idea: Subspace quality can be evaluated by the distance between
the within-class nearest neighbor and the between-classes nearest
neighbor

• Quality criterion: For each object o from the data set S, compute
distance to the closest object having the same class NNR

ci =C(o)(o)

(within-class nearest neighbor distance) in subspace R, and to the
closest object belonging to another class NNR

cj 6=C(o)(o)

(between-classes nearest neighbor distance), where C(o) denotes
the class label of object o in subspace R:

q(R) =
1
S
· ∑

o∈S

NNR
cj 6=C(o)(o)

NNR
ci =C(o)(o)

• Remark: q(R) is not monotonous: by deleting a dimension, the
quality can increase or decrease
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Supervised Quality Measure: Model-based

• Idea: Directly employ the data mining algorithm to evaluate the
subspace, e.g. by training a Naive Bayes classifier

• Practical aspects:
• Success of the data mining algorithm must be measurable (e.g. class

accuracy)
• Runtime for training and applying the classifier should be low
• The classifier parameterization should not be of great importance
• Test set should have a moderate number of instances
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Backward Elimination: Discussion

Advantages

• Considers complete subspaces (multiple dependencies are used)

• Can recognize and eliminate redundant features

Limitations

• Tests w.r.t. subspace quality usually requires much more effort

• All solutions employ heuristic greedy search which do not
necessarily find the optimal feature space
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Branch and Bound: General Idea

General Approach

• Given: A classification task over the feature space F

• Aim: Select the k best dimensions to learn the classifier

• Backward elimination approach “Branch and Bound” is guaranteed
to find the optimal feature subset under the monotonicity assumption

• The monotonicity assumption states that for two feature subsets
X ,Y ∈ F and a feature selection criterion J, if X ⊂ Y then

• J(X)≤ J(Y ) if J is maximized
• J(X)≥ J(Y ) if J is minimized

• Branch and Bound starts from the full set F and removes features
using a depth-first strategy

• Nodes whose objective function are smaller (greater) than the
current best are not explored since the monotonicity assumption
ensures that their children will not contain a better solution

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 3. Feature Selection 70/248



Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Example
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Branch and Bound: Quality Measures

Subspace Inconsistency (IC)

• Given a data set S (works best for categorical data)

• Idea: Having identical vectors u,v (ui = vi ,1≤ i ≤ d) in subspace R
but the class labels are different (C(u) 6= C(v)), this subspace
displays an inconsistent labeling

• Measuring the inconsistency of a subspace R
• XR(u): Amount of all identical vectors u in R
• X c

R(u): Amount of all identical vectors u in R having class label c ∈ C
• Inconsistency of u in R: ICR(u) = XR(u)−maxc∈C X c

R(u)

Then, inconsistency of subspace R is

IC(R) =
∑u∈S ICR(u)

|S|

• Monotonicity: R1 ⊂ R2⇒ IC(R1)≥ IC(R2)

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 3. Feature Selection 77/248



Backward Elimination: Discussion

Advantages

• Monotonicity allows efficient search for optimal solutions

• Well-suited for binary or discrete data (identical vectors are very
likely with decreasing dimensionality)

Limitations

• Useless without groups of identical features (real-valued vectors)

• Worse-case runtime complexity remains exponential in the number
of features d
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Random Subspace Selection: General Idea

General Approach

• Idea: Select n random subspaces having the target dimensionality k
out of the

(d
k

)
many possible subspaces and evaluate each of them

• Needs quality measures for complete subspaces

• Trade-off between quality and effort depends on n

• Good alternative to forward selection if quality measure is not
monotonic

• Different randomization approaches exist (see next subsection):
• Genetic algorithms
• k -medoids feature clustering
• ...
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Genetic Algorithms: General Idea

General Approach

• Idea: Randomized search through genetic algorithms

• Genetic Algorithms encode individual states in the search space as
bit-strings

• Population (of current solutions) is a subset of all possible
k -dimensional subspaces

• Fitness function: quality measure for a subspace

• Algorithmic schema to find the best solution in the search space by
mixing/changing the population in each iteration (stops e.g. if the
best solution of the current population is less fit than the best
solution in the previous population)

• Each iteration manages a specific population from which the next
population is obtained
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Genetic Algorithms: Population Generation

• Operators on the population (k -dim subspaces) to create candidates
for the next population:

• Mutation: dimension di in subspace R is replaced by dimension dj with
a likelihood of x%

• Crossover: combine two subspaces R1 and R2, i.e., unite the features
sets of R1 and R2 and delete random dimensions until dimensionality
is k again

• Selection for next population: All subspaces having at least a quality
of y% of the best fitness in the current generation are copied to the
next generation

• Free tickets: Additionally each subspace is copied into the next
generation with a probability of u%

• Remark: Many variants on the basic algorithmic schema, e.g.
different operations, efficient convergence by “Simulated Annealing”
(likelihood of free tickets decreases with the iterations), ...
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Genetic Algorithms: Discussion

Advantages

• Can escape from local optima during the search

• Often good approximations of the optimal solutions

Limitations

• Runtime ( is not bounded (in the original schema)

• Configuration depends on many parameters which have to be tuned
to achieve good quality results in efficient time
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Feature Clustering: General Idea

General Approach

• Given: A feature space F and an unsupervised data mining task

• Target: Reduce F to a subspace of k (original) dimensions while
reducing redundancy

• Idea: Cluster the features in the space of objects and select one
representative feature for each of the clusters (this is equivalent to
clustering in a transposed data matrix)

• Problem: often many more samples than features so transposed
data matrix has many more features than samples
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Feature Clustering: Example

• Typical example: item-based collaborative filtering

• E.g. features 3 and 4 are similar over all persons so they could be
“merged” to one feature
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Feature Clustering: Example

• Work around for the “many features” problem: specialized feature
similarity measures, e.g.

• Cosine similarity
• Pearson correlation

• Algorithmic schema
• Cluster features with a k -medoid clustering method based on

correlation
• Select the medoids to span the target data space

• Remark
• For group/cluster of dependent features there is one representative

feature
• Other clustering algorithms could be used as well, e.g. approximate

clustering methods for performance reasons

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 3. Feature Selection 86/248



Feature Clustering: Discussion

Advantages

• Depending on the clustering algorithm quite efficient

• Unsupervised method

Limitations

• Results are usually not deterministic (partitioning clustering results
depend on initialization)

• Representatives are usually unstable for different clustering methods
and parameters

• Method captures pairwise correlations and dependencies among
features but multiple dependencies are not considered
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Summary: Feature Selection

• Forward-Selection examines each dimension separately and selects
the k -best to span the target space

• Greedy Selection based on Information Gain, χ2 statistics or Mutual
Information

• Backward-Elimination start with the complete feature space and
successively remove the worst dimensions

• Greedy Elimination with model-based and nearest-neighbor based
approaches

• Branch and Bound Search (monotonicity required!) based on
inconsistency

• k -dimensional Projections directly search in the set of k -dimensional
subspaces for the best suited

• Genetic algorithms (any quality measures possible, e.g. those from
backward elimination)

• Feature clustering based on correlation
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Discussion: Feature Selection

• Many algorithms based on different heuristics

• There are two reason to delete features:
• Redundancy: Features can be expressed by other features
• Missing correlation to the target variable

• Often even approximate results are capable of increasing efficiency
and quality in a data mining tasks

• Caution: Selected features need not to have a causal connection to
the target variable, but both might depend on the same mechanisms
in the data space (hidden variables)

• Different indicators to consider in the comparison of before and after
selection performance, e.g. model performance, time,
dimensionality, ...
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Feature Selection — Further Readings

• I. Guyon, A. Elisseeff: An Introduction to Variable and Feature Selection, Journal of
Machine Learning Research 3, 2003.
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Kapitel 4: Feature Reduction and Metric Learning ii
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Overview

• Idea: Instead of removing features, try to find a low dimensional
feature space generating the original space as accurate as possible:

• Redundant features are summarized
• Irrelevant features are weighted by small values or are “erased” (in the

best case of course, the new feature space should contain no
irrelevant features anymore)

• Some sample methods (among lots of others):
• Reference point embedding
• Principal component analysis (PCA)
• Singular value decomposition (SVD)
• Fischer-Faces (FF) and Relevant Component Analysis(RCA)
• Large Margin Nearest Neighbor (LMNN)
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Feature Reduction Task

• Goal: Describe data with fewer features (reduce number of columns)

• Be clear: (like in feature selection) there will always be an
information loss

⇒

• There are supervised and unsupervised methods
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General Approach

• Idea: Describe the position of each object by their distances to a set
of reference points

• Given: Vector space F = D1× ...×Dn where D = {D1, ...,Dn}
• Target: A k -dimensional space R which yields optimal solutions for a

given data mining task

• Method: For each reference point R = {r1, ..., rk} and a distance
measure dist , transform vector x ∈ F as follows:

rR(x) =


dist(r1,x)

...
dist(rk ,x)


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Diskussion

• Distance measure is usually determined by the application

• Selection of reference points can be important (use centroids of the
classes or cluster-centroids, points on the margin of the data space,
use random samples, ...)

Advantages

• Simple approach which is easy to implement

• The transformed vectors yields lower and upper bounds of the exact
distances (What the hell is that good for???)

Disadvantages

• Even using d reference points does not reproduce a d-dimensional
feature space

• Selecting good reference points is important but very difficult
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Introduction

Motivation

• Consider the grades of students in Physics and Statistics

• If we want to compare among the students, which grade should be
more discriminative? Statistics or Physics?

Answer:
Physics because the variation along
that axis is larger

Source: http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Introduction

Motivation

• Suppose now the plot looks as below

• What is the best way to compare students now?

Answer:
We should take a linear combination
of the two grades (that represents
the direction of highest variance) to
get the best results

Source: http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Introduction

Motivation

• PCA returns two principal components

• The first gives the direction of the maximum spread of the data.

• The second gives the direction of maximum spread perpendicular to
the first

Source: http://astrostatistics.psu.edu/su09/lecturenotes/pca.html

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 4. Feature Reduction and Metric Learning 101/248

http://astrostatistics.psu.edu/su09/lecturenotes/pca.html


Normalizing Data

A feature X can be normalized by substracting its values with the mean
X̄ and dividing by the standard deviation sX , e.g. X̃ = X−X̄

sX
.

Example:

Consider the following body heights measured in different units:

Person A Person B Person C mean sd
body height (cm) 180.00 172.00 175.00 175.67 4.04
body height (m) 1.80 1.72 1.75 1.76 0.04

body height (feet) 5.91 5.64 5.74 5.76 0.13

After normalizing, we always obtain the normalized body height (no
matter which unit we used):

Person A Person B Person C mean sd
normalized body height 1.07 -0.91 -0.16 0.00 1.00

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 4. Feature Reduction and Metric Learning 102/248



Normalizing Data

Normalizing all features in a data set, can have several advantages:

• It puts all features into comparable units, i.e., we make sure that all
normalized features have mean 0 and standard deviation of 1

• It can avoid numerical instabilites in several algorithms, e.g. if a
feature has very low / high values

• It helps in computing meaningful distances between observations

• Finally, if we want to find directions of highest variances, it might be
better to do this on normalized data
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Normalizing: Covariance vs. Correlation

• Sure, there are many ways to do normalization

• here, we will use the notion common in Statistics, where the
variance of a normalized feature is always 1, its mean is always 0

• The covariance of two normalized features X̃ = X−X̄
sX

and Ỹ = Y−Ȳ
sY

is the same as the correlation of the non-normalized features X
and Y .

• One can proof this with the help of

sX̃ Ỹ = 1
n−1

n

∑
i=1

(x̃i − ¯̃x)(ỹi − ¯̃y) = . . . = 1
n−1

n

∑
i=1

(xi−x̄)
sX

(yi−ȳ)
sY

= rXY .
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PCA Intuition

Example I:

• Feature x1 explains most of the variation

• Feature x2 has a lower variance than x1

• If we disregard x2 and project the points into the 1-dimensional
space of x1, we do not lose much information w.r.t. variability
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PCA Intuition

Example II:

• x1 and x2 are correlated and have similar variances.

• Find a new orthogonal axes (e.g. PC1 and PC2), where PC1
explains most of the variation

• Rotate the points and consider PC1 and PC2 as new coordinate
system (situation as in the previous example)

• We can now project points onto PC1 and disregard PC2 (hopefully
without losing much information)
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PCA Intuition

• PCA finds the optimal rotation such that the transformed data
explains the variability of the data best

• The new axis are the principal components (also called
“eigenvectors” because PCA is technically an
Eigen-Decomposition); for a d-dimensional data set we always get d
principal components

• The variance along each eigenvector (called “eigenvalue”) is
decreasing, i.e. the first eigenvector has the highest eigenvalue,
while the d-th eigenvector has the smallest eigenvalue

• This can be used for dimensionality reduction: if we pick the k -th first
eigenvectors as new axes and transform the d-dimensional data into
the new k -dimensional space, this transformation is optimal w.r.t.
loss of total variance
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PCA Procedure

General procedure

1. Rotate the original p-dimensional coordinate system until the first
PC that explains most of the variation is found

2. Fix the first PC and proceed with rotating the remaining p−1
coordinates until the second PC (which is orthogonal to the first PC)
is found that explains most of the remaining variation, etc.

3. We can reduce the dimensions by projecting the points onto the first,
say k < p, PC
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PCA Intuition: Find first PC

x1

x2
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PCA Intuition: Animation

Variance of projected points: 0.87
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.25
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.08
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.38
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 0.84
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 1.31
x1

x2

rotated coordinate system
original coordinate system
projected points
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PCA Intuition: Animation

Variance of projected points: 1.63
x1

x2

rotated coordinate system
original coordinate system
projected points

PC1

PC2
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PCA Intuition: Reduce dimensionality

Rotate the points and use PC1 and PC2 as new coordinate system.

Here, the PC1 axis explains most of the variance:

PC2

PC1
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PCA Intuition: Reduce dimensionality

Dimensionality can be reduced by projecting the points onto the PC1
(and by disregarding PC2). The hope is that we won’t lose much
information this way.

PC2

PC1
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PCA Intuition: Summary

Idea: Transform an original set of correlated metric features to a new set
of uncorrelated (orthogonal) metric features, called principal components
(PC), that explain the variability in the data.

• The objective is to investigate if only a few PC account for most of
the variability in the original data.

• If the objective is fulfilled, we can use fewer PCs to reduce the
dimensionality.

• The PCs remove collinearity of the input variables as they are
orthogonal to each other.
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PCA Intuition: Final Remarks

• PCA is used for dimensionality reduction by disregaring dimensions
with lower variability.

• There is always an information loss, especially for other criteria.

• Attention: dimensionality reduciton can worsen the classification
accuracy when the task is to classify two groups:
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Deriving the First PC Mathematically

Aim: Find a new set of features (PC scores, eigenvectors) pc1, . . . ,pcp

based on the original data X = [x1, . . . ,xp] so that

• each PC score pc1, . . . ,pcp is a linear combination of the original
metric features with coefficient weights (so-called loading vectors)
a1, . . . ,ap, i.e.

pcj = aj1x1 + aj2x2 + . . .+ ajpxp = Xaj .

• the set is mutually uncorrelated: Cov(pcj ,pck ) = 0, ∀j 6= k .

• the variances (eigenvalues) of the PC scores decrease:

λ1 > λ2 > .. . > λp, where λk := Var(pck ).
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Deriving the First PC Mathematically

We look for the loading vector a1 = (a11,a21, . . . ,ap1)> that maximizes
the variance of pc1:

max
a1

Var(pc1) = Var(Xa1) = a>1 Σa1

subject to the normalization constraint a>1 a1 = ∑
p
k=1 a2

k1 = 1.

The constraint is required for identifiability reasons, otherwise we could
maximize the variance by just increasing the values in a1.

Repeat this maximization step for the other PCs and additionally use the
orthogonality constraint, i.e. for the second PC:

a>2 a1 = 0.
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Example: The Olympic Heptathlon Data

The heptathlon data set (e.g. available in the R package HSAUR3)
contains the competition results of 25 athletes in 7 disciplines for the
Olympics held in Seoul in 1988.

• Aim: Rank the athletes according to their overall performance in all
7 disciplines.

• Idea: Use PCA to reduce the dimensionality (i.e., reduce the results
of the 7 disciplines to one dimension) and compare the scores of the
first PC with the official scores.
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Example: The Olympic Heptathlon Data

Features of the heptathlon data:

• hurdles: results 100m hurdles (in seconds).

• highjump: results high jump (in m).

• shot: results shot putt (in m).

• run200m: results 200m race (in seconds).

• longjump: results long jump (in m).

• javelin: results javelin (in m).

• run800m: results 800m race (in seconds).

• score: total score of the official scoring system.
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Example: The Olympic Heptathlon Data

The features hurdles, run200m and run800m are time
measurements, i.e. low values are better. For all other features high
values are better.

Results of the best and worst participant:

We use negative time measurements so that higher values are better and
therefore all features have the same direction:
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Scatter Plot Matrix
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Perform PCA

• If features are on very different scales, PCA should be carried out on
the correlation matrix (which is equivalent to the correlation matrix if
normalized features are used).

• As the features of the heptathlon data are on different scales, we
perform the PCA based on the correlation matrix.

• Alternatively, we could also perform the PCA based on the
covariance matrix but on the normalized heptathlon data.

• The result contains:
• The loadings a1, . . . ,ap,
• The PC scores pc1, . . . ,pcp and
• The variance λ1, . . . ,λp (or standard deviation) of the PC scores.

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 4. Feature Reduction and Metric Learning 120/248



Proportion of Explained Variance

• The total variance of the p PC scores is equal the total variance of
the original features, i.e.,

∑
p
j=1 λj = s2

1 + s2
2 + · · ·+ s2

p,

where λj is the variance of the j th PC and s2
j is the sample variance

of variable xj .

• The proportion of explained variance of the j-th PC is

λj

∑
p
j=1 λj

.

• The first k PCs account for a proportion

∑
k
j=1 λj

∑
p
j=1 λj

.
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Choosing the Number of PCs

Two simple rules of thumb for choosing the number of PCs:

1. Retain the first k components, which explain a large proportion of
the total variation, e.g., 80-90%.

2. Use a scree plot: Plot the component variances vs. the component
number and look for an elbow. For components after the elbow, the
variance decreases more slowly.
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PC Scores vs. Official Scores

The first PC explains 63,72% of the variation of the heptathlon, the
loadings of the first PC are:

hurdles highjump shot run200m longjump javelin run800m
0.4529 0.3772 0.3631 0.4079 0.4562 0.0754 0.3750

Dimensionality reduction:

• Project all 8 features onto the first PC.

• Compare the scores of the first PC with the official scores used to
rank the athletes.
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PC Scores vs. Official Scores

The scores of the first PC pc1 have a similar ranking as the scores of the
official scoring system:

Joyner−Kersee (USA)

John (GDR)

Behmer (GDR)
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Discussion

Advantage

• Considers arbitrary correlations between features

• Selected subspace is optimal w.r.t. loss of variance

Disadvantage

• Assumption: components with high variance are useful to discover
the desired patterns

• Considers only linear correlations (work-around: Kernel-PCA, see
later)
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Kapitel 4: Feature Reduction and Metric Learning

1. Intorduction to Feature Spaces

2. Challenges of High Dimensional Data

3. Supervised Feature Selection

4. Feature Reduction and Metric Learning

4.1 Reference Point Embedding

4.2 Principle Component Analysis (PCA)

4.3 Singular Value Decomposition (SVD)

4.4 Kernel PCA

4.5 Further Measures

5. Clustering High Dimensional Data
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Idea

• PCA is an eigenvalue decomposition of the d×d covariance matrix
Σ = DT D of the (normalized) data matrix D:

Σ = VEV T

such that
• V = (pc1, ...,pcd ), is a d×d matrix whose columns are the pairwise

independent unit vectors, the eigenvectors

• E =


λ1 . . . 0
...

. . .
...

0 . . . λd

 is a d×d diagonal matrix, the diagonal

elements are the eigenvalues of the corresponding eigenvectors

• The decomposition can be found e.g. based on numerical algorithms
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Compute the SVD

• SVD is a generalization of the eigenvalue decomposition

• Let D be the n×d data matrix (n objects, d dimensions) and let k be
its rank (max number of independent rows/ columns)

• We can decompose D into matrices O,S,A with D = OSAT or


x1,1 . . . x1,d

...
. . .

...
xn,1 . . . xn,d


︸ ︷︷ ︸

D

=


o1,1 . . . o1,k

...
. . .

...
on,1 . . . on,k


︸ ︷︷ ︸

O

·


λ1 . . . 0
...

. . .
...

0 . . . λk


︸ ︷︷ ︸

S

·


a1,1 . . . a1,d

...
. . .

...
ak ,1 . . . ak ,d


︸ ︷︷ ︸

AT

such that
• O is a n×k column-orthonormal matrix (each of its columns is a unit

vector and the dot product of any two columns is 0)
• S is a diagonal k ×k matrix
• A is a k ×d column-orthonormal matrix. Note that we always use A in

its transposed form, so it is the rows of AT that are orthonormal
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SVD: Example I

• D contains movie ratings by users
• The corresponding SVD shows two

concepts “science fiction” and
“romance”

• S shows the strength of these
concepts

• A relates movies to concepts



1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2


︸ ︷︷ ︸

D

=



.14 0

.42 0

.56 0

.70 0
0 .60
0 .75
0 .30


︸ ︷︷ ︸

O

·
(

12.4 0
0 9.5

)
︸ ︷︷ ︸

S

·
(

.58 .58 .58 0 0
0 0 0 .71 .71

)
︸ ︷︷ ︸

AT

(Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf)
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SVD: Example II

• Now a slightly different D
• The corresponding SVD shows three

concepts “science fiction” and
“romance” and ???



1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 2 0 4 4
0 0 0 5 5
0 1 0 2 2


︸ ︷︷ ︸

D

=



.13 .02 −.01

.41 .07 −.03

.55 −09 −.04

.68 .11 −.05

.15 −.59 .65

.07 .−73 −.67

.07 −.29 .32


︸ ︷︷ ︸

O

·

 12.4 0 0
0 9.5 0
0 0 1.3


︸ ︷︷ ︸

S

·

 .56 .59 .56 .09 .09
.12 −.02 .12 −.69 −.69
.40 −.80 .40 .09 .09


︸ ︷︷ ︸

AT

(Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf)
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Dimensionality Reduction with SVD

• To reduce dimensionality, we can set the smallest singular values to
0 in S and eliminate the corresponding columns in O and rows in AT

(check previous examples)

• How Many Singular Values Should We Retain?
• Rule of thumb: retain enough singular values to make up 90% of the

energy in S
• Energy is defined in terms of the singular values (matrix S)
• In the previous example, the total energy is:
(12.4)2 +(9.5)2 +(1.3)2 = 245.70

• The retained energy is: (12.4)2 +(9.5)2 = 244.01 > 99%
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Connection between SVD and PCA

• PCA is applying SVD on the covariance matrix Σ = DT D

• SVD means: D = OSAT

• Thus:
Σ = DT D = (OSAT )T OSAT = AST (OT O)SAT

• Since O is an orthonormal matrix, OT O is the identity:

AST (OT O)SAT = A(ST S)AT

• S is a diagonal matrix, so transposing has no effect:

A(ST S)AT = AS2AT = A


λ 2

1 . . . 0
...

. . .
...

0 . . . λ 2
k

AT
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Connection between SVD and PCA

• Here: A is a matrix of eigenvectors

• Eigenvalues of the covariance matrix = squared singular values of D

• Conclusion: Eigenvalues and eigenvectors of the covariance matrix
S can be determined by the SVD of the data matrix D (or in other
words: SVD is a method to perform PCA)

• SVD is sometimes a better way to perform PCA (Large
dimensionalities e.g., text data)

• SVD can cope with dependent dimensions (k < d is an ordinary
case in SVD)
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Kapitel 4: Feature Reduction and Metric Learning
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2. Challenges of High Dimensional Data
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4. Feature Reduction and Metric Learning
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4.2 Principle Component Analysis (PCA)

4.3 Singular Value Decomposition (SVD)

4.4 Kernel PCA

4.5 Further Measures

5. Clustering High Dimensional Data
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Motivation

Consider the following scenarios:

• PCA will be effective since
data is linearly correlated

• PCA may find the orange
line as the first component
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Basic Idea

Recall: the solution of linear classifiers (e.g. SVMs) for non-linear
problems is “make them linear!” using a suitable feature mapping

• No linear separation of
classes possible

• Mapping R2→R3 with
(x1,x2) 7→ (x1,x2,x2

1 + x2
2 )
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Kernel Trick

• Since a high-dimensional mapping can still have negative impact,
the Kernel trick is used whenever possible (see KDD I lecture)

• Given the intended mapping Φ, the Kernel is usually defined as
K (x ,y) = Φ(x)T Φ(y)

• Example: Degree-d polynomials: K (x ,y) = (xT y + c)d with an
arbitrary constant c, e.g. for d = 2:

(Image source:

http://i.stack.imgur.com/qZV3s.png)
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Kernel PCA Using SVD

• Recall the SVD D = OSAT

• A is a k -dimensional basis of the eigenvectors of DDT (originally
d×d)

• Analogously, O is a k -dimensional basis of eigenvectors of DDT

• DDT is a Kernel matrix for the linear Kernel (i.e., no mapping made -
cf. KDD I) or any other Kernel

• A and O are related as follows:

D = OSAT ⇒ OT D = OT OSAT = SAT ⇒ S−1OT D = AT

i.e. each d-dimensional eigenvector in A is a linear combination of
vectors in D (original or mapped!) and the n k -dimensional
eigenvectors in OT (O is n×k )
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Kernel PCA Using SVD

• Let K (x ,y) = Φ(x)T Φ(y) be a kernel for the non-linear
transformation Φ

• Assume: K (x ,y) is known, but Φ(x) is not explicitly given

• Let K be the Kernel matrix of D w.r.t. K (x ,y), i.e.

K =


K (x1,x1) . . . K (x1,xn)

...
. . .

...
K (xn,x1) . . . K (xn,xn)


• The eigenvalue decomposition of K is K = VSV T where V is a

n-dimensional basis from eigenvectors of K

• Dimensionality Reduction through mapping of y ∈ D w.r.t V to

ŷ =


Φ(y)T (∑

n
i=1 vi,1Φ(xi ))

...
Φ(y)T (∑

n
i=1 vi,k Φ(xi ))

=


∑

n
i=1 vi,1(Φ(y)T Φ(xi ))

...
∑

n
i=1 vi,k (Φ(y)T Φ(xi ))

=


∑

n
i=1 vi,1K (y ,xi )

...
∑

n
i=1 vi,k K (y ,xi )


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Matrix Factorization as Optimization Task

• BTW, SVD (and, thus PCA) is a matrix decomposition that can be
formalized as optimization task

D = OSAT =

O


√

λ1 . . . 0
...

. . .
...

0 . . .
√

λk




︸ ︷︷ ︸
U



√

λ1 . . . 0
...

. . .
...

0 . . .
√

λk

AT


︸ ︷︷ ︸

V T

= UV T

• As an optimization problem: L(U,V ) = ‖D−UV T‖2
f

subject to ∀i 6=j : 〈vi ,vj〉= 0∧〈ui ,uj〉

using the squared Frobenius Norm of an n×m matrix M:
‖M‖2

f = ∑
n
i=1 ∑

m
i=1 |mi,j |2
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2. Challenges of High Dimensional Data
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4.5 Further Measures

5. Clustering High Dimensional Data
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Fisher Faces

Fisher Faces

• Idea: Use examples from a training set (supervised!) to increase the
discriminative power of the target space

• Minimize the similarity between objects from different classes
(between class scatter matrix: σb)
Use covariance matrix of the class centroids for Σb

• Maximize similarity between objects belonging to the same class
(within class scatter matrix Σw )
Use average covariance matrix of all classes for Σw

• Determine new basis vectors bi by maximizing

bT
i Σbbi

bT
i Σw bi

subject to ∀i 6=j : 〈bi ,bj〉= 0
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Fisher Faces

Remarks on Fisher Faces

• The vector having the largest eigenvalue corresponds to the normal
vector of the separating hyper plane in linear discriminant analysis or
Fisher‘s discriminant analysis. (cf. KDD I)

• Fischer Faces are limited due to the assumption of mono-modal
classes: each class is assumed to follow one multivariate Gaussian

• Multi-modal or non-Gaussian distributions are not modeled well

• Many variants (e.g. Relevant Component Analysis (RCA), Large
Margin Nearest Neighbor (LMNN)
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Summary

• Linear basis transformation yield a rich framework to optimize
feature spaces

• Unsupervised methods delete low variant dimensions (PCA und
SVD)

• Kernel PCA allows to compute PCA in non-linear kernel spaces

• Basic assumption: direction of highest variance bear the most
relevant information

• Supervised methods try to minimize the within class distances while
maximizing between class distances (Fischer Faces and variants)
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Further Readings

• S. Deerwester, S. Dumais, R. Harshman: Indexing by Latent Semantic Analysis,
Journal of the American Society of Information Science, Vol. 41, 1990

• L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Technical
report, Department of Computer Science and Engineering, Michigan State University,
2006.

• K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest
neighbor classication. Journal of Machine Learning Research, 10:207,244, 2009.

• P. Comon. Independent component analysis, a new concept? Signal Processing,
36(3):287-314, 1994.

• J. Davis, B. Kulis, S. Sra, and I. Dhillon. Information theoretic metric learning. In in
NIPS 2006 Workshop on Learning to Compare Examples, 2007.

• A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions
using equivalence relations. In Proceedings of the 20th International Conference on
Machine Learning (ICML), Washington, DC, USA, pages 11-18, 2003.
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Kapitel 5: Clustering High-dim Data ii

5.5 Correlation Clustering
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Motivating Example

Customer Recommendation / Target Marketing

• Data: customer ratings for given products
• Rows (objects): customers (millions?)
• Columns (features): products (hundreds to thousands)
• Value xij in the data matrix is the rating of product i by user j

• Task: Cluster customers to find groups of persons that share similar
preferences or disfavor (e.g. to do personalized target marketing)

• Challenge: customers may be grouped differently according to
different preferences/disfavors, i.e. different subsets of products
(See: baby shapes game)
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Curse of Dimensionality (Revisited)

Relevant and irrelevant attributes

• Not all features, but a
subset of the features
may be relevant for
clustering

• Groups of similar (e.g.
“dense”) points may be
identified when
considering only these
features

• Different subsets of
attributes may be
relevant for different
clusters
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Curse of Dimensionality (Revisited)

Effect on clustering

• Traditional distance
functions give equal
weight to all dimensions

• However, not all
dimensions are of equal
importance

• Adding irrelevant
dimensions ruins any
clustering based on a
distance function that
equally weights all
dimensions
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Curse of Dimensionality (Revisited)

• Example: different attributes are relevant for different clusters
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Curse of Dimensionality (Revisited)

It can even be a little bit more complex ...

• Task: Cluster test persons to find groups of individuals with similar
correlation among the concentrations of metabolites indicating
homogeneous metabolic behavior (e.g. disorder)

• Challenge: different
metabolic disorders
appear through
different correlations
of (subsets of)
metabolites
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Curse of Dimensionality (Revisited)

Correlation among attributes

• A subset of features may be
correlated

• Groups of similar (e.g.
“dense”) points may be
identified when considering
this correlation of features
only

• Different correlations of
attributes may be relevant for
different clusters
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Curse of Dimensionality (Revisited)

Why not feature selection/reduction

• (Unsupervised) feature selection or feature reduction (e.g. PCA) is
global, i.e., it transforms the original feature space into one new
representation

• We face a local feature
relevance/correlation: some
features (or combinations of
them) may be relevant for
one cluster, but may be
irrelevant for a second one,
i.e., we need multiple
representations
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Curse of Dimensionality (Revisited)

Example: use PCA (target dim = 1) before clustering
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Curse of Dimensionality (Revisited)

Example: cluster first, then find correlations (with PCA)
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Problem Summary

• Feature relevance and correlation
• Usually, no clusters in the full dimensional space
• Often, clusters are hidden in subspaces of the data, i.e. only a subset

of features is relevant for the clustering
• E.g. a group of genes play a common role in a subset of experimental

conditions but may behave completely different in other conditions

• Local feature relevance/correlation
• For each cluster, a different subset of features or a different correlation

of features may be relevant
• E.g. different genes are responsible for different phenotypes other

conditions

• Overlapping clusters (different semantic concepts)
• Clusters may overlap, i.e. an object may be clustered differently in

varying subspaces
• E.g. a gene plays different functional roles depending on the

environment other conditions
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General Problem Setting

Search for clusters in (in general arbitrarily oriented) subspaces of
the original feature space

Challenges

• Find the correct subspace of each cluster (Search space virtually
infinite: all possible arbitrarily oriented subspaces of a feature space)

• Find the correct cluster in each relevant subspace (Search space
depends on clustering algorithm)

• Even worse: both challenges depend on each other:
• In order to determine the correct subspace of a cluster, we need to

know (at least some) cluster members
• In order to determine the correct cluster memberships, we need to

know the subspaces of all clusters
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General Problem Setting

• Hmm, it is really not so easy, especially in practice ...

• Even if we found the
relevant subspace, we still
might have a hard time to
find the correct cluster(s)

• Here, clusters (yellow, red,
green, blue) and noise
(gray) are not separable in
the “correct” subspace . . .

• Rather, we would need a new cluster model (recall: cluster = group
of similar objects)

• What is the concept of similarity that all members of a cluster share
in this example (and does not include members from other
clusters/noise)???
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A Taxonomy of Approaches

Subspace Clustering (restricted to axis-parallel subspace)

• Find all clusters in all subspaces (allow overlaps)

• Usually bottom-up subspace search

Projected Clustering (restricted to axis-parallel subspace)

• Each point is assigned to one subspace cluster or noise

• Usually top-down subspace search

Correlation Clustering (explores arbitrarily oriented subspaces

• Each point is assigned to one subspace cluster or noise

• Bottom-up and top-down subspace search approaches
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Bottom-up Subspace Cluster Search

• Similar to Branch-and-Bound feature selection: Start with 1-D
subspaces or subspace clusters and merge them to compute higher
dimensional ones

• Most approaches transfer this problem into a frequent item set
mining problem

• In this case, the cluster criterion must implement the downward
closure (monotonicity) property:

• If the criterion holds for a k -dimensional subspace S, then it also holds
for any (k–1)-dimensional projection of S

• Use the reverse implication for pruning: If the criterion does not hold for
a (k–1)-dimensional projection of S, then the criterion also does not
hold for S

• Some approaches use other search heuristics (especially if
monotonicity does not hold) like best-first-search, greedy-search, ...
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Downward-closure Property: Example

• Consider a simple cluster criterion (density of grid cells): If a cell C
of side length s contains more than m points, it represents a cluster

• Monotonicity: if C contains more than m points in subspace S then
C also contains more than m points in any subspace T ⊂ S
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CLIQUE: Idea

• Probably the first bottom-up algorithm

• It uses a density-grid-based cluster model (similar to previous slide)

• Clusters are “dense regions” in
the feature space

• Partition the feature space into ξ

equal sized parts in each
dimension

• A unit is the intersection of one
interval from each dimension

• Unit u is dense if it contains more
than τ objects

• Clusters are maximal sets of connected dense units (e.g., A∪B)

• Two-step approach (1. subspace search, 2. clustering)
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CLIQUE: Subspace Search

Step 1: Find subspaces with dense units

• Explore Downward Closure property of dense cells (APRIORI-style
search)

• Candidate generation
• Based on Dk−1, the set of

(k −1)-dimensional dense units,
generate candidate set Ck by
self joining Dk−1

• Join condition: units share first
k −2 dimensions

• Discard those candidates which
have a k −1 projection not
included in Dk−1

• For the remaining candidates:
check density
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CLIQUE: Cluster Search

Step 2: Find clusters as maximal sets of connected dense units

• Given: a set of dense units D in the same k -dimensional subspace S

• Output: A partition of D into clusters D1, . . . ,Dk of connected dense
units

• The problem is equivalent to finding connected components in a
graph

• Nodes: dense units
• Edge between two nodes if the corresponding dense units have a

common face (neighboring units)
• Depth-first search algorithm: Start with a unit u in D, assign it to a new

cluster ID and find all the units it is connected to
• Repeat if there are nodes not yet visited
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CLIQUE: Discussion

• Input parameters: ξ and τ specifying the density threshold

• Output: all clusters in all subspaces, clusters may overlap

• Simple but efficient cluster model

• Uses a fixed density threshold for all subspaces (in order to ensure
the downward closure property)

• To represent a cluster, a unit in 10D must contain as many points (or
more) as in 2D . . .

• For a cluster C in subspace S, all clusters in all projections of S are
also reported as clusters (extremely high redundancy)

• Which of the redundant information is more interesting? (D in S or D′

in T ⊂ S; D′ may contain more units/points)

• Worst case runtime?
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CLIQUE: Variants

There are different variations of CLIQUE varying mainly in terms of ...

• ... different density definition, e.g. using Entropy for subspaces
rather than simple counts of units

• ... different grid construction methods, e.g. adaptive intervals (but
then, no downward closure property is given anymore)

Drawbacks of a grid-based clustering model:

• Positioning of the grid influences
the clustering

• Selection of ξ and τ is very
sensitive

• Example: Either C2 and C1 are
found as clusters or none of them
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SUBCLU: Idea

Use DBSCAN model (maximal density-connected sets): density is
defined w.r.t. the location of points not w.r.t. the data space:

Core Points

• Points finding more than MinPts other
points in its ε-neighborhood

Density connectivity

• Core points may have core points in
their ε-neighborhood

• Build transitive chains of such core
points to find connected sets
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SUBCLU: Basics

• Richer cluster model: detects clusters of arbitrary shapes and
locations (in the corresponding subspaces)

• Naive approach: Apply DBSCAN in all possible subspaces
(exponential runtime!)

• Idea: Exploit clustering information from previous step (subspaces)

• Density-connected clusters are not monotonic, but density
connected sets are (see next slide)

• If C is a density connected set in subspace S then C is a density
connected set in any subspace T ⊂ S

• But, if C is a cluster in S, it need not to be a cluster in T ⊂ S because
maximality might be violated, i.e., in T there may be additional points
density connected to the points in C

• A cluster in a higher-dimensional subspace S will be a subset of a
cluster in the a projection T

• Thus, APRIORI-style subspace search is possible
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SUBCLU: Monotonicoty

Example (circles indicate ε-neighborhood):

p and q density connected in {A,B},
thus, they are also density connected in
{A} and {B}

p and q not density connected in {B},
thus, they are not density connected in
{A,B}, although they are density
connected in {A}
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SUBCLU: Algorithm/Discussion

• Algorithm
• All subspaces that contain any density-connected set are computed

using the bottom-up approach (similar to CLIQUE/APRIORI)
• Density-connected clusters are computed using a specialized

DBSCAN run in the resulting subspace to generate the subspace
clusters

• Discussion
• Input: ε and MinPts specifying the density threshold
• Output: all clusters in all subspaces, clusters may overlap
• Uses a fixed density threshold for all subspaces
• Advanced but costly cluster model
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Bottom-up Variants: FIRES

Uses a different bottom-up heuristic for subspace search:

• Starts with 1-dimensional clusters called base clusters (generated
by applying any traditional clustering algorithm to each
1-dimensional subspace)

• Merges these clusters to generate subspace cluster approximations
by applying a clustering of the base clusters using a variant of
DBSCAN (similarity between two clusters C1 and C2 is defined by
|C1∩C2|) in order to “jump” to maximal dimensional subspaces

• Refines the resulting cluster
approximations using any
traditional clustering
algorithm on the points
within the approximations
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Bottom-up Variants: P3C

Similar idea to FIRES:

• Cluster cores are hyper-rectangular approximations of subspace
clusters

• Subspace search is APRIORI-style: cluster cores are computed
bottom-up from “significant” 1D intervals

• Significant 1D intervals are determined using a hypothesis test:
• Hypothesis: no clusters, i.e. points are randomly distributed
• If an interval contains significantly more points than expected, the

hypothesis is rejected (significant 1D interval)

• Significant 1D intervals follow the downward closure property

• Postprocessing: Cluster cores initialize an EM fuzzy clustering of all
data points
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Bottom-up Variants: DISH

Find subspace cluster hierarchies (lower dimensional clusters embedded
in higher dimensional ones):

• Integrate a proper distance function into hierarchical clustering

• Learns distance function instance-based bottom-up
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Summary: Subspace Clustering

Several different variants exist; most of them suffer from a key limitation:
global density thresholds

• In order to ensure the downward closure property, the density
threshold must be fixed globally

• Consequence: the points in an e.g. 20-dimensional subspace cluster
must be as dense as in an e.g. 2-dimensional cluster

• This is a rather optimistic assumption since the data space grows
exponentially with increasing dimensionality (see “curse” discussion)

• Consequences:
• A strict threshold will most likely produce only lower dimensional

clusters
• A loose threshold will most likely produce higher dimensional clusters

but also a huge amount of (potentially meaningless) low dimensional
clusters
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Top-down Subspace Search: Approaches

Several different variants for top-down subspace search:

• Cluster-based search
• Learn the subspace of a cluster in the entire d-dimensional feature

space
• Start with full-dimensional clusters
• Iteratively refine the cluster memberships of points and the subspaces

of the cluster

• Instance-based search
• Learn for each point its subspace preference in the entire

d-dimensional feature space
• The subspace preference specifies the subspace in which each point

“clusters best”
• Merge points having similar subspace preferences to generate the

clusters

• Random search: learn the subspace preference of a cluster or a
point from randomly sampled points
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Top-down Subspace Search: Key Limitation

How should we learn the subspace preference of a cluster or a point?

• Most approaches rely on the so-called “locality assumption”:
the subspace preference can be learned from the local
neighborhood in the d-dimensional space

• The subspace is usually learned from the local neighborhood of
cluster representatives/cluster members in the entire feature space:

• Cluster-based approach: the local neighborhood of each cluster
representative is evaluated in the d-dimensional space to learn the
“correct” subspace of the cluster

• Instance-based approach: the local neighborhood of each point is
evaluated in the d-dimensional space to learn the “correct” subspace
preference of this point (i.e. the subspace in which the cluster exists
that accommodates this point)

• Random search approaches do not suffer from the locality
assumption but usually need many sampling rounds
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PROCLUS

• Cluster-based top-down approach: we learn the subspace for each
cluster

• K -medoid cluster model
• Cluster is represented by its medoid
• To each cluster a subspace (of

relevant attributes) is assigned
• Each point is assigned to the nearest

medoid (where the distance to each
medoid is based on the corresponding
subspace of the medoid)

• Points that have a large distance to
their nearest medoid(s) are classified
as noise
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PROCLUS

3-phase algorithm (input: number of clusters k , average dimensionality of
subspaces L):

Phase 1: Initialization of cluster medoids

• Ideally we want a set of centroids, where each centroid comes from
a different cluster

• We do not know which are these k points though, so we choose a
superset M of b ·k medoids such that they are well separated

• Chose a random sample (S) of a ·k data points
• Out of S, select b ·k points (M) by greedy selection: medoids are

picked iteratively so that the current medoid is well separated from the
medoids that have been chosen so far

• Additional input parameters a and b are introduced for performance
reasons

• This procedure has nothing to do with subspace/projected clustering
but could be applied fro any k -partitioning algorithm
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PROCLUS

Phase 2: Iterative phase (works similar to any k -medoid clustering)

• k randomly chosen medoids from M (Phase 1) are the initial cluster
medoids

• Replace the “bad” medoids with other points in M if the quality of the
clustering increases

• Procedure:
• Find dimensions related to the medoids
• Assign data points to the medoids
• Evaluate the clusters formed
• Find the bad medoids, and try to improve the result by replacing these

bad medoids
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PROCLUS: Find Cluster Dimensions

• For each medoid mi , let 2 ·δ be the
distance to its closest medoid

• All the data points within δ will be
surely assigned to the medoid mi (this
set Li is the locality of mi )

• Intuition: to each medoid we want to associate those dimensions
where the points are closed to the medoid in that dimension

• Compute the average distance Xi,j along each dimension j from the
points in Li to mi

• Calculate for mi the mean Yi,j and standard deviation σi,j of Xi,j

• Calculate Zi,j = (Xi,j −Yi,j )/σi,j

• Choose k · l smallest values Zi,j with at least 2 chosen for each
medoids (to ensure that cluster preferences are lower dimensional)

• Output: A set of k medoids and their associated dimensions
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PROCLUS: Point Assignment and Cluster Evaluation

• Assign each data point to its closest medoid using Manhattan
segmental distance (only relevant dimensions count)
Manhattan segmental distance: For any two points x1, x2 and any
set of dimensions D:

MSdistD(x1,x2) =
∑i∈D |x1i −x2i |

|D|

• Evaluate a cluster Ci using average MSdist from the points in Ci to
the centroid of Ci along dimension j

• Replace bad medoids with random points from M

• Terminate if the clustering quality does not increase after a given
number of current medoids have been exchanged with medoids
from M (it is not clear, if there is another hidden parameter in that
criterion)
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PROCLUS

Phase 3: Refinement

• Reassign subspaces to medoids as above (but use only the points
assigned to each cluster rather than the locality of each cluster, i.e.,
Ci not Li )

• Reassign points to medoids

• Points that are not in the locality of any medoid are classified as
noise
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PreDeCon

• Use DBSCAN cluster model instead of
k -medoid clustering

• Use DBSCAN with a distance that
adopts to the subspace preferences of
points

• Given the input parameters δ and κ >> 1, for each point p, the
d-dimensional subspace preference vector wp of p is defined using
the following components:

wp
i =

{
1 if VARi > δ

κ if VARi ≤ δ

where

VARi =
∑q∈Nε (p) dist(pi ,qi )

2

|Nε (p)|
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PreDeCon

• Preference weighted distance function

distp(p,q) =

√
d

∑
i=1

wp
i · (pi −qi )2

can be made symmetric:

distpref (p,q) = max{distp(p,q),distq(q,p)}

• Preference ε-neighborhood of a point uses distpref
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PreDeCon

• Preference weighted core points, direct density reachability,
reachability and connectivity are defined based on preference
neighborhood

• A subspace preference cluster is a maximal density connected set
of points associated with a certain subspace preference vector

• Clusters may have arbitrary shape in the subspace projection
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Variants

• DOC
• Clusters are “dense” hyper-rectangles
• Computes at most one cluster in each run
• Random sampling for subspace learning

• COSA
• Learns a distance matrix that can be used for clustering
• Instance-based locality assumption
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Overview

• Challenges and Approaches, Basic Models
• Constant Biclusters
• Biclusters with Constant Values in Rows or Columns
• Pattern-based Clustering: Biclusters with Coherent Values
• Biclusters with Coherent Evolutions

• Algorithms for
• Constant Biclusters Pattern-based Clustering: Biclusters with Coherent

Values

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 5. Clustering High-dim Data 192/248



General Idea

• Pattern-based clustering relies on patterns in the data matrix

• Simultaneous clustering of rows and columns of the data matrix
(hence “bi-clustering”).

• Data matrix A = (X ,Y ) with set of rows (objects) X and set of
columns (features) Y

• axy is the element in row x and
column y

• Submatrix AIJ = (I,J) with
subset of rows I ⊆ X and
subset of columns J ⊆ Y
contains those elements aij

with i ∈ I and j ∈ J
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General Idea

General aim of biclustering approaches:

• Find a set of submatrices
{(I1,J1),(I2,J2), ...,(Ik ,Jk )} of the
data matrix A = (X ,Y ) such that
each submatrix (= bicluster) meets
a given homogeneity criterion

Some values often used by bicluster models:

• Mean of row i : ai,J = 1/|J|∑j∈J aij

• Mean of column j : aI,j = 1/|I|∑i∈I aij

• Mean of all elements:

aI,J =
1
|I||J| ∑

i∈I,j∈J
aij = 1/|J|∑

j∈J
aIj = 1/|I|∑

i∈I
aiJ

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 5. Clustering High-dim Data 194/248



General Idea

Different types (models) of biclusters

• constant biclusters

• biclusters with constant values on columns and/or constant values
on rows

• biclusters with coherent values (aka. pattern-based clustering)

• biclusters with coherent evolutions
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Constant Biclusters

Cluster Model

• All points share identical value in selected attributes

• The constant value µ is a typical value for the cluster

• Thus, the cluster model is aij = µ

• Obviously a special case of an axis-parallel subspace cluster

• Example:
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Constant Biclusters

• Interpretation: points are located on the bisecting line of participating
attributes

• Visualization using Parallel Coordinates: identical constant lines
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Biclusters with Constant Column Values

Cluster Model

• Cluster model for AIJ = (I,J) with aij = µ + cj

• cj is an adjustment value for column j

• Results in axis-parallel subspace clusters

• Example:
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Biclusters with Constant Column Values

• Interpretation: points are located on the same values (not necessary
bisecting line)

• Visualization using Parallel Coordinates: identical lines
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Biclusters with Constant Row Values

Cluster Model

• Cluster model for AIJ = (I,J) with aij = µ + ri

• ri is an adjustment value for column i

• Results in points building a sparse hyperplane parallel to irrelevant
axes (axis-parallel subspace cluster)

• Example:
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Biclusters with Constant Row Values

• Interpretation: points are accommodated on the bisecting line of
participating attributes

• Visualization using Parallel Coordinates: parallel constant lines
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Biclusters with Coherent Values

Cluster Model

• Based on a particular form of covariance between rows and
columns: aij = µ + ri + cj

• Special cases: constant rows (cj = 0) and constant columns (ri = 0)
• Results in points building a hyperplane parallel to axes of irrelevant

attributes (axis-parallel subspace cluster)
• Example:
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Biclusters with Coherent Values

• Interpretation: increasing one-dimensional line in relevant subspace

• Visualization using Parallel Coordinates: parallel lines
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Biclusters with Coherent Evolution

Cluster Model

• For all rows, all pairs of attributes change simultaneously, e.g.
• Discretized attribute space: coherent state-transitions: similar to

grid-based axis parallel approaches (see above)
• Change in same direction irrespective of the quantity

• Example with coherent state-transitions:
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Biclusters with Coherent Evolution

• Interpretation: points are in certain (grid-cell-like) half spaces

• Visualization using Parallel Coordinates: all lines cross border
between states (in the same direction)
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Biclusters with Coherent Evolution

• Change in same direction — general idea: find a subset of rows and
columns, where a permutation of the set of columns exists such that
the values in every row are increasing

• Clusters do not form a subspace but rather half-spaces

• Example with change in same direction:
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Biclusters with Coherent Evolution

• Interpretation: points are in certain (non axis-parallel) half spaces

• Visualization using Parallel Coordinates: all lines increasing
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Bicluster Models: Big Picture
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Biclustering Algorithms

Algorithms for Constant Biclusters

• Classical problem statement by Hartiganin 1972

• Quality measure for a bicluster: variance of the submatrix AIJ :

VAR(AIJ) = ∑
i∈I,j∈J

(aij −aI,J)2

• Recursive split of data matrix into two partitions

• Each split chooses the maximal reduction in the overall sum of
squares for all biclusters

• Avoids partitioning into |X ||Y | singularity-biclusters (optimizing the
sum of squares) by comparing the reduction with the reduction
expected by chance
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Biclustering Algorithms

Algorithms for Biclusters with Constant Values in Rows or Columns

• Simple approach: normalization to transform the biclusters into
constant biclusters and follow the first approach

• Some application-driven approaches with special assumptions in the
bioinformatics community

• Constant values on columns: general axis-parallel
subspace/projected clustering

• Constant values on rows: special case of general correlation
clustering

• Both cases special case of approaches to biclusters with coherent
values
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Biclustering Algorithms

Pattern-based Clustering: Algorithms for Biclusters with Coherent Values

• Classical approach by Cheng and Church 2000

• Introduced the term biclustering to analysis of gene expression data

• Quality of a bicluster: mean squared residue value H defined as
follows

H(I,J) =
1
|I||J| ∑

i∈I,j∈J
(aij −ai,J −aI,j + aI,J)2

• Submatrix (I,J) is considered a bicluster, if H(I,J) < δ

• If δ = 0, the biclusters are perfect
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Biclustering Algorithms

• The model for a perfect bicluster predicts value aij by a
row-constant, a column-constant, and an overall cluster-constant:

aij = ai,J + aI,j −aI,J = µ + ri + cj

with µ = aI,J , ri = ai,J −aI,J , and cj = aI,j −aI,J , i.e., each row and
column exhibits absolutely consistent bias

• For a non-perfect bicluster, the prediction of the model deviates from
the true value by a residue

aij = res(aij ) + ai,J + aI,j −aI,J

with res(aij ) = aij −ai,J −aI,j + aI,J which is the optimization criterion
H(I,J) above
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Biclustering Algorithms

Related Algorithms

• p-cluster algorithm specializes the δ -bicluster-property to a pairwise
property of two objects in two attributes

• FLOC uses a randomized procedure

• MaPle introduces improved pruning

• CoClus follows a k -means-like approach
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Biclustering: Summary

Related Algorithms

• Biclustering models do not fit exactly into the spatial intuition behind
subspace, projected, or correlation clustering

• Models rather make sense in view of a data matrix

• Strong point: the models generally do not rely on the locality
assumption

• Models differ substantially, so a careful selection is a non-trivial task
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Motivation

• As we have seen before, there may be more than simple
(independent) feature relevancy: feature correlation

• Example:
• Cluster 3 exists in an axis-parallel

subspace (so far so good)
• However, clusters 1 and 2 exist in

(different) arbitrarily oriented
subspaces that represent different
correlations among attributes

• Can the methods introduced so far capture those patterns?
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Motivation

• Subspace/projected clustering methods
• Obviously, these methods are restricted to axis-parallel clusters, i.e.,

assume feature independence

• Pattern-based methods
• Can find simple pairwise positive correlations (coherent evolution)
• However, negative correlations have no additive pattern:
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Motivation

• Pattern-based methods (cont.)
• Also, more complex relationships between several features are out of

scope of pattern-based approaches
• Example:

Complex correlation among three attributes: a1−2 ·a2+a3 = 0

Data matrix Data space Parallel coordinates
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Correlation Clustering: General Idea

• To find clusters in subspaces of correlated attributes, a more general
approach is necessary

• This more general approach is called oriented clustering aka.
generalized subspace/projected clustering aka. correlation
clustering in the literature1

• Assumption: any cluster is located in an arbitrarily oriented affine
subspace S + a of Rd

1Note: different notion of “Correlation Clustering” in machine learning community, e.g. cf.
Bansal, Blum, S. Chawla: Correlation clustering. Machine Learning, 56:89–113, 2004.
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Correlation Clustering: General Idea

• Affine subspace S + a of Rd is interesting if a set of points clusters
within this subspace

• Points may exhibit high variance in perpendicular subspace
(Rd S) + a
⇒ points form a hyperplane located in this subspace (Rd S) + a
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Correlation Clustering: General Idea

• So in general: points on a hyperplane appear to follow linear
dependencies among the attributes participating in the description of
the hyperplane

• Another example with a 1D subspace / 2D hyperplane

• How can we capture that???
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PCA Revisited

• Assume, we know the cluster members, how can we capture the
relevant subspace?

• In order to find the directions of high/low variance of a set of points
D, we could use PCA

• So we could compute the covariance
matrix ΣD of D, i.e.,

ΣD =
1
|D| ∑

x∈D
(x−µD)(x−µD)T ,

where µD is the mean (or centroid) of
the points in D, and compute the
eigen decomposition.
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PCA Revisited

• The decomposition ΣD = VDEDV T
D gives us

• The d eigen values in the diagonal matrix ED representing the
variance along the direction of highest variance

• The d d-dimensional eigenvectors in the matrix VD indicating the
directions of highest variance sorted by decreasing eigen values

• ED : d×d diagonal matrix with eigen
values

• VD : d×d orthonormal matrix with
eigen vectors
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PCA Computes the Correlation

• If points in D forming λ -dimensional hyperplane, this hyperplane is
spanned by the first λ eigenvectors of VD (called “strong”
eigenvectors), denoted by ṼD

• The subspace where the points cluster is spanned by the remaining
d−λ eigenvectors (called “weak” eigenvectors), denoted by V̂D

• For the eigensystem, the sum of the
smallest d−λ eigenvalues is minimal
under all possible transformations

• Thus, points in D cluster optimally
dense in this subspace

• Note again: the subspace where the points cluster is spanned by the
weak eigenvectors V̂D
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General Model for Correlation Clusters

• As a general model for correlation clusters 2, we consider a
λ -dimensional hyperplane accommodating the points of a
correlation cluster C defined by an equation system of d−λ

equations for d variables and the affinity (e.g. the mean point µC of
all cluster members):

V̂ T
C x = V̂ T

C µC

• The equation system approximately fulfilled for all points x ∈ C

• This is quantitative model for the cluster allowing for probabilistic
prediction (classification)

• Note: correlations are observable, linear dependencies are merely
an assumption to explain the observations — predictive model
allows for evaluation of assumptions and experimental refinements

2Achtert, Böhm, Kriegel, Kröger, Zimek: Deriving quantitative models for correlation
clusters. In Proc. SIGKDD, Philadelphia, PA, 2006

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 5. Clustering High-dim Data 225/248



PCA-based Correlation Cluster Approaches

• Many algorithms include PCA for feature evaluation into the
clustering process similar to (axis-parallel) variance analysis

• But how do we know C, the set of points we should apply PCA on
ion order to get the correct subspace?

• Similar to the axis-parallel versions, we need some assumptions
(very often a locality assumption, see above)

• Examples:
• ORCLUS3: integrates distance function into k -means, relies on a

cluster-based locality assumption
• 4C4: integrates distance function into DBSCAN, relies on

instance-based locality assumption
• Extensions to 4C: COPAC and ERiC

3Aggarwal, Yu: Finding generalized projected clusters in high dimensional space. In Proc.
SIGMOD, Dallas, TX, 2000
4Böhm, Kailing, Kröger, and Zimek: Computing clusters of correlation connected objects.

In Proc. SIGMOD, Paris, France, 2004
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ORCLUS: Basics

• A generalized projected cluster is a set of orthonormal vectors E
and a set of points C such that the points in C are closely clustered
in the subspace defined by the vectors E (where |E | ≤ d)

• Input:
• The number of clusters k
• The average dimensionality of the subspace of the clusters, l

• Output:
• A set of k clusters and their associated subspaces of dimensionality l

• Main idea
• To find the subspace of a cluster Ci , compute the covariance matrix Mi

for Ci and determine the eigenvectors
• Pick “approx.” l eigenvectors with the smallest eigenvalues
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ORCLUS: Overview of the Algorithm

• Very similar to PROCLUS but use PCA on locality of cluster
representatives instead of variance analysis

• k -means like approach (uses centroids rather than medoids)

• Start with kc > k seeds

• Assign points to clusters according to distance function based on the
eigensystem of the current cluster (starting with axes of data space,
i.e. Euclidean distance)

• The eigensystem is iteratively adapted based on the updated cluster
members (i.e., not only optimize the centroids but also the
eigensystems of each cluster)

• Reduce the number of clusters kc in each iteration by merging
best-fitting cluster pairs
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ORCLUS: Merging Clusters

• Find best fitting pair of clusters: least average distance in the
projected space spanned by weak eigenvectors of the merged
clusters

• Two clusters Ci and Cj exist
in possibly different
subspaces

• Compute the subspace of
their union Ci ∪Cj (take the
smallest l eigenvalues)

• Check mean square error (MSE) of the points from the new centroid
in this new subspace

• Assess average distance in all merged pairs of clusters and finally
merge the best fitting pair (smallest MSE)
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4C: Computing Correlation Connected Clusters

• Density-based cluster-paradigm, see PREDECON

• Extend a cluster from a seed as long as a density-criterion is fulfilled
— otherwise pick another seed unless all data objects are assigned
to a cluster or noise

• Density criterion: minimal required number of points in the
neighborhood of a point

• Neighborhood: distance between two points ascertained based on
the eigensystems of both compared points
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4C: Distance Adaption

• Perform PCA on the local neighborhood S of p to find subspace
correlations

• A parameter δ discerns large from
small eigenvalues

• CorDim(S) = #eigenvalues > δ

• In the eigenvalue matrix Ep of p,
large eigenvalues are replaced by
1, small eigenvalues by a value
κ >> 1

• The adopted eigenvalue matrix of p is denoted by E ′p
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4C: Distance Adaption

• Effect on distance measure:

• Distance is not symmetric:
• distance of p and q w.r.t. p√

(p−q) ·Vp ·E ′p ·V T
p · (p−q)T

relies on E ′p and Vp

• distance of p and q w.r.t. q√
(q−p) ·Vq ·E ′q ·V T

q · (q−p)T

relies on E ′q and Vq
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4C: Distance Adaption

• Since DBSCAN needs a symmetric distance measure, use the
maximum

• Then, p and q are “correlation-ε-neighbors” if

max


√

(p−q) ·Vp ·E ′p ·V T
p · (p−q)T ,√

(q−p) ·Vq ·E ′q ·V T
q · (q−p)T

≤ ε

p and q are no ε-neighbors p and q are ε-neighbors

(Circles indicate the ε threshold)
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4C: Summary

• Finds arbitrary number of clusters

• Requires specification of density-thresholds
• µ (minimum number of points): rather intuitive
• ε (radius of neighborhood): hard to guess

• Additional paramters:
• Maximal dimensionality λ of correlation clusters (required, otherwise,

4C can also find full-dimensional clusters like DBSCAN)
• δ for distinction between strong and weak eigen vectors

• These two parameters are erased by the extensions such as
COPAC: take the minimum number of strong eigen vectors that
explain a given portion of the overall variance (see PCA)
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Correlation Clustering with PCA

• PCA is a mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

• Can be replaced by similar techniques like relevant component
analysis (RCA), independent component analysis (ICA), etc.

• Key limitation still: all approaches suffer from the locality assumption
because PCA only works, if the set of points on which PCA is
performed is a fairly good approximation of a subspace/correlation
cluster

We need a new principle to employ correlation clustering (coming up)
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Correlation Clustering with Hough Transform

This new principle is the Hough transform (originally developed image
analysis)

• Transform each object into a so-called parameter space
representing all possible subspaces accommodating this object (i.e.
all hyperplanes through this object)

• This parameter space is a continuum of all these subspaces

• However, the subspaces are represented by a considerably small
number of parameters

• This transform is a generalization of the Hough Transform (which is
designed to detect linear structures in 2D images) for arbitrary
dimensions
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The Hough Transform in 2D

Check out the board ...
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The General Hough Transform

• For each d-dimensional point p there is an infinite number of
(d-1)-dimensional hyper-planes through p

• Each of these hyper-planes s is defined by (p,α1, . . . ,αd−1), where
α1, . . . ,αd−1 is the normal vector ns of the hyper-plane s

• The function fp(α1, . . . ,αd−1) = δs = 〈p,ns〉 maps p and
α1, . . . ,αd−1 onto the distance δs of the hyper-plane s to the origin

• The parameter space plots the graph of this function
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The General Hough Transform

Properties:

• Point in the data space = sinusoide curve in the parameter space

• Point in the parameter space = hyper-plane in the data space

• Points on a common hyper-plane in the data space (cluster) =
sinusoide curves intersecting at one point in the parameter space

• Intersection of sinusoide curves in the parameter space =
hyper-plane accommodating the corresponding points in data space
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Using the Hough Transform to Detect Clusters

So we can use the parameter space to detect correlation clusters:

• Determine all intersection points of at least m curves in the
parameter space (where m is a minimum number of points in a
cluster threshold) to detect (d-1)-dimensional clusters

• Exact solution (check all pair-wise intersections) is usually too costly

data space parameter (hough) space
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CASH: Clustering in Arbitrary Subspaces Using the Hogh Trans-
form

The CASH algorithm employs a grid-based bisecting search (input:
minimum number of points m, and minimum number of splits s):

• Find dense regions in parameter space

• Define dense grid cells as cells still intersected by m parametrization
functions after s splits

• Construct the candidate grid cells by recursively splitting the
parameter space along one dimension (in fixed order)

• Always split the candidate cell with the highest number of
intersecting functions next (best first)

• Prune candidate cells where less than m functions intersect

• If a cell has been split s times and still intersects m functions, a
cluster is found; delete corresponding functions (from other
candidate cells) and continue splits until no candidate is remaining
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CASH: Clustering in Arbitrary Subspaces Using the Hogh Trans-
form

• Dense grid cell represents (d-1)-dimensional linear structure

• Transform corresponding data objects in corresponding
(d-1)-dimensional space and repeat the search recursively to find
lower dimensional clusters

• This is comparable to a bottom-up search — WHY?
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An Empirical Comparison
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Summary

• Traditional clustering in high dimensional spaces is most likely
meaningless with increasing dimensionality (curse of dimensionality)

• Clusters may be found in (generally arbitrarily oriented) subspaces
of the data space

• The partitioning need not be unique (clusters may overlap)

• The subspaces may be axis-parallel or arbitrarily oriented

• Analysis of this general problem:
• Sub-problem 1: search for clusters
• Sub-problem 2: search for subspaces
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Summary

• Analysis of the 2nd sub-problem (subspace search)
• A naive solution would examine all possible subspaces to look for

clusters
• The search space of all possible arbitrarily oriented subspaces is

infinite
• We need assumptions and heuristics to develop a feasible solution

• What assumptions did we get to know here to solve the subspace
search problem?

• The search space is restricted to certain subspaces
• A clustering criterion that implements the downward closure property

enables efficient search heuristics
• The locality assumption enables efficient search heuristics
• Assuming simple additive models (“patterns”) enables efficient search

heuristics
• . . .
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Summary

• Remember: also for the clustering problem (1st sub-problem) we
need assumptions and heuristics that have an impact on the
algorithms’ properties

• Cluster model (what patterns to look for
• Model specific assumptions/parameters, e.g. number of clusters need

to be specified, results are not deterministic e.g. due to randomized
procedures, ...

Prof. Dr. Peer Kröger: KDD2 (SoSe 2019) — Lecture 2 – High Dimensional Data — 5. Clustering High-dim Data 246/248



Summary

Overview (classification according to sub-problem 2):
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Outlook

• Recall, (unsupervised) outlier detection is very similar (but often
considered to be orthogonal) to clustering

• Outlier detection in high dimensional spaces is also often very hard
and similar problems can occur, e.g. points are only outliers when
considering specific subspaces

• There are several approaches to extend full-dimensional outlier
detection methods analogously so that subspace outliers can be
detected

• If you want, ask Prof. Kröger to sketch one ...
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