Knowledge Discovery and Data Mining 1
(Data Mining Algorithms 1)

Winter Semester 2019/20
1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
 4.1 Clustering

 - Introduction
 - Partitioning Methods
 - Probabilistic Model-Based Methods
 - Density-Based Methods
 - Mean-Shift
 - Spectral Clustering
 - Hierarchical Methods
 - Evaluation

5. Advanced Topics
Density-Based Clustering

Basic Idea

Clusters are dense regions in the data space, separated by regions of lower density.

Results of a k-medoid algorithm for $k = 4$:
Density-Based Clustering: Basic Concept

Note

Different density-based approaches exist in the literature. Here we discuss the ideas underlying the DBSCAN algorithm.

Intuition for Formalization

- For any point in a cluster, the local point density around that point has to exceed some threshold
- The set of points from one cluster is spatially connected
Density-Based Clustering: Basic Concept

Local Point Density

Local point density at a point \(q \) defined by two parameters:

- \(\epsilon \)-radius for the neighborhood of point \(q \)

\[
N_\epsilon(q) = \{ p \in D \mid \text{dist}(p, q) \leq \epsilon \}
\]

In this chapter, we assume that \(q \in N_\epsilon(q) \)!

- \(\text{MinPts} \): minimum number of points in the given neighbourhood \(N_\epsilon(q) \).
Density-Based Clustering: Basic Concept

A point \(q \) is called a core object (or core point) w.r.t. \(\epsilon, \text{MinPts} \) if \(|N_\epsilon(q)| \geq \text{minPts} \).

Core Point

\(q \) is called a core object (or core point) w.r.t. \(\epsilon, \text{MinPts} \) if \(|N_\epsilon(q)| \geq \text{minPts} \).
Density-Based Clustering: Basic Definitions

(Directly) Density-Reachable

p directly density-reachable from q w.r.t. ϵ, $MinPts$ if:

1. $p \in N_\epsilon(q)$ and
2. q is core object w.r.t. ϵ, $MinPts$

Density-reachable is the transitive closure of directly density-reachable
Density-Based Clustering: Basic Definitions

Density-Connected

A point p is $density-connected$ to a point q w.r.t. ϵ, $MinPts$ if there is a point o such that both, p and q are $density-reachable$ from o w.r.t. ϵ, $MinPts$.

4. Unsupervised Methods

4.1 Clustering
Density-Based Clustering: Basic Definitions

Density-Based Cluster

$\emptyset \subset C \subseteq D$ with database D satisfying:

Maximality: If $q \in C$ and p is density-reachable from q then $p \in C$

Connectivity: Each object in C is density-connected to all other objects in C
Density-Based Clustering: Basic Definitions

A partitioning \(\{ C_1, \ldots, C_k, N \} \) of the database \(D \) where

- \(C_1, \ldots, C_k \) are all density-based clusters
- \(N = D \setminus (C_1 \cup \ldots \cup C_k) \) is called the *noise* (objects not in any cluster)
Density-Based Clustering: DBSCAN Algorithm

Basic Theorem

- Each object in a density-based cluster \(C \) is density-reachable from any of its core-objects.
- Nothing else is density-reachable from core objects.
Density-Based Clustering: DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise\(^1\)

1: for all \(o \in D \) do
2: if \(o \) is not yet classified then
3: if \(o \) is a core-object then
4: Collect all objects density-reachable from \(o \) and assign them to a new cluster.
5: else
6: Assign \(o \) to noise \(N \)

Note

Density-reachable objects are collected by performing successive \(\epsilon \)-neighborhood queries.

DBSCAN: Example

Parameters: $\epsilon = 1.75$, $minPts = 3$. Clusters: C_1
DBSCAN: Example

Parameters: $\epsilon = 1.75$, $minPts = 3$. Clusters: C_1; Noise: N
DBSCAN: Example

Parameters: $\epsilon = 1.75$, $minPts = 3$. Clusters: C_1, C_2; Noise: N
Determining the Parameters ϵ and $MinPts$

Recap
Cluster: Point density higher than specified by ϵ and $MinPts$

Idea
Use the point density of the least dense cluster in the data set as parameters.

Problem
How to determine this?
Determining the Parameters ϵ and $MinPts$

Heuristic

1. Fix a value for $MinPts$ (default: $2d - 1$ where d is the dimension of the data space)
2. Compute the k-distance for all points $p \in D$ (distance from p to its k-nearest neighbor), with $k = minPts$.
3. Create a k-distance plot, showing the k-distances of all objects, sorted in decreasing order
4. The user selects a “border object” o from the $MinPts$-distance plot: ϵ is set to $MinPts$-distance(o).

4. Unsupervised Methods

4.1 Clustering
Determining the Parameters ϵ and MinPts: Problematic Example

4. Unsupervised Methods
4.1 Clustering
Standard DBSCAN evaluation is based on recursive database traversal. Böhm et al.2 observed that DBSCAN, among other clustering algorithms, may be efficiently built on top of similarity join operations.

\textbf{\(\epsilon\)-Similarity Join}

An \emph{\(\epsilon\)-similarity join} yields all pairs of \(\epsilon\)-similar objects from two data sets \(Q, P\):

\[
Q \Join_{\epsilon} P = \{(q, p) \in Q \times P \mid \text{dist}(q, p) \leq \epsilon\}
\]

\textbf{SQL Query}

\texttt{SELECT * FROM Q, P WHERE dist(Q, P) \leq \epsilon}

Database Support for Density-Based Clustering

ϵ-Similarity Self-Join

An ϵ-similarity self join yields all pairs of ϵ-similar objects from a database D.

$$D \Join_{\epsilon} D = \{(q, p) \in D \times D \mid \text{dist}(q, p) \leq \epsilon\}$$

SQL Query

SELECT * FROM D q, D p WHERE dist(q, p) \leq \epsilon
Database Support for Density-Based Clustering

The relation "directly ϵ, MinPts-density reachable" may be expressed in terms of an ϵ-similarity self join (abbreviate minPts with μ):

$$ddr_{\epsilon,\mu} = \{(q, p) \in D \times D \mid q \text{ is } \epsilon,\mu\text{-core-point } \land p \in N_\epsilon(q)\}$$

$$= \{(q, p) \in D \times D \mid \text{dist}(q, p) \leq \epsilon \land \exists_{\geq \mu}^p p' \in D : \text{dist}(q, p') \leq \epsilon\}$$

$$= \{(q, p) \in D \times D \mid (q, p) \in D \bowtie_\epsilon D \land \exists_{\geq \mu}^p (q, p') \in D \bowtie_\epsilon D\}$$

$$= \sigma_{|\pi_q(D \bowtie_\epsilon D)|\geq \mu}(D \bowtie_\epsilon D) =: D \bowtie_{\epsilon,\mu} D$$

SQL Query

SELECT * FROM D q, D p WHERE dist(q, p) \leq \epsilon GROUP BY q.id HAVING count(q.id) \geq \mu

Afterwards, DBSCAN computes the connected components of $D \bowtie_{\epsilon,\mu} D$.

4. Unsupervised Methods

4.1 Clustering
Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

- Block nested loop or index-based nested loop joins exploit secondary storage structure of large databases.

- Dedicated similarity join, distance join, or spatial join methods based on spatial indexing structures (e.g., R-Tree) apply particularly well. They may traverse their hierarchical directories in parallel (see illustration below).

- Other join techniques including sort-merge join or hash join are not applicable.
DBSCAN: Discussion

Advantages

- Clusters can have arbitrary shape and size; no restriction to convex shapes
- Number of clusters is determined automatically
- Can separate clusters from surrounding noise
- Complexity: N_ϵ-query: $\mathcal{O}(n)$, DBSCAN: $\mathcal{O}(n^2)$.
- Can be supported by spatial index structures ($\Rightarrow N_\epsilon$-query: $\mathcal{O}(\log n)$)

Disadvantages

- Input parameters may be difficult to determine
- In some situations very sensitive to input parameter setting
Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
 4.1 Clustering

 Introduction
 Partitioning Methods
 Probabilistic Model-Based Methods
 Density-Based Methods
 Mean-Shift
 Spectral Clustering
 Hierarchical Methods
 Evaluation

5. Advanced Topics
Iterative Mode Search

Idea
Find modes in the point density.

Algorithm

1. Select a window size ϵ, starting position m
2. Calculate the mean of all points inside the window $W(m)$.
3. Shift the window to that position
4. Repeat until convergence.

Iterative Mode Search: Example

4. Unsupervised Methods

4.1 Clustering
Mean Shift: Core Algorithm

Algorithm

Apply iterative mode search for each data point. Group those that converge to the same mode (called \textit{Basin of Attraction}).

\begin{itemize}
\item \cite{Comaniciu2002} D. Comaniciu, P. Meer. \textit{Mean shift: A robust approach toward feature space analysis}. IEEE Trans. on pattern analysis and machine intelligence, 2002
\end{itemize}
Mean Shift: Extensions

Weighted Mean

Use different weights for the points in the window, with weights w_x, resp. calculated by some kernel κ:

\[
m^{(i+1)} = \frac{\sum_{x \in W(m^{(i)})} w_x \cdot x}{\sum_{x \in W(m^{(i)})} w_x} \quad \rightarrow \quad m^{(i+1)} = \frac{\sum_{x \in W(m^{(i)})} \kappa(x) \cdot x}{\sum_{x \in W(m^{(i)})} \kappa(x)}
\]

Binning

First quantise data points to grid. Apply iterative mode seeking only once per bin.
Mean Shift: Discussion

Disadvantages

- Relatively high complexity: N_ϵ-query (windowing): $O(n)$. Algorithm: $O(tn^2)$

Advantages

- Clusters can have arbitrary shape and size; no restriction to convex shapes
- Number of clusters is determined automatically
- Robust to outliers
- Easy implementation and parallelisation
- Single parameter: ϵ
- Support by spatial index: N_ϵ-query (windowing): $O(\log n)$. Algorithm: $O(tn \log n)$
Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
 4.1 Clustering

 Introduction
 Partitioning Methods
 Probabilistic Model-Based Methods
 Density-Based Methods
 Mean-Shift
 Spectral Clustering
 Hierarchical Methods
 Evaluation

5. Advanced Topics
General Steps for Spectral Clustering

1. Construct Graph out of Data
 - Using:
 - kNN
 - \(\varepsilon \)-neighborhood
 - Fully-connected graph

2. (Weighted) adjacency matrix \(W \)
 - Degree matrix \(D \)
 - Laplacian matrix \(L \):
 - Unnormalized \(D - W \)
 - Normalized

3. Problem to solve:
 \[
 fLf^T = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2 = \min
 \]
 Solution:
 - Calculate eigenvalues \(\lambda \)
 - Eigenvectors \(v \) of matrix \(L \)
General Steps for Spectral Clustering II

4. Unsupervised Methods

4.1 Clustering

4. Choose useful number of eigenvalues
 - k smallest eigenvalues (k: #cluster)
 - Determine number by:
 - Gap in eigenvalues
 - Using eigenvectors

5. Apply k-means on k eigenvectors

6. Map results back to original data
Clustering as Graph Partitioning

Approach

- Data is modeled by a similarity graph $G = (V, E)$
 - Vertices $v \in V$: Data objects
 - Weighted edges $\{v_i, v_j\} \in E$: Similarity of v_i and v_j
 - Common variants: ϵ-neighborhood graph, k-nearest neighbor graph, fully connected graph

- Cluster the data by partitioning the similarity graph
 - Idea: Find global minimum cut
 - Only considers inter-cluster edges, tends to cut small vertex sets from the graph
 - Partitions graph into two clusters
 - Instead, we want a *balanced multi-way partitioning*
 - Such problems are NP-hard, use approximations
Spectral Clustering

Given

Undirected graph G with weighted edges

- Let W be the (weighted) adjacency matrix of the graph
- And D its degree matrix with $D_{ii} = \sum_{j=1}^{n} W_{ij}$; other entries are 0

Aim

Partition G into k subsets, minimizing a function of the edge weights between/within the partitions.

2 connected components

$W[2,3] = 3$

$W[2,5] = 0$
Spectral Clustering

Idea

- Consider the *indicator vector* f_C for the cluster C, i.e.

$$f_C(i) = \begin{cases} 1 & \text{if } v_i \in C \\ 0 & \text{else} \end{cases}$$

and e.g. the *Laplacian* matrix $L = D - W$

- Further, consider the function $fLf^T = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (f_i - f_j)^2$ (derivation see exercise)

 - Small if f corresponds to a good partitioning
 - Given an indicator vector f_C, the function $f_C L f_C^T$ measures the weight of the inter-cluster edges! (see next slide)
 - Since L is positive semi-definite we have $fLf^T \geq 0$
 - Formulate a minimization problem on fLf^T
Connected Components and Eigenvectors

- General goal: find indicator vectors minimizing function fLf^T besides the trivial indicator vector $f_C = (1, \ldots, 1)$
- Problem: Finding solution is NP-hard (cf. graph cut problems)
- How can we relax the problem to find a (good) solution more efficiently?

Observations: For the special case with k connected components

- the k indicator vectors fulfilling $f_C L f_C^T = 0$ yield the perfect clustering
- The indicator vector for each component is an eigenvector of L with eigenvalue 0
- The k indicator vectors are orthogonal to each other (linearly independent)
Lemma

The number of linearly independent eigenvectors with eigenvalue 0 for L equals the number of connected components in the graph.

- the eigendecomposition on the Laplacian matrix can be done
Spectral Clustering: Example for Special Case

- **Special case:** The graph consists of k independent connected components (here: $k = 3$ and each consisting of 3 knots)

- The k components yield a "perfect" clustering (no edges between clusters), i.e. optimal clustering by indicator vectors $f_{C_1} = (1, 1, 1, 0, 0, 0, 0, 0, 0)$, $f_{C_2} = (0, 0, 0, 1, 1, 1, 0, 0, 0)$ and $f_{C_3} = (0, 0, 0, 0, 0, 1, 1, 1, 1)$

- Because of the block form of L, we get $f_C L f_C^T = 0$ for each component C, i.e. L has zero-eigenvectors.

- **Adjacency matrix W**

 0 1 1 0 0 0 0 0 0
 1 0 1 0 0 0 0 0 0
 1 1 0 0 0 0 0 0 0
 0 0 0 0 1 1 0 0 0
 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 1 2 0 0
 0 0 0 0 0 0 1 0 3
 0 0 0 0 0 0 0 3 0
 0 0 0 0 0 0 0 1 1

- **Degree matrix D**

 2 0 0 0 0 0 0 0 0
 0 2 0 0 0 0 0 0 0
 0 0 2 0 0 0 0 0 0
 0 0 0 2 0 0 0 0 0
 0 0 0 0 3 0 0 0 0
 0 0 0 0 0 3 0 0 0
 0 0 0 0 0 0 4 0 0
 0 0 0 0 0 0 0 4 0
 0 0 0 0 0 0 0 0 2

- **Laplacian matrix $L = D - W$**

 2 -1 -1 0 0 0 0 0 0
 -1 2 -1 0 0 0 0 0 0
 -1 -1 2 0 0 0 0 0 0
 0 0 0 2 -1 -1 0 0 0
 0 0 0 -1 3 -2 0 0 0
 0 0 0 -1 -2 3 0 0 0
 0 0 0 0 0 4 -3 -1
 0 0 0 0 0 -3 4 -1
 0 0 0 0 0 -1 -1 -2

4. Unsupervised Methods 4.1 Clustering
Spectral Clustering: General Case

- **In general:** \(L \) does not have zero-eigenvectors
 - One large connected component, no perfect clustering
 - Determine the (linear independent) eigenvectors with the \(k \) smallest eigenvalues!

- **Example:** The 3 clusters are now connected by additional edges

- Smallest eigenvalues of \(L \): \((0.23, 0.70, 3.43)\)
Spectral Clustering: Data Transformation

- How to find the clusters based on the eigenvectors?
 - Easy in special setting: 0-1 values; now: arbitrary real numbers
- Data transformation: Represent each vertex by a vector of its corresponding components in the eigenvectors
 - In the special case, the representations of vertices from the same connected component are equal, e.g. v_1, v_2, v_3 are transformed to $(1, 0, 0)$
 - In general case only similar eigenvector representations
- Clustering (e.g. k-Means) on transformed data points yields final result

![Eigenvectors for special case and general case with result of k-Means](image)

Representation of vertex $v9$: $(0,0,1)$
Illustration: Embedding of Vertices to a Vector Space

Spectral layout of previous example

4. Unsupervised Methods

4.1 Clustering
Spectral Clustering: Discussion

Advantages

- No assumptions on the shape of the clusters
- Easy to implement

Disadvantages

- May be sensitive to construction of the similarity graph
- Runtime: \(k \) smallest eigenvectors can be computed in \(O(n^3) \) (worst case)
 - However: Much faster on sparse graphs, faster variants have been developed

- Several variations of spectral clustering exist, using different Laplacian matrices which can be related to different graph cut problems
