Exercise 8: Agglomerative Clustering, OPTICS, Clustering Evaluation

Exercise 8-1 Hierarchical Clustering

Given the following data set:

As distance function, use Manhattan Distance:

\[L_1(x, y) = |x_1 - y_1| + |x_2 - y_2| \]

Compute two dendrograms for this data set. To compute the distance of sets of objects, use

- the single-link method
- the complete-link method

Hint: With discrete distance values, nodes may have more than two children.
As distance function, use Manhattan distance \(L_1(a, b) := |a_1 - b_1| + |a_2 - b_2| \).

Construct an OPTICS reachability plot for each of the following parameter settings. In case of a tie always proceed with the first candidate in alphabetical order.

(a) \(\varepsilon = 5 \) and \(\text{minPts} = 2 \)
(b) \(\varepsilon = 5 \) and \(\text{minPts} = 4 \)
(c) \(\varepsilon = 2 \) and \(\text{minPts} = 4 \)
(d) \(\varepsilon = \infty \) and \(\text{minPts} = 4 \)

Exercise 8-3 Efficient Evaluation of Clusterings

Let \(D \) be a database of size \(n := |D| \), and let \(\mathcal{C}, \mathcal{G} \) be two partitionings of \(D \). Furthermore, let \(k := |\mathcal{C}| \) and \(l := |\mathcal{G}| \) be the number of partitions, and assume that the contingency table is provided as a \((k \times l)\) matrix, where \(N_{ij} = |C_i \cap G_j| \) denotes one cell in this table.

As in the lecture slides, let \(P := \{(o, p) \in D^2 \mid o \neq p\} \) denote the set of all pairs, and \(S_C = \{(o, p) \in P \mid \exists C_i \in \mathcal{C} : \{o, p\} \subseteq C_i\} \) be the set of pairs that are contained in a common cluster \(C_i \) in \(\mathcal{C} \). In addition, \(\overline{S_C} \) denotes the complement of \(S_C \) in \(P \), i.e. \(\overline{S_C} = P \setminus S_C \). \(S_G \) and \(\overline{S_G} \) are used analogously.

Using these four sets, we can now define the

- **True Positives (TP):** Same labelling in \(\mathcal{C} \) and same labelling in \(\mathcal{G} \), i.e. \(TP = |S_C \cap S_G| \)
- **False Positives (FP):** Same labelling in \(\mathcal{C} \), but different labelling in \(\mathcal{G} \), i.e. \(FP = |S_C \cap \overline{S_G}| \)
- **False Negatives (FN):** Different labelling in \(\mathcal{C} \), but same labelling in \(\mathcal{G} \), i.e. \(FN = |\overline{S_C} \cap S_G| \)
- **True Negatives (TN):** Different labelling in \(\mathcal{C} \), and different labelling in \(\mathcal{G} \), i.e. \(TN = |\overline{S_C} \cap \overline{S_G}| \)

The relation of these four sets and \(S_C \) as well as \(S_G \) is also visualised in the following Venn diagram:
For each of these cardinalities, provide a method to obtain the numbers solely from the contingency table, i.e. without explicitly enumerating set of all pairs (which requires $O(n^2)$ time).

(a) $TP = |S_C \cap S_G|$,
(b) $FP = |S_C \cap \overline{S_G}|$,
(c) $FN = |\overline{S_C} \cap S_G|$,
(d) $TN = |\overline{S_C} \cap \overline{S_G}|$.

Exercise 8-4 Mutual Information
Given are two clusterings of $D = \{A, \ldots, Z\}$:

(a) Setup the contingency table, i.e. compute the sizes $|C_i \cap G_j|$ for $i = 1, \ldots, 4$, and $j = 1, \ldots, 5$.
(b) Using the contingency table from (a), compute the entropy of C and G, i.e. $H(C)$ and $H(G)$.
(c) Using the contingency table from (a), compute the mutual entropy $H(C|G)$.
(d) Combine the results from (b) and (c) to obtain the normalised mutual information. What does this value tell about the two clusterings?