Exercise 12-1 Petri Nets

Explain if the following graphs are petri nets, workflow nets, or even sound workflow nets. Further express the graph as a sound workflow net if the graph is not yet a sound workflow net.

(a)

This is not a Petri net, since between the transitions b and c, resp. b and d there is a missing place.

(b)

This is a Petri net and a workflow net, but it is not sound, since there are deadlocks. The OR-Split after the transition a gets closed by an AND-JOIN which causes a deadlock. Transition d can not fire since it will always only get one token from eigther b or c.

(c)
This is a Petri net and a Workflow net but it is not sound, due to the violation of the proper completion constraint. It can terminate while there is still a token in an other place than the output place.

Exercise 12-2 α-Miner

(a) For the α-Miner algorithm, we use the relations \succ, \rightarrow, \parallel, $\#$ to denote direct successions, causality, parallelism or choice. Considering the set of activities \{a, b, c\}, give notion (graphically) about the following patterns and associate the right relations with them according to the activities having been used:

- **Sequence Pattern**
 Sequence: $a \rightarrow b$

- **XOR-Split and XOR-Join pattern**
 XOR-split: $a \rightarrow b, a \rightarrow c$ and $b \# c$
 XOR-join: $a \rightarrow c, b \rightarrow c$ and $b \# c$

- **AND-split and AND-join pattern**
 AND-split: $a \rightarrow b, a \rightarrow c$ and $b \parallel c$
 AND-join: $a \rightarrow c, b \rightarrow c$ and $a \parallel b$

(b) Given the trace $L_1 = \{(a, b, c, d), (a, c, b, d), (a, e, d)\}$. Determine the following sets:

- **Set of activities**: $T_L = \{t \in T \mid \exists \sigma \in L, t \in \sigma\}$
 Each activity in L corresponds to a transition in $\alpha(L)$: $T_L = \{a, b, c, d, e\}$
• Set of start activities: \(T_I = \{ t \in T \mid \exists \sigma \in L t = first(\sigma) \} \)
 Fix the set of start activities - that is, the first elements of each trace: \(T_I = \{ a \} \)

• Set of end activities: \(T_O = \{ t \in T \mid \exists \sigma \in L t = last(\sigma) \} \)
 Fix the set of end activities - that is, elements that appear last at a trace: \(T_O = \{ d \} \)

• Set of paired activities:

\[
X_L = \{ (A, B) | A \subseteq T_L \land A \neq \emptyset \land
B \subseteq T_L \land B \neq \emptyset \land
\forall a \in A \forall b \in B a \rightarrow_L b \land
\forall a_1, a_2 \in A \#_1 a_2 \land \forall b_1, b_2 \in B b_1 \#_2 b_2 \}
\]

Find pairs \((A, B) \) of sets of activities such that every element \(a \in A \) and every element \(b \in B \) are causally related (i.e. \(a \rightarrow_L b \)), all elements in \(A \) are independent (\(a_1 \#_1 a_2 \)), and all elements in \(B \) are independent (\(b_1 \#_2 b_2 \)) as well:

\[
X_L = \{ \{\{a\}, \{b\}\}, \{\{a\}, \{c\}\}, \{\{b\}, \{d\}\}, \{\{c\}, \{d\}\} \}
\]

• Set of paired activities that are maximal:

\[
Y_L = \{ (A, B) \in X_L \mid \forall (A', B') \in X_L A \subseteq A' \land B \subseteq B' \implies (A, B) = (A', B') \}
\]

Delete from \(X_L \) all pairs \((A, B) \) that are not maximal.

\[
Y_L = \{ \{\{a\}, \{b\}\}, \{\{a\}, \{c\}\}, \{\{b\}, \{d\}\}, \{\{c\}, \{d\}\} \}
\]

• Set of places: \(P_L = \{ p(A, B) \mid (A, B) \in Y_L \} \cup \{ i_L, o_L \} \)

Determine the place set: Each element \((A, B) \) of \(Y_L \) is a place. To ensure the workflow structure, add a source place \(i_L \) and a target place \(o_L \). \(P_L = \{ p(A, B), p(i_L, \{b,e\}), p(i_L, \{c,e\}), p(b, \{d\}), p(c, \{d\}) \} \)

• Flow relations:

\[
F_L = \{ (A, B, p(A, B)) \mid (A, B) \in Y_L \land a \in A \} \cup
\{ (p(A, B), b) \mid (A, B) \in Y_L \land b \in B \} \cup
\{ (i_L, t) \mid t \in T_I \} \cup \{ (t, o_L) \mid t \in T_O \}
\]

Determine the flow relation: Connect each place \(p(A, B) \) with each element \(a \) of its set \(A \) or source transition and with each element of its set \(B \) of target transitions. In addition, draw an arc from the source place \(i_L \) to each start transition \(t \in T_I \) and an arc from each end transition \(t \in T_O \) to the sink place \(o_L \).
• Definition (no task): \(\alpha \)-Miner on event log \(L \) is then defined as: \(\alpha(L) = (P_L, T_L, F_L) \)

(c) Construct the Footprint Table for trace \(L_1 \).

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>#L_1</td>
<td>(\rightarrow L_1)</td>
<td>(\rightarrow L_1)</td>
<td>#L_1</td>
<td>(\rightarrow L_1)</td>
</tr>
<tr>
<td>b</td>
<td>(\leftarrow L_1)</td>
<td>#L_1</td>
<td>(\parallel L_1)</td>
<td>(\rightarrow L_1)</td>
<td>#L_1</td>
</tr>
<tr>
<td>c</td>
<td>(\leftarrow L_1)</td>
<td>(\parallel L_1)</td>
<td>#L_1</td>
<td>(\rightarrow L_1)</td>
<td>#L_1</td>
</tr>
<tr>
<td>d</td>
<td>#L_1</td>
<td>(\leftarrow L_1)</td>
<td>#L_1</td>
<td>(\leftarrow L_1)</td>
<td>#L_1</td>
</tr>
<tr>
<td>e</td>
<td>(\leftarrow L_1)</td>
<td>#L_1</td>
<td>#L_1</td>
<td>(\rightarrow L_1)</td>
<td>#L_1</td>
</tr>
</tbody>
</table>