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Outline: Introduction

• Sample Applications

• General Problems and Challenges

• A First Taxonomy of Approaches
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Sample Applications

• Gene Expression Analysis
• Data:

- Expression level of genes under

different samples such as
different individuals (patients)

different time slots after treatment

different tissues

different experimental environments

- Data matrix:

DNA mRNA protein

samples (usually ten to hundreds)

genes
(usually 
several 

thousands)
expression level of 
the ith gene under 

the jth sample
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Sample Applications

• Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar 
expression profiles indicating homogeneous functions

- Challenge:

genes usually have

different functions

under varying

(combinations of) conditions

• Task 2: Cluster the columns (e.g. patients) to find groups with similar 
expression profiles indicating homogeneous phenotypes

- Challenge:

different phenotypes

depend on different

(combinations of)

subsets of genes

Gene1 

Gene2 

Gene3 

Gene4 

Gene5

Gene6 

Gene7 

Gene8 

Gene9

Cluster 1: {G1, G2, G6, G8}

Cluster 2: {G4, G5, G6}

Cluster 3: {G5, G6, G7, G9}
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Cluster 1: {P1, P4, P8, P10}

Cluster 2: {P4, P5, P6}

Cluster 3: {P2, P4, P8, P10}

P
er

so
n1

0

73

Sample Applications

• Metabolic Screening
• Data

- Concentration of different metabolites

in the blood of different test persons

- Example:

Bavarian Newborn Screening

- Data matrix:

metabolites (usually ten to hundreds)

concentration of 
the ith metabolite 
in the blood of the 
jth test person

test persons
(usually several 

thousands)
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Sample Applications

• Task: Cluster test persons to find groups of individuals with similar 
correlation among the concentrations of metabolites indicating homogeneous 
metabolic behavior (e.g. disorder)

- Challenge:

different metabolic disorders appear through different correlations of 
(subsets of) metabolites

healthy

Disorder 2
Diso

rd
er

 1

Concentration of Metabolite 1

Concentration 
of Metabolite 2
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Sample Applications

• Customer Recommendation / Target Marketing
• Data

- Customer ratings for given products

- Data matrix:

• Task: Cluster customers to find groups of persons that share similar 
preferences or disfavor (e.g. to do personalized target marketing)

- Challenge:

customers may be grouped differently according to different 
preferences/disfavors, i.e. different subsets of products

products (hundreds to thousands)

rating of the ith
product by the jth

customer

customers
(millions)
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Sample Applications

• And many more …

• In general, we face a steadily increasing number of applications that 
require the analysis of moderate-to-high dimensional data

• Moderate-to-high dimensional means from appr. 10 to hundreds or 
even thousands of dimensions
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General Problems & Challenges

• The curse of dimensionality
• In [BGRS99,HAK00] it is reported that the ratio of (Dmaxd – Dmind) to 

Dmind converges to zero with increasing dimensionality d

- Dmind = distance to the nearest neighbor in d dimensions

- Dmaxd = distance to the farthest neighbor in d dimensions

Formally:

- This holds true for a wide range of data distributions and distance 
functions
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General Problems & Challenges

• What does that mean for clustering high dimensional data?

- The relative difference of distances between different points decreases 
with increasing dimensionality

- The distances between points cannot be used in order to differentiate 
between points

- The more the dimensionality is increasing, the more the data distribution 
degenerates to random noise

- All points are almost equidistant from each other ― there are no 
clusters to discover in high dimensional spaces!!!
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General Problems & Challenges

• Additional problem likely to occur in high dimensional spaces:

- Usually the distance functions used give equal weight to all dimensions

- However, not all dimensions are of equal importance

- Adding irrelevant dimensions ruins any clustering based on a distance 
function that equally weights all dimensions
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General Problems & Challenges

• again: different attributes are relevant for different clusters
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General Problems & Challenges

• Beyond the curse of dimensionality

From the above sketched applications we can derive the following
observations for high dimensional data
• Subspace clusters:

Clusters usually do not exist in the full dimensional space but are often 
hidden in subspaces of the data (e.g. in only a subset of experimental 
conditions a gene may play a certain role)

• Local feature relevance/correlation:

For each cluster, a different subset of features or a different correlation of 
features may be relevant (e.g. different genes are responsible for different 
phenotypes)

• Overlapping clusters:

Clusters may overlap, i.e. an object may be clustered differently in 
varying subspaces (e.g. a gene may play different functional roles 
depending on the environment)
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General Problems & Challenges

• Why not feature selection?
• (Unsupervised) feature selection is global (e.g. PCA)

• We face a local feature relevance/correlation: some features (or combinations 
of them) may be relevant for one cluster, but may be irrelevant for a second 
one

Disorder 2

Diso
rd

er
 1

Disorder 3
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General Problems & Challenges

• Use feature selection before clustering

Projection on 
first principal 
component

PCA

DBSCAN
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General Problems & Challenges

• Cluster first and then apply PCA

Projection on 
first principal 
component

PCA of the 
cluster points

DBSCAN
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General Problems & Challenges

• Problem summary
• Curse of dimensionality:

- In high dimensional, sparse data spaces, clustering does not make sense

• Local feature relevance and correlation:

- Different features may be relevant for different clusters

- Different combinations/correlations of features may be relevant for 
different clusters

• Overlapping clusters:

- Objects may be assigned to different clusters in different subspaces
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General Problems & Challenges

• Solution: integrate variance / covariance analysis into the clustering 
process
• Variance analysis:

- Find clusters in axis-parallel subspaces

- Cluster members exhibit low variance along the relevant dimensions

• Covariance/correlation analysis:

- Find clusters in arbitrarily oriented subspaces

- Cluster members exhibit a low covariance w.r.t. a given combination of 
the relevant dimensions (i.e. a low variance along the dimensions of the 
arbitrarily oriented subspace corresponding to the given combination of 
relevant attributes)
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A First Taxonomy of Approaches

• So far, we can distinguish between

• Clusters in axis-parallel subspaces

Approaches are usually called

- “subspace clustering algorithms”

- “projected clustering algorithms”

- “bi-clustering or co-clustering algorithms”

• Clusters in arbitrarily oriented subspaces

Approaches are usually called

- “bi-clustering or co-clustering algorithms”

- “pattern-based clustering algorithms”

- “correlation clustering algorithms”
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A First Taxonomy of Approaches

• Note: other important aspects for classifying existing approaches 
are e.g.
• The underlying cluster model that usually involves

- Input parameters

- Assumptions on number, size, and shape of clusters

- Noise (outlier) robustness

• Determinism

• Independence w.r.t. the order of objects/attributes

• Assumptions on overlap/non-overlap of clusters/subspaces

• Efficiency

… so we should keep these issues in mind …
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline: Axis-parallel Subspace Clustering

• Challenges and Approaches

• Bottom-up Algorithms

• Top-down Algorithms

• Summary
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Challenges

• What are we searching for?
• Overlapping clusters: points may be grouped differently in different 

subspaces

=> “subspace clustering”

• Disjoint partitioning: assign points uniquely to clusters (or noise)

=> “projected clustering”

Note: the terms subspace clustering and projected clustering are not used in a 
unified or consistent way in the literature

• The naïve solution:
• Given a cluster criterion, explore each possible subspace of a d-dimensional 

dataset whether it contains a cluster

• Runtime complexity: depends on the search space, i.e. the number of all 
possible subspaces of a d-dimensional data set
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Challenges

• What is the number of all possible subspaces of a d-dimensional 
data set?
• How many k-dimensional subspaces (k≤d) do we have?

The number of all k-tupels of a set of d elements is

• Overall:

• So the naïve solution is computationally infeasible: 

We face a runtime complexity of O(2d)
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Challenges

• Search space for d = 4
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Approaches

• Basically, there are two different ways to efficiently navigate 
through the search space of possible subspaces

• Bottom-up:

- If the cluster criterion implements the downward closure, one can use any 
bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])

- Key: downward-closure property

• Top-down:

- The search starts in the full d-dimensional space and iteratively learns for 
each point or each cluster the correct subspace

- Key: procedure to learn the correct subspace
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Bottom-up Algorithms

• Rational:
• Start with 1-dimensional subspaces and merge them to compute higher 

dimensional ones

• Most approaches transfer the problem of subspace search into frequent 
item set mining

- The cluster criterion must implement the downward closure property
If the criterion holds for any k-dimensional subspace S, then it also holds for any 
(k–1)-dimensional projection of S

Use the reverse implication for pruning:

If the criterion does not hold for a (k–1)-dimensional projection of S, then the 
criterion also does not hold for S

- Apply any frequent itemset mining algorithm (e.g. APRIORI)

• Some approaches use other search heuristics like best-first-search, greedy-
search, etc.

- Better average and worst-case performance

- No guaranty on the completeness of results
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Bottom-up Algorithms

• Downward-closure property
if C is a dense set of points in subspace S,

then C is also a dense set of points in any subspace T ⊂ S

MinPts = 4
ε

o

p

q

A

B

A

B

p

q

p and q density-connected in {A,B}, {A} and {B} p and q not density-connected in {B} and {A,B}
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Bottom-up Algorithms

• Downward-closure property

the reverse implication does not hold necessarily

A

B
B1 B2 B3

A1

A2
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Bottom-up Algorithms

• The key limitation: global density thresholds
• Usually, the cluster criterion relies on density

• In order to ensure the downward closure property, the density threshold must 
be fixed

• Consequence: the points in a 20-dimensional subspace cluster must be as 
dense as in a 2-dimensional cluster

• This is a rather optimistic assumption since the data space grows 
exponentially with increasing dimensionality

• Consequences:

- A strict threshold will most likely produce only lower dimensional 
clusters

- A loose threshold will most likely produce higher dimensional clusters 
but also a huge amount of (potentially meaningless) low dimensional 
clusters
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Bottom-up Algorithms

• Properties (APRIORI-style algorithms):
• Generation of all clusters in all subspaces => overlapping clusters

• Subspace clustering algorithms usually rely on bottom-up subspace search

• Worst-case: complete enumeration of all subspaces, i.e. O(2d) time

• Complete results
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Bottom-up Algorithms

• CLIQUE [AGGR98]
• Cluster model

- Each dimension is partitioned into ξ equi-sized intervals called units

- A k-dimensional unit is the intersection of k 1-dimensional units (from 
different dimensions)

- A unit u is considered dense if the fraction of all data points in u exceeds 
the threshold τ

- A cluster is a maximal set of connected dense units

2-dimensional
dense unit

2-dimensional cluster

ξ = 8
τ = 0.12
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Bottom-up Algorithms

• Downward-closure property holds for dense units

• Algorithm

- All dense cells are computed using APRIORI-style search

- A heuristic based on the coverage of a subspace is used to further prune 
units that are dense but are in less interesting subspaces

(coverage of subspace S = fraction of data points covered by the dense 
units of S)

- All connected dense units in a common subspace are merged to generate 
the subspace clusters
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Bottom-up Algorithms

• Discussion

- Input: ξ and τ specifying the density threshold

- Output: all clusters in all subspaces, clusters may overlap

- Uses a fixed density threshold for all subspaces (in order to ensure the 
downward closure property)

- Simple but efficient cluster model
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Bottom-up Algorithms

• ENCLUS [CFZ99]
• Cluster model uses a fixed grid similar to CLIQUE

• Algorithm first searches for subspaces rather than for dense units

• Subspaces are evaluated following three criteria

- Coverage (see CLIQUE)

- Entropy
Indicates how densely the points are packed in the corresponding subspace (the higher 
the density, the lower the entropy)

Implements the downward closure property

- Correlation
Indicates how the attributes of the corresponding subspace are correlated to each other

Implements an upward closure property
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Bottom-up Algorithms

• Subspace search algorithm is bottom-up similar to CLIQUE but determines 
subspaces having

Entropy < ω and Correlation > ε

• Discussion

- Input: thresholds ω and ε
- Output: all subspaces that meet the above criteria (far less than CLIQUE), 

clusters may overlap

- Uses fixed thresholds for entropy and correlation for all subspaces

- Simple but efficient cluster model

Low entropy (good clustering)

High entropy (bad clustering) Low correlation (bad clustering)

High correlation (good clustering)
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Bottom-up Algorithms

• drawback of grid-based approaches:
choice of ξ and τ

cluster for τ = 4
(is C2 a cluster?)

for τ > 4: no cluster found
(esp. C1 is lost)

C1

C2

• motivation for density-based approaches
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Bottom-up Algorithms

• SUBCLU [KKK04]
• Cluster model:

- Density-based cluster model of DBSCAN [EKSX96]

- Clusters are maximal sets of density-connected points

- Density connectivity is defined based on core points

- Core points have at least MinPts points in their ε-neighborhood

- Detects clusters of arbitrary size and shape (in the corresponding 
subspaces)

• Downward-closure property holds for sets of density-connected points

MinPts=5p

qo
p

MinPts=5

o
p

q

MinPts=5
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Bottom-up Algorithms

• Algorithm

- All subspaces that contain any density-connected set are computed using 
the bottom-up approach

- Density-connected clusters are computed using a specialized DBSCAN 
run in the resulting subspace to generate the subspace clusters

• Discussion

- Input: ε and MinPts specifying the density threshold

- Output: all clusters in all subspaces, clusters may overlap

- Uses a fixed density threshold for all subspaces

- Advanced but costly cluster model
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Bottom-up Algorithms

• FIRES[KKRW05]
• Proposes a bottom-up approach that uses different heuristic for subspace 

search

• 3-Step algorithm

- Starts with 1-dimensional clusters called base clusters (generated by 
applying any traditional clustering algorithm to each 1-dimensional 
subspace)

- Merges these clusters to generate subspace cluster approximations by 
applying a clustering of the base clusters using a variant of DBSCAN 
(similarity between two clusters C1 and C2 is defined by |C1 ∩ C2|)

- Refines the resulting subspace cluster

approximations
Apply any traditional clustering

algorithm on the points within the

approximations

Prune lower dimensional projections

subspace
cluster

cC

cB

cA

basecluster cAB

cAC
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Bottom-up Algorithms

• Discussion

- Input:
Three parameters for the merging procedure of base clusters

Parameters for the clustering algorithm to create base clusters and for refinement

- Output: clusters in maximal dimensional subspaces, clusters may overlap

- Allows overlapping clusters (subspace clustering) but avoids complete 
enumeration; runtime of the merge step is O(d)

- Output heavily depends on the accuracy of the merge step which is a 
rather simple heuristic and relies on three sensitive parameters

- Cluster model can be chosen by the user



110

Bottom-up Algorithms

• DiSH [ABK+07a]
• Idea:

- Not considered so far: lower dimensional clusters embedded in higher 
dimensional ones

- Now: find hierarchies of subspace clusters

- Integrate a proper distance function into hierarchical clustering

2D cluster A

1D cluster C
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Bottom-up Algorithms

• Distance measure that captures subspace hierarchies assigns

- 1 if both points share a common 1D subspace cluster

- 2 if both points share a common 2D subspace cluster
- …

• Sharing a common k-dimensional subspace cluster means

- Both points are associated to the same k-dimensional subspace cluster

- Both points are associated to different (k-1)-dimensional subspace 
clusters that intersect or are parallel (but not skew)

• This distance is based on the subspace dimensionality of each point p
representing the (highest dimensional) subspace in which p fits best

- Analyze the local ε-neighborhood of p along each attribute a

=> if it contains more than μ points: a is interesting for p

- Combine all interesting attributes such that the ε-neighborhood of p in the 
subspace spanned by this combination still contains at least μ points (e.g. 
use APRIORI algorithm or best-first search)
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Bottom-up Algorithms

• Discussion

- Input: ε and μ specify the density threshold for computing the relevant 
subspaces of a point

- Output: a hierarchy of subspace clusters displayed as a graph, clusters 
may overlap (but only w.r.t. the hierarchical structure!)

- Relies on a global density threshold

- Complex but costly cluster model
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Top-down Algorithms

• Rational:
• Cluster-based approach:

- Learn the subspace of a cluster in the entire d-dimensional feature space

- Start with full-dimensional clusters

- Iteratively refine the cluster memberships of points and the subspaces of 
the cluster

• Instance-based approach:

- Learn for each point its subspace preference in the entire d-dimensional 
feature space

- The subspace preference specifies the subspace in which each point 
“clusters best”

- Merge points having similar subspace preferences to generate the clusters
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Top-down Algorithms

• The key problem: How should we learn the subspace preference of 
a cluster or a point?
• Most approaches rely on the so-called “locality assumption”

- The subspace is usually learned from the local neighborhood of cluster 
representatives/cluster members in the entire feature space:

Cluster-based approach: the local neighborhood of each cluster representative is 
evaluated in the d-dimensional space to learn the “correct” subspace of the cluster

Instance-based approach: the local neighborhood of each point is evaluated in the d-
dimensional space to learn the “correct” subspace preference of each point

- The locality assumption: the subspace preference can be learned from the 
local neighborhood in the d-dimensional space

• Other approaches learn the subspace preference of a cluster or a point from 
randomly sampled points
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Top-down Algorithms

• Discussion:
• Locality assumption

- Recall the effects of the curse of dimensionality on concepts like “local 
neighborhood”

- The neighborhood will most likely contain a lot of noise points

• Random sampling

- The larger the number of total points compared to the number of cluster 
points is, the lower the probability that cluster members are sampled

• Consequence for both approaches

- The learning procedure is often misled by these noise points
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Top-down Algorithms

• Properties:
• Simultaneous search for the “best” partitioning of the data points and the 

“best” subspace for each partition => disjoint partitioning

• Projected clustering algorithms usually rely on top-down subspace search

• Worst-case:

- Usually complete enumeration of all subspaces is avoided

- Worst-case costs are typically in O(d2)
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Top-down Algorithms

• PROCLUS [APW+99]
• K-medoid cluster model

- Cluster is represented by its medoid

- To each cluster a subspace (of relevant attributes) is assigned

- Each point is assigned to the nearest medoid (where the distance to each 
medoid is based on the corresponding subspaces of the medoids)

- Points that have a large distance

to its nearest medoid are

classified as noise
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Top-down Algorithms

• 3-Phase Algorithm

- Initialization of cluster medoids
A superset M of b.k medoids is computed from a sample of a.k data points such that 
these medoids are well separated

k randomly chosen medoids from M are the initial cluster representatives

Input parameters a and b are introduced for performance reasons

- Iterative phase works similar to any k-medoid clustering
Approximate subspaces for each cluster C

» The locality of C includes all points that have a distance to the medoid
of C less than the distance between the medoid of C and the medoid of 
the neighboring cluster

» Compute standard deviation of distances from the medoid of C to the 
points in the locality of C along each dimension

» Add the dimensions with the smallest standard deviation to the relevant 
dimensions of cluster C such that

- in summary k.l dimensions are assigned to all clusters

- each cluster has at least 2 dimensions assigned

mC1

locality of C1

mC2

locality of C2

mC3
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Top-down Algorithms

Reassign points to clusters

» Compute for each point the distance to each medoid taking only the 
relevant dimensions into account

» Assign points to a medoid minimizing these distances
Termination (criterion not really clearly specified in [APW+99])

» Terminate if the clustering quality does not increase after a given 
number of current medoids have been exchanged with medoids from M

(it is not clear, if there is another hidden parameter in that criterion)

- Refinement
Reassign subspaces to medoids as above (but use only the points assigned to each 
cluster rather than the locality of each cluster)

Reassign points to medoids; points that are not in the locality of their corresponding 
medoids are classified as noise
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Top-down Algorithms

• Discussion

- Input:
Number of clusters k

Average dimensionality of clusters l

Factor a to determine the size of the sample in the initialization step

Factor b to determine the size of the candidate set for the medoids

- Output: partitioning of points into k disjoint clusters and noise, each 
cluster has a set of relevant attributes specifying its subspace

- Relies on cluster-based locality assumption: subspace of each cluster is 
learned from local neighborhood of its medoid

- Biased to find l-dimensional subspace clusters

- Simple but efficient cluster model
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Top-down Algorithms

• PreDeCon [BKKK04]
• Cluster model:

- Density-based cluster model of DBSCAN [EKSX96] adapted to 
projected clustering

For each point p a subspace preference indicating the subspace in which p clusters 
best is computed

ε-neighborhood of a point p is constrained by the subspace preference of p

Core points have at least MinPts other points in their ε-neighborhood

Density connectivity is defined based on core points

Clusters are maximal sets of density connected points

- Subspace preference of a point p is d-dimensional vector w=(w1,…,wd), 
entry wi represents dimension i with

VARi is the variance of the ε-neighborhood of p in the entire d-
dimensional space, δ and κ >> 1 are input parameters
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Top-down Algorithms

• Algorithm

- PreDeCon applies DBSCAN with a weighted Euclidean distance function

w.r.t. p

dist(p,q) = max {distp(p,q), distq(q,p)}

- Instead of shifting spheres (full-dimensional Euclidean ε-neighborhoods), 
clusters are expanded by shifting axis-parallel ellipsoids (weighted 
Euclidean ε-neighborhoods)

- Note: In the subspace of the cluster (defined by the preference of its 
members), we shift spheres (but this intuition may be misleading)

2
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i
iiip qpwqpdist

123

Top-down Algorithms

• Discussion

- Input:
δ and κ to determine the subspace preference

λ specifies the maximal dimensionality of a subspace cluster

ε and MinPts specify the density threshold

- Output: a disjoint partition of data into clusters and noise

- Relies on instance-based locality assumption: subspace preference of 
each point is learned from its local neighborhood

- Advanced but costly cluster model
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Summary

• The big picture
• Subspace clustering algorithms compute overlapping clusters

- Many approaches compute all clusters in all subspaces
These methods usually implement a bottom-up search strategy á la itemset mining

These methods usually rely on global density thresholds to ensure the downward 
closure property

These methods usually do not rely on the locality assumption

These methods usually have a worst case complexity of O(2d)

- Other focus on maximal dimensional subspace clusters
These methods usually implement a bottom-up search strategy based on simple but 
efficient heuristics

These methods usually do not rely on the locality assumption

These methods usually have a worst case complexity of at most O(d2)
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Summary

• The big picture
• Projected clustering algorithms compute a disjoint partition of the data

- They usually implement a top-down search strategy

- They usually rely on the locality assumption

- They usually do not rely on global density thresholds

- They usually scale at most quadratic in the number of dimensions


