Exercise 7-1 DBSCAN

Given the following data set:

As distance function, use Manhattan Distance:

\[L_1(x, y) = |x_1 - y_1| + |x_2 - y_2| \]

Compute DBSCAN and indicate which points are core points, border points and noise points.

Use the following parameter settings:

- Radius \(\varepsilon = 1.1 \) and \(\text{minPts} = 2 \)
- Radius \(\varepsilon = 1.1 \) and \(\text{minPts} = 3 \)
- Radius \(\varepsilon = 1.1 \) and \(\text{minPts} = 4 \)
- Radius \(\varepsilon = 2.1 \) and \(\text{minPts} = 4 \)
- Radius \(\varepsilon = 4.1 \) and \(\text{minPts} = 5 \)
- Radius \(\varepsilon = 4.1 \) and \(\text{minPts} = 4 \)
Exercise 7-2 Properties of DBSCAN

Discuss the following questions/propositions about DBSCAN:

- Using $minPts = 2$, what happens to the border points?
- The result of DBSCAN is deterministic w.r.t. the core and noise points but not w.r.t. the border points.
- A cluster found by DBSCAN cannot consist of less than $minPts$ points.
- If the dataset consists of n objects, DBSCAN will evaluate exactly $n \epsilon$-range queries.
- On uniformly distributed data, DBSCAN will usually either assign all points to a single cluster or classify every point as noise. k-means on the other hand will partition the data into approximately equally sized partitions.

Exercise 7-3 Spectral Clustering

(a) Given the dataset from Exercise 7-1, apply spectral clustering to the first ten points (i.e. A - J). When constructing the graph, make sure that each point is connected to its neighbours in an $\epsilon = 2$ neighbourhood while still having at least two outgoing edges.

(b) As shown in the lecture, spectral clustering uses the Laplacian matrix to determine its clusters. Given an arbitrary graph G and the Laplacian L for G, show that finding an indicator vector f_C that minimizes $f_L f^T$ leads to an optimal cluster C in G, where

$$f_C^{(i)} = \begin{cases} 1 & \text{if } v_i \in C \\ 0 & \text{else} \end{cases}$$