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Task 1.1) OPTICS in high dimensional data 6 points

Download the Data Mining Tool WEKA and its documentation from
http://www.cs.waikato.ac.nz/~ml/weka/. Install the WEKA package and execute the tool.

Use the OPTICS algorithm implemented in WEKA to generate OPTICS plots for ARFF datasets
given on the L2P website. There are 5 datasets (2d, 4d, 8d, 16d and 32d) in a ZIP file.

Use Manhattan Distance with MinPts=6 and € = 10 to compute an OPTICS plot for each of the given
datasets.

Hand in the computed OPTICS plots and discuss the following questions:
e Can you detect hierarchical clusters?
e How has ¢ to be chosen to detect these clusters with the DBSCAN algorithm?

e Discuss the change in core and reachability distances over the data sets?

What are the reasons for the observed effects in the OPTICS plots?
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@ represents the density-based clustering structure

@ easy to analyze
@ independent of the dimension of the data

reachability distance
reachability distance

cluster ordering cluster ordering
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8D [similar to 16D]

e Can you detect hierarchical clusters?
e How has ¢ to be chosen to detect these clusters with the DBSCAN algorithm?

7- Clusters -> yes, but no hierarchical clustering structure- With increasing
dimensionality the reachability distances grow more and more alike,
therefore the clustering structure becomes more and more obfuscated-

2- Another consequence: with increasing dimensionality the range from
which to choose a meaningful € value becomes increasingly narrow:-
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e (Can you detect hierarchical clusters?
e How has & to be chosen to detect these clusters with the DBSCAN algorithm?
e Discuss the change 1n core and reachability distances over the data sets?

3+ With increasing dimensionality the distances grow, and more and more
objects change from being core objects to being border objects or noise:
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Exercise 1.2) Data generator 12 points

Implement a meaningful Java class ‘generator.java’ to generate a clustered data file in the ARFF
format. The method shall generate a dataset of specified dimensionality ¢, where each dimension has
the value range [0,100]. Furthermore the data shall have & hidden clusters, where the objects of each
cluster are uniformly distributed within a specified radius. Additionally the generator shall have the
option to generate outliers: objects that are uniformly distributed in the data space (range[0,100]).
The generator shall be able to handle subspace clusters. Thus, for each cluster a certain dimensionality
(1.e. the number of re/evant dimensions for the cluster) can be specified. In the relevant dimensions the
objects of a cluster are distributed within the given radius while in the non-relevant dimensions the
objects are uniformly distributed in the data space (range[0,100]). For each cluster a different set of
relevant dimensions is possible. State the relevant dimensions of each cluster in the header of the
generated ARFF-File (see example below).
The following parameters are to be specified in the command line:

- number d of dimensions

- number £ of clusters

- number of objects in the cluster (for each cluster)

- radius for the cluster in the relevant dimensions (for each cluster)

- dimensionality of the cluster (for each cluster)

- number of noise ob‘]ects #dimensions # objects clus 1 radius clus 1 #dim. clus 1 # noise objects

- arff—output-ﬁle # cluster "u,l # objects clus 2 radius clus 2 | #dim. clus 2
\-.‘ | ! I|| II|I i
Command line: . \ oL N YA
= )

J
java generator 4 2 3 15 20 3 2 out.arff



this.filename = tiienn-e:

//generace cluscer dimensions [=subspaces)
generate_dims()
//generace cluscers

generace daca():
//generace noi=e uniformly (they may lie in cluster= by chance)

generate noise(): // cf. last Exercise!

save file():

/tt
* randomly generate relevant dimensions
*7
private void generate_dims{)
{
real_cluster_dims = nev HashMap<Integer, SortedSet<Integer>>():
for{int 3j=0; j<clusters; j++)
{
SortedSet<Integer> back = new TreeSet<Integer>():
for{int 1=0; 1i<cluster_dims{j]: i++)
{
int dim;
//randomly pick a dimension
do {
dim = {int)Math.floor (random{0, dims)):
) while{back.contains (dim}):
back.add (dim) :
}
real cluster_dims.put(), back):




Choose this distance in the following

I,u"‘H"H'

* gomputes suclidean dist & bhased on relevant dimensions
LF
private double gethistance (int cluster, double[] pointl, double[] pointZ)
{
double distance = 0;
for(int i=0; i<dims: i++)
{
if(real cluster_ dims.get (cluster).contains(i))
{
distance = distance + Math.pow( (pointl[i] - point2[i]), Z):
t
H
recturn Math.sgro (discance) ;
'
I,f'\'r'ﬂ'
¥ gomputes suclidean distance based on all dimensions
*/
private double getDistance old(double[] pointl, double[] pointz)
i
double distance = 0;
for (int i = 0O; 1 < pointl.length: i++)
{
distance = distance + Math.pow((pointl[i] - pointZ[i]), 2):
H
return Math.sgrt (distance) ;
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{

*# Generates cluster centers, such that they do not overlap

=

puklic void generate cluster centers()

for{int i=0; i<clusters; i++)

{

oootenn overiap = teacs 2 things to take care of:
Distance centers to the space borders
Avoid overlap of clusters

double[] new center=new double[dims];
int round=0;

while (overlap && round=<>00) /100 rounds
{

new_center = random point (C+cluster radi
if(i=0)
{

[i], 10C-cluster radius[i]):

boolean all=true;
for(int j=0; J<i; j++)
1

i f/fdistance to other centers has to be larger than the sum over their radii

if{geﬂﬂiﬂtﬂnc:_pld{neq_;enter, cluster center[j])<cluster radius[i]+cluster radius[j])

{
all = fal=e;

}
if{all) overlap=Ffal=se;
round++;

}

else{overlap=false;}

1

cluster center[i]=new center;
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public void generate datal]
i
generate cluster centers(): S of. last Exercise!
int okbjectlID=0;
fori(int i=0; i<eclusters: i++)
i
/4 hyperCUBE approximation of cluster
double[] lower = new double[dims] :
double[] upper = new double[dims] :
foriint k=0: k<dims: k++)
i
A4 hound random nurber in each relevant dimension by the radius
if(real cluster dims.get(i).contains (k)| fA1if relewvant then obhijects inside radius
i
lower[k] = cluster center[i] [k] -cluster radius[i]:
upper [k] = cluster center[i] [k] +cluster radiu=a[i]:
}
elge //if irrelewvant then obhjects randomly in whole dataspace
i
lower[k] = 0O:
upper[k] = 100;

for(int j=0; Jj<cluster size[i]: J++4)

i
double[] point = new double[dims] :
hoolean validPoint=false:;
while(!validPoint)
i

ff generate point randomly located in hyperCUEE




foriint 3=0; j<cluster_size([i]: J++)
{

double[] point = newv double[dims]:
hoolean validPoint=falae;
while('validPoint)
{
// generate point randomly located in hyperCUBE
point = random point radius(lower, upper);
J/new distance estimation based on relevant dimensions

if (getDiscance (i, point, cluster center[i])<cluster radius[i])
{

// point is also located in hyperSPHERE
validPoint=true;
H
H
data[objectID] =point;
ohjectID++;

: Main Idea:

) Generate points randomly in hypercube of
side length 2*radius centered at the
center and then check whether it lies

also in the sphere-

> Bad idea for high-dimensionalities




‘f'l"l'
* distributes noise randomly
=f
public void generate noise()
i
for{int i=0: i<noise: i++)
i
int round = 0;
boolean inCluster=true:;
double[] point = mew double[dim=s] >
while(inCluster && round<100) /7100 rounds max
i
inCluster=fal=e’:
point = random point{0, 100):
for{int j=0:; j<clusters; j++)
i
ffwe do not want the noise to lie inside of clusters
if{getDistance{point ,cluster center[j])<cluster radius[j])

(
[

if{inCluster) roundi+;

inCluster=true:

¥
data[objs-1-i] = point:
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Task 1.3) Analysis of high dimensional data

Exercise 1.3
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a) With the data generator of Task 3.1 create a sequence of datasets with increasing
dimensionality D. Use the following parameter settings “2 2 100 100 20 20 2 2 50
sequenceD.arff” for generating the data and vary D from 2 to 100 (step size 1).

Determine for each object the ratio “farthest-neighbor-distance™/*nearest-neighbor-distance™
by using the Euclidean distance and calculate the average ratio for all objects (of the same
dataset). Plot the average ratio for the sequence of datasets with increasing dimensionality.
What conclusions can be drawn from this result with respect to the empty space problem/curse
of dimensionality? Do you get the same results by using the Manhattan-Distance or the

Maximum-Metric instead of the Euclidean distance?
90 ..:..__._ S— e
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Task 1.3) Analysis of high dimensional data 8 points

a) With the data generator of Task 3.1 create a sequence of datasets with increasing

dimensionality D. Use the following parameter settings “2 2 100 100 20 20 2 2 50
sequenceD.arff” for generating the data and vary D from 2 to 100 (step size 1).

29 /e

Determine for each object the ratio “farthest-neighbor-distance™/*nearest-neighbor-distance™
by using the Euclidean distance and calculate the average ratio for all objects (of the same
dataset). Plot the average ratio for the sequence of datasets with increasing dimensionality.
What conclusions can be drawn from this result with respect to the empty space problem/curse
of dimensionality? Do you get the same results by using the Manhattan-Distance or the
Maximum-Metric instead of the Euclidean distance?

Results are similar for the three different distances!

Observation: distance ratio decreases with growing

dimensionality

. >Distances grow more and more alike

> Distance functions are less expressive in HD spaces
> Clustering algorithms or general DM techniques

based on distance functions will not work well (for

discriminating between close and far away objects)

16
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b)

Use the same sequence of datasets as in the previous task. Let us assume the data space 1s
partitioned into a regular grid (cf. Slide 22, Chapter 1.2) with 4 partitions per dimension.
Generate for each data set a histogram (bar chart) that counts the number of cells covering 1
object, 2 objects, 3 objects, ..., 250 objects.

How do the histograms change by increasing the dimensionality of the data? What are your
observations? Plot exemplarily the histograms for the dimensions D=2.3.4.5,10,25.50,100.

17
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¢) Let U, be a d-dimensional hypersphere with the radius 1 and the volume Vo/;. Determine the
radius 7, of the d-dimensional hypersphere .X; that covers the doubled volume. Provide a
closed-form expression for r;. give the limit of the function for d—<c. and plot the values of r;
in the range d€/1...50].
What conclusions can be drawn from these results with respect to the empty space

problem/curse of dimensionality?
First of all, the volume of a d-dimensional sphere with radius r is given by

d

T2 d
71_,(%_'_1)?' .
Then,
ot 2
Volg = —1——, 19
r(z+1) 18
and the equation for rg is 1.7
1.6
s R
_— = 2-Vol ° -
d Td d ©
r(z+1) 1.4
_ .7t 13 \
r(g+1)’ 1.2 \C
1.1 N—
Therefore, . —
T T T - T 1
0 10 20 30 40 50
r4 = {‘/ﬁ.

dimensionality

Then, clearly,




