Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2008

Kapitel 3: Clustering in hochdimensionalen Räumen

Skript basiert auf Tutorial von Hans-Peter Kriegel, Peer Kröger und Arthur Zimek, ICDM 2007, PAKDD 2008 © 2008 Arthur Zimek

http://www.dbs.ifi.lmu.de/Lehre/KDD_II

Outline

- 1. Introduction
- 2. Axis-parallel Subspace Clustering
- 3. Pattern-based Clustering
- 4. Arbitrarily-oriented Subspace Clustering
- 5. Summary

Outline: Introduction

- Sample Applications
- General Problems and Challenges
- A First Taxonomy of Approaches

Sample Applications

- Gene Expression Analysis
 - Data:
 - Expression level of genes under
 - different samples such as
 - different individuals (patients)
 - different time slots after treatment
 - different tissues
 - different experimental environments
 - Data matrix:

DNA

mRNA

protein

- Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar expression profiles indicating homogeneous functions
 - *Challenge*: genes usually have different functions under varying

(combinations of) conditions

Gene1					
Gene2					
Gene3					
Gene4					
Gene5					
Gene6					
Gene7					
Gene8					
Gene9					

Cluster 1: {G1, G2, G6, G8} Cluster 2: {G4, G5, G6} Cluster 3: {G5, G6, G7, G9}

- Task 2: Cluster the columns (e.g. patients) to find groups with similar expression profiles indicating homogeneous phenotypes
 - Challenge:

different phenotypes depend on different (combinations of) subsets of genes

Cluster 1: {P1, P4, P8, P10} Cluster 2: {P4, P5, P6} Cluster 3: {P2, P4, P8, P10}

72

Sample Applications

- Task: Cluster test persons to find groups of individuals with similar correlation among the concentrations of metabolites indicating homogeneous metabolic behavior (e.g. disorder)
 - Challenge:

different metabolic disorders appear through different correlations of (subsets of) metabolites

Sample Applications

- Customer Recommendation / Target Marketing
 - Data
 - Customer ratings for given products
 - Data matrix:

- Task: Cluster customers to find groups of persons that share similar preferences or disfavor (e.g. to do personalized target marketing)
 - Challenge:

customers may be grouped differently according to different preferences/disfavors, i.e. different subsets of products

Sample Applications

- And many more ...
- In general, we face a steadily increasing number of applications that require the analysis of moderate-to-high dimensional data
- Moderate-to-high dimensional means from appr. 10 to hundreds or even thousands of dimensions

General Problems & Challenges

- The curse of dimensionality
 - In [BGRS99,HAK00] it is reported that the ratio of (Dmax_d Dmin_d) to Dmin_d converges to zero with increasing dimensionality d
 - $Dmin_d$ = distance to the nearest neighbor in *d* dimensions
 - $Dmax_d$ = distance to the farthest neighbor in *d* dimensions

Formally:

$$\forall \varepsilon > 0 : \lim_{d \to \infty} \mathbb{P}[dist_d(\frac{\mathrm{Dmax}_d - \mathrm{Dmin}_d}{\mathrm{Dmin}_d}, 0) \le \varepsilon] = 1$$

- This holds true for a wide range of data distributions and distance functions

- What does that mean for clustering high dimensional data?
 - The relative difference of distances between different points decreases with increasing dimensionality
 - The distances between points cannot be used in order to differentiate between points
 - The more the dimensionality is increasing, the more the data distribution degenerates to random noise
 - All points are almost equidistant from each other there are no clusters to discover in high dimensional spaces!!!

General Problems & Challenges

- Additional problem likely to occur in high dimensional spaces:
 - Usually the distance functions used give equal weight to all dimensions
 - However, not all dimensions are of equal importance
 - Adding irrelevant dimensions ruins any clustering based on a distance function that equally weights all dimensions

- $\frac{1}{10^{-0}} \frac{1}{10^{-0}} \frac{1}{10^{-0}}$
- again: different attributes are relevant for different clusters

General Problems & Challenges

- Beyond the curse of dimensionality From the above sketched applications we can derive the following observations for high dimensional data
 - Subspace clusters:

Clusters usually do not exist in the full dimensional space but are often hidden in subspaces of the data (e.g. in only a subset of experimental conditions a gene may play a certain role)

• Local feature relevance/correlation:

For each cluster, a different subset of features or a different correlation of features may be relevant (e.g. different genes are responsible for different phenotypes)

• Overlapping clusters:

Clusters may overlap, i.e. an object may be clustered differently in varying subspaces (e.g. a gene may play different functional roles depending on the environment)

- Why not feature selection?
 - (Unsupervised) feature selection is global (e.g. PCA)
 - We face a local feature relevance/correlation: some features (or combinations of them) may be relevant for one cluster, but may be irrelevant for a second one

General Problems & Challenges

- Problem summary
 - Curse of dimensionality:
 - In high dimensional, sparse data spaces, clustering does not make sense
 - Local feature relevance and correlation:
 - Different features may be relevant for different clusters
 - Different combinations/correlations of features may be relevant for different clusters
 - Overlapping clusters:
 - Objects may be assigned to different clusters in different subspaces

- Solution: integrate variance / covariance analysis into the clustering process
 - Variance analysis:
 - Find clusters in axis-parallel subspaces
 - Cluster members exhibit low variance along the relevant dimensions
 - Covariance/correlation analysis:
 - Find clusters in arbitrarily oriented subspaces
 - Cluster members exhibit a low covariance w.r.t. a given combination of the relevant dimensions (i.e. a low variance along the dimensions of the arbitrarily oriented subspace corresponding to the given combination of relevant attributes)

A First Taxonomy of Approaches

- So far, we can distinguish between
 - Clusters in axis-parallel subspaces Approaches are usually called
 - "subspace clustering algorithms"
 - "projected clustering algorithms"
 - "bi-clustering or co-clustering algorithms"
 - Clusters in arbitrarily oriented subspaces Approaches are usually called
 - "bi-clustering or co-clustering algorithms"
 - "pattern-based clustering algorithms"
 - "correlation clustering algorithms"

A First Taxonomy of Approaches

- Note: other important aspects for classifying existing approaches are e.g.
 - The underlying cluster model that usually involves
 - Input parameters
 - Assumptions on number, size, and shape of clusters
 - Noise (outlier) robustness
 - Determinism
 - Independence w.r.t. the order of objects/attributes
 - Assumptions on overlap/non-overlap of clusters/subspaces
 - Efficiency

... so we should keep these issues in mind ...

Outline

- 1. Introduction
- 2. Axis-parallel Subspace Clustering
- 3. Pattern-based Clustering
- 4. Arbitrarily-oriented Subspace Clustering
- 5. Summary

Outline: Axis-parallel Subspace Clustering

- Challenges and Approaches
- Bottom-up Algorithms
- Top-down Algorithms
- Summary

Challenges

- What are we searching for?
 - Overlapping clusters: points may be grouped differently in different subspaces
 - => "subspace clustering"
 - Disjoint partitioning: assign points uniquely to clusters (or noise)
 => "projected clustering"

Note: the terms subspace clustering and projected clustering are not used in a unified or consistent way in the literature

- The naïve solution:
 - Given a cluster criterion, explore each possible subspace of a *d*-dimensional dataset whether it contains a cluster
 - Runtime complexity: depends on the search space, i.e. the number of all possible subspaces of a *d*-dimensional data set

- What is the number of all possible subspaces of a *d*-dimensional data set?
 - How many *k*-dimensional subspaces (*k*≤*d*) do we have?
 The number of all *k*-tupels of a set of *d* elements is

$$\begin{pmatrix} d \\ k \end{pmatrix}$$

• Overall:

$$\sum_{k=1}^{d} \binom{d}{k} = 2^{d} - 1$$

• So the naïve solution is computationally infeasible:

We face a runtime complexity of $O(2^d)$

Challenges

• Search space for d = 4

92

Approaches

- Basically, there are two different ways to efficiently navigate through the search space of possible subspaces
 - Bottom-up:
 - If the cluster criterion implements the downward closure, one can use any bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])
 - *Key*: downward-closure property
 - Top-down:
 - The search starts in the full *d*-dimensional space and iteratively learns for each point or each cluster the correct subspace
 - Key: procedure to learn the correct subspace

- Rational:
 - Start with 1-dimensional subspaces and merge them to compute higher dimensional ones
 - Most approaches transfer the problem of subspace search into frequent item set mining
 - The cluster criterion must implement the downward closure property
 - If the criterion holds for any *k*-dimensional subspace *S*, then it also holds for any (*k*-1)-dimensional projection of *S*
 - Use the reverse implication for pruning:
 If the criterion does not hold for a (*k*-1)-dimensional projection of *S*, then the criterion also does not hold for *S*
 - Apply any frequent itemset mining algorithm (e.g. APRIORI)
 - Some approaches use other search heuristics like best-first-search, greedy-search, etc.
 - Better average and worst-case performance
 - No guaranty on the completeness of results

Bottom-up Algorithms

• Downward-closure property

Bottom-up Algorithms

• Downward-closure property

• The key limitation: *global density thresholds*

- Usually, the cluster criterion relies on density
- In order to ensure the downward closure property, the density threshold must be fixed
- Consequence: the points in a 20-dimensional subspace cluster must be as dense as in a 2-dimensional cluster
- This is a rather optimistic assumption since the data space grows exponentially with increasing dimensionality
- Consequences:
 - A strict threshold will most likely produce only lower dimensional clusters
 - A loose threshold will most likely produce higher dimensional clusters but also a huge amount of (potentially meaningless) low dimensional clusters

- Properties (APRIORI-style algorithms):
 - Generation of all clusters in all subspaces => overlapping clusters
 - Subspace clustering algorithms usually rely on bottom-up subspace search
 - Worst-case: complete enumeration of all subspaces, i.e. $O(2^d)$ time
 - Complete results

• CLIQUE [AGGR98]

- Cluster model
 - Each dimension is partitioned into ξ equi-sized intervals called units
 - A *k*-dimensional unit is the intersection of *k* 1-dimensional units (from different dimensions)
 - A unit *u* is considered dense if the fraction of all data points in *u* exceeds the threshold τ
 - A cluster is a maximal set of connected dense units

Bottom-up Algorithms

- Downward-closure property holds for dense units
- Algorithm
 - All dense cells are computed using APRIORI-style search
 - A heuristic based on the coverage of a subspace is used to further prune units that are dense but are in less interesting subspaces
 (coverage of subspace S = fraction of data points covered by the dense units of S)
 - All connected dense units in a common subspace are merged to generate the subspace clusters

100

- Discussion
 - Input: ξ and τ specifying the density threshold
 - Output: all clusters in all subspaces, clusters may overlap
 - Uses a fixed density threshold for all subspaces (in order to ensure the downward closure property)
 - Simple but efficient cluster model

- ENCLUS [CFZ99]
 - Cluster model uses a fixed grid similar to CLIQUE
 - Algorithm first searches for subspaces rather than for dense units
 - Subspaces are evaluated following three criteria
 - Coverage (see CLIQUE)
 - Entropy
 - Indicates how densely the points are packed in the corresponding subspace (the higher the density, the lower the entropy)
 - Implements the downward closure property
 - Correlation
 - Indicates how the attributes of the corresponding subspace are correlated to each other
 - Implements an upward closure property

• Subspace search algorithm is bottom-up similar to CLIQUE but determines subspaces having

- Input: thresholds ω and ϵ
- Output: all subspaces that meet the above criteria (far less than CLIQUE), clusters may overlap
- Uses fixed thresholds for entropy and correlation for all subspaces
- Simple but efficient cluster model

Bottom-up Algorithms

• motivation for density-based approaches

Bottom-up Algorithms

• SUBCLU [KKK04]

- Cluster model:
 - Density-based cluster model of DBSCAN [EKSX96]
 - Clusters are maximal sets of density-connected points
 - Density connectivity is defined based on core points
 - Core points have at least MinPts points in their ε-neighborhood

- Detects clusters of arbitrary size and shape (in the corresponding subspaces)
- Downward-closure property holds for sets of density-connected points

- Algorithm
 - All subspaces that contain any density-connected set are computed using the bottom-up approach
 - Density-connected clusters are computed using a specialized DBSCAN run in the resulting subspace to generate the subspace clusters
- Discussion
 - Input: ε and *MinPts* specifying the density threshold
 - Output: all clusters in all subspaces, clusters may overlap
 - Uses a fixed density threshold for all subspaces
 - Advanced but costly cluster model

Bottom-up Algorithms

• FIRES[KKRW05]

- Proposes a bottom-up approach that uses different heuristic for subspace search
- 3-Step algorithm
 - Starts with 1-dimensional clusters called *base clusters* (generated by applying any traditional clustering algorithm to each 1-dimensional subspace)
 - Merges these clusters to generate subspace cluster approximations by applying a clustering of the base clusters using a variant of DBSCAN (similarity between two clusters C1 and C2 is defined by $|C1 \cap C2|$)
 - Refines the resulting subspace cluster approximations
 - Apply any traditional clustering algorithm on the points within the approximations
 - Prune lower dimensional projections

- Discussion
 - Input:
 - Three parameters for the merging procedure of base clusters
 - Parameters for the clustering algorithm to create base clusters and for refinement
 - Output: clusters in maximal dimensional subspaces, clusters may overlap
 - Allows overlapping clusters (subspace clustering) but avoids complete enumeration; runtime of the merge step is O(*d*)
 - Output heavily depends on the accuracy of the merge step which is a rather simple heuristic and relies on three sensitive parameters
 - Cluster model can be chosen by the user

- DiSH [ABK+07a]
 - Idea:
 - Not considered so far: lower dimensional clusters embedded in higher dimensional ones

- Now: find hierarchies of subspace clusters
- Integrate a proper distance function into hierarchical clustering

110

- Distance measure that captures subspace hierarchies assigns
 - 1 if both points share a common 1D subspace cluster
 - 2 if both points share a common 2D subspace cluster
 - ...
- Sharing a common k-dimensional subspace cluster means
 - Both points are associated to the same k-dimensional subspace cluster
 - Both points are associated to different (k-1)-dimensional subspace clusters that intersect or are parallel (but not skew)
- This distance is based on the subspace dimensionality of each point *p* representing the (highest dimensional) subspace in which *p* fits best
 - Analyze the local ε-neighborhood of p along each attribute a
 => if it contains more than μ points: a is interesting for p
 - Combine all interesting attributes such that the ε-neighborhood of *p* in the subspace spanned by this combination still contains at least μ points (e.g. use APRIORI algorithm or best-first search)

- Discussion
 - Input: ϵ and μ specify the density threshold for computing the relevant subspaces of a point
 - Output: a hierarchy of subspace clusters displayed as a graph, clusters may overlap (but only w.r.t. the hierarchical structure!)
 - Relies on a global density threshold
 - Complex but costly cluster model

- Rational:
 - Cluster-based approach:
 - Learn the subspace of a cluster in the *entire* d-dimensional feature space
 - Start with full-dimensional clusters
 - Iteratively refine the cluster memberships of points and the subspaces of the cluster
 - Instance-based approach:
 - Learn for each point its subspace preference in the *entire d*-dimensional feature space
 - The subspace preference specifies the subspace in which each point "clusters best"
 - Merge points having similar subspace preferences to generate the clusters

- The key problem: How should we learn the subspace preference of a cluster or a point?
 - Most approaches rely on the so-called "locality assumption"
 - The subspace is usually learned from the local neighborhood of cluster representatives/cluster members in the entire feature space:
 - Cluster-based approach: the *local neighborhood* of each cluster representative is evaluated in the *d*-dimensional space to learn the "correct" subspace of the cluster
 - Instance-based approach: the *local neighborhood* of each point is evaluated in the *d*-dimensional space to learn the "correct" subspace preference of each point
 - *The locality assumption*: the subspace preference can be learned from the *local neighborhood* in the *d*-dimensional space
 - Other approaches learn the subspace preference of a cluster or a point from randomly sampled points

- Discussion:
 - Locality assumption
 - Recall the effects of the curse of dimensionality on concepts like "local neighborhood"
 - The neighborhood will most likely contain a lot of noise points
 - Random sampling
 - The larger the number of total points compared to the number of cluster points is, the lower the probability that cluster members are sampled
 - Consequence for both approaches
 - The learning procedure is often misled by these noise points

- Properties:
 - Simultaneous search for the "best" partitioning of the data points and the "best" subspace for each partition => disjoint partitioning
 - Projected clustering algorithms usually rely on top-down subspace search
 - Worst-case:
 - Usually complete enumeration of all subspaces is avoided
 - Worst-case costs are typically in $O(d^2)$

- PROCLUS [APW+99]
 - *K*-medoid cluster model
 - Cluster is represented by its medoid
 - To each cluster a subspace (of relevant attributes) is assigned
 - Each point is assigned to the nearest medoid (where the distance to each medoid is based on the corresponding subspaces of the medoids)
 - Points that have a large distance to its nearest medoid are classified as noise

• 3-Phase Algorithm

 m_{C3}

 m_{C2}

•*m*_{C1}

locality of C1

- Initialization of cluster medoids
 - A superset *M* of *b*·*k* medoids is computed from a sample of *a*·*k* data points such that these medoids are well separated
 - *k* randomly chosen medoids from *M* are the initial cluster representatives
 - Input parameters *a* and *b* are introduced for performance reasons
- Iterative phase works similar to any *k*-medoid clustering
- locality of C2 Approximate subspaces for each cluster C
 - » The locality of C includes all points that have a distance to the medoid of C less than the distance between the medoid of C and the medoid of the neighboring cluster
 - » Compute standard deviation of distances from the medoid of *C* to the points in the locality of *C* along each dimension
 - » Add the dimensions with the smallest standard deviation to the relevant dimensions of cluster C such that
 - in summary kl dimensions are assigned to all clusters
 - each cluster has at least 2 dimensions assigned

Top-down Algorithms

- Reassign points to clusters
 - » Compute for each point the distance to each medoid taking only the relevant dimensions into account
 - » Assign points to a medoid minimizing these distances
- Termination (criterion not really clearly specified in [APW+99])
 - » Terminate if the clustering quality does not increase after a given number of current medoids have been exchanged with medoids from M (it is not clear, if there is another hidden parameter in that criterion)

- Refinement

- Reassign subspaces to medoids as above (but use only the points assigned to each cluster rather than the locality of each cluster)
- Reassign points to medoids; points that are not in the locality of their corresponding medoids are classified as noise

- Discussion
 - Input:
 - Number of clusters *k*
 - Average dimensionality of clusters l
 - Factor *a* to determine the size of the sample in the initialization step
 - Factor *b* to determine the size of the candidate set for the medoids
 - Output: partitioning of points into *k* disjoint clusters and noise, each cluster has a set of relevant attributes specifying its subspace
 - Relies on cluster-based locality assumption: subspace of each cluster is learned from local neighborhood of its medoid
 - Biased to find *l*-dimensional subspace clusters
 - Simple but efficient cluster model

Top-down Algorithms

- PreDeCon [BKKK04]
 - Cluster model:
 - Density-based cluster model of DBSCAN [EKSX96] adapted to projected clustering
 - For each point *p* a subspace preference indicating the subspace in which *p* clusters best is computed
 - ε -neighborhood of a point p is constrained by the subspace preference of p
 - Core points have at least *MinPts* other points in their ε-neighborhood
 - Density connectivity is defined based on core points
 - Clusters are maximal sets of density connected points
 - Subspace preference of a point p is *d*-dimensional vector $w=(w_1,...,w_d)$, entry w_i represents dimension *i* with

$$w_i = \begin{cases} 1 & if \quad \text{VAR}_i > \delta \\ \kappa & if \quad \text{VAR}_i \le \delta \end{cases}$$

VAR_{*i*} is the variance of the ε -neighborhood of *p* in the entire *d*-dimensional space, δ and $\kappa >> 1$ are input parameters

- Algorithm
 - PreDeCon applies DBSCAN with a weighted Euclidean distance function $dist_p(p,q) = \sqrt{\sum_{i} w_i \cdot (p_i - q_i)^2}$ w.r.t. p $dist(p,q) = max \{ dist_p(p,q), dist_q(q,p) \}$
 - Instead of shifting spheres (full-dimensional Euclidean ε-neighborhoods), clusters are expanded by shifting axis-parallel ellipsoids (weighted Euclidean ε-neighborhoods)
 - Note: In the subspace of the cluster (defined by the preference of its members), we shift spheres (but this intuition may be misleading)

- Discussion
 - Input:
 - δ and κ to determine the subspace preference
 - λ specifies the maximal dimensionality of a subspace cluster
 - ε and *MinPts* specify the density threshold
 - Output: a disjoint partition of data into clusters and noise
 - Relies on instance-based locality assumption: subspace preference of each point is learned from its local neighborhood
 - Advanced but costly cluster model

• The big picture

- Subspace clustering algorithms compute overlapping clusters
 - Many approaches compute all clusters in all subspaces
 - These methods usually implement a bottom-up search strategy á la itemset mining
 - These methods usually rely on global density thresholds to ensure the downward closure property
 - These methods usually do not rely on the locality assumption
 - These methods usually have a worst case complexity of O(2^d)
 - Other focus on maximal dimensional subspace clusters
 - These methods usually implement a bottom-up search strategy based on simple but efficient heuristics
 - These methods usually do not rely on the locality assumption
 - These methods usually have a worst case complexity of at most $O(d^2)$

Summary

- The big picture
 - Projected clustering algorithms compute a disjoint partition of the data
 - They usually implement a top-down search strategy
 - They usually rely on the locality assumption
 - They usually do not rely on global density thresholds
 - They usually scale at most quadratic in the number of dimensions